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We study the dynamics of supervised learning in layered neural networks, in the regime where thef size
the training set is proportional to the numibérof inputs. Here the local fields are no longer described by
Gaussian probability distributions and the learning dynamics is of a spin-glass nature, with the composition of
the training set playing the role of quenched disorder. We show how dynamical replica theory can be used to
predict the evolution of macroscopic observables, including the two relevant performance méasinieg
error and generalization erpprincorporating the old formalism developed for complete training sets in the
limit a=p/N—o as a special case. For simplicity, we restrict ourselves in this paper to single-layer networks
and realizable tasks. In the case (oh-line and batchHebbian learning, where a direct exact solution is
possible, we show that our theory provides exact results at any time in many different verifiable cases. For
non-Hebbian learning rules, such esrRCEPTRONaNd ADATRON, we find very good agreement between the
predictions of our theory and numerical simulations. Finally, we derive three approximation schemes aimed at
eliminating the need to solve a functional saddle-point equation at each time step, and we assess their perfor-
mance. The simplest of these schemes leads to a fully explicit and relatively simple nonlinear diffusion
equation for the joint field distribution, which already describes the learning dynamics surprisingly well over
a wide range of parameters.

PACS numbds): 87.10+e, 02.50--r, 05.20—y

[. INTRODUCTION distributions, which leads to closure of the dynamic equa-
tions.

In the past few years, much progress has been made in the These are not ingredients to simplify the calculations, but
analysis of the dynamics of supervised learning in layeredital conditions, without which the standard method fails.
neural networks, using the strategy of statistical mechanicAlthough the assumption of an infinite system size has been
namely, deriving from the microscopic dynamical equationsshown not to be too criticg8], the other assumptions do
of the learning process a set of closed laws describing thelace serious restrictions on the degree of realism of the sce-
evolution of suitably chosen macroscopic observalgtgs ~ narios that can be analyzed, and have thereby, to some ex-
namic order parametersin the limit of an infinite system tent, prevented the theoretical results from being used by
size(e.g.,[1-5]). A recent review and more extensive guide practitioners.
to the relevant references can be founddh A preliminary Here we study the dynamics of learning in layered neural
presentation of some of the present results was givéi]in  networks with restricted training sets, where the nungbef
The main successful procedure developed so far is built ogxamples (“questions” with corresponding “answers”
the following four cornerstones. scales linearly with the numbé&t of inputs, i.e.p=aN with

(i) The task to be learned by the network is defined by &<a <. In this regime individual questions will reappear
(possibly noisy) “teacher,” which is itself a layered neural during the learning process as soon as the number of weights
network This induces a canonical set of dynamical orderupdates made is of the order of the size of the training set. In
parameters, typically thérescaledl overlaps between the the traditional models, where the duration of an individual
various student weight vectors and the corresponding teachepdate is defined adN™', this happens as soon d&s
weight vectors. =0(a). At that point correlations develop between the

(i) The number of network inputs is (eventually) taken toweights and the questions in the training set, and the dynam-
be infinitely large This ensures that fluctuations in mean- ics is of a spin-glass type, with the composition of the train-
field observables will vanish, and creates the possibility ofing set playing the role of “quenched disorder.” The main
using the central limit theorem. consequence of this is that the central limit theorem no

(i ) The number of “hidden” neurons is finitdhis pre-  longer applies to the student’s local fields, which are now
vents the number of order parameters from being infinitejndeed described by non-Gaussian distributions. To demon-
and ensures that the cumulative impact of their fluctuations istrate this we trainegon-line) a perceptron with weights;
insignificant. on noiseless examples generated by a teacher perception with

(iv) The size of the training set is much larger than theweightsB;, using the Hebb andDATRON rules. We plotted
number of weight updates madeach example presented to in Fig. 1 the student and teacher fielass J-£ andy=B-§,
the system is now different from those that have already beerespectively, wheref is the input vector, forp=N/2 ex-
seen, such that the local fields will have Gaussian probabilitamples and at time=50. The marginal distributioP(x) for
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FIG. 1. Student and teacher fields ¥) = (J-£,B-£&) as observed during numerical simulations of on-line leariegrning ratep=1) in
a perceptron of siz&l=10000 att=>50, using “questions” from a restricted training set of sizeN/2. Left: Hebbian learning. Right:
ADATRON learning. Note: in the case of Gaussian field distributions one would have found spherically shaped plots.

p=N/4, at timest=10 for the Hebb rule ant=20 for the  over realizations of the training set. One could still try to use
ADATRON rule, is shown in Fig. 2. The non-Gaussian studentGaussian distributions as largeapproximations, see, e.g.,
field distributions observed in Figs. 1 and 2 induce a deviaf9], but it will be clear from Figs. 1 and 2 that a systematic
tion between the training and generalization errors, whichtheory will have to give up Gaussian distributions entirely.
measure the network performance on training and test exfFhe first rigorous study of the dynamics of learning with
amples, respectively. The former involves averages over theestricted training sets in nonlinear networks, via the calcu-
non-Gaussian field distribution, whereas the laftenich is  lation of generating functionals, was carried out] ir9] for
calculated oveall possible examplestill involves Gaussian perceptrons with binary weights. The only cases where ex-
fields. The appearance of non-Gaussian fields leads to a comlkicit and relatively simple solutions can be obtained, even
plete breakdown of the standard formalism, based on derivior restricted training sets, are those where linear learning
ing closed equations for a finite number of observables: theules are used, such &k1] or [12].

field distributions can no longer be characterized by a few In this paper we show how the formalism of dynamical
moments, and the macroscopic laws must now be averagedplica theory(see, e.9.[13]) can be used successfully to
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FIG. 2. DistributionP(x) of student fields as observed during numerical simulations of on-line leatféaging raten=1) in a
perceptron of size\=10 000, using “questions” from a restricted training set of se N/4. Left: Hebbian learning, measured tat
=10. Right:ADATRON learning, measured &t 20. Note: not only are these distributions distinctively non-Gaussian, they also appear to vary
widely in their basic characteristics, depending on the learning rule used.
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predict the evolution of macroscopic observables for finite  stricted training sets, involving the present and possibly other
incorporating the infinite training set formalism as a speciaformalisms.
case, fora—oo. Central to our approach is the derivation of
a diffusion equation for the joint distributioR[ x,y] of the
student and teacher fields, which will be found to have
Gaussian solutions only far—o. For simplicity and trans- A. Definitions
parency we restrict ourselves in the present paper to single- A student perceptron operates the following rule, which is
layer systems and noise-free teachers. Application and gepmrametrized by a weight vectde RM:
eralization of our methods to multilayer systeiig}] and
learning scenarios involving “noisy” teachef$5] are pres- S{-1,0N={-1,1}, S(&=sgriJ-&. (N)
ently underway.

Our paper is organized as follows. We first derive ay; yries to emulate the operation of a teacher perceptron,

Fokker-Planck equation describing the evolution of arbitrary, hich is assumed to operate a similar rule, characterized by
mean-field observables fdf—oo. This allows us to identify a given(fixed) weight vectorB e RN:

the conditions for the latter to be described by closed deter-

ministic laws. We then choose as our observables the joint

field distributionP[x,y], in addition to(the traditional ones T{-1,3"~{-1,13, T(§=sgiB-£]. )

Q andR, and show that this s¢Q,R,P obeys deterministic

laws. In order to close these laws we use the tools of dynamim order to impro\/e its performance, the student perceptron
cal replica theory. Details of the replica calculation are giver]'nodifies its We|ght vectod according to an iterative proce-

in Appendix B, so that they can be skipped by those primadure, using examples of input vectofsr “questions” &,

rily interested in results. We summarize the final replica-drawn at random from a fixed training s€CD=

symmetric macroscopic theory and its notational conven —1,2N, and the corresponding values of the teacher out-
tions, discuss some of its general properties, and show ho uts’T(§,)

in the Iir_nit a— (infinite training setsthe equations of the We will consider the case where the training set is a ran-
conventional theory are recovered. We then apply our gen- ~ = .
eral theory to various different specific choices of learningd®MIy composed subs&CD, of size [D[=p=aN with
rules. One of thes¢on-line and batch Hebbian learning, ¢
provides an excellent benchmark test for our theory, since for
this simple rule exact solutions are known, even for the re- D={&,...£", p=aN, &*eD forall u. (3
gime of restricted training sef42]. We find that our theory
is fully exact for batch execution, and that it succeeds in _
predicting exactly the evolution of several macroscopic ob\We will denote averages over the training Beand averages
servables, including the generalization error and moments diver the full question séb in the following way:
the joint field distribution for student and teacher fields, in
the on-line casdalthough here full exactness is difficult to

d nat priori teed For non-Hebbi : b _
assess, and nat priori guaran eed For non-Hebbian error- (@ (£))5=— Z ®(&) and (P(&))p= > Dd(H.
correcting learning rules, such as on-line and batch versions |D| geD |D| éeD
of PERCEPTRONIearning andADATRON learning, no exact
solutions are known at present with which to confront our,
theory; instead we compare here the predictiavith regard
to the evolution of training and generalization errors and the
joint field distribution of the full theory, as well as of a i
number of simple approximations of our equations, with the ~ J(M+1)=3(m)+ T &m)GI(m) - &(m),B-&m)]
results of carrying out extensive numerical simulations in

II. FROM MICROSCOPIC TO MACROSCOPIC LAWS

We will analyze the following two classes of learning rules:

large (size N=10000 neural networks. We find, surpris- for on-line learning,

ingly, that even the simplest of these approximations, which 4
does not require solving any saddle-point equations and

takes the form of a fully explicit nonlinear diffusion equation J(m+1)=J(m)+ 2<§g[3(m) EB-E)p

for the joint field distributionsP[ x,y], describes the simula- N

tion experiments remarkably well. Employing the more so- for batch learning.

phisticated(and thereby more CPU intensjvapproxima-

tions, or, at the other end of the spectrum, a numerical ) _ ) ]

solution of the full macroscopic theory, leads to increasingly!n On-line learing one draws at each iteration step ques-
accurate gquantitative predictions for the evolution of the reltion §m) e D at random, thus the dynamics is a stochastic
evant macroscopic observables of the learning process, witprocess; in batch learning one iterates a deterministic map.
deviations between theory and numerical experiment whicihe functiong[x,y] is assumed to be bounded and not to
are of the order of magnitude of the finite-size effects in thedepend orl\, other than via its two arguments.

simulations. We close our paper with a discussion of the Our most important observables during learning are the
strengths and weaknesses of the approach used, and an au&ining errorE((J) and the generalization erréi,(J), de-
look on future work on the dynamics of learning with re- fined as follows:
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E(9)=(0[—(I-H(B-H )b,
Eg(D)=(0[—(I-§(B-H])p . ©)

pd)= 2 m(D)Pm(J). (9)

m=0

- This distribution obeys a simple differential equation, which

Only if the training seD is sufficiently large, and if there are immediately follows from the pleasant properties of Eg).
no correlations betweehand the question§e D, will these  under temporal differentiation:
two errors will be identical.

We next convert the dynamical law4) into the language d
of stochastic processes. We introduce the probakli{fJ) —pt(J):Nf dJ'{W[J;J']-6[I=J3"1}p(J"). (10)
to find weight vector] at discrete iteration ste. In terms dt
of this microscopic probability distribution, the proceséés

can be written in the general Markovian form So far no approximations have been made; @@) is exact

for any N. It is the equivalent of the master equation often
introduced to define the dynamics of spin systems.

pm+1(J):f dJ"WLI:J"1pm(J"), (6) B. Derivation of macroscopic Fokker-Planck equation

We now wish to investigate the dynamics of a number of
as yet arbitrary microscopic observables Q[J]
=(Q4[J],....J]). To do so we introduce a macroscopic

with the transition probabilities

7 probability distribution
W33 1= 8] 9=3' = [ £910"- £B£] | ) _
D
for on-line learning, PI(Q)zf dJ p(J) [ Q2—Q[ J]]. 11
(7)
7] Its time derivative immediately follows from that in EQ.0):
W[:0']= 8 3= = S (€613 £B-€D)p
d
for batch learning. apt(ﬂ):NJ dJdJd o[ Q—Q[J]]

We make the transition to a description involving real-valued XAW[J;37 1= 8[3=3" T} pu(I")
time labels by choosing the duration of each iteration step to
be a real-valued random number, such that the probability
that at timet preciselym steps have been made is given by
the Poisson expression

=NJ dﬂ’f dJdJd’ [ Q—Q[J]]

X o[ = QLI TRW[J;3"]= 83— T}pi(J").

1
Tm(t)= W(Nt)me”\“. (8) This then can be written in the standard form
For timest>N"1 we find t=m/N+O(N~?), the usual d , , ,
time unit. Due to the random durations of the iteration steps, gt Pt(ﬂ):J' dQ'W[Q; Q" ]P(L), (12
we have to switch to the following microscopic probability
distribution: where

f A p(3)8[Q’ — Q3] f dJ (02— Q[ITINW[3;3'] - 8[J- ']}

WQ:Q']=
f dJ'p(3)6lQ — QI ]]

If we now insert the relevant expressiot¥® for W[ J;J'], For the two classes of learning rules at hand we obtain

we can perform thd integrations, and obtain results given in

terms of so-called subshell averages, which are defined as >
D

Wtonl[Q;Q,]=N<<5[Q_Q J+%§Q[J§,B§]

f dJ p(J) L2~ QLI]]f(J)

(F(N)a.= —5[Q—Q[J]]> ,

j dJ py(3) SLQ— Q[ I]] o
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rise to an additional termh\[J:k].! The latter type of more
generalmean-field observables will have to be defined via

W Q,Q'1= N< 5[9—9
the identities

I+ (L3 £B- €5

- 5[Q—Q[J]]>
it JF[J]
’ FLI+K]-FLI=A[GK]+ 2 ki—5—
We now insert integral representations for theistributions. : :
The observable€2[J] € R* are assumed to b®(1) each, 1 92F[J] k|]'
and finite in numbefi.e., k<N): +§ ; kikjm+|>3 O([m} )

Q@ .
A0-Q)= [ e 13 a0

—_ 0 = 2 2
which gives, for our two learning scenarios, F[I]=0(N®), A[Jk]=O([k|*/[I[%) (18)

Wtonl[ﬂiﬂl] [in the assessment of the order of the remainder terms of E
g.
40 - (17) we have used k;=O(+/N|k|)]. Simple mean-field ob-
:f ——— e 0N servables correspond t9 J;k]=0.
(27) We expand our macroscopic equatidiid) and (15) for

A _ largeN and finite times, restricting ourselves from now on to
X{(exp{ —1Q- QI+ (7/N)£5J- £B- £]1H)p mean-field observables in the sense of E43) and (18).
L i0-0[J] 14 One of our observables we choose toJe In the present

e Yot 149 oroblem the shiftsk, being either /N)£G[J- £B- £] or
nIN(&G[J-£B-£))5, scale as|k|=0O(N"Y?. Conse-

Q@ . .
WP Q;0']= J e "IN - Q-0[I+ (9N quently,

X(fg[Jf,B'fDB]}_e_iﬁﬂwbn';t, (19 eifl-ﬂ[Hk]:eifl-ﬂ[J][l_iﬁ.A[J;k]_iz ki,y_j

Still no approximations have been made. The above two ex-
pressions differ only with regard to at which stage the aver-

aging over the training set occurs.
In expanding Eqs(14) and(15) for largeN and finitet we

2

R i P
x(ﬂ-ﬂ[J])—E; kikjm(ﬂ-ﬂ[ﬂ)

have to be careful, since the system ditenters both as a 1 a . 2 B
small parameter to control the magnitude of the modification N 5[ 2. ki,y_Ji(ﬂ' Q[ID| (+ON"¥).
of individual components of the weight vector, but also de-
termines the dimensions and lengths of various vectors that ]
occur. We therefore inspect more closely the usual Taylof Nis, in turn, gives
expansions:
N N ! dQ b0 i0-0[I+k] _ a-i®-0[I
FL+KI-FL1= 3 &3 S Kook JWe N[ - e A
=1 1! ii=1 Q=1 1 '(9311"'!9Ji|
P 90 ,[J]
If we assess how derivatives with respect to individual com- =—N % oM AM[J:kHEi ki a3,
y72

ponentsJ; scale for mean-field observables such@s]]
=J2 andR[J]=B-J, we find the following scaling property 1 aZQM[J]
which we will choose as our definition simplemean-field ts 2 kikjw
observables: ! o

1 » 9
2% 00,00,

I aQ ,[J] 9Q,[J]
FLII=ONY), 3o =0(l IN®21 ) (N—) A R }
' | (16) X S[Q—Q[I]]+O(N"?),

in which d is the number of different elements in the set

{i1,...i}. For simple mean-field observables we can now/t iS now evident, in view of Eqs(14) and (19), that both
estimate the scaling of the various terms in the Taylor exYP€s of dynamics are described by macroscopic laws with
pansion. However, we will find that for restricted training ransition probability densities of the general form

sets not all relevant observables will have the prope(fiés

In particular, the joint distribution of student and teacher

fields will, for on-line learning, have a contribution for which  “we are grateful to Dr. Yuan-sheng Xiong for alerting us to this
all terms in the Taylor series will have to be summed, givingimportant point.
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W Q'] { 2 FQ it m +5 2 G,.[Q't]

2

- -0’ —=1/2
xaQMaQV}‘S[Q Q']+0O(N" 1

which, due to Eq(12) and forN— and finite times, leads

to a Fokker-Planck equation:

k P .
ai (@)= 2 5o {FIQitP()

1 & 92
t3 2, o000, CulBUP(Q).

19
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closure. In the case of having time-dependent global param-
eters, such as learning rates or decay rates, the latter condi-
tion relaxes to the requirement that any explicit time depen-
dence ofF ,[€;t] is restricted to these global parameters.

C. Choice and properties of canonical observables

We next apply the general results obtained so far to a
specific set of observable®—{Q,R, P}, which are tailored
to the problem at hanfinote that we restrict ourselves to
J?=0(1) andB?=1]:

Q[J]=J? R[J]=JB,

PIx,y;J]=(d[x—J-&]8y—B-&])p (20)

The differences between the two types of dynamics are in theith x,y € R. This choice is motivated by the following con-

explicit expressions for the flow and diffusion terms:

),

,L[]

n
‘]l NgG[‘]°§iB'§]

FOQ;t]= lim <N<AM

N— o

+n2 (&G13-£B-&)p

7 Q,[J]
N (66GTIEB: )5l 7309 >m,

G Q;t]= lim —<E (£&G°13-£B-£])p

N— o
> ’
Q;t

3 EGLI-£B-£D)5

90, [J]
a3;

a3,

[ﬁﬂy[ﬂ

b T
FRQ;t]= lim <NAM

N— o0

Q) ,[J
+ 72 (&T1I-£B-€D)5 a’gi[ ]

772
o2 (69-6B-)5

X (6, 0L9-£8£])5 T ;;5 ]> ,
Q;t

2

siderations: (i) in order to incorporate the standard theory
in the limit a— o0, we need at leasp[J] andR[J]; (ii) we
need to be able to calculate the training error, which involves
field statistics calculated over the training Betas described

by P[x,y;J]; and (iii) for finite « one cannot expect closed
macroscopic equations for just a finite number of order pa-
rameters. The present choi@avolving the order parameter
function Hx,y;J]) represents effectively an infinite
number? In subsequent calculations we will, however, as-
sume the number of argumerttsy) for which P[x,y;J] is to

be evaluatedand thus our number of order parametéosgo

to infinity only after the limitN—o has been taken. This
will eliminate many technical subtleties and will allow us to
use the Fokker-Planck equati¢io).

The observable&0) are indeed of the general mean-field
type in the sense of Eq$17) and (18). Insertion into the
stronger conditior{16) immediately shows this to be true for
the scalar observabl€y J] andR[J] [they are simple mean-
field observables, for which the terth8) is absenlt Verifi-
cation of Eqs(17) and(18) for the functionP[x,y;J] is less
trivial. We denote withZ the set of alldifferentindices in the
list (iq,...,i;), with n, giving the number of times a number
k occurs, and withiZz= CZ defined as the set of all indices
ke Z for which n, is even(+) or odd (—). Note that with
these definitiond ==, _+N+ - M=2|T7|[+]Z7]. We
then have

d'Pxy;J] ' dxdy
FAIREF A X ] (2m)2

1

ei[x3(+y§/]

H gEke*ifk[iJkﬂ’Bk]

30, [J]
a3,

x| [T e i&d%c+98d
kéz

GEAL ;1] lim W<E (6013-6B-£D5(E,01£8-€)5 ><< 1,
>5'

N—
>Q;t
Equation(19) allows us to define the goal of our exercise in
more explicit form. If we wish to arrive at closed determin- 2 simple rule of thumb is the following: if a process requires
Istic macroscopic _equauons, we have to Choose our obseryeplica theory for its stationary-state analysis, as does learning with
ables such that) limy_.. G,,[Q;t]=0 (this ensures de- restricted training sets, its dynamics is of a spin-glass type and
terminism, (i) limy_..dF ,[Q;t]/gt=0 (this ensures cannot be described by a finite set of closed dynamic equations.

[r?ﬂ,,[.]]
a3,
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Upon writing averaging overll training sets of sizep P[x,y;J+k]—P[x,y;J]
=aN (where each realization @ has equal probabilityas

( Ysets this allows us to conclude & de P
Ses dXdyei[x%-%—ny 2 —|>2J-§“—i§/B-§“
(277')z [le=

dPIx,y;J] -
ML A | S VN E e
< O”Jiln‘&\]i' sets ( :

Sinces| —|Z|+3|Z | =3[1—|Z | —2|Z "|]=0, theaverage o

over all training setf the functionP[x,y;J] is found to be  All complications are caused by the dependenck ofi the

a simple mean-field observable in the sense of (E6). composition of the training s&, and would therefore have
The scaling properties of expansions or derivations ofbeen absent in the— o case. This dependence will turn out

P[x,y:J] for a given training seD, however, need not be t0 be harmless in the case of batch~learning, whiere

identical to those of its average over all training sets=(#7/N)(£&G[J-£,B-£])p is an average oveD, but will have

(P[x,y; J]>Sets Here we have to use the fact tiathas been @ considerable impact in the case of on-line learning, where

composed in a random manner, as well as the specific forfe= (7/N)£G[J-£,B-£] is proportional to an individual mem-

of the shiftsk in P[x,y;J+k] that occur for the two types of ber of D. Working out the relevant expression for on-line

dynamics under consideration: learning gives

X[e XkE" 1],

P[x,y;J+k°”']—P[x,y;J]:f dxdy ellXx+yyl = E e XIEITIBEN 5 Je I ATERE ]
(277) Pi=1

7]22

~[1= O, 6]{ (£8)G13EBE)+ 557 (££4)°GI-£B-£]+ O(N” 3/2)”

daxdy . oo o o, .
Gz €0l B [ I AIES 1] QLI B-£]+ PG -£B-6])

2

+> kf’“' 3, PDyidl+ 5 Z k"™ ———= P[x,y;J]+ O(N~32),
1

3J;dJ;

We conclude that, at least for the purpose of the expansions PIx,y;J+ kP — P[x,y;J]
relevant to on-line learnind}[ x,y;J] is a mean-field observ-

able in the sense of Eqél7) and (18), with the nontrivial dxdy
contribution of Eq.(18) given by = (27)2

|[xx+yy]£2 e —iXJ-EH—iyB-EH
P =1

1
A[J;koM) = o O[x—J-§= 7G[J-£B-£]]dly — B-£]

1- %g[a-gﬂ,s-gﬂ] + O(N‘3’2)} - 1]

N 5[X_J.§] 6[y—B-§] bat baj,bat  ~ (92
) _2 k53, PDOYidl+5 Ek ki 7333
+ 7 —[dg[x,y] 5[ x—J- -B-
7 LG0x.y18x— 3-£13ly —B-£]] PIxy:I] ON-32)
1 2
72 [GPIxY1 o x— £l oy —B-£]]}. _ .
27 ax? 14 1oLy~ Bg] Here the term\[J; k"] is absent. In fact, also the quadratic
21) contribution3;;k?*k* -+ in the above expansion will turn
out to be of insignificant order iN. For the purpose of the
Note that limy_... NA[J;k®"]=0(#%% «), so that for small expansions relevant to batch learnifjx,y;J] is apparently
learning rates or large training sets this nontrivial term will a simple mean-field observable in the sense of(E). This
vanish. Working out the relevant expression for batch learneould have been anticipated, since one should ultimately ob-
ing, on the other hand, gives tain the batch learning equations upon expanding those of
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on-line learning for small learning ratg and retaining only
the leading ordem?® in this expansion.

D. Derivation of deterministic dynamical laws

Having defined our order paramet&@sR and{P[x,y]},
from this stage onwards the notatiohorp; Will be used to

denote subshell averages defined with respect to these order

parameters, at time With a modest amount of foresight we

define the complementary Kronecker delfg,=1— &,p,,
and the following key functions:

ADyix'y']= lim ({(Bger (£&) S x—I-£] 8y —B-£]

Xo[x'—J3-&10ly' —B-&' 1)b)D) oret »
(22

BIx,y;x",y']= lim

N— o0

X oly—B-£lo[x' —J-&']

1 _
<NE (e (£:€1E/ &) %~ 3-€]

i1#]

Xoly'— B'§’]>B)B> : (23

QRP1

— = (&£&"(&-¢&")
< < < < Sggrdger— N

X o[ x—J-£]oly—B-£ld[x'—J-&']
X o[y —B-&]o[x"—J-&"]

arsel] )]
°IDl o/ ey

C[X,y,xl ,yl ;X”,y”] — ||m

N—oo

4 .
5 PIxyl= hlllin

o
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We will eventually show in a subsequent section that Egs.
(23) and(24) are zero. The functiof22), on the other hand,
will contain all the interesting physics of the learning pro-
cess, and its calculation will turn out to be our central prob-
lem.

In Appendix A we show that for the observablg®) the

(fiffusion matrix element§ ;" in the Fokker-Planck equa-
|

on (19) vanish forN—c. The Fokker-Planck equatidi9)
now reduces to the Liouville equationd/dt)P,(Q)=
=2 ,(0l9Q )[F [Q;t]P(2)], describing deterministic
evolution for our macroscopic observablesd/dt)Q
=F[Q;t]. These deterministic equations we will now work
out explicitly.

1. On-line learning

First we deal with the scalar observabf@sandR:

d
31 Q= Im {27{((3-8)G1J-£,B-£])b)ore:

N— o

+ (G I-EB-E)p)ores}

=277f dx dy A x,y]xg[x,y]

+72 [ dx dy AxyIGTxy]

d
at R=lim 7{((B-£)G[J-£B-£])p)orpt

N—o

= axay Axylygxyl

These equations are identical to those found in dhe
formalism. The difference is in the function to be substituted
for P[x,y], which here is the solution of

772 2

9 J
[— D5 ((TI€ B-E1(E€) X~ I-£10y—B-ENoYo)arert 5 52 ((FII-E B-E (£

1
X &[x—J-€]0ly—B-£1)b)b)ores + < (0[x—J-&= nG[J-£,B-£]1o[y — B-&]— o[ x—J-£] oy —B-&])p

02

d
+ m[g[x,y]w[x—a-g]a[y—B-§]>51—%nZW[QZ[x,yM&[x—J-f}&[y—B-§JJ>5> ]
QRPt

[where we have inserted E®1)]

1 1%
:E{f dx’P[x’,YJ5[X—x’_ng[x"y]]—P[x,y]]_na_xf dx'dy’ A[x,y:x,y' 161X,y ]

2

1.2 ’ ’ 1o\t 20! v/ J 1 202 ! ’ 1oyt 2M v/ \s!
+a” | dXTdY'PIXLYTIGTXLY T 5 PIXY I+ e oo | dXdy BIX,yix"y JGX7y .
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Anticipating the term3[ ] to be zero(as shown in Appendix 2. Batch learning
B)_we thus arrive at the_ following set of coupled determin- For Q andR one again finds simple equations:
istic macroscopic equations:

d
a(2227]‘]‘ dx dy F[X,y]XQ[X:y]

N— o

d
aQ: lim {277<<(J'§)g[‘]°§vB'§]>B>QRP,‘[
o[ axay Axyicixyl, @9

2

+ %< > <fig[a-§,8-§]>§,> ]
- | QRPt
atne ”f dxdy Ax,ylyglx.y], (26)

=277J dx dy AX,YIXg[x;y],

d 1 ! ! ! !
ap[x.yk;[ | axPix y1atc—x = ngix vl

d ] 3
- P[x,y]] - n%f dx'dy’ aR: ,\I"an 7{((B-£)G[I-£,B-£])5)arey

= dxd X,y1yaIx:vl.
xA[x,y;x’,y’]g[x’,y’]+%UZJ dx'dy’ ”J y Ax.ylygIxy]

2

XP[x',y' 16Xy’ ] -2 P[x,y]. 27) Finally we calculate the temporal derivative of the joint field

distribution:

] ]
- Plx.y]= lim [ =1 ((GI-§,B-&1(&&) 0 x— €]y —B-£])5)5) qret

N— o0

2 &2
+ —277,\, ~2((G3-€ B-£]G[-£" B-£"1(£& ) (££") o x—I-£] 8Ly~ B-£1)5)5)D)ares

_ n J d ’ ’ ! ’ ’ ’
__;5[g[x,y]P[X,y]]—n5f dx'dy" A[x,y;x",y"1g[x",y']

{92
+%772Wf dX,dy’dX”dy”C[X,y;X’,y,;X”,y”]g[X’,y’]g[x”,y”].

Anticipating the termC[ ] to be zero(to be demonstrated in The difference between the macroscopic equations for batch

Appendix B we thus arrive at the following coupled deter- and on-line learning is merely the preserfoe-line) or ab-

ministic macroscopic equations: sencebatch of those terms which are not linear in the learn-
ing rate 7 (i.e., of order»? or highey.

d
anz”f dx dy Hx,yIxg[x;y], (29
E. Closure of macroscopic dynamical laws

d . . .
—R= ”f dx dy Ax,ylygx;y]l, (29 The complexity of the problem is fully concentrated in the
dt Green’s function A[x,y;x’,y’'] defined in Eqg.(22). Our
macroscopic laws are exact fdr— o but not yet closed due
d n d ) . o .
—P[x,y]=—— =[G x,yIP[x,y]] to the appearance of the microscopic probability density
dt a JX p:(J) in the subshell average of E2). We now close our
9 macroscopic laws by making, fad—o, the two key as-
—na—f dx'dy" Al x,y;x",y"19[x",y']. sumptions underlying dynamical replica theoriesi) Our
X macroscopic observablé®,R,P obeycloseddynamic equa-
(300  tions; (i) these macroscopic equations are self-averaging
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with respect to the disorder, i.e., the microscopic realizatiorThis new microscopic distributiow(J) depends on time via
of the training seD. Assumption(i) implies that all mi-  the order parameterQ,R,R. Note that Eq.(31) leads to
croscopic probability variations within tH&,R,P subshells ~€Xact macroscopic laws if our observableQ,R,R for
of the J ensemble are either absent or irrelevant to the evolN—> indeed obey closed equations, and is true in equilib-

lution of {Q,R,P. We may consequently make the simplest“um for detailed balance models in which the Hamiltonian
self-consistent choice fop;(J) in evaluating the macro- can be written in terms ofQ,R,B. It is an approximation if

scopic laws, i.e., in Eq(22): microscopic probability equi- our observables do not obey closed equations. Assumption

partitioning in the{Q,R,P subshells of the ensemble, or (i) a"_OWS us to average the macroscopic laws over the dis-
order; for mean-field models it is usually convincingly sup-

ported by numerical simulations, and can be proven using
the path-integral formalisnisee, e.g.[10]). We write aver-
ages over all training set®C{—1,1N, with |D|=p, as
()= . Our assumptions result in the closure of the two sets
x[1 s[P[x,y]-P[xy;J]l. (31 (29-(27) and (28—(30), since now the function

Xy A[X,y;x",y'] is expressed fully in terms dRQ,R,B:

pi(J)—w(J)~3[Q—Q[IIS[R-R[JI]]

f dIW(I)((S[x—I-£]oly —B-&l(£&) g OX' — I-£ 101y’ — B+ 1)5)p

A[Xy;x"y' )= lim
N=e f dJIw(J)

il

The final ingredient of dynamical replica theory is the real- n
ization that averages of fractions can be calculated with the  A[x;y;x’,y’]= lim f H W(o*)do®
a=1

replica identity N
’ Y \/ao.lg
f dIW[J,2]G[J,Z] ><< <<(§ &) Ogg 6| X— N
fdJW[\],Z] _T_§ - Qo'l'§,
z n X 6 \/N o —\/N
= |im fdJ1-~~dJ”<G[J1,z]H W[Ja,z]> ) £
n—0 a=1 . xoly — = ' (33)
Wils/ )

Since each weight component scalesJfs O(N"Y?), we
transform variables in such a way that our calculations W|IIIn the same fashion one can also exprE§s,y] in replica

involve O(1) objects: form (which will prove useful for normalization purposes
and for self-consistency tests

(Vi) (Va): Jia=(Q/N)1/20'ia, B, =N~

n
This ensureg{*=0(1), 7= 0(1), andreduces various con- P[x,y]= lim f H W) do®
straints to ordinary spherical ones: o)2= 7=N for all «. ' Now J a=1
Overall prefactors generated by these transformations always n—0
vanish due ton—0. We find a new effective measure: ot .
) _ w(J%)dJI*—1I1"_,W(o*)do”, with ><< < 8 x— M Sly— kil > >
W W5/
W(o)~N—0?]INRQ Y?— 7-0] (34

x [T o[P[x,y]-P[x,y:(Q/N)*?a]]. (32 Finally we will have to demonstrate that the two functions
Xy B[] and ([ ], as defined in Eqs(23) and (24), do indeed
vanish self-consistently, as claimed. To achieve this we
We thus arrive at again express them in replica form:
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n unigueness of the solution of the RS functional saddle-point
BIx,y;x",y"]= lim f I #(e*)do® equation and show that it can be found as the fixed point of
N—o J a=1 an iterative map.
n—0
— |1 L A. Summary of the theory
X<<<5§§' N gigigifj} . .
i#] 1. Dynamic equations for observables
Our observables ar@Q=J?, R=J-B, and the joint
_ \/6‘71'§ _ 7_§ distribution of student and teacher field$[x,y]
X6 oy
JN JN =(8[x—J-&€]5[y—B-£&])p . ForN—o these quantities obey
closed, deterministic, and self-averaging macroscopic dy-
<8l % \/60-1~§’ , T& namic equations. One always ha&x,y]=P[x|y]P[Y]
x N W=/ with  P[y]=(27) Y2 7¥72.  We define (f[x,y])
Pin/ g =[dx Dy A x|y]f[x,y], with the familiar short-hand nota-
(35)  tion Dy=(27) Y2 ¥’2dy, and the following four aver-
ages(the function®[x,y] will be given below:
and
U=(D[x,yIg[x.y]), V=(xg[x,y]),
CIxy; "y x"y"] W=(ya[x,y]), Z=(Gxy]). (37)
n
= lim f 11 ®(e*)de® For on-line learning our macroscopic laws are
— 00 a=1
’l\|1—>0 d 2 d
—Q=29V+75Z, —R=nW, (38
~ = (68 dt dt
X 5§§//5§/§0T
d 1
SiPDIyI= < [ ax PIXIyILaTx—x = nGlx’ 1]
1 ’
Qo' ¢ & |, VQo¢
X 8| X— S|ly— —=|X§x' ———— 9
N W N = olx=x'T1= 7 {PIXly[U(x~Ry)+ Wy]}
7-§’ Q(Tl' f/ 5
X8|y ——=|68| X"~ J
N N +37°Z— 5 PIxly]- 7[V-RW-(Q—R)U]
woly— & (36) 2 IP[xly 10 39
Ao ) ) —APIXy1®[xy1}. (39
D/ =

For batch learning one has
At this stage the physics is over; what remains is to perform

the summations and integrations in E¢33)—(36) in the d
limit N—oo. Full details of this exercise are given in Appen- aQ: 27V, dt R=7W, (40
dix B, where we show that Eq$35) and (36) are indeed
zero, and where we derive, in replica-symmetric ansatz, ary 7 9
expression for the Green’s functigB3). It turns out that to gt P[x|yl=— = —[PIx|yldlx,y1]
calculate this Green’s functiopd[ | one has to solve two t @ oX
coupled saddle-point equations at each time step, one scalar 9
equation relating to a spin-glass order paramgeand one - ﬂ&{P[XW][U(X—Ry)'FWy]}
functional saddle-point equation relating to an effective
single-spin measure. 9
—7[V=RW-(Q~RA)UI - {P[x|y1P[x,y1}.
Ill. SUMMARY OF THE THEORY AND CONNECTION

WITH a@— o FORMALISM (42)

In this section we summarize the results obtained so faNote that the batch equations follow from the on-line ones
(including the replica calculation in Appendix)Bh a com- by retaining only terms which are linear in the learning rate.
pact way, and we show that our general theory has the sa:rom the solution of the above equations follow, in turn, the
isfactory property that it incorporates the standard formalisntraining and generalization errors:
developed for infinite training setsvith Gaussian joint field
distributionsP[ x,y] at any time as a special case, recovered

1
in the limit a—co. In addition, we provide a proof of the Ee=(0=xyD, Eg:;arccogR/\/ﬁ]. (42)
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We note, finally, that the first conditional momergty)

= [dx xP[x|y] of P[x|y] of the joint field distribution obeys .fdxMUka“ﬂxyz] JIO-R?
a simple equation, which is obtained from E(®9) and(41)  (f[x,y,z]), = , B= CEEE
upon multiplication byx, followed by integration ovek: f dx M[x|y]e®*? q

(46)

d n _

— -Ry]l=— | d Y]+ nU —Ry], . .

dt[x(y) Y] a f X PXIy 19Dy T+ 7UIXY) vl After g andM[x|y] have been determined, the key function
(43 ®[x,y] in Egs.(37), (39), and(41) is calculated as

where we have also used the built-in property <I>[X,y]={Q(1—q)P[X|y]}*1f DzZ(X—X), ([ X—x]),
Jfdx P[x|y]®[x,y]=0 for all y. a7

2. Saddle-point equations and the functiod or, equivalently,
The function®[x,y] appearing in the above equations N =y _1f B
(generated by the Green'’s functiod[ ]) is expressed in P[X.y]={VqQ~R*P[X|y]} Dz Z L X=X])s -

terms of auxiliary order parameters. These come about in the (48)

(ra?gllscz:;aggfli?\té%ntr?:oﬁpEegi?g:fﬁhrtlir;?qr: i;h?hgirrdﬁ]rtepigm_ﬁnding a saddle-point problem for an order-parameter func-
representation. The firs? auxiliary order parameter is% spingon’ rather than a fini_tg number O.f sca_lar order parameters,
glass-type order parameter=((J)%)5/Q, with RZ/Q=q introduces the possibility of a proliferation of saddle points.

<1. The second, defined similarly for the joint probability In the next section we will show that this does not happen:
PLx.y]. is the functiony[x.y] (for details see Appendix B the solution of the functional saddle-point problem is unique,

h : . . and can even by found iteratively by executing a specific
The latter is not necessarily normalized and in what follows y y by g P

L : . . nonlinear mapping.

it is useful to consider the effective measiiéx,y] which ppIng

is related tox[x,y] through a simple transformatiofiq. B. Uniqueness and iterative calculation of the functional
(B44)]. The measureM[x,y] is non-negative and can be saddle point

always normalized such thddx M[x,y]=1 for all ye R, ) ) i i
as emphasized in our notation by writingd[x,y] The uniqueness proof is more easily set up in terms of the

—~M[x|y]. The auxiliary order parameters are calculated aPf9inal order-parameter functiog[x,y], rather than the

each time step by solving the following two coupled saddle-"€W (normalized measureM[x|y] (see Appendlzx B Fora

point equations: given state{Q,R,B and a given value foge[R“/Q,1] we
have to find the functional saddle points of the functional

((X—Ry)2>+(qQ—R2)(1— %) Y[x], defined as

‘I’[X]=CYJ Dy DzIanxexp{—xZ/[ZQ(l—q)]

1+q—2R4Q}f
=|—————| | DyDZ(x?, —(x)2],
1-q y DZ{C) (0] +x[Ay+Bz]+a x[x,y]}
(44)
- [ oy dxAxlyIxixy) 9
P[X|ly]=| D X— , 45 _ . . .
[(Xly] f ZAX=xDs “9 Our proof will carry the existence of the various integrals as
an implicit condition for validity. To reduce notational bal-
in which last we define

|
exp{ —x%/[2Q(1—q) ]+ x[Ay+Bz]+a x[x,y]}

f dx’ exp{—x"2/[2Q(1—q)]+ X' [Ay+Bz]+a tx[x',y]}

w(x,y,2)=

<ﬂn%ﬂh=JdXMm%nﬂn%ﬂ-

Note thatw(x,y,z)= M[x|y]eBXZ/fdx’M[x’|y]eBx'Z. The the first functional derivative o[ x] with respect toy[u,v |
functionw(u,v,z) obeys to be zero for allu,v e R, where
ow(u,v,2)

YA e—(llz)u2
Sx[u',v']

a tov—v' S u—u'lw(u,v,z) ov ‘:
oxluvll, \2r

Clearly, if the functiony[ x,y] is a saddle point, then also the
The functional saddle-point equation is obtained by requiringunction x[ x,y]+ p(y) for anyp(y). This degree of freedom

{f DzwWu,v,z)—P[ulv]|. (50

—w(u,v,z)w(u’,v,2)}.
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is irrelevant because such terméy) will drop out of the
measure( ), . Furthermore, one immediately verifies that
transformations of the formy[x,y]— x[x,y]+p(y) leave
the functional’[ ] (49) invariant. Next we calculate the Hes-
sian(or curvaturg operatoH[u,v;u’,v’; x], using Eq{(50):

v
Sx[u,wloxu’ v,

Hlu,v;u’,v’;x]=

e7(1/2)v2

N

ow(u,v,2)
25U 0]

— (11202

a\2m

Xw(u,v,z)—w(u,v,z)w(u’,v,2)}.
(5D

=8v—v'] Dz{s[u—u']

H[u,v;u’,v’;x] is non-negative definite for eack, and
thus the functionalV is convex, since for any function
¢[u,v] for which the relevant integrals exist we find

f dudv du’'dv’¢[u,v]H[u,v;u’,v";x]d[u’,v']
1
== | ovpat(@uen, ~(otustii=o

The kernel ofH[u,v;u’,v’;x], for a given “point” y in x

space, is determined by requiring equality in the above in-

equality, i.e.,
for eachv,zeR

<[¢[va]_<¢[uvv]>* ]2>* =0

SO

a —
E(ﬁ[u,v]—o.

AND D. SAAD PRE 62

Llx1]-Llxol= | dLix]

X0

X1
=f du dv dx[u,v]
X0

ox[u,v]
=J du dv(xs[u,v]=xolu,v])

1 oL
[
0

té)([u,v]
For the functionalL[ x] we now choose a functional first
derivative of V[x], i.e., L[ x]=6W¥/5x[x,y] for somex,y
eR. Since bothy, and y, are saddle points, one finds
L[ xol=L[x1]1=0. Thus

Xt

f 1 5w ’

du dv u,v]— xolu, J'dt— =0.
Caltel=xduo]) | dts T Toxxoy] N

Multiply both sides byy[X,y]— xo[X,y] and integrate the

result overx,y € R:

JoldtJ’ du dv dx dy(xs[u,v]—xolu,v])

XH[U,v;X,Y; x ) (xal X,y 1= xol X,y]) =0.

One concludes(since the Hessian is a symmetric non-
negative operator

| dxdy HuwixyrdOalny1- xebxyD =0

for all te[0,1], u,veR.

The functiony4[X,y]— xo[X,Y] is in the kernel oﬁ—||)(t for

anyte[0,1]. The kernel ofH was already determined to be
the set of all integrable functions which dependyoonly,
whatever the pointy where one chooses to evaludte
Henceyx1[X,y]— xo[X,y]=p(y) for some functiorp(y). Fi-
nally, the remaining freedom in choosing a functipnis
eliminated by our normalizatiofdx M[x|y]=1 (for each
y), so that the solutioM[x|y] is indeed truly unique.

Next we will show how for any given value of the scalar
order parameteq and the observabled®,R,B (and thus of

For eachy the kernel of the second functional derivative gy for which the relevant integrals exist, the unique solution

H[x,y;x",y";x] thus consists of the set of dlintegrable
functions ¢ x,y] which depend ory only.

We now find that, ifyg[X,y] and x4[x,y] are both func-
tional saddle points o[ x], then [ X,y]1— xo[X,Y]1=p(Y)
for some functiorp(y). In other words, apart from the afore-

mentioned irrelevant degree of freedom, the solution of the

functional saddle-point equatio5) is unique. To show
this, consider two functiong[ x,y] and x4[ x,y] which are
both functional saddle points o¥, i.e., corresponding to
solutions of Eq.(45). Define a path{x,} through xy space,
connecting these two functions:

Xt[xly] :XO[le] +t{X1[X!y] _XO[le]}Y te [011]

Integration along this path will bring us fromy, to x;. Thus
for any functionalL[ xy] one has

M[x|y] of the functional saddle-point equati@a5) can be
constructed as the stable fixed point of the following func-
tional map:

M 1[x]y]

-1) -1
P[x|y][f Dz fdx’eBZ(X/‘X)M,[x’|y]} ]
= -1 -1
fdu P[u|y][f Dz fdx’eBZ(X'“)M,[x’|y]} ]

for eachyeR. (52

Clearly all fixed points of this map correspond to normalized
solutions M[x|y] of the functional saddle-point equation
(45), of which there can be only one. Thus we only need to
verify the convergence of E¢52), which can be done most
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efficiently using an appropriate Lyapunov functional. Note _
that the functional49) can be written as ‘I’[MW]:J Dzin f dx Px|y]

B Xexp Bxz+InM[x|y]—InP[x|y])
W[M]Iaf Dy W[M|y]+terms independent oM[ ] H y |

- [ axcpxypinmidy;
with

zf sz dx P[x|yl{Bxz+In M[x|y]—In P[x|y]}

\Tf[M|y]=f Dzlnfdx M[ x|y]eB®*
- [ axpryimmixy)

- [[axpodymmiy. 69
=~ [ axptxiyinPrxly)

For any givery € R we will show Eq.(53) to be a Lyapunov tSGQOHI?, Wed ShCéW (g‘zt';\t E':'{IS?% infde%d dectfeﬁ:cSES (rgg)no'
functional for the mappind52), i.e., ¥[M|y] is bounded tonically under £q. untit the tixed point ot Eq.

from below and monotonically increasing during the itera-'rfotéﬁgﬁged)\‘ ()'(I'o Z;jg B>S<3 + ;Ir\ﬁ\/l [')qg]oijmcg[xﬁge ??[oxrﬁ;hand
tion of Eq.(52) with stationarity obtained only wheM [ ] is ~ [dx P[x|y]lf[>,<§/, and ! :

the (unique fixed point of Eq.(52). First we prove that a '

lower bound for¥’ is given by the entropy of the conditional
distribution P[ x|y]:

-1

U|(X,Y)=[f Dz eIy 2(h(x"y.2)y =1
The iterative map can now be written as

q’[M|y]>—J dx P[x|y]In P[x|y] M a[xly]= M, [x|yJoi(x,y)

for any M[] and anyyeR.  (54) Jd” Mi[uly]v(u,y)

This gives for the change W[ ] during one iteration of the
The proof is elementaryusing Jenssen'’s inequaljty mapping, again with Jenssen’s inequality,

[ ax . sixiyres

M|+1[X|YJ]

- o] Sy

fI’f[M.Hly]—‘if[M.lykazln f
dx M[x|y]e®*?

N|(X.Y,2)
:f Dz[ In<e| vl(x’y»]—(Inv,(x,y))

<e>\|(x,y,z)>

STHOPY IS I~
= _<|n U|(X,y)>

=<Inj Dz e?‘l(x'yﬁz)<e>\|(x',y,2)>—1>

<In f Dz(eM*y:2)(ehx'y:2)y~1=

Finally we round off our argument by inspecting the impli- J (e*l(x'yvz)m(x,y)) J

cations of having strict equality in the above inequality. 97 (e)‘l“'y'z)) =0, 5v|(x,y)=o.

Equality can only occur if at both instances where Jenssen’s

inequality was used in replacements of the fofin(X))  If the second condition is met, the first immediately follows.
=<In(X) the relevant stochastic variablewas a constant. In Working out the second condition gives, in combination with
our problem this gives the two conditions the property thaP[x|y] is normalized,
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M, [x|y]e®? . ' (112)k2/B2
f Dz —=PIxly]. M[Kly]—=M[Kly]= ———
fdx’M,[x’|y]eBXZ M[—kly]

_ _ with the property(verified by a simple transformation of
Thus we have confirmed that[M, . ,|y]=¥[M|y] ifand  variables

only if M|[ ] is the (unique fixed point of Eq.(52).

As a consequence of the above we may now write the M[k+iBz|y] ikiB+  M[k+iBz|y]
normalized solution of our functional saddle-point equation f DZ—=f Dz——mm.
(45) in terms of repeated execution of the mappi&8) fol-
lowing an in principle arbitrary initialization:

M[iBzly] /B> M[iBz]y]
If l\7|[k], which by definition cannot have poles, is suffi-
M[x|y]=lim M[x|y], ciently well behaved, a simple deformation of the integration
I—e path (via contour integrationleads to the statement that if
M[k|y] is a solution of Eq(56), then so isM[K|y].
Transformation of the dynamical on-line equati@9) for

This property simplifies the numerical solution of our equa-P[X|Y] [from which the batch equatiof#1) can be obtained

Mo[x|y]=P[x|y] for all yeR.

tions drastically. by expansion iny] gives
C. Fourier representation and conditionally —In |5[k|y]
Gaussian solutions dt
There are two potential advantages of rewriting our equa- 1 |5[k’|y] dx’
tions in Fourier representation. First, after a Fourier trans- =— f dk'— —
form the functional saddle-point equatié#6) will acquire a @ Plkly] / 27

much simpler form. Second, in those cases where we expect
P[x|y] to be of a Gaussian shapethis would simplify the
solution of the diffusion equation&39) and (41). Clearly,
P[x,y] being Gaussian iiix,y) is not equivalent tP[x|y]
being Gaussian i only. The former requires

xexplix' (k' —k)—i nkg[x’,y]}—l}

J .
—igk(W—UR)y+ nkUEIn PlKly]—37?k?Z

az
Wj PP V—-RW-(Q—-R)U

VaQ—R2P[K|y]

—ink

M[k+iBz|y]
2 JDz z—.

M[iBz]
(57)

We now determine the conditions for E(p7) to have
conditionally Gaussian solutions. | x|y] is Gaussian irx,
we can solve the functional saddle-point equati@b)
(whose solution is uniqye and find the resulting pair of

J
=W[dexzp[xly1— o

dexP[xly]

which only will turn out to happen for—c. A Gaussian
P[x|]y] with moments which depend oy in a nontrivial
way, on the other hand, is found to occur also &ow o,
provided we consider simple learning rules and smjallo
avoid ambiguity we will call solutions of the latter type

- . measures
“conditionally Gaussian.”
We introduce the Fourier transforms exp{—(llZ)[x—Y(y)]zlAz(y)}
?’[kly]=f dx e "**P[x]y], B (58)
_exp{— (12 x—x(y) 1/ a?(y)}
- . M[x|y]= or ,
iklyl = [ dxe mixly] (55) o(y)V2m
A%(y)=o%(y)+B2o*(y) (59

The transformed functional saddle-point equation thereby ac- A
quires a very simple form with  their Fourier transforms P[k|y]=exd —ikx(y)

—1I2A%(y)] and M[k|y]= exd —ikx(y)— k% oX(y)]. Insertion

- M[k+iBz]y] of these expressions as an ansatz into ), using the
P[k|y]=J Dz—— : (50 identity P o ’
M[iBz]y]
Note that, in contrast to the original equati@tb), the trans- J' Dz ZM[k+iBz|y] =ikB(72(y)|5[k|y]
formed equation(56) need not have a unique solutidit NI[iBzZ]

could allow for solutions corresponding to nonintegrable
functions in the original problejnConsider, for instance, the and performing some simple manipulations, gives the fol-
transformation lowing simplified equation:
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2/ (2 O
—IK%Y(y)—%kzd—thz(y) d _ [25(xgxy])+7%(G7xy]) (on-line)

dt ™ | 29(xG[x,y]) (batch,
d
‘ J oo (12[u—ikAy) P Gt R= myabxy), (62
1 d N7 ~/( ! ! ! !
—iknG[X(y)+uA(y),y]}—1 p i X)) —Ryl=[x(y) ~RyK®[x"y"19[x".y"]),
(63)
—ink{Wy+U[X(y) ~Ryl} d
2, il A -Q+RY
- %kzl n°Z+27UA%(y)+2790%(y)
- RY\ oW
V_R\N_(Q_RZ)U <(X y [X Y ]> Q(l_q)
X (60)
Q(1—-q) Q-R?
+(<I>[x’,y’]g[x’,y’])[Az(y)— m}
From this it follows that conditionally Gaussian solutions
can occur in two situations only: (64)
with one remaining saddle-point equation to determipe
a—®© obtained upon working out E¢44) for conditionally Gauss-
ian solutions:
or 2 2 2
Dy{[x(y)—Ry]*+A%(y)}+qQ—-R
aksJ exp{— (1/2)[u—ikA(y)]? qQ_ +1 f Dy o?(y). (65)
V2w ‘QAtq
—ik nG[x(y)+UuA(y),y]}=0. (61 Weznow make the ansatz thaiy)=Ry and A%(y)=Q
-R4, e,
The first case corresponds to the familiar theory of infinite exp{— (1/2)[x—Ry]?(Q—R?)}
training sets(see the next sectignThe second case occurs PIx|y]= > : (66)
for sufficiently simple learning rule§[x,y], in combination V2m(Q—R")

either with batch executiohso that of Eq.(61) we retain
only the term linear iny] or with on-line execution for small
7 [retaining in Eq.(61) only » and %? termg. The latter
cases will be dealt with in more detail later.

Insertion into the dynamical equations shows that(&8) is
now immediately satisfied, that E¢64) reduces too?(y)
=Q(1—q), and that as a result the saddle-point equation
(65) is automatically satisfied. Since E@6) is parameter-
ized by Q andR only, this leaves us with the closed equa-

D. Link with the formalism for complete training sets tions
The very least we should require of our theory is that it d 29(xG[x,y1)+ 7% G*[x,y]) (on-line)
reduces to the simpléQ,R formalism of complete training T 2 n(xGIx.y1) (batch,

sets[2,3] in the limit a—«. Here we will show that this

indeed happens. In the preceding section we have seen that d

for a—o our driven diffusion equation for the conditional aRz 7{ygIx,y]). (67)
distribution P[x|y] has conditionally Gaussian solutions,

with  fdxxP[x]y]=x(y) and [dXx—X(y)]?P[x]y]  These are the equations found in e[g,3]. From our general
=AZ?(y). Note that for such solutions we can calculate ob-theory for restricted training sets we thus indeed recover in
jects such agx), and the function¥[x,y] (47) directly, the limit «— o the standard formalisit66) and(67) describ-
giving ing learning with complete training sets, as claimed.

X_Y(y) IV. BENCHMARK TESTS: HEBBIAN LEARNING
Q(1-q)[1+B%0?(y)]

(X)x =X(y)+zBo?(y), ®[x,y]=

In the special case of the Hebb rulgfx,y]=sgny],
where weight changesJ never depend od, one can write
with  A%(y)=0?(y)+B20*(y) and B=\/qQ—R?  down an explicit expression for the weight vectbat any
Q(1—q). The remaining dynamical equations to be solvedtime, and thus for the expectation values of our observables.
are those foQ andR, in combination with dynamical equa- We choose as our initial field distribution a simple Gaussian
tions for they-dependent cumulantgy) andA?(y). These one, resulting from an initialization process which did not
equations reduce to involve the training set:
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exfl — (1/2)(x—Roy) % (Qo—R3)]

@ 1/2 1
PoX|y]= (69) lim E;=3—3 | Dy eri{|y|(—) +—]. (75)
o V2m(Qo—RY) . ZJ 7 \2a

. ) As far askq andE; are concerned, the differences between
Careful averaging of the exact expressions for our obsenpatch and on-line Hebbian learning are confined to tran-
ables over all “paths” {§(0),£(1),...; taken by the sjents. Clearly, the above exact resultghich can only be
question/example vector through the training Betfor on-  obtained for Hebbian-type learning rulgsrovide excellent
line learning, followed by averaging over all realizations of and welcome benchmarks with which to test general theories
the training seD of sizep=aN, and taking the\— oo limit, such as the one investigated in the present paper.
then leads to the followingexact result[12]. For on-line
Hebbian learning one ends up with

A. Batch Hebbian learning

We compare the exact solutions for Hebbian learning to
1/2

5 sl 2 the predictions of our general theory, turning first to batch
Q=Qo+2ntRo| —| + 77+ 77—+ —1, Hebbian learning. We insert into the equations of our general
formalism the Hebbian recipg[x,y]=sgry]. This simpli-
112 fies our dynamic equations enormously. In particular, we ob-
R=Rg+ nt( ;) , (69) tain
U=0, V=(xsgny)), W=2/m.
dx . . .
Plx|yl= f Z—eXp{—(l/z))A(?[Q— R2]+iX[x—Ry] For batch learning we consequently find
a
- d d
+(t/a)[e "SIy 17}, (70) giQ=27V, FR= 21,
For batch learning a similar calculatibgives d 7 P 112
» o, gi Plxlyl= =~ sarty) — P[x|y] - ny<; o Pyl
Q=Qp+2 tR(— + Pt —+ —|, 12
B V=R 2] L pixiyIerxyl)
T X A
12
R=Ry+ nt(—) , (71  Given the initial field distribution(68), we immediate
™ obtain Vy=Ryy2/r. From the general property

Jdx P[x]y]®[x,y]=0 and the above diffusion equation for
exp(— (1/2){x—Ry— (nt/@)sgiy]}?/(Q—R?)) P[x|]y] we derive an equation for the quantity
. =(xsgn§)), resulting in @/dt)V= 5/a+ 27/, which sub-

Pxly]l=

V2m(Q—R?) sequently allows us to solve
(72) 1/2 1 2
— 2+2
Neither of the two field distributions is of a fully Gaussian Q_Q°+2”tR°(; Tt PRl ol
form (although the batch distribution is at least conditionally
Gaussian Note that for both on-line and batch Hebbian 12
learning we have R=Ro+nt| —| . (76)

nt Furthermore, it turns out that the above diffusion equation
f dx xAx|y]=Ry+ —sgniy]. (73)  for P[x|y] meets the requirements for having conditionally
« Gaussian solutions, i.e.,

The generalization and training errors are, as before, given in expl — (L2[x—X(y) 4 AZ(y)}
terms of the above observables Bg= 7 *arcco$R/\/Q] Pxly]= Ay) 2 :
a

and E;= /Dy dx F[x|y]6[ —xy]. We thus have exact ex-
pressions for both the generalization error and the training

_ _y( 2y .2
error at any time and for ang. The asymptotic values, for M[x|y]= expl— (L2)[x=x(y) ] o"(y)}
both batch and on-line Hebbian learning, are given by o(y)v2m
1 1 provided they-dependent averagdy) and they-dependent
lim E.=—arcco , 74 varianpesA(y) and a(y) obey the following three coupled
e D %/14_77/2&] (74 equations:
- oyt d ,  279toX(y)
X(y)=Ry+ ;Sgr(y), aA (y)= 20(1=q)"

3Note that in[12] only the on-line calculation was carried out; the
batch calculation can be done along the same lines. A%(y)=a?(y)+B2%0*(y).
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The spin-glass order parametgris to be solved from the bution, and(iii) for all order parameters in the stationary
remaining scalar saddle-point equati¢id). With help of  state. At intermediate times we construct an approximate so-
identities like (x), =X(y)+zBo?(y), which only hold for lution of our equations in order to obtain predictions for
conditionally Gaussian solutions, one can simplify the latteP[x|y] andE; .

to As before, we choose a Gaussian initial field distribution.

- Many (but not al) of our previous simplifications still hold,

t
”7+aj Dy A%(y)+(9Q~R?)(a~1) 9
) U=0, V=(xsgny)), W=2/m, Z=1
_ qQ—R f 2
-« 2Q(l—q) +1| | Dy oi(y). (Z did not occur in the batch equations'hus for on-line
learning we find
We now immediately find the solution
AAy)=Q-R: o¥(y)=Q(1-q), S Q=2 st SR=Zm
q=[aR?*+ 7’t?]/aQ, (77

The previous derivation of the identitied/dt)V= 5/«
| exp{— (1/2)[x—Ry— (yt/a)sgn(y)]1?/(Q—R?)} + 27/ 7 andVy=Ry\/2/7 still applies(just replace the batch
PIx|y]= = diffusion equation by the on-line ohebut the resultant ex-
2m(Q—R%) pression forQ is different. Here we obtain

(this solution is unique If we calculate the generalization

L 1/2
error and the training error from EqGZG) and(77), respec- Q:QOJFszO(_) + 2+ 22 £+ 3 ,
tively, we recover the exact expressions T a
1 Ro+ nt\ 2/ 112
Eg=;arcco 1 o\ 12| R=Ry+ 7t ;) . (80)
Qo+ 27tRoV2/m+ 9’3 —+ —
a a
(79) Comparing Eqs(80) with (69) reveals that also for on-line
Hebbian learning our theory is exact with regardt@ndR,
ot and thus also with regard t&y. Upon usingV=nt/a
lV[(Ro+ ntv2/m)+ — +Ry/2/m, the on-line diffusion equation simplifies to
o
E,=1—3 | Dyerf AT (79 1
2(QO—R3+T } gt PIXly1= _{PIx—nsgrty)|y]—PIx|y]}
1/2 (92
Comparison of Eqs(76) and (77) with Egs. (71) and (72) - ny(; X PIx|y]+ 3 WZW PIx|y]
shows that for batch Hebbian learning our theory is fully
exact. This is not a big feat as far @andR (and thusE) 7t 9
are concerned, whose determination did not require knowing T o &{P[x|y]®[x,y]}.

the function®[x,y]. The fact that our theory also gives the

exact values forP[x|y] and E;, however, is less trivial,

since here the disordered nature of the learning dynamicé{lumplicaﬂon of this .equation by followed by integration_

leading to non-Gaussian distributions, is truly relevant, ~ OVer X together with usage of the general properties
JAX{P[x|y]®[x,y]}=0 and [dx xPy[X|y]=Rpy, gives us

B. On-line Hebbian learning :ir:ﬁe?verage of the conditional distributid?{x|y] at any

We next insert the Hebbian recigg x,y]=sgny] into

the on-line equation&8) and(39). Direct analytical solution o 7t

of these equations, or a demonstration that they are solved by x(y)= f dx xF{x|y]=Ry+ ~, Soryl.

the exact result69) and(70), although not ruled out, has not

yet been achieved by us. The reason is that here one h

conditionally Gaussian field distributions only in special lim-

its. Numerical solution is in principle straightforward, but S .

will be quite CPU intensivésee also a subsequent section We now turn to obsgrvables which involve more detailed

For small learning rates the on-line equations reduce to th&nowledge of the functio[x,y]. Our result forx(y) and

batch ones, so we know that in first ordersnour on-line  the identity(x),, =B~*(d/z)In M[iBzZy] allow us to rewrite

equations are exadfor any a,t). We now show that the all remaining equations in Fourier representation,

predictions of our theory are fully exa6 for Q, R, andE,, i.e., in terms of I5[k|y]=fdx e "*P[x|y] and I\7I[k|y]

(i) for the first momen{73) of the conditional field distri- = [dx e"kXM[x|y]:

s
%omparison with Eq(73) shows also this prediction to be
correct.
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1/2 . ~ .
d . 1 ) 2 lim A=»/Va, |limqg=1
—lnP[kly]=—[e"’ksg"”—l]—inky<— —37°K? — wha qu
dt a T
~ so that
ik 7%t f b M[k+iBz|y]
- 22— — lim P k/tly]=exp{—ikg[a"'s +y\2/mr
ap[k|y],/qQ_R2 M[IBZ|y] - ’[[ |y] p{ 77[ gr(y) y ]
(8D —(12) 72K ). 86)

with In Pkly]=—ikRoy—3k*(Q,—R2), and with the two

saddle-point equations Comparison with Eqs(69) and (70) shows that this predic-

tion (86) is again exact. Thus the same is true for the
~ . asymptotic training error.
ZM[k+|Bz|y], (82) Finally, in order to arrive at predictions with respect to
M[iBz|y] P[.x|y] andE;, for intermediate timegwithout rigorous ana-
lytical solution of the functional saddle-point equatipand
1 ) in view of the conditionally Gaussian form of the field dis-
1- ;)(QQ—R ) tribution both att=0 and att=c0, it would appear to make
sense for us to approximaf®x|y] and M[x|y] by simple
conditionally Gaussian distributions at any time:

PrklyI- | D

2t2
Lo+ | oy [ ax iyt 1+

>
nyDzﬁ—zzlnM[iBz|y]. (83

1

= { 2Q(1-0)+ g2
exp{ — (1/2)[x—X(y) ]/ A%}

Since the fields< grow linearly in time[see our expression P[x|y]= N :
forx(y)], Eqgs.(81)—(83) cannot have propér—« limits. To .
extract asymptotic properties we have to turn to the rescaled

distribution  Q[k|y]=P[k/t|ly]. We define wv(y) M[x]y]=

expl — (L2[x—X(y) 1%/ 0%}

=(7nla)sgnfy)+ nyy2/a. Careful integration of Eq(81), oN2m
foll i ingk—k king the limit—
porO%Vl\jggsby nserting /t and by taking the flimit—c, with the (exac) first momentsx(y)=Ry+ yta!sgng),

and with the varianca? self-consistently given by the solu-
. i’k r1 t tion of
InQ.[K|y]=—ikv(y)— —— | dulim
o

0 t—o VqQ_RZ 2 2 2 4 \/qQ—_RZ
A“=0c°+B°0 y B:Q(:L—_q),
f M[uk/t+iBz]y] } @
X | Dzz 84 2 2: 2
A Yig d 279t
Q.LuklyIN[iBzZ]y] Ao ? o 27te

dt a 7 +aQ(l—q)’
with the functional saddle-point equation

242 —R2
ad?+ L+ (qQ-R?)(a—1)= ac? a9

“Qa-g "

The solution of the above coupled equations behaves as

1

M[k/t+iBz|y]

- (89
M[iBz|y]

Qrklyl= [ bz

The rescaled asymptotic systef@4) and (85) admits the

2_N_p2 2 3
solution A“=Q—-R*+ nt/a+0O(t°) (t—0),

R ~ 2 (A_ P2 -1
QLKly1=exif —iku(y) - (1/2k?E?], AT=(QRILI+OM O] (t==)

. o . for short and long times, respectivelyote Q—R*>~t? as
— 272
MLk|y]=exd —ikx(y) — (1/2)k*o*t] t—o0). Thus we obtain a simple approximate solution of our
equations, which extrapolates between exact results at the

with the asymptotic value oB, A, &, andq determined by temporal boundariet=0 andt=c. By setting

solving the following equations:

e A?2=Q—R?+ 7%t/
A=B5? Z—n—znm; B=lim VaQ-R” ? T
=BG*, Coay ., [q0—-R?’ . Q=0 with Q and R given by our previous exact resui0), one
obtains
21 2,1 A2 N AN H __pP2)\/+2
nla*+ A+ (1—a H)Iim(qQ—R)/t 1 R 1 1 y|R+ gt/
t=e Ey,=—arccos—|, Ei=5—5 f Dyerff ——
T JQ 2 2 AV2

_ 2~2 1 _
=2B% m Q(1—q)/t. (87)

Inspection shows that these four asymptotic equations ard/e can also calculate the student field distributi®(x)
solved by =[Dy P[x|y], giving
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FIG. 3. On-line Hebbian learning, simulations vs theoretical
predictions, forp=1 and a €{0.25,0.5,1.0,2.0,4}0(N= 10 000). 30 - o=1.0
Upper curves: generalization errors as functions of time. Lower t=50
curves: training errors as functions of time. Circles: simulation re-
sults forEg; diamonds: simulation results f&; . Solid lines: cor- Lo |
responding predictions of dynamical replica theory.

20 F

Y o0
exp{— (1/2)[x+ (yt/a) 12/ (A%+R?)}
P(x)=
2\2m(A%+R?) zor
77t =30 I -
R X+ — -4.0 . L L . " ; .
o ~400.0 3000 -2000 —100.0 0.0 100.0 200.0 300.0 400.0
X[ 1-erf| —F————— *
AV2(A?+R?) B
exp{ — (1/2)[x— (nt/a)]?/(A%+R?)} or ??%5
_l’_ =,
2V2m(A%+R?)
77t 1.0 | -
R X—— Y oo
= (89
X| 1+erf| ——— |
AV2(A%+R?)
=20
In Fig. 3 we compare the predictions for the generaliza- 30 b §
tion and training error¢87) of the approximate solution of
our equations with the results obtained from numerical simu- 0000 w0 20 1000 00 1000 2000 3000 4000

x

lations of on-line Hebbian learning fax =10 000 (initial

stateQo=1, Ry=0; learning ratep=1). All curves show FIG. 4. Comparison between simulation results for on-line Heb-
excellent agreement between theory and experimentEFor pjan |earning (system sizeN=10000 and dynamical replica

this is guaranteed by the exactness of our theor@fandR,; theory, for =1 and a<{0.5,1.0,2.9. Dots: local fields X,y)

the agreement found fdE; is more surprising, in that these = (J.£B-£) (calculated for questions in the training et timet
predictions are obtained from a simple approximation of the=50. Dashed lines: conditional average of student fkeis a func-
solution of our equations. We also compare the theoreticaton of y, as predicted by the theory(y) = Ry+ (5t/ a)sgng).
predictions made for the distributid®] x|y] with the results

of numerical simulations. This is done in Fig. 4, where we(88). The result is shown in Fig. 5, far€{4,1,0.25. In all

show the fields as observed at tife50 in simulationsN  cases the agreement between theory and experiment, even
=10000, n=1, Ry=0, and Qp,=1) of on-line Hebbian for the approximate solution of our equations, is quite satis-
learning, for three different values of. In the same figure factory.

we draw(as dashed lingghe theoretical predictiofi73) for
the y-dependent average of the conditionaldistribution
P[x|y]. Finally we compare the student field distribution
P(x), as observed in simulations of on-line Hebbian learning  All three approximation schemes presented in this section
(N=10000, n=1, Ry=0, andQy=1) with our prediction aim at providing alternatives to calculating the effective

V. GENERAL APPROXIMATION SCHEMES
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P(x) 502
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=10 FIG. 5. Simulations of on-line Hebbian learn-
0015 | ing with »=1 andN=10000. Histograms: stu-
P(x) dent field distributions measuredtat 10 and 20.
Lines: theoretical predictions for student field dis-
o010 tributions. =4 (uppe), 1 (middle), and 0.25
=20 (lower).
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measureM[x|y] at each time step from the functional A. Large a approximation
saddle-point equation. Since this calculation car(yet) be Our first approximation scheme is obtained upon taking

done analytically, it constitutes a significant numerical ob-into account the finite nature of the training gée., the
stacle in working out the predictions of our theory. Eachdisordered nature of the dynamjds first nontrivial order.
scheme preserves both normalization and symmetries of thEhe amount of disorder is effectively measured by the pa-
probability densityP[x,y] and its marginals, as well as the rameterB, or, equivalently, by the deviation of the value of
relation [dx P[x|y]®[x,y]=0 for all y. In the first two ap- the spin-glass order parametgfrom its naive valueR?/Q.
proximation schemes, a largeexpansion and a condition- SettingB=0 in the saddle-point equatidd5) immediately
ally Gaussian saddle-point approximation, all Gaussian intedive img_o M[x|y]=P[x|y], so we write

grals representing the disorder in the problem can be done

analytically; this leads to a significant reduction in CPU time M[x|y]=P[x|y]
when solving our equations numericallyspecially the large

a approximation is extremely simple and fast, as it does not

even involve a saddle-point equation fgr. We only work f dx P[x|y]lm[x|y]=0. (89
out the equations for on-line learning; the batch laws follow

as usual upon expanding the equations in powerg ahd  Upon inserting Eq(89) as an ansatz into the saddle-point
retaining only the linear terms. equation(45), one easily shows that

1+|20 B'm|[x|y]),
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M[xy]=P[x|ylexp{— (1/2)B’[x—X(y)]* expl — VA x—x(y) 2/ o?(y)}
_ MIxlyl=
+(1/2)BYX2(y)—X(y)2]+O(B3)}  (90) a(y)2m
with the abbreviations Note that this does not imply the stronger statement that
P[x|y] itself is taken to be of a conditionally Gaussian form
X(y)= f dx P{xlylx, x3(y)= f dx P[x|y]x2 (as in the case of the approximation used for on-line Hebbian

learning. Extremization of the original replica-symmetric
functional W[ q,{M}] within the conditionally Gaussian fam-
ily of functions results in the requirement that the two
ny—dependent momentgy) and o?(y) be given by

[the secondD(B?) term in the exponent of Eq90), being

independent ofx, just reflects the normalization require-
mentd. This result enables us, in turn, to expand the functio
®d[x,y] which controls the nontrivial term in our diffusion

equation forP[x|y]. Note that from the definition oB it o
follows that Q(1—q)=3%B ?J1+4B%(Q-R?-1], X(y)=f dx xP{x|y],
which gives
D[ x —ﬂ+0 B2 2 72 2 2 4
[x,y]= O—R? (B). A (y)=f dx XPP[x|y]—X2(y) = o(y) + B?c*(y).

With this expression we can write our approximate equation
in explicitly closed form(i.e., without any remaining saddle-
point equations The relevant scalar functions become

Now we can again calculate all relevant averages which in-
volve the effective measumd[x|y] exactly. In particular,

_A{(axy][x=x(y)]) B L ) _ VaQ-R?
W=(ydx.yl), Z=(F[x.y]). (91) _ B
, , , exp{ — (L2[x—x(y) /A% (y)} [x=X(y)]o*(y)
For on-line learning we find dIx,y]= > -
. . A(y)V2mPX]y] Q(1-q)A%(y)
—0O= 2 —R=
dtQ 2V L, dtR W, 92 For on-line learning this results in the following approxi-

mated theory:

d 1 ! ! ! !
SEPIXY1= = [ dx PO I aD-x = DX 1]

B ua?(y)GIx(y) +uA(y),y]
g U_f Y D“{ Qi-qAy) )’
—o[x=x"]]- 775{F’[><Iy][U(><—R)/)JrW)/]}

) V=(xgIx,y]), W=(yGIx,y1), Z=(G[xy]),

L 2y 0 V-RW (94

J o d ) d
xa{P[x|y][x—x(y)]}. (93 G Q=2 L, G R=7W, (95

From the solution of the above equations follow, as always,d
the training and generalization errors 1 , , / /
gand g SEPOY1= = [ dx PO Iy atx—x' = 7Gx 1]

== | By ax FxiyI o — a1 7o APIXYIU(x- Ry) + Wy}

and Eg= 7~ *arccogR/\/Q]. The resulting theory is obvi- 2
ously exact in the limitw—, by construction. 12
Yy Yy + M Zé’_Xz P[X|y]

B. Conditionally Gaussian approximation
/ > ~ 70(y)[V-RW-(Q-R}U]

Our basic idea here is a variational approach to solving

/ _ 5
the functional saddle-point problefwalid for any«), i.e., to 2mQ(1-a)A>(y)
carry out the functional extremization only within the re- X{A2(y)—[x—X(y)]%

stricted family of conditionally Gaussian measuid$x|y] o
(which, together withg, characterizes the saddle pgint X exp{— (1/12)[x—x(y) 1%/ A%(y)}. (96)
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The remaining order parametgris calculated at each time From the solution of these equations follow the training
step by solving and generalization errorg,=fDy dx F[x|y]6[ —xy] and
Ey=7 ‘arcco$R/\QJ.

C. Partially annealed approximation

In order to construct our third and final approximation we
return to an earlier stage of the derivation of the present
formalism, and rewrite the functional saddle-point equation
in a form where the replica limih—0 has not yet been
f Dy o(y). : P - y
taken, i.e.,

1
<(X—Ry)2>+(QQ—R2)(1— ;)

[, 9Q-R?
#Q(l—q)”

- . — n—-1
f bz Mn[X|y]eBZ[X‘X<y”U dx' M [x'|y]eB4x —x(y)]}

sz

Pxly]= for all x,y

o n
| dx'Mn[x'ly]eBz[X’XW}

with X(y)=/fdx xP[x|y]. In our full (quenched disorder Averages involving the effective measuk&x|y] are thus
calculation we find ourselves with the effective measurewritten explicitly in terms ofP[x|y], and we are left with the
M[x|y]=lim,_oM_[x|y]. In contrast, an alternative calcu- following approximate theory:

lation, whereby the quenched average over all training sets

would have been replaced by an annealed average over all U=(P[x,ylaIx,y]), V=(xdx,y]),

training sets, would have led us to the vatue 1 rather than 5

n=0: M[x|y]=M[x]y]. We can now define in a natural W=(yaIx.yl), Z=(GIx.yl), (98)
way an annealed approximation of our theory upon replacing q q

the complicatech=0 functional saddle-point equatidd5) C0=22V+ 1?7 —R=nW

by the much simplen=1 version: dtQ e T (99

| Dz MixjyePx ) PIxly]= | ax POxIyILatc-x = ngix w1l

szf dx’ M[x’|y]eBax' —x)]

P[x|y]=

Jd
—Ox=x"11=n {PIx|y][U(x—Ry)+Wy]}
The z integrations can immediately be carried out, and the P
resulting equation solved favi[x|y], giving +%7722WP[X|Y]— 7[V—RW-(Q—R?)U]
Pxly]exp{—(1/2B[x—x(y)]%}

fdX’P[X’y]exp{—(1/2)BZ[X’—Y(y)]z}.
(97 with

MIxly]= x(;ix{P[xly]cb[x,y]} (100

J dx Px|yJexp(— (1/2{B[x—X(y)]—z}*~ (1/2{B[X-X(y)] - Z}*)(X—X)

2

B 1
PYI=5=g) f bz

J dx Px|yJexp(— (1/2{B[x—x(y)]—2}?)

As always,B=qQ—R%Q(1—q). The remaining spin-glass order parametés calculated at each time step by solving

1
nyDz

1 f dx P x|ylexp(— (1/2){B[x—x(y)]— z}?)x
<(X— RY)2)+(QQ— Rz)( 1— ;) =[2(qQ_ R2)1/2+ E

f dx P{x|yJexp(— (1/2{B[x—x(y)]—-2}?)
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FIG. 6. Numerical simulations
of on-line ADATRON learning, with
N=10000,a=1, andn= 3. The
scatter plots show the observed
student and teacher fieldx,§)
=(J-£,B-¢) at timest=5 (upper
left), 10 (upper righ}, 15 (lower
left), and 20(lower right), as mea-
sured during simulations for the
data in the training seb, drawn
as points in thex,y) plane. Note
the development over time of an
increasingly narrow  ‘“ridge”
along the linex=0.

05 b

-1.0 = = :
-1.0 05 1 0.5 10

From the solution of the above equations follow the traininging process, aiming at the situation wherg<0 never oc-
and generalization errors E;=(f[—xy]) and E, curs, remedies inappropriate student fields by slowly moving
=7 larccofR/\/Q]. It should be emphasized that the them towards(but not immediately acrogsthe decision
present approximation is not equivalent @nd should be boundary. Forp>1 the adjustments made to the student
more accurate thara full annealed treatment of the disorder fields could move them well into the region at the other side
in the problem; the latter would have affected not only theof the decision boundary. The cage=1 is special, in that
equation forM[x|y] but also the saddle-point equation fpr changes to the student fields tend to move them precisely

(hence the nampartially annealed approximation onto the decision boundary. The student field distribution
consequently develops & peak at the origin, in perfect
VI. NON-HEBBIAN RULES: THEORY VERSUS agreement with what can be observed in numerical simula-
SIMULATIONS tions (see, e.g., the graphs referring to on-linRBATRON

learning with»=1 in Fig. 1 and 2
Henceforth we will always assume initial states with
specified values foR, and Qg but without correlations with d 1 ) , .
the training set, i.e., g PXlyl= {5(X)f dx’ 60 —x"y]P[x'ly]

a

exp{— 12 x—Roy1?/(Qo—R3)}

V27m(Qo—RY)
In fact, the same occurs for aji<1: about half of the prob-

This implies that the student could initially have some apility weight of P[x|y] will in due course become concen-
knowledge of the rule to be learned, if we wish, but will trated in an increasingly thin ridge along the decision bound-
never know beforehand about the composition of the trainingyry x=0. This is illustrated in Fig. 6, fop=3%. Since such a
set. We will inspect the learning dynamics generated upoRingular behaviotalthough in principle accurately described
using two of the most common non-Hebbia®rror- by our equationswill be difficult to reproduce when solving

Polx|y]= —P[le]ﬁ[—xy]]Jr---, n=1.

correcting learning rules: the equations numerically, using finite spatial resolution, we
will in this paper only deal with the case of>1 for
glx,yl=sgny)6[ —xy] for PERCEPTRON ADATRON learning.

glx.y]= |x|sgr(y) 0l=xy] for ADATRON. (101) A. Large a and conditionally Gaussian approximations

Note that in the case ofDATRON learning the caseg=<1 Our first approximated theorfghe largea approximation

and »>1 give rise to qualitatively different behavior of the is very simple, with neither saddle-point equations to be
first term in the diffusion equatio(89). For <1, the learn-  solved nor nested integrations. As a result, numerical solu-
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FIG. 7. Comparison between the largeapproximation of the theory and numerical simulations of on-line perception learning\with
=10000 andp=1. Markers: training errorg; (circles and generalization errois, (square finite-size effects in the simulation data are
of the order of the marker size. Lines: theoretical predictions for training efsoi&)) and generalization errofglashedl as functions of
time, according to the approximated theory. Training set sizes=4 (upper lefy, 2 (upper righ}, 1 (lower left), and 0.5(lower righi.

tion of the macroscopic equations is straightforward and fastdistribution P[x,y] (drawn as contour plotsWe will not at

In Fig. 7 (on-line perceptron learningand 8 (on-line  this stage attempt to explain the surprising effectiveness of
ADATRON learning we compare the results of solving the the largea approximation for small values af (note that
coupled equationt91)—(93) numerically for finite values of  Figs. 7 and 8 even suggest an increase in accurateness as

a, plotting the generalization and training errors as functiongowered belowx=1). This would require a systematic math-
of time, with results obtained from performing numerical gmatical analysis of the nonlinear diffusion equati®®),
simulations. As could have been expected, the larg®-  \yhich we consider to be beyond the scope of the present
proximation underestimates the amount of disorder in th?Japer.

learning process, which immediately translates into an un- The conditionally Gaussian approximation again involves
derestimation of the gap betwe&h and E, (which is its g nested integrals, and its equations can therefore still be
fingerprind. It is also clear from these figures that, althoughsolved numerically in a reasonably fast way, but it does al-
at any given time the quality of the predictions of this ap-ready require the solutiofat each infinitesimal time stgpf
proximation does improve whew increases(as indeed it 5 scalar saddle-point equation to determine the spin-glass
Should, and although there iS Surely qualitative agreementorder parameteq_ Approximations of th|s type Work ex-
reliably accurate quantitative statements on the values of th@emely well for the simple Hebbian learning rules, as we
training and generalization errors are confined to the regim@ave seen earlier. However, numerical solution of the
nt<a. Yet, surprisingly, the agreement obtained is verycoupled equationé94)—(96) shows quite clearly that for the
good, even fomt>a. Apparently the present approximation more sophisticated non-Hebbian rules suctPEBCEPTRON
does still capture the main characteristics of t®n-  andapaTrRON, which are of an error-correcting natufiee.,
GaUSSiah jOint field distribution. This is illustrated qUite where Cha_nges are made On|y when student and teacher dis-
clearly and explicitly in Figs. 9 and 10, where we compareagreg, the conditionally Gaussian approximation is less ac-
for a fixed timet= 10 the student and teacher fields as Mmeagyurate than the previous|y investigated |ar@approxima-
sured during numerical simulatiofor N=10 000, drawn as  tjon, in spite of the fact that the latter involved much simpler
dots in the(x,y) plang for the p=aN questions§* in the  equations. Apparently, the generally non-Gaussian nature of
training seD, to the theoretical predictions for the joint field the conditional distributio[x|y], and thereby of the mea-
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FIG. 8. Comparison between the largeapproximation of the theory and numerical simulations of on-ipaTRonN learning withN
=10000 andp=2. Markers: training errorg; (circles and generalization errois, (square finite-size effects in the simulation data are
of the order of the marker size. Lines: theoretical predictions for training efsolil) and generalization errofglashed as functions of
time, according to the approximated theory. Training set sizes=4 (upper lef}, 2 (upper righ}, 1 (lower leff), and 0.5(lower righy.

sureM[x|y], is of crucial importance. It is not good enough as an improved version of the largeapproximation, similar

to try getting away with allowing thg-dependent averages in structure but valid also for smad, i.e., largeB). Although
x(y) and variances\(y) to be nontrivial functions. With the partially annealed approximation does not involve a
conditionally Gaussian measurd&[x|y] it turns out that functional saddle-point equation to be solvashich im-
generating the right width of the conditional distributions proves numerical spegdit shares with the full theory the
P[x|y] inevitably introduces tails foP[x|y] which spill into  appearance of nesté@aussianintegrals, namely those ap-
the Xy<0 region, which are found to be absent in error- pearing in the functio@[xly] and in the Sadd|e_point equa-
correcting learning rules such BERCEPTRONRNAADATRON.  tjon for ¢. Thus, solution of both the full theory and of the
This picture is consistent with Figs. 9 and 10, where we carhartially annealed approximation involves a significant
observe that for any fixed value of the teacher figlthe  56nt of CPU timefavoiding standard instabilities of dis-

remaining mzrginalddistribdution fox is ge\?verally nIOIdSyT]' cretized diffusion equations sets further limits on the maxi-
metric around its(y-dependentaverage. We conclude that mum size of the time discretization, dependent on the field

the conditionally Gaussian approximation is generally 'nfe'resolution[lﬂ), which implies that we have to reduce our

rior to the largea approximation. We will not waste paper ambition and restrict the number of experiments to a few
by producing large numbers of graphs to illustrate this ex- P

plicitly and comprehensively, but we will rather draw the typical ones. . .
conditionally Gaussian predictions together with those of the We will thus investigate two examples, both with=1:

. . : 1 P
other approximations and of the full theory, by way of illus- on-line PERCEPTRON learning with »=3, and on-line
tration.

ADATRON learning with=3. We solve numerically the full
equations of our theory, i.e., the macroscopic dynamical laws
(38) and (39) with the order parameters calculated at each
time step by solving Eqs44) and(45), and show in Fig. 11
The partially annealed approximation and the full theorythe training and generalization errors as functions of time
are both expected to improve upon the lasggpproximation  together with the corresponding values as measured during
(note that the partially annealed approximation can be seemumerical simulations, with systems of sike=10000. In

B. Partially annealed approximation and full equations
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T

FIG. 10. Comparison between the largepproximation of the
theory and numerical simulations of on-lineATRON learning with
N=10000 andn=2. Scatter plots(left): observed student and
teacher fields X,y) = (J-£,B-£&) as measured at time=10 during
simulations, for the data iD, drawn in the(x,y) plane. Contour
plots (right): corresponding predictions for the joint field distribu-
tion P[x,y], according to the approximated theory. Training set
sizes: «=0.5,1,2,4(from top to botton.

FIG. 9. Comparison between the largeapproximation of the
theory and numerical simulations of on-limerRcEPTRONIearning,
with N=10 000 andp=1. Scatter plotgleft): observed student and
teacher fields X,y) = (J-£,B-&) as measured at time=10 during
simulations, for the data i, drawn in the(x,y) plane. Contour
plots (right): corresponding predictions for the joint field distribu-
tion P[x,y], according to the approximated theory. Training set
sizes: «=0.5,1,2,4(from top to botton.

addition, we plot in the same picture, for comparison, theshould. therefore_expect the full theqry, the conditionally.
training and generalization errors obtained by numerical soGaussian approximation, and the partially annealed approxi-
lution of the three approximated theories as derived in thénation to all perform better in reality than what is suggested
preceding section. In comparing curves, we have to take intfy the numerical solutions of their equations as shown in
account that those describing the largapproximation were Fig. 11. This is particularly true foADATRON learning,
generated upon solving the diffusion equation with a signifi-where even fom>1 (where we do not expect to observé a
cantly higher numerical field resolutiomdMk=0.015) than singularity) the field distributions still tend to develop a jump
the otherdwhere we used x=0.05), because of CPU limi- discontinuity atx=0. It turns out that the curves of the full
tations. A restricted field resolution is likely to be more criti- theory and those of the partially annealed approximation are
cal at large times, where the probability weight in the  very close(virtually on top of one another for the case of
<0 region, responsible for the residual error and for thePERCEPTRONearning in Fig. 11; apparently for the learning
nonstationarity of the dynamics, is highly concentrated close¢imes considered here there is no real need to evaluate the
to the decision boundary= 0. Especially for large times, we full theory.
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Finally, we show in Fig. 12 for both the full theory and replica theory* in a diffusion equation foP[x,y], which we
for the simulation experiments the two distributioRs (x) have evaluated by making the replica-symmetric ansatz in
= [dy P x,y]6[ £ y] for the student fields, given a specified the saddle-point equations. This diffusion equation is gener-
sign of the teacher fielgt (and thus a given teacher output ally found to have Gaussian solutions only fer-<; in the
corresponding to the same experiments. Note tRéx) latter case we indeed recover correctly from our theory the
=P*(x)+ P (x). The pictures in Fig. 12 again illustrate more familiar formalism of infinite training setén the N
quite clearly the difference between learning with restricted— < limit), providing closed equations f@ andR only. For
training sets and learning with infinite training sets: in thefinite a our theory is by construction exact if fot—c the
former case the desired agreemayt>0 between student dynamical order parametef®,R,R obey closed determinis-
and teacher is achieved by a qualitatideformationof i €quations, which are self-averagifige., independent of
P[x|y], away from the initial Gaussian shape, rather than b)}he microscopic realization c_:f the training sdf this isnot
adaptation of the first- and second-order moments. the case, our theory can be interpreted as employing a maxi-

Our restricted resolution numerics obviously have diffi- MUM entropy approximation.

culy in reproducing the discontinuous behavior @F (x) o2 (7t AR GC7 T MURTE SR R R e
near x=0 for on-line ADATRON learning (as expected 9 y

which explains why in this regime the simplest largeap- results, derived directly from the microscopic equations, al-
proximation (which can be numerically evaluated with al- Ioweq us to p_erform a critical test of t_h_e theory. For batch
most arbitrarily high-field resolutionappears to outperform Hebbian learning we demonstrate explicitly that our theory is

the more sophisticated versions of the theamhich CPU fully exact. For on-_Iine Hebbian learning, on the o_ther hand,
limitations force us to evaluate with rather limited field reso-ProV'n9 0 disproving full exactness requires solving a non-

lution), according to Fig. 11 trivial functional saddle-point equation analytically, which
We conclude from the results in this section that our full ' have not yet been able to do. Nevertheless, we can prove

X . L that our theory is exadi) with respect to its predictions for
theory indeed gives an adequate description of the macr 'R, andE,, (i) with respect to the first moments of the

scopic process, and that the partially annealed approximatio i, . L
is allomopst equivalent in perfoprmancye to the fulll?cﬁeory. AScondmonaI field distributionsP[x|y] (for any y< R), and

mentioned before, the conditionally Gaussian approximatiorg.'") In th_e stationary state. In order also to generate predlc_-
performs generally poorlyexcept, as we have seen earlier, fions for mt_ermedlate times, we have_: co_nstructed an approxi-
for the simple Hebbian ruje Which of the remaining three mate solution of our equations, Wh'Ch. IS fognd to descrlbe
versions of our theory to use in practice will clearly dependtheb[)?sglfs cr):‘]iﬁerform:t? ll?umer;lcatll simulations of on-line
on the accuracy constraints and available CPU time of thé_mN a xeat bgneﬁsr,r? rka y FI)eti enc |y vailable for non-
user, with the full theory at the higher end of the martet 0 €exact benchmark solution 1S avarable 1or no
principle very accurate, but almost too CPU expensive td—!ebbm_n (i.e. nontrivia) Iearnm_g rules,_ Ieavm_g numerical
work out and exploit properly with the largea approxima- simulations as the only yardstick against which to test our

tion on the lower endreasonably accurate, but very cheap theory. Motivated by the need to solve a functional saddle-

and with the annealed approximation as a sensible comprc?—Oint equation at eac_:h time §tep in the full theory, and by the
mise in between these two presence of nested integrations, we have constructed a num

ber of systematic approximations to the original equations.
We have compared the predictions of the full theory and of
VII. DISCUSSION the three approximation schemes with one another and with

In this paper we have shown how the formalism of dy-the results obtained upon performing numerical simulations
namical replica theorysee, e.g.[13]) can be successfully ©Of nonlinear learning rules, such aBERCEPTRON and
employed to construct a general theory which enables one #PATRON, in large perceptrongof size N=10000, with
predict the evolution of the relevant macroscopic perfor-various values of learning rateg and relative training set
mance measures for supervis@m-line and batchlearning ~ Sizesa. One of the approximations, a conditionally Gaussian
in layered neural networks, with randomly chosen but re-saddle-point approximation in the spirit of the particular ap-
stricted training sets, i.e., for finite=p/N, where weight Proximation that was found to work perfectly for Hebbian
updates are carried out by sampling with repetition. In thigearning, turned out to perform badly for general non-
case the student nodes local fields are no longer described Ii{ebbian rules. The other two approximations, the lange
(multivariate Gaussian distributions and the traditional and@pproximation and the partially annealed approximation,
familiar statistical mechanical formalism consequently€ach have their specific usefulness; the former is extremely
breaks down. For s|mp||c|ty and transparency we have reSimple and fast, whereas the latter is overall more accurate,
stricted ourselves to single-layer systems and realizablBut more expensive in its CPU requiremefgs that in prac-
tasks. tice its true accurateness cannot always be reglixést, the

In our approach the joint field distributid®[x,y] for the  large a approximation still works remarkably well, even for
student and teacher local fields is itself taken to be a dynami-
cal order parameter, in addition to the conventional observ-
ablesQ and R representing overlaps between the student- 4The reason why the replica formalism is inevitableless we are
student and student-teacher vectors, respectively. The neiling to pay the price of having observables with two time argu-
order parameter s¢Q,R, P}, in turn, enables one to monitor ments, and turn to path integrlis the necessity, for finiter, to
the generalization errde, as well as the training errdg; . average the macroscopic equations over all possible realizations of
This then results, following the prescriptions of dynamicalthe training set.
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FIG. 11. Comparison between the full numerical solution of our equations, as well as the three approximations of the theory, and the
results of doing numerical simulations of on-line learning vtk 10 000 ande= 1. Markers: training errorg; (circleg and generalization
errorsk, (squarey finite-size effects are of the order of the size of the markers. Lines: theoretical predictions for traininglewersand
generalization error@uppe) as functions of time, according to the theory. The different line types refer to full equdtiold), annealed
approximation(dashegl conditionally Gaussian approximatigdashed-dotted and largea approximation(dotted (note: the dashed and
solid curves fall virtually on top of one anotheleft picture: PERCEPTRONIearning, with »= 3. Right picture:ADATRON learning, with

_3
n=2-

smallq, in spite of it being so simple that it can be written as «— 0 the leading term in the diffusion equation Bfx|y]

a fully explicit set of equations fo®Q,R and the joint field is the first term in the right-hand side, which reflects the
distribution P[x,y] only. The observed accuracy of these direct effect of pattern recycling, and which indeed has not
simple equations in the smalt regime suggests that for been approximated.

08 T 0.8
P*(z)
04 r 1 04t}

FIG. 12. Comparison between the full nu-
merical solution of our equations and the results
of doing numerical simulations of on-line learn-
ing with N=10 000 andx=1. Histograms: con-

00 - 3 %0 o 3 ditional student field distributions P~ (x)
0s x 08 x =[dy P[x,y]6[ =y] as measured at time=5.

Smooth curves: corresponding theoretical predic-
tions. Upper picturesPERCEPTRONearning, with
=13 [left, P7(x); right, P"(x)]. Lower pic-
tures: ADATRON learning, with 7;2% [left,

P~ (x); right, P*(x)].
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We believe that our theory offers an efficient tool with  The present study opens up new possibilities for consid-
which to analyze and predict the outcome of learning pro-ering unrealizable learning scenarios, either due to structural
cesses in single-layer networks. In particular, for those whdimitations or due to noise, which require some sort of regu-
are primarily interested in the progress and the outcome dfrization. The examination of regularization techniques in
learning processes, there is no real need to understand tRéch scenarios, which is of great practical significance, was
full details of the derivation; one can simply adopt the mac-0ut of reach so far as they come into effect only where the
roscopic lawsor one of the two appropriate approximations, erfor surface is fixed by having a fixed example set. It turns
to save CPU timeas a starting point, and just apply them to out that_ the case (_)f noisy teachers can be stud_|ed with an
the learning rules as hand. In the applications worked out iPpropriate extension of the present formal[ﬁrﬁ], involv-
this paper (Hebbian learning,PERCEPTRON learning, and ing a joint distribution of three rather than two fieldamely

ADATRON learning, our formalism has been found to be ei- those Of st_udent, cIe_an teacher, af‘d noisy teacher
Generalization to multilayer networksvith a finite number

ther exact or an excellent approximation. It is not realistic to " . . .
expect that simpler theories can be found with a similar IevePf hidden nodesis also straightforward14], although nu-

of accuracy. While putting the finishing touch on this manu-merically intensive. At a more fundamental level one could

script, a manuscript was communicateB] in which the explore the effects ofdynamig replica-symmetry breaking

authors apply the cavity method to the present problem(by calculating the AT surface, signaling instability of the

They manage to keep their theory relatively simple by re_r_eplica-symmetric sol_ution with respect to replicon fluctua-
pns), or one could improve the built-in accuracy of our

stricting themselves to batch learning and to gradient desce?‘{1 .
: : ; ; theory by adding new observables to the presentsseth as
learning rules, and by applying their theory only to a Imearwe G¥eeyn’s fulngtiODX\Ex y'x’VY'] itself) Lagt but not least

learning rule. Here also the present theory would have bee LI R 0T . i
both simpler and exact. A fully exact theory for both on-line our theory \.NOUId _5|mpl|fy S|gn|f|(_:antly if one CO.UId find a
and batch learning and for arbitrary learning rules can pdnore exphc@ solution of the functional ;addle-pqmt eqqatlon
constructed19] using a suitable adaptation of the generating(Bzg)’ enabling us to express the functidx,y] directly in
functional methods as ifL0], but in describing transients it terms of our order parameters.

will be more complicated than the present one, as it will be
built around macroscopic observables with two time argu-
ments(correlation and response functigrand will take the It is our pleasure to thank Yuan-sheng Xiong and Charles
form of an effective single weight process with colored sto-Mace for valuable discussions. We also acknowledge sup-
chastic noise and retarded self-interactions. It will, howeverport by EPSRC(Grant GR/L52098 the British Council

be interesting to see the connection between the generatiriBritish-German Academic Research Collaboration Program
functional theory and the present dynamical replica formalproject 1037, and the London Mathematical Socidi@rant
ism. 4415.
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APPENDIX A: DIFFUSION MATRIX ELEMENTS OF THE MACROSCOPIC FOKKER-PLANCK EQUATION

Here we show that for the observabl@§) the diffusion matrix element§};* in the Fokker-Planck equatidii9) vanish
for N—oo. Our observables will consequently obey deterministic dynamical laws. Calculating diffusion terms associated with
Q[J] andR[ J] is trivial:

GOQné[] 2 4x?
GIN 1| = lim % dx dy Fx.y]G2[x.y] 2xy|=0,
SR 1] N y?
- 2 -
4de dy F[x,y]xg[x.y]}
Gool ] 2
GZ 1| = lim - ZUdX dy P[x;y]xg[x,y]]de dy P[x;y]yg[x,y]] =0.

GRA 1] N~ 2

U' dx dy Ax;ylyg[x,y]

We next turn to diffusion terms with one occurrencePpk,y;J]. Here we repeatedly build on the cornerstone assumption that
all fields J-£ andB-£ are of order unitywhich is clear from numerical simulations, and will be supported self-consistently by
the equations resulting from our thegrin combination with two simple scaling consequences of the random composition of
f), asN-—oo:

~ 1 1
geD: = X Sp=p 'tO(PTA), 2, 2 [1- 8 ]|l&#£[=0(N). (A1)
Psch P"zcD ¢ <D

For on-line learning we find
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2

i 72 ([ Frsem e 2 eeran e ,
= lim = — GJI-§B-€] B-£ (&&) o x—J-&1dy—B-&1) )
QRP{

N— o D D

|
o
GR,P[x,y][ ]

2J.§ ! 4 !
g (E€)—FE1y-B-€1) |

D

—_ Zi“m i <[]_—5 ]gZ[J-fB'f][
= n&XNHw N & )

+Gx,y]

2
yx}« Oggr O X—J-E]0ly — B'§]>B>B>

QRP?

J _ _
=—n25 lim (O(N~%)+ O(N™ 1)) grps=0.

N—oo

For batch learning we find

59 2x’
=— lim ng dx’dy’P[x’,y’]Q[X’,y’][ y' }(((Q[J'éB'§](§'§’)5[X—J'§’]5[y—B'f’])B)B>QRP1

N— o0

b
St
GR, P[x,y][ ]

lim < g[x,y](( 5§§f 6[X_~]°§] 5[)/_ B§]>5>5

— Zifd/drprrgrr[ZX,

=Ty | XY PIYTIGXY | lim
1

+N(([l—5§§,]Q[J'§,B-§](§-§’)5[x—J-§’]5[y—B-§’]>5)5>

QRPt

9 . - -
== 72 im(O(N™*+O(N"*%)) gre; =0.

N—s o0

The difficult terms are those where two derivatives of the order-parameter fuiftiog;J] come into play. Here we have to
deal separately with four distinct contributions, defined according to which of the vectors from th&&fi@’} are identical.
For on-line learning we find

7]2 2

J
Gty yl 17 1M S0 = (G- €78+ £71(6-£7) (£ - £) O1x—3- £] 3y~ B- €]

N— o0

Xo[x'=J-&'1aly’ —B-&'1)b)b)b)ore:

2

_ .2
g axax'

— 0

lim < NG [x,y18[x" =x] &y’ —Y({(Sger S ¢n o[ x—I-£16ly—B-£1)5)5)B

+ XY W Bggr S gn(:€) S x— -]y —B- £l6[x' 3£ 1oLy’ ~B-£ 1)5)o)p
+ XY N (S B £€) S x—3-£] [y —B-£]8[x' —3-£' 18y’ —B-£ 1)5)5)5

(££")(&-&")
N

+ < < <§§g/3§'§"g2[3’f'15‘§’] S x—J-£]8ly—B-]

AN

lim (O(N71)+O(N71/2)+O(N71/2)>QRPI+J dX"dy"gz[x",y"]C[X,y;X',y';X”,y"]

N— o

Xo[x' —J-&dly" - B'§’]>

2
IXax'

2
— 772] dX/IdyIIQZ[XH,y/I]

XX CIx,y:x"y";x",y"].
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Similarly,
GtF)’E[l;,y],P[X’,y’][ ]
= lim %2%;X,«ww-f',B-g']<§-§'>6[x—a-§']6[y— B-£1)5)5((T13-£B-£1(£&) X'~ I-£'18Ly’ —B-£'1)5)5)qrer
, N - &
=7 ax&X,Nl[rl< | G Y Oge O x— J-&10ly—B-£))p)5+ < < Oger GL-€ B-&' 1= o[x—J-£]8ly— B-§]> >}
b

X [ GIx"y" W(Sggr X' = J-&]8ly" —B-&])p)p+ < <§§§'g[~]'§13‘§] % ox' —J-&' ]y’ - B'§’]> >
D

2
lim ({O(N~ 1)+ O(N" Y2 H{O(N"1) + O(N~ ")} ) orp;=0.

N—o

_ .2

T axax’
For batch learning all diffusion matrix elements of E49) vanish in a straightforward manner. For on-line learning all
diffusion terms vanish provided we can prove that the functiphof Eq. (24) is zero. This is indeed the case within the
present theory, as will be verified in the Appendix B.

APPENDIX B: REPLICA CALCULATION OF THE GREEN’S FUNCTION

The main objective of this appendix is to calculate the Green’s functipfy with which we obtain our macroscopic
dynamic equations in explicit form. We first carry out the disorder averages, leading to an effective single-spin problem. The
integrations are done by steepest descent, giving a saddle-point problem for replicated order parameters at each time step. In
the saddle-point equations we then make the replica-symrRR8yansatz, so that the limit— 0 can be taken. In addition we
show that the two function8[ ] and([ ] do indeed vanish, as claimed.

1. Disorder averaging

The fundamental quantitied[ x,y;x",y’ 1, B[x,y;x",y'], ([ x,y;x",y";x",y"], andP[ x,y], which control the macroscopic
equations, can be written as

Plx,y] -
Alx,yix',y'] = li a8l
Blx,y;x',y'] _,g:o fl_a[ {5[1\’ ()16 N ~0“|do*”
Cx,y;x’,y";x",y"] n—0
< IT 6|Plxayal P Voo ]5 —@"1'§5 ]
Xas1Yal ™ XgYars— m— X— r—]
N w T Wl
4 1 N
(§-8 60| x' \/EUI{’L ,_TE]
" 7 X ——— —_——
[£3 \/ﬁ y \/ﬁ_
X< 1 _ \/Eo-l_g’ T‘gr >
NI T Rl P
N; §i€61 &) | O 0| x N [y \/ﬁ}
1(§§”)(§; gn)g 3 Sl x’ \/Eg-l.g’ 5|: ’ T‘g’ ) \/Eg'l.gn o T‘g”
—(& . WS snd| X' — ———— —— |8 — -
U wnop g N N N y = 5/

We next use the definition &?[ x,y;J], introduce integral representations for #hdistributions involvingP[ x,y], and obtain
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Plx,y]
Alx,y;x",y"]
Blx,y;x",y"]
C[x’y;x”y’;x”’y”]
NR
=1im | [] {5[N—<o“>2]a ——70|do“] ]| expliNm,[x,.ya]Plx, ,ya]}dma,ya)}
) Vo
Voo & &
x exp( —iNY, Exayan[xa,ya]w[xa—(@oﬂ-g'"/W)]ﬂm—(rf"/ﬁ)pa) 8| x— ———| 8| y— —
@ W NN
- 1 N
(€538 ' @”l'g']a T
B3 s 2T TS
o w T W
¢ [12555'5' 0 L 5{ : ’”ﬂ
- iSjSi Sj 0| X T T — ——
NZ jSiSj| O \/ﬁ y \/ﬁ
e £ 3dpend| - L2 E 5{' B L
Lo . Y TR D R P I PN B
v e W W W W ;

\. J blo/g
The summations involvingx(,,y,) automatically lead to integrals, which can be performed due todtlukstributions
involved. We define new conjugate functioRs[x,y] via

> wa[xmya]f[xmya]ﬁf dx'dy"P.[x",y"1f[x",y"].

We write averages over the training set explicitly in terms of preaN constituent vectorg£#}. Finally, we introduce
integral representations for the remainiéiglistributions, and obtain the following expressidas this stage we will have to
separate the various structurally different cases

ffa[ ‘5[N—<a“>2]a

N
—— 70"

VQ

dxdy . . .
P[X,YJZJ#E'[XXWV] lim
N0

n—0

do*

. ~ . 1
< eXF{ iN f dX"Pa,[X”,y"] Pt[X",y"]) H d Pa[xu,y//]} B
XHyH

p
X2 <exp(—<i/a>2 2 ﬁa«@ﬂgWJN),(r-g”/JN))—i[XFQal-§M+9r-§ﬂ]/m)> . (BY
ALX,y;xy' ] dxdx'dydy’ IIXX+ XX +yy+y' 91 | a NR a . " A\
{B[X,y;x’,y’]]:f(zT [ v ”]hlllinxf 1;[ {5[N—(cr )%19) \/——Q—r-oﬂ do®exp |Nf dx’dy
n—0
(£ &)

. 1 L
11 dPa(x",y'v]—z >
P”u#

x”y” =

Xlsa[X”,y”]P[X”,y”]) 1 ’ ’ eXF{_(i/ )z E
N e e

XPL(NQa™ £1YN),(7-&/N)]=i[%Qat g4+ 7-£1+ X' JGoJfW'r-g”]/JN) , (B2

=
=
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dxdx’' dXx"dydy’' dy” . ~ ~ ~
Cxy;x",y :x"y"= f 2m)° expli[XX+X'X +X"K"+yy+y'9 +y"9"])
——7 o%|do”

X nmj]'[ [5[N (0*)?]5

Nﬁxoc

VQ

L
Xexy{lNJ dx"dy”"P [ x",y"1P[X", y”])H dP,(x" y”)]—g > ) 5ﬂp5yp<(§“'§p)(§y'§p)

o
xexp( —(il) 2 2 PL(NQa"- £1IN),(7-&1YN)]-i[%Qo™ - £+ + §7-£"
@ A
+§(’\/60'1-§”+§/’7-§”+f("\/601-§p+§/"7-§”]/\/ﬁ)> : (B3)
The averages over the training séls in Egs.(B1)—(B3) will now be done separately. First we define some relevant objects:

D[u,v]=<exp(—<i/a>§ ﬁz«@r“-f/m),u-f/m))—i[u@oi-§+vr-§]/m)> : (B4)

£

sj[u.v]=<m§j exp(—(i/a@ ﬁ’a«anfﬂg/@,(r‘g/m))—i[u@o*§+vr'§]/m)> , (B5)

4

&j[u,v]=<Nf@,-exr(—(i/a)Z ﬁ’a«@ra-g/m,(r-g/m))—i[u@oi-§+w-§wﬁ)> (i#j). (B6)
“ £

As we will see, all are of ordeDN°) asN—x. We next use the permutation invariance of our integrations and summations
with respect to pattern labels. First we calculate the first training sets average occurring(BLEQ.

12 . p-1
53, (o= o]~ S PuQo 8N () |
n= a P

><<exp(—<i/a>2 ﬁa«@ra-f/m),<r-§/m>)—i[w6crl-§+97-§]/Jﬁ)>
“ &
DIX,§]

—eP In D[0,0]
D[0,0] 1

(B7)

The prefactoeP " 129 will turn out to take care of appropriate normalization, and will drop out of the final result for all four
functionsP[x,y], A[X,y;x",y'], B[x,y;x",y"], andC[x,y;x",y";x",y"]. Second, we evaluate the training sets average of the
expression for4[ ] in Eq. (B2):

_1 p—2

1. 42 —
<(§ &€z D

1 p
—zg (E"-8)e )a= :

J

> <exp(—<i/a>§ ﬁa<<@aa~§/m>,<f-§/m>))>

£

4

p
< F’( (I/a)E P.(VQo=- &N),(7-& N)—i[% Qo £+ 7 §]/\/—)>
<[

p( (l/a)E P.(VQo™- &N, (7-&N))—i[X' Qo §+yf§]/f)

3

N PPN St
:epInD[0,0][%Z %+O(N_l)] (B8)
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[provided we indeed show thﬁ;[u,v]ZO(NO) asN—«]. The training sets average of the expressionof in Eq. (B2) is
given by

1
<N§ greeree > ; ((EeN(EEe )=

=
=

-2

'U 'C
Z Z

Z‘ < F‘( (ila) 2 ﬁ“((@"“'ffﬂ),(f.g/m))»:
<§§]exp<_('/a)2 P.(VQo" & \N),(7-8 \N))~i[x\Qa™ £+ f]/f)>

3
<§§, p(

ex —(u/a)E P.(NQo* &\N),(7-&N))—i[%' Qo §+yr§]/f)>
3

N SO S
:eplnD[O’O]{_lgl S Eil%,91&;[%".9"]

N3 421 D0, +O(N_3/2)} =eP " POOO(NTh} (B9)

[provided we indeed show thé;j[u,v]=O(N°) asN—«]. Finally, we also obtain for the training sets average in B3),
in a similar fashion,

e /1 -1 —-1)(p—2)
DINDY <N(§“~§P)<§V-§P)e'“> =F;2N <-lé%§$§?e"‘>a+%i21 (Eeeefe )z

P™p=1 wiv#p

—
=
=

=§J (6'€/€267e)20(N"2) +(e)zO(N ™)
+§J (Eefe’ee )0 H+ X (glefe )z0N "
:D[O'O]p{g,- DK §"1€;[%.91&[%",9' IO(N"4)+O(N"?)
+§J EIXIIEX T 1EX,FTON3)

+2 DIX",9"1E[R,I1EIX 9" TON?)
— P NP0 O(N~L)), (B10)

We now work out Eq(B5) and we show that it is of ordéd®. This is achieved by separating in the exponent the terms with
site labeli = from those with site labels# j, followed by expansion in powers of tifeelatively smal) i = j terms, and will
involve the following two functions:

Filuv]l= < (rj’ﬁ £ ng) Xp(—a/a)g ﬁa«@ra-§/m>,<7-§/m>)—i[u@ol-§+vr-§wﬁ)> :

&
(B11)

o . ~
me g,%)exr(—(i/a)%: Pa«@ra-f/JN),u-f/JN))—i[u@r-&vr-ﬂ/m)> :

£ (B12)

fg[u,v]=<o’?yP

Note that there is no need to calculate the auxiliary functi@®; we only need to verify their magnitude to scale@EN®)
for N— oo,
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|

Sj[u,v]=< \/Ngjexp[ —(ila) Y, P,

<WQ/JN>[§J_ ol&+ g

mm[zj n&i+ T€j

i#

I,

=<m§jexp[—<i/a>§ ﬁa((@mg ol &, (LNN) 2 na)—i

(u@@(;j olE+ ol

"‘(U/\/N)(;j 7§+ 7€

(u@@; 03§i+(vlm)§j Ti;

1#]

J

xexp[—a@am)z o,f*gjaxﬁa((@m); ara.u/m)gj na)—mam)nsji ayﬁ’a(MQ/JN)
X2, ol (IWN) 2 ria)
1#] 1#]

=<exp{ ~ilaY, P,

10w ., -~ [V , 1 1 .

+u\/60']-1+v7'j+0(N1/2)] >

eXp{—i[(ux/@m)ojléj+(v/\/N)Tj§j]+O(N_1)}>
£

SERUMETRENN)Y Tifi)—i

1#]

(uQIYN) X oﬁa+<v/m>§j 7§

1#]

|

Qg ., 1t
W; i gi’_NZj Tifi)

£

so that
&lu,vl=—iu\Qo]Dlu,v]—ivrDlu,v]— i; VR ot Filu,v]- i;TjE F5[u,v]+O(N"Y?)

1
;f?[u,v]+u5alD[u,v]

=—i\/6§a: aff

1
—in [;f?[uyv]ﬂﬁaﬂ?[u,v] +O(N"Y?). (B13)

Repetition and extension of this argument, by separating in the exponent terms with two special(ijdicher than one,
and by subsequent expansiomhereby each term brings down a factér /), immediately shows that terms of the form
(N&iéje ), with i#]j will be of order O(N°). This confirms thafij[u,u]=O(N°) and that Eq.B6) indeed scales as
indicated. Note that the relevant combination of intensive terms in (B) can be abbreviated ag[u,v;u’,v’]
:(1/N)2]5J[U,U](€j[ul,v/]:

1
fo[u’,v']-l—u'ﬁ,gl'D[U’,v']

1
Llu,v;u'v']= —QaEB qaﬁ({v})[;ﬂ“[u,vhuéalD[u,v]

1
- "o 4! o
a‘; Slu v ]+v" 85 DU v’ ]

-R> {lf‘f[u,v]Jrub‘alD[u,v]
af | X

%]—"g[u,v]—kv&ﬁﬂ)[u,v]

1
-R>, [Eff[u’,v’]Jru’éalD[u’,v’]
ap

1 1
-2 [ng[u,v]+v5a1D[u,v] [Efg[u'vv']+v'5ﬁlp[u'av’] +O(N™Y2), (B14)
ap
|
where we have used the built-in properties N)Ji#-o* Let us finally work out further the remaining fundamental
=R/\/Q and #=N, and in which we find the spin-glass objectsD[ ] andF7 J ]. The basic property to be used is that
order parameters for largeN then+1 quantities|x,= o &N, y=7-&/ N}
1 inside averages of the fori) . will become (zero average
U s({0}) = NEi oab. (B15) Eg; correlatefl Gaussian variables, with probability distribu-
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det’”A i O RANQ
P(Xg,.., Xn1y):Wn+l)/2 : : :
Al : : : -
X.1 X.1 Un1 Qnn R/\/6
2 Xn Xn
y y This allows us to write
det’’A
D[U,v]: WJ dxdy
X1 X1
1] : o -
xex) — 5| o | Al o |22 PV ) —i[uVQxa oy (B16)
n n a o
y y
det?A .
Fiduuv]= —(Zw)(n+1)/2f dx dydq oP o \/6Xa,)/)
X1 X1
1] : : < - .
xex =5 | x| Al | T2 PaVQx ) —iluQx oyl | (B17)
n n a o
y y

Note that these quantities depend on the microscopic variaSiemnly through the macroscopic observabigs({o}).

2. Derivation of saddle-point equations

We will now combine the resulttB7)—(B10) and (B14) with the expressiontB1)—(B3). We use integral representations
for the remainings functions, and isolate the observabtgs;, by inserting

dgdgdddR

(27T)n2+2n

> (Qamaw@dﬁ 8oplap —iEi > [Qawﬁzmaria?]—igﬁ Qapoial|.

We hereby achieve a full factorization over sites in the relevant quantitis that the object®[ ] and £[ ] depend on the
microscopic variables only vig,s({a})):
dxdx'dydy’ A R R -~ oA .
A[Xy:x"y' 1= j Wexp{l[xx+x’x’+yy+y’y’]}l|m lim J dgdgdQdR [[ dP,(x"y")

n—0 N—o ax"y"”

xexp( iN[E <©a+ﬁeaR/fQ>+EB Qoplapt 2 f dx"dy"%(x%y”)P[x",y"]]

. . ,C A,A;A/’A/
+aN InD[0,0])H Jdaex;{—ig [Qa(aa)2+RaTioa]—iaEB qaﬁaaaﬁ)]%

and

dxdy . A . .
P[x,y]=J(2W)Ze'[XX+M lim lim | dgdgdQdR [[ dP,x",y")

xexp(iN[E (Qut RRIVQ)+ 2, Quglapt 2 f dxX'dy"Po(x",y")PIX",y"]

n—0 N—ox ax’y

+aNIn D[O,O])

DX, Y]

XH J\dgex%—ig [Qa(a'a)z—i—ﬁaTiO'a]_iaEﬁ qgﬁgaaﬁ)]—p[o'o] .

Both can be written in the form of an integral dominated by saddle points:
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dxdx’ dydy’ . R - s . A A
A[X,y;x’,y’]=J—4exp{|[xx+x’x’+yy+y’y’]}llm lim jdqdqudR
(277) n—0 N—o
[ "o AA [5\( y 5\( y ]
X I dPu(x"yexptN¥[a,8,QRAPH) —5zi5 57—
llx”y”
and
P[x y]:f Mexp(i[x?ﬁyi/]) lim lim | dqdgd@dR [] dP.(x".y")expN¥[q,3,Q,R,{P}]) DIx.5]
' (277')2 n—0 N-—o ax"y" “ ' o D[O O]
with

W[1=i2 (QutRRINQ)+i 2 Guplapsti f dx"dy"P,(x",y")P[x",y"]+ a InD[0,0]
a af a

1 . .
+lim = >, |anaex;(—i2 [Quo2+Ry7i0a] =12 8apTatsl -
N 5 a aB

N—s o0 i

F_inaIIy we use that fact that the above e_xpressions _WiII_be/vith D[ ] given by Eq.(B16), which depends on the varia-
given by the intensive parts evaluated in the dominatingjonal parametergP} and Qap ONly. The function£[ ] is
saddle point of. We can use the expression ®fx,y] and  given by Eq.(B14). The order parametetg, ; have the usual
its property/dx dy Ax,y]=1 to verify that all expressions j,ierpretation in terms of the average probability density for
are properly normalizetho overall prefactors are to be taken fi,qing 5 mutual overlam of two independently evolving
into account We perform a simple transformation on SOme ight vectors 42,3 in two systems andb with the same

of our integration variables: realization of the training setee, e.g.[16]):
QQBHQQB_QCK(SQB’ I,\?a_> \/GAROU
. b
and finally we get _<<< [ J2-J D>>
P(a)=={{(4dq-
(P(a))= q FEIEd _
A f dxdx’ dydy E
. . . . =lim og—q.z]- (B2l
Xexpli[xx+x'X"+yy+y'y']) no N(N—1) &7 A
% lim _Q_E[X X,y (B18) Note that upon applying the above procedure to the function
neo D700 B[ ] and([ ] in Egs.(B2) and(B3), we find again integrals
o L dominated by the dominant saddle point®f here, in view
P[x ]:J' dXdyexp(i[x%Jr $7) fim D%,9] of Egs.(B9) and(B10), the intensive parts are zero, and thus
YT @y U Do
(Blg) B[X,y;X’,y’]=C[X,y;X',y’;X”,y"]=0 (822)

in which all functions are to be evaluated upon choosing for

the order parameters the appropriate saddle point® of as anticipated earlier.

(variation with respect ta, g, Q, R, and{P}), which itself

takes the form 3. Replica-symmetric saddle points

) . i L L We now make the replica-symmetrRS) ansatz in the
V[1=i2 Qu(1-0u) +iRX Ra+|2ﬁ Aaplap extremization problem, which according to E(B21) is
“ “ “ equivalent to assuming ergodicity. With a modest amount of
) A foresight we set
+i j dx"dy"P,(x",y")P[X",y"]+ « InD[0,0]
qaﬁzqoéaﬁ+q[l_5aﬁ]l an:%i[r_roéaﬁ],

+lim = Ianaexr{—m—I\/—E R0,

N~>:>o

R.=ip, Q,=i¢, P, luv]l=ix[u,vl.

—i (o B2
Iazg q“ﬁaaaﬁ) B20 Tnis converts the quantity of Eq. (B20) for small n into
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1
lim H\P[]=—¢(1—q0)—pR+%qr—%qo(r—ro) lim ‘I’[Q{X}]
n—0 n—»O
R?IQ
_ " " "o " "o " — 1 _
fdx dy’x[x",y"]P[x",y"] 2(1 20i=q) |2 In(1—q) fdx dy'x[x".y']
a
+lim —=InD[0,0]+ lim lim XP[x",y']+ lim EInD[O,O;q,{)(}]Jrconst. (B24)
n—0 n n—0 N—wx n—o0 n

Finally we have to work out the RS version of

1
sz InJ DZJ daexp( 7'”)\/620; g Dlu,v;a,{x}:

et1/2
Dlu;v;x,q,1 dx d
~W2rE o2 S o (x| 9%y
(23 (23 .1 )(.1
with the abbreviatiorDz= (2) Y%~ (7dz We do the wexp — Lol
Gaussian integral in the last term, and expand the result for 2| Xy Xn
small n: y y
lim E‘lf[]=—¢(1—q )= pR+3ar—73do(r —ro) ! -
iy 0 2 Ar2 Aol o +— 2 X(VQx,.y) = i[uVQx +vy]
1 1 2
—glnr0+2—ro(r+P Q) (825)
with
_J dXdeHX[XN,yH]P[X!!,y!!] 1 . q R/\/a
@ : : :
+1im =InD[0,0]+ const. B23 ATt=
e [0,0] ( ) q 1 R/\/5
RO -+ RIJQO 1

Note that “const” refers to terms which do not depend on _ o
the order parameters to be varied, and will thus not show ug he inverse of the above matrix is found to be

in saddle-point equations; such terms can, however, depend Cp - Cyip vy
on time via quantities such &, R. At this stage it is useful . . .
to work out four of our saddle-point equations: A=| - : : C .= Sap —d
Ci = Cun 7]’ “p 1-q
A S S A 1
—=—=—=0: Qqo=1, ro=—7, Y y b
a¢ ar dp  dryg 1-q R\/a
y=—m+0(n), b=1+0(n),
R qQ_ RZ q
= =—. —R?/
P Q-0 Q1-q)? a-RYQ

d= (1= q)2 +0(n),

These allow us to eliminate most variational parameterswith this expression, and upon linearizing the terms in the
leaving a saddle-point problem involving only the function exponents which are quadraticirin the usual manner with
x[X,y] and the scalag: Gaussian integrals, we obtain

Dlu,v;q.{x}]

n
fdxdyexr{ 7(1/2)X-Cx7(1/2)by27yy2 xa+(1/a)2 X[\/EXHYY]i[U\/axﬁv)’])
a=1 «

f dx dy ex;{ —(1/2)x-Cx— (1/2)by?— ny xa)

n—-1
sz Dy e*‘”y""EUdxexp{—x2/2<1—q>+[zﬁ—yy/%]xﬂl/a)x[JExxy/ﬁ)]}} fdxexp{—x2/2<1—q>+[zJE—7y/J5]x+<1/a>x[JEx,wNE)]—iuJax}
sz Dy{fdx expl—[1/2(1- ) x2+[zv/d— y(y/b)]x}

n

(B26)
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For the saddle-point problem we only need to calculatg ligia/n)In D[0,0;q9,{x}

lim zInD[O,O;q,{X}]: lim %{Inj Dz Dy{f dxexp[—x2/2(1—q)+[z\/a— yy/\/E]er(l/a)X[\/ax,y/\/E]} n

n—0 n—0
n]

J dxexp{ —x%/2Q(1— q)x[z/d— yy )/ VQ+ (L/a) x[x.y1}

—Inf Dz Dyfdxexp{—1/2(1—q)x2+[z\/a—yy/\/5]}x

=af Dz DyIn{

| axexdi—x20(1-a)+x(2\a- WiV}

\
with v andd evaluated in the limih— 0. Equivalently we can define
A=R/IQ(1-q), B=yqQ-R*Q(1-q), (B27)

which gives

f dxexp{—x?2Q(1—q) +X[Ay+ Bz]+ (1/a) x[x,y]}

lim %InD[O,O;q,{X}]=af Dz Dyln

n—0

f dxexp{—x?2Q(1—q) +x[Ay+Bz]}

Upon doing thex integration in the denominator of this expression we can write the explicit expression for the slrface
be extremized with respect tpand the functiorny|[ x,y], apart from irrelevant constants, in the surprisingly simple ffasith
the shorthand$B27)]

1 1-a—R?¥
lim H\I’[q,{x}]=—Q

2(1—q) +%(1—a)|n(l—q)—fdx dyX[x,y]P[x,y]+af Dz DylIn
n—0

X f dxexp{—x?2Q(1—q) + X[ Ay+ Bz]+ (1/a) x[x,y]}. (B28)

Note that Eq(B28) is to beminimized both with respect tg [which originated as an(n—1)-fold entry in a matrix, leading
to curvature sign change fo< 1] and with respect to the functiogy] x,y] (obtained from the-fold occurrence of the original
function P, multiplied byi, which also leads to curvature sign change

The remaining saddle-point equations are obtained by variation off2®) with respect toy andg. Functional variation
with respect toy gives

o (V22 exp{ —x%/2Q(1—q) +X[Ay+Bz]+ (1/a) x[x,y]}

P[x,y]J=—=—| Dz for all x,y. (B29)
V27 de’ exp{—x'%12Q(1—q)+x'[Ay+Bz]+ (1/a)x[x',y]}

Note thatP[x,y]=P[x|y]P[y] with P[y]=(27) Y%~ ¥2¥° as could have been expected. Next we varand use Eq.
(B29) wherever possible:

1—a—R%Q_ 1-
2(1-9)*  2(1-q)

f dxexp{—x?2Q(1—q) +X[Ay+ Bz]+ (1/a) x[x,y]}

X2 [ aA+ B
2Q(1-q)% Ya9q " “oq

|

=af Dz Dy
fdxexp{—x2/2Q(1—q)+x[Ay+Bz]+(1/a)X[x,y]}

giving
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1
J.dxdyﬁxykx—Rw2+Gﬂ—qQ%;—l)

szDy

4. Explicit expression for the Green’s function

Q(1-q) f dxexp{—x?2Q(1—q) + X[ Ay+ Bz]+ (1/a) x[X,y]x}

VgQ-R?

. (B30

2JgQ—R+

f dxexp{—x?2Q(1—q) +X[Ay+ Bz]+ (1/a) x[x,y]}

In order to work out the Green’s functidB18) we need the functiof[ u,v;u’,v’] as defined in Eq(B14) which, in turn,
is given in terms of the integra(816) and(B17). First we calculate tha—0 limit of D[u,v;q,{x}] [Eq. (B26)], and simplify
the result with the saddle-point equatit®B29):

f dxexp{—x%2Q(1—q) + X[ Ay+Bz]+ (1/a) x[X,y]—iux}

limD[u,v;q,{x}]= | Dz Dy e ¥
n-0 fdxexp{—x2/2Q(1—q)+x[Ay+Bz]+(1/a)X[x,y]}

=f dx dy A x,yJe vy—iux, (B31)

Next we work out the quantitieB j u,v] of Eq. (B17) in RS ansatz, using Gaussian linearizations:

X1 X1
[ : : 1 .
dedyal,zy[foa,y]ex —(5) % | Al x, | T a2 AVQxYI-iuVQx toy]
. . y y
lim FJu,v]=i lim
n—0 1’2[ n—0 X'l X'l
1 : :
fdx dyex —<§> X A X,
y y

=ilim J'Dy Dz e*i”yJ' dxexp(}/;, {=X5/2(1—q)+[zd— yy]xg+ (Lla) x[ VQxg Y1}

n—0
—iuxl\/6> 1. X[ VQ%q Y ]-

The replica permutation symmetries of this expression allow us to conclude

lim F[u,v]=8,4F[u,v]+(1- 8, F5[u,v], (B32)
n—0

where
Fi’iu,v]zif dx dy Ax,yle 'Y~ "g, v[x,y], (B33

Fifuuv]=i f Dy Dz e 'Y

{ J dx exp{—x22Q(1—q) + x[Ay+Bz]+ (1/a) x[x,y]—iux}
2
dx exp[—x2/2Q(1—q)+x[Ay+ Bz]+ (l/a) x[x,y1}

f dx exp{—x%/2Q(1—q) + X[Ay+ Bz]+ (L/a) x[X,y]} 31 2x[ X, Y]
X

(B34

We can now proceed to the calculation of EB14). First we note that the basic building blocks of E§14) are most easily
expressed in terms of the functions
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1, - 1
Gy[uw]=—Ffuv]+uDluv], Giluv]= ZJf’;f[u,u], (B35)

1 ~ 1
G,lu]= Z]—"%[u,v]+vD[u,v], G,lu,v]= ng[u,u]. (B36)

With these short-hand notations we obtain, upon performing the summations over replica indice$Bt4Eg.

Llu,p;u' ' ]==Q(1-q)Gy[u,w]Gy[u’,v']= Q(L-a)(n—1)Gy[u,w]Gy[u",v' ]~ Qa{Gy[u,v]+(n—1)Gy[u,v]}
X{Gq[u",v"]+(n— 1)G4[u’ v "TH=R{G4[u,v]+(n— 1)G4[u, v]HG,[u' v ]+ (n— 1)G,[u' v "1}
—R{G[u’,v']+(n—=1)G4[u’",v' TH{G,[u,v]+(n—=1)G,[u,v ]} —{G,[u,v]+(n—1)G,[u,v]}
X{G,[u",v']+(n=1)G,[u’,v']}

and so

lim Llu,v;u’,0']1=—=Q(1—a)(Gy[u,0]Gy[u’,v']—-Gy[u,v]Gy[u’,v']) — QU(G,[u,v]—G,[u,v])

n—0
X(Gq[u",v']1=G4[u",0' D —R(G1[u,v]=G1[u,w])(Gylu’,v']-Gylu",v'])

—R(Gy[u" v ]-8y[u",0"D(Golu,w] = Blu,w]) = (Golu,v] =Bl u,w (Gl v 1= Byl v ]).
With the Fourier transforms of the functidg |, given by

A reon du dv jul+ivo 1 1 ~ora oA 1 du dv |uu+|
Gi0,0]= (277)2e ve ;fl[u,v]vLuD[u,v] , 1[u,v]=;f (2m)? ””]-'Q[u v], (B37)
&,00.5]= ded” fu+ivs %f;[u,v]ﬂp[u,v], Ez[a,a]zéffzuwﬁv el +iv 721y 41, (B39)

the Green’s functiond[ x,y;x’,y’] (B18) can now be written in explicit form as

AL Yx! Ly 1= = Q(1—q)(Gy[x,y1G1[X",y' 1= G x,YIG1[X',y']) — Qa(G1[x,y]— Gy x,y])(G4[ X",y ]— Gy[x,y"])
—R(G1[%,y]= Gl x,yD(Go[X',y' 1= G x',y' ) = R(Ga[x',y' 1= Gy x",y' (Gl X,y ]~ G x,y])
— (Gl x,y1= Gl %,y (Gl X",y 1= Go[ X",y ]). (B39)

Finally, working out the four relevant Fourier transforms, using EB81), (B33), and(B34) gives

N 190 J
Gl[X,y]:iP[X,y] ; &X[le]_ &In P[X,y] ) (B4O)

A 19 1%
Galxyl=iP[x.y] — @X[X,YJ— (9—y|n PIXyl|, (B41)

exp{ —x2/2Q(1—q) +X[Ay+Bz]+ (1L/a) x[x,y]}

B i {f dx’ exp{—x'2/2Q(1—q) +x'[Ay+Bz]+ (Lla)x[X",y1}drx[X",Y]
ixyl= —P[y]f Dz

2
f dx’ exp{—x'22Q(1—q) +x'[Ay+Bz]+ (1/a) x[x’ ,y]}}
(B42)

{f dx’ exp{—x'2/2Q(1—q) +x'[Ay+Bz]+ (L) x[ X'y} d-x[ X", y]|exp —x22Q(1—q) + X[ Ay+ Bz]+ (1/a) x[ X,y ]}

Galxyl= = Ply] J Dz

2
f dx’ exp{—x'22Q(1—q) +x'[Ay+Bz]+ (1/a) x[x’ ,y]}}
(B43)
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It turns out that significant simplification of the res(#45)

with P[y]=(2m) V2%~ (W2y* ! _ , . of the .
is possible, upon using the following two identities to rewrite

Since the distribution P[x,y] obeys P[X,y] IS
— P[x|y]P[y] with P[y]=(2m) Y%~ ¥2¥* our equations the functionsJ;[ ], Jo[ ], andJ,[ I:
can be simplified by choosing as our order-parameter func-
tion the conditional distributiof[x|y]. We also replace the
conjugate order-parameter functigfix,y] by the effective
measureM[Xx,y], and we introduce a compact notation for

d
<5In M[x,y]> =—-Bz (B46)

*

the relevant averages in our problem:

M[x,y]=exp —x?/2Q(1—q)+Axy+ (1/a) x[x,y1},

f dx M[x,y]e®**[x,y,z]

(fIx.y.z]) = (B44)

f dx M[x,y]e®*?

Instead of the original Green’s functiad[x,y;x",y'] we

turn to the transformed Green's functioti x,y;x’,y’], de-
fined as

ALXy: X'y 1=PIx,YIALX,y; X",y P[X",y'].

With these notational conventions one finds that BBf9)
translates into the following expression:

AXyx"y' 1=Q(1—a) (I [x,y19a[X",y']
=310y 130X,y D)+ Qa(I[x.y]
=36y DEX Y 1=340x Yy D)
+R(I1[X,y]=Iu[x,yDILX,y']
+R(J4[X",y 1= 34X,y DI xY]

+J5[ X, Y]do[ XY ] (B45)
with
Jl[x,v]=i|nM[X’Y]+ X“RY
JX " PIX[Y] " Q(1-q)
f]l[X,Y]zP[XlY]’lf Dz<ailn M[X,Y]+ X_—E{Y>
X Ql-a)/,
XA X=X])s
JZ[X,Y]=iI MLX, Y] RX +Y-P[X|Y] !

oY "PIXIY] Q(1-q)
XID <i| M[X,Y —l>
AR Trer

XS X=x])y -

J Jd
<WInM[x,y]>*=WIanxeB M[x,y]. (B47)

Identity (B46) results upon integrating by parts with respect
to x, whereas identityB47) is a direct consequence f
dependences occurring iM[x,y] only. Note that B
=qQ—R%Q(1—q). To achieve the desired simplification

of A[x,y;x’,y’] we define the following object:

DIXyI=~{QUL-@)PIXIY]} [ D2(X-x), (o1Xx]),
(B49)

We can now, after additional integration by parts with re-

spect toz, simplify the above expressions fdg[ ], J4[ 1,
andJ,[ ] to

X—RY qQ-R?

WXYI=51—g oii=g)

PLX,Y],

Jo[XY]=32[X, Y] =X, Y],
J[X,Y]=Y=R®O[X,Y],
and consequently

AXyx Y 1=PIx, YA X,y; X",y IP[X",y'],
(B49)

ALXy:x Y 1=yy + (x—Ry)@[x',y' ]+ (X' —RY')

X®[X,y]—(Q—RA)P[x,y]®[x",y']
(B50)

with ®[x,y] as given in Eq(B498).
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