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Dynamics of learning with restricted training sets
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We study the dynamics of supervised learning in layered neural networks, in the regime where the sizep of
the training set is proportional to the numberN of inputs. Here the local fields are no longer described by
Gaussian probability distributions and the learning dynamics is of a spin-glass nature, with the composition of
the training set playing the role of quenched disorder. We show how dynamical replica theory can be used to
predict the evolution of macroscopic observables, including the two relevant performance measures~training
error and generalization error!, incorporating the old formalism developed for complete training sets in the
limit a5p/N→` as a special case. For simplicity, we restrict ourselves in this paper to single-layer networks
and realizable tasks. In the case of~on-line and batch! Hebbian learning, where a direct exact solution is
possible, we show that our theory provides exact results at any time in many different verifiable cases. For
non-Hebbian learning rules, such asPERCEPTRONand ADATRON, we find very good agreement between the
predictions of our theory and numerical simulations. Finally, we derive three approximation schemes aimed at
eliminating the need to solve a functional saddle-point equation at each time step, and we assess their perfor-
mance. The simplest of these schemes leads to a fully explicit and relatively simple nonlinear diffusion
equation for the joint field distribution, which already describes the learning dynamics surprisingly well over
a wide range of parameters.

PACS number~s!: 87.10.1e, 02.50.2r, 05.20.2y
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I. INTRODUCTION

In the past few years, much progress has been made i
analysis of the dynamics of supervised learning in laye
neural networks, using the strategy of statistical mechan
namely, deriving from the microscopic dynamical equatio
of the learning process a set of closed laws describing
evolution of suitably chosen macroscopic observables~dy-
namic order parameters!, in the limit of an infinite system
size~e.g.,@1–5#!. A recent review and more extensive guid
to the relevant references can be found in@6#. A preliminary
presentation of some of the present results was given in@7#.
The main successful procedure developed so far is buil
the following four cornerstones.

~i! The task to be learned by the network is defined b
(possibly noisy) ‘‘teacher,’’ which is itself a layered neur
network. This induces a canonical set of dynamical ord
parameters, typically the~rescaled! overlaps between the
various student weight vectors and the corresponding tea
weight vectors.

~ii ! The number of network inputs is (eventually) taken
be infinitely large. This ensures that fluctuations in mea
field observables will vanish, and creates the possibility
using the central limit theorem.

~iii ! The number of ‘‘hidden’’ neurons is finite. This pre-
vents the number of order parameters from being infin
and ensures that the cumulative impact of their fluctuation
insignificant.

~iv! The size of the training set is much larger than t
number of weight updates made. Each example presented
the system is now different from those that have already b
seen, such that the local fields will have Gaussian probab
PRE 621063-651X/2000/62~4!/5444~44!/$15.00
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distributions, which leads to closure of the dynamic equ
tions.

These are not ingredients to simplify the calculations,
vital conditions, without which the standard method fai
Although the assumption of an infinite system size has b
shown not to be too critical@8#, the other assumptions d
place serious restrictions on the degree of realism of the
narios that can be analyzed, and have thereby, to some
tent, prevented the theoretical results from being used
practitioners.

Here we study the dynamics of learning in layered neu
networks with restricted training sets, where the numberp of
examples ~‘‘questions’’ with corresponding ‘‘answers’’!
scales linearly with the numberN of inputs, i.e.,p5aN with
0,a,`. In this regime individual questions will reappea
during the learning process as soon as the number of wei
updates made is of the order of the size of the training se
the traditional models, where the duration of an individu
update is defined asN21, this happens as soon ast
5O(a). At that point correlations develop between th
weights and the questions in the training set, and the dyn
ics is of a spin-glass type, with the composition of the tra
ing set playing the role of ‘‘quenched disorder.’’ The ma
consequence of this is that the central limit theorem
longer applies to the student’s local fields, which are n
indeed described by non-Gaussian distributions. To dem
strate this we trained~on-line! a perceptron with weightsJi
on noiseless examples generated by a teacher perception
weightsBi , using the Hebb andADATRON rules. We plotted
in Fig. 1 the student and teacher fields,x5J"j andy5B"j,
respectively, wherej is the input vector, forp5N/2 ex-
amples and at timet550. The marginal distributionP(x) for
5444 ©2000 The American Physical Society
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FIG. 1. Student and teacher fields (x,y)5(J"j,B"j) as observed during numerical simulations of on-line learning~learning rateh51! in
a perceptron of sizeN510 000 att550, using ‘‘questions’’ from a restricted training set of sizep5N/2. Left: Hebbian learning. Right:
ADATRON learning. Note: in the case of Gaussian field distributions one would have found spherically shaped plots.
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p5N/4, at timest510 for the Hebb rule andt520 for the
ADATRON rule, is shown in Fig. 2. The non-Gaussian stud
field distributions observed in Figs. 1 and 2 induce a dev
tion between the training and generalization errors, wh
measure the network performance on training and test
amples, respectively. The former involves averages over
non-Gaussian field distribution, whereas the latter~which is
calculated overall possible examples! still involves Gaussian
fields. The appearance of non-Gaussian fields leads to a c
plete breakdown of the standard formalism, based on de
ing closed equations for a finite number of observables:
field distributions can no longer be characterized by a f
moments, and the macroscopic laws must now be avera
t
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over realizations of the training set. One could still try to u
Gaussian distributions as largea approximations, see, e.g
@9#, but it will be clear from Figs. 1 and 2 that a systema
theory will have to give up Gaussian distributions entire
The first rigorous study of the dynamics of learning wi
restricted training sets in nonlinear networks, via the cal
lation of generating functionals, was carried out in@10# for
perceptrons with binary weights. The only cases where
plicit and relatively simple solutions can be obtained, ev
for restricted training sets, are those where linear learn
rules are used, such as@11# or @12#.

In this paper we show how the formalism of dynamic
replica theory~see, e.g.,@13#! can be used successfully t
o vary
FIG. 2. DistributionP(x) of student fields as observed during numerical simulations of on-line learning~learning rateh51! in a
perceptron of sizeN510 000, using ‘‘questions’’ from a restricted training set of sizep5N/4. Left: Hebbian learning, measured att
510. Right:ADATRON learning, measured att520. Note: not only are these distributions distinctively non-Gaussian, they also appear t
widely in their basic characteristics, depending on the learning rule used.
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predict the evolution of macroscopic observables for finitea,
incorporating the infinite training set formalism as a spec
case, fora→`. Central to our approach is the derivation
a diffusion equation for the joint distributionP@x,y# of the
student and teacher fields, which will be found to ha
Gaussian solutions only fora→`. For simplicity and trans-
parency we restrict ourselves in the present paper to sin
layer systems and noise-free teachers. Application and
eralization of our methods to multilayer systems@14# and
learning scenarios involving ‘‘noisy’’ teachers@15# are pres-
ently underway.

Our paper is organized as follows. We first derive
Fokker-Planck equation describing the evolution of arbitr
mean-field observables forN→`. This allows us to identify
the conditions for the latter to be described by closed de
ministic laws. We then choose as our observables the j
field distributionP@x,y#, in addition to~the traditional ones!
Q andR, and show that this set$Q,R,P% obeys deterministic
laws. In order to close these laws we use the tools of dyna
cal replica theory. Details of the replica calculation are giv
in Appendix B, so that they can be skipped by those prim
rily interested in results. We summarize the final replic
symmetric macroscopic theory and its notational conv
tions, discuss some of its general properties, and show
in the limit a→` ~infinite training sets! the equations of the
conventional theory are recovered. We then apply our g
eral theory to various different specific choices of learn
rules. One of these~on-line and batch!, Hebbian learning,
provides an excellent benchmark test for our theory, since
this simple rule exact solutions are known, even for the
gime of restricted training sets@12#. We find that our theory
is fully exact for batch execution, and that it succeeds
predicting exactly the evolution of several macroscopic
servables, including the generalization error and moment
the joint field distribution for student and teacher fields,
the on-line case~although here full exactness is difficult t
assess, and nota priori guaranteed!. For non-Hebbian error-
correcting learning rules, such as on-line and batch vers
of PERCEPTRONlearning andADATRON learning, no exact
solutions are known at present with which to confront o
theory; instead we compare here the predictions~with regard
to the evolution of training and generalization errors and
joint field distribution! of the full theory, as well as of a
number of simple approximations of our equations, with
results of carrying out extensive numerical simulations
large ~size N510 000! neural networks. We find, surpris
ingly, that even the simplest of these approximations, wh
does not require solving any saddle-point equations
takes the form of a fully explicit nonlinear diffusion equatio
for the joint field distributionsP@x,y#, describes the simula
tion experiments remarkably well. Employing the more s
phisticated~and thereby more CPU intensive! approxima-
tions, or, at the other end of the spectrum, a numer
solution of the full macroscopic theory, leads to increasin
accurate quantitative predictions for the evolution of the r
evant macroscopic observables of the learning process,
deviations between theory and numerical experiment wh
are of the order of magnitude of the finite-size effects in
simulations. We close our paper with a discussion of
strengths and weaknesses of the approach used, and an
look on future work on the dynamics of learning with r
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stricted training sets, involving the present and possibly ot
formalisms.

II. FROM MICROSCOPIC TO MACROSCOPIC LAWS

A. Definitions

A student perceptron operates the following rule, which
parametrized by a weight vectorJPRN:

S:$21,1%N→$21,1%, S~j!5sgn@J"j#. ~1!

It tries to emulate the operation of a teacher perceptr
which is assumed to operate a similar rule, characterized
a given~fixed! weight vectorBPRN:

T:$21,1%N→$21,1%, T~j!5sgn@B"j#. ~2!

In order to improve its performance, the student percept
modifies its weight vectorJ according to an iterative proce
dure, using examples of input vectors~or ‘‘questions’’! j,
drawn at random from a fixed training setD̃#D5
$21,1%N, and the corresponding values of the teacher o
putsT(j).

We will consider the case where the training set is a r
domly composed subsetD̃,D, of size uD̃u5p5aN with
a.0:

D̃5$j1,...,j p%, p5aN, j mPD for all m. ~3!

We will denote averages over the training setD̃ and averages
over the full question setD in the following way:

^F~j!&D̃5
1

uD̃u
(

jPD̃

F~j! and ^F~j!&D5
1

uDu
(

jPD
F~j!.

We will analyze the following two classes of learning rule

J~m11!5J~m!1
h

N
j~m!G@J~m!•j~m!,B"j~m!#

for on-line learning,
~4!

J~m11!5J~m!1
h

N
^jG@J~m!•j,B"j#&D̃

for batch learning.

In on-line learning one draws at each iteration stepm a ques-
tion j(m)PD̃ at random, thus the dynamics is a stochas
process; in batch learning one iterates a deterministic m
The functionG@x,y# is assumed to be bounded and not
depend onN, other than via its two arguments.

Our most important observables during learning are
training errorEt(J) and the generalization errorEg(J), de-
fined as follows:
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Et~J!5^u@2~J"j!~B"j!#&D̃ ,

Eg~J!5^u@2~J"j!~B"j!#&D . ~5!

Only if the training setD̃ is sufficiently large, and if there ar
no correlations betweenJ and the questionsjPD̃, will these
two errors will be identical.

We next convert the dynamical laws~4! into the language
of stochastic processes. We introduce the probabilityp̂m(J)
to find weight vectorJ at discrete iteration stepm. In terms
of this microscopic probability distribution, the processes~4!
can be written in the general Markovian form

p̂m11~J!5E dJ8W@J;J8# p̂m~J8!, ~6!

with the transition probabilities

W@J;J8#5 K dFJÀJ82
h

N
jG@J8•j,B"j#G L

D̃

for on-line learning,
~7!

W@J;J8#5dFJÀJ82
h

N
^jG@J8•j,B"j#&D̃G

for batch learning.

We make the transition to a description involving real-valu
time labels by choosing the duration of each iteration ste
be a real-valued random number, such that the probab
that at timet preciselym steps have been made is given
the Poisson expression

pm~ t !5
1

m!
~Nt!me2Nt. ~8!

For times t@N21 we find t5m/N1O(N21/2), the usual
time unit. Due to the random durations of the iteration ste
we have to switch to the following microscopic probabili
distribution:
in
as
d
to
ty

s,

pt~J!5 (
m>0

pm~ t !p̂m~J!. ~9!

This distribution obeys a simple differential equation, whi
immediately follows from the pleasant properties of Eq.~8!
under temporal differentiation:

d

dt
pt~J!5NE dJ8$W@J;J8#2d@JÀJ8#%pt~J8!. ~10!

So far no approximations have been made; Eq.~10! is exact
for any N. It is the equivalent of the master equation oft
introduced to define the dynamics of spin systems.

B. Derivation of macroscopic Fokker-Planck equation

We now wish to investigate the dynamics of a number
as yet arbitrary microscopic observables V@J#
5(V1@J#,...,Vk@J#). To do so we introduce a macroscop
probability distribution

Pt~V!5E dJ pt~J!d†VÀV@J#‡. ~11!

Its time derivative immediately follows from that in Eq.~10!:

d

dt
Pt~V!5NE dJ dJ8d†VÀV@J#‡

3$W@J;J8#2d@JÀJ8#%pt~J8!

5NE dV8E dJ dJ8d@VÀV@J#‡

3d†V82V@J8#‡$W@J;J8#2d@JÀJ8#%pt~J8!.

This then can be written in the standard form

d

dt
Pt~V!5E dV8Wt@V;V8#Pt~V8!, ~12!

where
Wt@V;V8#5

E dJ8pt~J8!d†V82V@J8#‡E dJ d†V2V@J#‡N$W@J;J8#2d@J2J8#%

E dJ8pt~J8!d†V82V@J8#‡

.

If we now insert the relevant expressions~7! for W@J;J8#,
we can perform theJ integrations, and obtain results given
terms of so-called subshell averages, which are defined

^ f ~J!&V;t5

E dJ pt~J!d†V2V@J#‡ f ~J!

E dJ pt~J!d†V2V@J#‡

.

For the two classes of learning rules at hand we obtain

Wt
onl@V;V8#5NK K dFV2VFJ1

h

N
jG@J•j,B•j#G G L

D̃

2d†V2V@J#‡L
V8;t

,
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Wt
bat@V;V8#5NK dFV2VFJ1

h

N
^jG@J•j,B•j#&D̃G G

2d†V2V@J#‡L
V8;t

.

We now insert integral representations for thed distributions.
The observablesV@J#PRk are assumed to beO(1) each,
and finite in number~i.e., k!N!:

d@V2Q#5E dV̂

~2p!k ei V̂•@V2Q# ~13!

which gives, for our two learning scenarios,

Wt
onl@V;V8#

5E dV̂

~2p!k ei V̂"VN

3Š^exp$2 i V̂•V†J1~h/N!jG@J•j,B•j#‡%&D̃

2e2 i V̂"V@J#
‹V8;t , ~14!

Wt
bat@V;V8#5E dV̂

~2p!k ei V̂"VN^exp$2 i V̂"V†J1~h/N!

3^jG@J"j,B"j#&D̃#%2e2 i V̂"V@J#&V8;t , ~15!

Still no approximations have been made. The above two
pressions differ only with regard to at which stage the av
aging over the training set occurs.

In expanding Eqs.~14! and~15! for largeN and finitet we
have to be careful, since the system sizeN enters both as a
small parameter to control the magnitude of the modificat
of individual components of the weight vector, but also d
termines the dimensions and lengths of various vectors
occur. We therefore inspect more closely the usual Tay
expansions:

F@J1k#2F@J#5(
l>1

1

l ! (
i 151

N

¯(
i l51

N

ki 1
¯ki l

] lF@J#

]Ji 1
¯]Ji l

.

If we assess how derivatives with respect to individual co
ponentsJi scale for mean-field observables such asQ@J#
5J2 andR@J#5B•J, we find the following scaling property
which we will choose as our definition ofsimplemean-field
observables:

F@J#5O~N0!,
] lF@J#

]Ji 1
¯]Ji l

5O~ uJu2 lN~1/2!l 2d! ~N→`!

~16!

in which d is the number of different elements in the s
$ i 1 ,...,i l%. For simple mean-field observables we can n
estimate the scaling of the various terms in the Taylor
pansion. However, we will find that for restricted trainin
sets not all relevant observables will have the properties~16!.
In particular, the joint distribution of student and teach
fields will, for on-line learning, have a contribution for whic
all terms in the Taylor series will have to be summed, givi
x-
r-

n
-
at
r

-

t

-

r

rise to an additional termD@J;k #.1 The latter type of more
generalmean-field observables will have to be defined v
the identities

F@J1k#2F@J#5D@J;k#1(
i

ki

]F@J#

]Ji

1
1

2 (
i j

kikj

]2F@J#

]Ji]Jj
1(

l>3
OS F uku

uJu G
l D ,

~17!

F@J#5O~N0!, D@J;k#5O~ uku2/uJu2! ~18!

@in the assessment of the order of the remainder terms of
~17! we have used( iki5O(ANuku)#. Simple mean-field ob-
servables correspond toD@J;k#50.

We expand our macroscopic equations~14! and ~15! for
largeN and finite times, restricting ourselves from now on
mean-field observables in the sense of Eqs.~17! and ~18!.
One of our observables we choose to beJ2. In the present
problem the shiftsk, being either (h/N)jG@J•j,B•j# or
h/N^jG@J•j,B•j#&D̃ , scale as uku5O(N21/2). Conse-
quently,

e2 i V̂"V@J1k#5e2 i V̂"V@J#H 12 i V̂•D@J;k #2 i(
i

ki

]

]Ji

3~V̂"V@J# !2
i

2 (
i j

kikj

]2

]Ji]Jj
~V̂•V@J# !

2
1

2 F(
i

ki

]

]Ji
~V̂•V@J# !G2J 1O~N23/2!.

This, in turn, gives

E dV̂

~2p!k ei V̂"VN@e2 i V̂"V@J¿k#2e2 i V̂"V@J##

52NH(
m

]

]Vm
FDm@J;k#1(

i
ki

]Vm@J#

]Ji

1
1

2 (
i j

kikj

]2Vm@J#

]Ji]Jj
G2

1

2 (
mn

]2

]Vm]Vn

3(
i j

kikj

]Vm@J#

]Ji

]Vn@J#

]Jj
J

3d†VÀV@J#‡1O~N21/2!.

It is now evident, in view of Eqs.~14! and ~15!, that both
types of dynamics are described by macroscopic laws w
transition probability densities of the general form

1We are grateful to Dr. Yuan-sheng Xiong for alerting us to th
important point.
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Wt
!!!@V;V8#5H 2(

m
Fm@V8;t#

]

]Vm
1

1

2 (
mn

Gmn@V8;t#

3
]2

]Vm]Vn
J d@VÀV8#1O~N21/2!

which, due to Eq.~12! and forN→` and finite times, leads
to a Fokker-Planck equation:

d

dt
Pt~V!52 (

m51

k
]

]Vm
$Fm@V;t#Pt~V!%

1
1

2 (
mn51

k
]2

]Vm]Vn
$Gmn@V;t#Pt~V!%.

~19!

The differences between the two types of dynamics are in
explicit expressions for the flow and diffusion terms:

Fm
onl@V;t#5 lim

N→`
K NK DmFJ;

h

N
jG@J"j,B"j#G L

D̃

1h(
i

^j iG@J"j,B"j#&D̃

]Vm@J#

]Ji

1
h2

2N (
i j

^j ij jG2@J"j,B"j#&D̃

]2Vm@J#

]Ji]Jj
L

V;t

,

Gmn
onl@V;t#5 lim

N→`

h2

N K (
i j

^j ij jG2@J"j,B"j#&D̃

3F]Vm@J#

]Ji
GF]Vn@J#

]Jj
G L

V;t

,

Fm
bat@V;t#5 lim

N→`
K NDmFJ;

h

N
^jG@J"j;B"j#&D̃G

1h(
i

^j iG@J"j,B"j#&D̃

]Vm@J#

]Ji

1
h2

2N (
i j

^j iG@J"j,B"j#&D̃

3^j jG@J"j,B"j#&D̃

]2Vm@J#

]Ji]Jj
L

V;t

,

Gmn
bat@V;t#5 lim

N→`

h2

N K (
i j

^j iG@J"j,B"j#&D̃^j jG@J"j,B"j#&D̃

3F]Vm@J#

]Ji
GF]Vn@J#

]Jj
G L

V;t

.

Equation~19! allows us to define the goal of our exercise
more explicit form. If we wish to arrive at closed determi
istic macroscopic equations, we have to choose our obs
ables such that~i! limN→` Gmn@V;t#50 ~this ensures de
terminism!, ~ii ! limN→`]Fm@V;t#/]t50 ~this ensures
e

rv-

closure!. In the case of having time-dependent global para
eters, such as learning rates or decay rates, the latter co
tion relaxes to the requirement that any explicit time dep
dence ofFm@V;t# is restricted to these global parameters

C. Choice and properties of canonical observables

We next apply the general results obtained so far to
specific set of observables,V→$Q,R,P%, which are tailored
to the problem at hand@note that we restrict ourselves t
J25O(1) andB251#:

Q@J#5J2, R@J#5J"B,

P@x,y;J#5^d@x2J"j#d@y2B"j#&D̃ ~20!

with x,yPR. This choice is motivated by the following con
siderations: ~i! in order to incorporate the standard theo
in the limit a→`, we need at leastQ@J# andR@J#; ~ii ! we
need to be able to calculate the training error, which involv
field statistics calculated over the training setD̃, as described
by P@x,y;J#; and ~iii ! for finite a one cannot expect close
macroscopic equations for just a finite number of order
rameters. The present choice~involving the order paramete
function P@x,y;J#! represents effectively an infinite
number.2 In subsequent calculations we will, however, a
sume the number of arguments~x,y! for which P@x,y;J# is to
be evaluated~and thus our number of order parameters! to go
to infinity only after the limit N→` has been taken. This
will eliminate many technical subtleties and will allow us
use the Fokker-Planck equation~19!.

The observables~20! are indeed of the general mean-fie
type in the sense of Eqs.~17! and ~18!. Insertion into the
stronger condition~16! immediately shows this to be true fo
the scalar observablesQ@J# andR@J# @they are simple mean
field observables, for which the term~18! is absent#. Verifi-
cation of Eqs.~17! and~18! for the functionP@x,y;J# is less
trivial. We denote withI the set of alldifferentindices in the
list ( i 1 ,...,i l), with nk giving the number of times a numbe
k occurs, and withI6#I defined as the set of all indice
kPI for which nk is even~1! or odd ~2!. Note that with
these definitionsl 5(kPI1nk1(kPI2nk>2uI1u1uI2u. We
then have

] l P@x,y;J#

]Ji 1
¯]Ji l

5~21! l
] l

]xl E dx̂ dŷ

~2p!2 ei @xx̂1yŷ#

3K F )
kPI

jk
nke2 i jk@ x̂Jk1 ŷBk#G

3F )
kP” I

e2 i jk@ x̂Jk1 ŷBk#G L
D̃

.

2A simple rule of thumb is the following: if a process require
replica theory for its stationary-state analysis, as does learning
restricted training sets, its dynamics is of a spin-glass type
cannot be described by a finite set of closed dynamic equation



o

et

or
f

t

ere
-
e

5450 PRE 62A. C. C. COOLEN AND D. SAAD
Upon writing averaging overall training sets of sizep

5aN ~where each realization ofD̃ has equal probability! as
^ &sets, this allows us to conclude

K ] l P@x,y;J#

]Ji 1
¯]Ji l

L
sets

5O~N2~1/2!uI 2u!.

Since1
2 l 2uIu1 1

2 uI 2u5 1
2 @ l 2uI 2u22uI 1u#>0, theaverage

over all training setsof the functionP@x,y;J# is found to be
a simple mean-field observable in the sense of Eq.~16!.

The scaling properties of expansions or derivations
P@x,y;J# for a given training setD̃, however, need not be
identical to those of its average over all training s

^P@x,y;J#&sets. Here we have to use the fact thatD̃ has been
composed in a random manner, as well as the specific f
of the shiftsk in P@x,y;J1k# that occur for the two types o
dynamics under consideration:
io
-

il
rn
f

s

m

P@x,y;J1k#2P@x,y;J#

5E dx̂ dŷ

~2p!2 ei @xx̂1yŷ#
1

p (
m51

p

e2 i x̂J"j m2 i ŷB"j m

3@e2 i x̂k"j m
21#.

All complications are caused by the dependence ofk on the
composition of the training setD̃, and would therefore have
been absent in thea→` case. This dependence will turn ou
to be harmless in the case of batch learning, wherek
5(h/N)^jG@J"j,B"j#&D̄ is an average overD̃, but will have
a considerable impact in the case of on-line learning, wh
k5(h/N)jG@J"j,B"j# is proportional to an individual mem
ber of D̃. Working out the relevant expression for on-lin
learning gives
P@x,y;J1konl#2P@x,y;J#5E dx̂ dŷ

~2p!2 ei @xx̂1yŷ#
1

p (
m51

p

e2 i x̂J"j m2 i ŷB"j mH dj mj@e2 ih x̂G@J"j,B"j#21#

2@12dj m,j#F ih x̂

N
~j"jm!G@J"j,B"j#1

h2x̂2

2N2 ~j"j m!2G2@J"j,B"j#1O~N23/2!G J
5

1

p E dx̂ dŷ

~2p!2 ei @xx̂1yŷ#e2 i x̂J"j2 i ŷB"j$@e2 ih x̂G@J"j,B"j#21#1 ih x̂G@J"j,B"j#1 1
2 h2x̂2G2@J"j,B"j#%

1(
i

ki
onl ]

]Ji
P@x,y;J#1

1

2 (
i j

ki
onlkj

onl ]2

]Ji]Jj
P@x,y;J#1O~N23/2!.
ic

ob-
of
We conclude that, at least for the purpose of the expans
relevant to on-line learning,P@x,y;J# is a mean-field observ
able in the sense of Eqs.~17! and ~18!, with the nontrivial
contribution of Eq.~18! given by

D@J;konl#5
1

p H d†x2J"j2hG@J"j,B"j#‡d@y2B"j#

2d@x2J"j#d@y2B"j#

1h
]

]x
†G@x,y#d@x2J"j#d@y2B"j#‡

2
1

2
h2

]2

]x2 †G2@x,y#d@x2J"j#d@y2B"j#‡J .

~21!

Note that limN→` ND@J;konl#5O(h3/a), so that for small
learning rates or large training sets this nontrivial term w
vanish. Working out the relevant expression for batch lea
ing, on the other hand, gives
ns

l
-

P@x,y;J1kbat#2P@x,y;J#

5E dx̂ dŷ

~2p!2 ei @xx̂1yŷ#
1

p (
m51

p

e2 i x̂J"j m2 i ŷB"j m

3H F12
ih x̂

p
G@J"j m,B"j m#1O~N23/2!G21J

5(
i

ki
bat ]

]Ji
P@x,y;J#1

1

2 (
i j

ki
batkj

bat ]2

]Ji]Jj

3P@x,y;J#1O~N23/2!.

Here the termD@J;kbat# is absent. In fact, also the quadrat
contribution S i j ki

batkj
bat
¯ in the above expansion will turn

out to be of insignificant order inN. For the purpose of the
expansions relevant to batch learning,P@x,y;J# is apparently
a simple mean-field observable in the sense of Eq.~16!. This
could have been anticipated, since one should ultimately
tain the batch learning equations upon expanding those



or
e

qs.
,
o-
b-

-

rk

ed

PRE 62 5451DYNAMICS OF LEARNING WITH RESTRICTED . . .
on-line learning for small learning rateh, and retaining only
the leading orderh1 in this expansion.

D. Derivation of deterministic dynamical laws

Having defined our order parametersQ, R, and$P@x,y#%,
from this stage onwards the notation^ &QRP;t will be used to
denote subshell averages defined with respect to these
parameters, at timet. With a modest amount of foresight w
define the complementary Kronecker deltad̄ab512dab ,
and the following key functions:

A@x,y;x8,y8#5 lim
N→`

^Š^d̄jj8~j"j8!d@x2J"j#d@y2B"j#

3d@x82J•j8#d@y82B"j8#&D̃‹D̃&QRP;t ,

~22!

B@x,y;x8,y8#5 lim
N→`

K 1

N (
iÞ j

Š^d̄jj8~j ij jj i8j j8!d@x2J"j#

3d@y2B"j#d@x82J"j8#

3d@y82B"j8#&D̃‹D̃L
QRP;t

, ~23!

C@x,y;x8,y8;x9,y9#5 lim
N→`K K K K d̄jj 9d̄j8j 9

~j"j 9!~j8•j 9!

N

3d@x2J"j#d@y2B•j#d@x82J•j8#

3d@y82B"j8#d@x92J"j 9#

3d@y92B•j 9#L
D̃
L

D̃
L

D̄
L

QRP;t

.

~24!
der

We will eventually show in a subsequent section that E
~23! and~24! are zero. The function~22!, on the other hand
will contain all the interesting physics of the learning pr
cess, and its calculation will turn out to be our central pro
lem.

In Appendix A we show that for the observables~20! the
diffusion matrix elementsGmn*** in the Fokker-Planck equa
tion ~19! vanish forN→`. The Fokker-Planck equation~19!
now reduces to the Liouville equation (d/dt)Pt(V)5
2Sm(]/]Vm)†Fm@V;t#Pt(V)‡, describing deterministic
evolution for our macroscopic observables: (d/dt)V
5F@V;t#. These deterministic equations we will now wo
out explicitly.

1. On-line learning

First we deal with the scalar observablesQ andR:

d

dt
Q5 lim

N→`
$2hŠ^~J"j!G@J"j,B"j#&D̃‹QRP;t

1h2
Š^G2@J"j,B"j#&D̃‹QRP;t%

52hE dx dy P@x,y#xG@x,y#

1h2E dx dy P@x,y#G2@x,y#

d

dt
R5 lim

N→`

hŠ^~B"j!G@J"j,B"j#&D̃‹QRP;t

5hE dx dy P@x,y#yG@x,y#.

These equations are identical to those found in thea→`
formalism. The difference is in the function to be substitut
for P@x,y#, which here is the solution of
]

]t
P@x,y#5 lim

N→`
H 2h

]

]x
^Š^G@J"j8,B"j8#~j"j8!d@x2J"j#d@y2B"j#&D̃‹D̃&QRP;t1

h2

2N

]2

]x2 ^Š^G2@J"j8,B"j8#~j"j8!2

3d@x2J"j#d@y2B"j#&D̃‹D̃&QRP;t1
1

a K ^d†x2J"j2hG@J"j,B"j#‡d@y2B"j#2d@x2J"j#d@y2B"j#&D̃

1h
]

]x
†G@x,y#^d@x2J"j#d@y2B"j#&D̃‡2

1
2 h2

]2

]x2†G2@x,y#^d@x2J"j#d@y2B"j#‡&D̃L
QRP;t

J
@where we have inserted Eq.~21!#

5
1

a H E dx8P@x8,y#d†x2x82hG@x8,y#‡2P@x,y#J 2h
]

]x E dx8dy8A@x,y;x8,y8#G@x8,y8#

1 1
2 h2E dx8dy8P@x8,y8#G2@x8,y8#

]2

]x2 P@x,y#1 1
2 h2

]2

]x2 E dx8dy8B@x,y;x8,y8#G2@x8,y8#.
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Anticipating the termB@ # to be zero~as shown in Appendix
B! we thus arrive at the following set of coupled determ
istic macroscopic equations:

d

dt
Q52hE dx dy P@x,y#xG@x,y#

1h2E dx dy P@x,y#G2@x,y#, ~25!

d

dt
R5hE dx dy P@x,y#yG@x,y#, ~26!

d

dt
P@x,y#5

1

a H E dx8P@x8,y#d†x2x82hG@x8,y#‡

2P@x,y#J 2h
]

]x E dx8dy8

3A@x,y;x8,y8#G@x8,y8#1 1
2 h2E dx8dy8

3P@x8,y8#G2@x8,y8#
]2

]x2 P@x,y#. ~27!
r-
-
2. Batch learning

For Q andR one again finds simple equations:

d

dt
Q5 lim

N→`
H 2hŠ^~J"j!G@J"j,B"j#&D̃‹QRP;t

1
h2

N K (
i

^j iG@J"j,B"j#&D̃

2 L
QRP;t

J
52hE dx dy P@x,y#xG@x;y#,

d

dt
R5 lim

N→`

hŠ^~B"j!G@J"j,B"j#&D̃‹QRP;t

5hE dx dy P@x,y#yG@x;y#.

Finally we calculate the temporal derivative of the joint fie
distribution:
]

]t
P@x,y#5 lim

N→`
H 2h

]

]x
^Š^G@J"j8,B"j8#~j"j8!d@x2J"j#d@y2B"j#&D̃‹D̃&QRP;t

1
h2

2N

]2

]x2 Š^Š^G@J"j8,B"j8#G@J"j 9,B"j 9#~j"j8!~j"j 9!d@x2J"j#d@y2B"j#&D̃‹D̃&D̃‹QRP;tJ
52

h

a

]

]x
†G@x,y#P@x,y#‡2h

]

]xE dx8dy8A@x,y;x8,y8#G@x8,y8#

1 1
2 h2

]2

]x2E dx8dy8dx9dy9C@x,y;x8,y8;x9,y9#G@x8,y8#G@x9,y9#.
atch

n-

e
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ing
Anticipating the termC@ # to be zero~to be demonstrated in
Appendix B! we thus arrive at the following coupled dete
ministic macroscopic equations:

d

dt
Q52hE dx dy P@x,y#xG@x;y#, ~28!

d

dt
R5hE dx dy P@x,y#yG@x;y#, ~29!

d

dt
P@x,y#52

h

a

]

]x
†G@x,y#P@x,y#‡

2h
]

]x E dx8dy8A@x,y;x8,y8#G@x8,y8#.

~30!
The difference between the macroscopic equations for b
and on-line learning is merely the presence~on-line! or ab-
sence~batch! of those terms which are not linear in the lear
ing rateh ~i.e., of orderh2 or higher!.

E. Closure of macroscopic dynamical laws

The complexity of the problem is fully concentrated in th
Green’s functionA@x,y;x8,y8# defined in Eq.~22!. Our
macroscopic laws are exact forN→` but not yet closed due
to the appearance of the microscopic probability dens
pt(J) in the subshell average of Eq.~22!. We now close our
macroscopic laws by making, forN→`, the two key as-
sumptions underlying dynamical replica theories:~i! Our
macroscopic observables$Q,R,P% obeycloseddynamic equa-
tions; ~ii ! these macroscopic equations are self-averag
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with respect to the disorder, i.e., the microscopic realizat

of the training setD̃. Assumption~i! implies that all mi-
croscopic probability variations within the$Q,R,P% subshells
of the J ensemble are either absent or irrelevant to the e
lution of $Q,R,P%. We may consequently make the simple
self-consistent choice forpt(J) in evaluating the macro
scopic laws, i.e., in Eq.~22!: microscopic probability equi-
partitioning in the$Q,R,P% subshells of the ensemble, or

pt~J!→w~J!;d†Q2Q@J#‡d†R2R@J#‡

3)
xy

d†P@x,y#2P@x,y;J#‡. ~31!
al
th

i

-

a
:

n

-
t

This new microscopic distributionw(J) depends on time via
the order parameters$Q,R,P%. Note that Eq.~31! leads to
exact macroscopic laws if our observables$Q,R,P% for
N→` indeed obey closed equations, and is true in equi
rium for detailed balance models in which the Hamiltoni
can be written in terms of$Q,R,P%. It is an approximation if
our observables do not obey closed equations. Assump
~ii ! allows us to average the macroscopic laws over the
order; for mean-field models it is usually convincingly su
ported by numerical simulations, and can be proven us
the path-integral formalism~see, e.g.,@10#!. We write aver-
ages over all training setsD̃#$21,1%N, with uD̃u5p, as
^ &J . Our assumptions result in the closure of the two s
~25!–~27! and ~28!–~30!, since now the function
A@x,y;x8,y8# is expressed fully in terms of$Q,R,P%:
A@x,y;x8,y8#5 lim
N→`K E dJ w~J!Š^d@x2J"j#d@y2B"j#~j"j8!d̄jj8d@x82J"j8#d@y82B"j8#&D̃‹D̃

E dJ w~J!
L

J

.

s

ns

we
The final ingredient of dynamical replica theory is the re
ization that averages of fractions can be calculated with
replica identity

K E dJ W@J,z#G@J,z#

E dJ W@J,z#
L

z

5 lim
n→0

E dJ1
¯dJnK G@J1,z# )

a51

n

W@Ja,z#L
z

.

Since each weight component scales asJi
a5O(N21/2), we

transform variables in such a way that our calculations w
involve O(1) objects:

~; i !~;a!: Ji
a5~Q/N!1/2s i

a , Bi5N21/2t i .

This ensuress i
a5O(1), t i5O(1), andreduces various con

straints to ordinary spherical ones: (sa)25t25N for all a.
Overall prefactors generated by these transformations alw
vanish due ton→0. We find a new effective measure
Pa51

n w(Ja)dJa→Pa51
n w̃(sa)dsa, with

w̃~s!;d@N2s2#d@NRQ21/22t "s#

3)
xy

d†P@x,y#2P@x,y;~Q/N!1/2s#‡. ~32!

We thus arrive at
-
e

ll

ys

A@x;y;x8,y8#5 lim
N→`
n→0

E )
a51

n

w̃~sa!dsa

3K K K ~j8•j!d̄jj8dFx2
AQs1

•j

AN
G

3dF y2
t "j

AN
GdFx82

AQs1
•j8

AN
G

3dF y82
t "j8

AN
G L

D̃
L

D̃
L

J

. ~33!

In the same fashion one can also expressP@x,y# in replica
form ~which will prove useful for normalization purpose
and for self-consistency tests!:

P@x,y#5 lim
N→`
n→0

E )
a51

n

w̃~sa!dsa

3K K dFx2
AQs1

•j

AN
GdF y2

t "j

AN
G L

D̃
L

J

.

~34!

Finally we will have to demonstrate that the two functio
B@ # and C@ #, as defined in Eqs.~23! and ~24!, do indeed
vanish self-consistently, as claimed. To achieve this
again express them in replica form:
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B@x,y;x8,y8#5 lim
N→`
n→0

E )
a51

n

w̃~sa!dsa

3K K K d̄jj8F 1

N (
iÞ j

j ij jj i8j j8G
3dFx2

AQs1
•j

AN
GdF y2

t "j

AN
G

3dFx82
AQs1

•j8

AN
GdF y82

t "j8

AN
G L

D̃
L

D̃
L

J

~35!

and

C @x,y;x8,y8;x9,y9#

5 lim
N→`
n→0

E )
a51

n

w̃~sa!dsa

3K K K K d̄jj 9d̄j8j9

~j"j9!~j8"j9!

N

3dFx2
AQs1

•j

AN
GdF y2

t "j

AN
G3dFx82

AQs1
•j8

AN
G

3dF y82
t "j8

AN
GdFx92

AQs1
•j9

AN
G

3dF y92
t "j 9

AN
G L

D̃
L

D̃
L

D̃

L
J

. ~36!

At this stage the physics is over; what remains is to perfo
the summations and integrations in Eqs.~33!–~36! in the
limit N→`. Full details of this exercise are given in Appe
dix B, where we show that Eqs.~35! and ~36! are indeed
zero, and where we derive, in replica-symmetric ansatz
expression for the Green’s function~33!. It turns out that to
calculate this Green’s functionA@ # one has to solve two
coupled saddle-point equations at each time step, one s
equation relating to a spin-glass order parameterq, and one
functional saddle-point equation relating to an effect
single-spin measure.

III. SUMMARY OF THE THEORY AND CONNECTION
WITH a\` FORMALISM

In this section we summarize the results obtained so
~including the replica calculation in Appendix B! in a com-
pact way, and we show that our general theory has the
isfactory property that it incorporates the standard formal
developed for infinite training sets~with Gaussian joint field
distributionsP@x,y# at any time! as a special case, recovere
in the limit a→`. In addition, we provide a proof of the
n

lar

r

at-

uniqueness of the solution of the RS functional saddle-po
equation and show that it can be found as the fixed poin
an iterative map.

A. Summary of the theory

1. Dynamic equations for observables

Our observables areQ5J2, R5J"B, and the joint
distribution of student and teacher fieldsP@x,y#
5^d@x2J"j#d@y2B"j#&D̃ . For N→` these quantities obey
closed, deterministic, and self-averaging macroscopic
namic equations. One always hasP@x,y#5P@xuy#P@y#

with P@y#5(2p)21/2e2y2/2. We define ^ f @x,y#&
5*dx Dy P@xuy# f @x,y#, with the familiar short-hand nota
tion Dy5(2p)21/2e2y2/2dy, and the following four aver-
ages~the functionF@x,y# will be given below!:

U5^F@x,y#G@x,y#&, V5^xG@x,y#&,

W5^yG@x,y#&, Z5^G2@x,y#&. ~37!

For on-line learning our macroscopic laws are

d

dt
Q52hV1h2Z,

d

dt
R5hW, ~38!

d

dt
P@xuy#5

1

a E dx8P@x8uy#@d†x2x82hG@x8,y#‡

2d@x2x8##2h
]

]x
$P@xuy#@U~x2Ry!1Wy#%

1 1
2 h2Z

]2

]x2 P@xuy#2h@V2RW2~Q2R2!U#

3
]

]x
$P@xuy#F@x,y#%. ~39!

For batch learning one has

d

dt
Q52hV,

d

dt
R5hW, ~40!

d

dt
P@xuy#52

h

a

]

]x
†P@xuy#G@x,y#‡

2h
]

]x
$P@xuy#@U~x2Ry!1Wy#%

2h@V2RW2~Q2R2!U#
]

]x
$P@xuy#F@x,y#%.

~41!

Note that the batch equations follow from the on-line on
by retaining only terms which are linear in the learning ra
From the solution of the above equations follow, in turn, t
training and generalization errors:

Et5^u@2xy#&, Eg5
1

p
arccos@R/AQ#. ~42!
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We note, finally, that the first conditional momentx̄(y)
5*dx xP@xuy# of P@xuy# of the joint field distribution obeys
a simple equation, which is obtained from Eqs.~39! and~41!
upon multiplication byx, followed by integration overx:

d

dt
@ x̄~y!2Ry#5

h

a E dx P@xuy#G@x,y#1hU@ x̄~y!2Ry#,

~43!

where we have also used the built-in prope
*dx P@xuy#F@x,y#50 for all y.

2. Saddle-point equations and the functionF

The functionF@x,y# appearing in the above equation
~generated by the Green’s functionA@ #! is expressed in
terms of auxiliary order parameters. These come about in
replica calculation of Appendix B, where the order para
eters are defined through Diracd functions in their integral
representation. The first auxiliary order parameter is a s
glass-type order parameterq5^^J&2&D̃ /Q, with R2/Q<q
<1. The second, defined similarly for the joint probabili
P@x,y#, is the functionx@x,y# ~for details see Appendix B!.
The latter is not necessarily normalized and in what follo
it is useful to consider the effective measureM @x,y# which
is related tox@x,y# through a simple transformation@Eq.
~B44!#. The measureM @x,y# is non-negative and can b
always normalized such that*dx M@x,y#51 for all yPR,
as emphasized in our notation by writingM @x,y#
→M @xuy#. The auxiliary order parameters are calculated
each time step by solving the following two coupled sadd
point equations:

^~x2Ry!2&1~qQ2R2!S 12
1

a D
5F11q22R2/Q

12q G E Dy Dz@^x2&* 2^x&*
2 #,

~44!

P@Xuy#5E Dz^d@X2x#&* , ~45!

in which
in
he
-

n-

s

t
-

^ f @x,y,z#&* 5

E dx M@xuy#eBxzf @x,y,z#

E dx M@xuy#eBxz

, B5
AqQ2R2

Q~12q!
.

~46!

After q andM @xuy# have been determined, the key functio
F@x,y# in Eqs.~37!, ~39!, and~41! is calculated as

F@X,y#5$Q~12q!P@Xuy#%21E Dz^X2x&* ^d@X2x#&*
~47!

or, equivalently,

F@X,y#5$AqQ2R2P@Xuy#%21E Dz ẑ d@X2x#&* .

~48!

Finding a saddle-point problem for an order-parameter fu
tion, rather than a finite number of scalar order paramet
introduces the possibility of a proliferation of saddle poin
In the next section we will show that this does not happ
the solution of the functional saddle-point problem is uniqu
and can even by found iteratively by executing a spec
nonlinear mapping.

B. Uniqueness and iterative calculation of the functional
saddle point

The uniqueness proof is more easily set up in terms of
original order-parameter functionx@x,y#, rather than the
new ~normalized! measureM @xuy# ~see Appendix B!. For a
given state$Q,R,P% and a given value forqP@R2/Q,1# we
have to find the functional saddle points of the function
C@x#, defined as

C@x#5aE Dy Dz ln E dx exp$2x2/@2Q~12q!#

1x@Ay1Bz#1a21x@x,y#%

2E Dy dx P@xuy#x@x,y#. ~49!

Our proof will carry the existence of the various integrals
an implicit condition for validity. To reduce notational ba
last we define
w~x,y,z!5
exp$2x2/@2Q~12q!#1x@Ay1Bz#1a21x@x,y#%

E dx8 exp$2x82/@2Q~12q!#1x8@Ay1Bz#1a21x@x8,y#%

, ^ f @x,y,z#&* 5E dx w~x,y,z! f @x,y,z#.
e

Note that w(x,y,z)5M @xuy#eBxz/*dx8M @x8uy#eBx8z. The
function w(u,v,z) obeys

dw~u,v,z!

dx@u8,v8#
5a21d@v2v8#$d@u2u8#w~u,v,z!

2w~u,v,z!w~u8,v,z!%.

The functional saddle-point equation is obtained by requir
 g

the first functional derivative ofC@x# with respect tox@u,v#
to be zero for allu,vPR, where

dC

dx@u,v#
U

x

5
e2~1/2!v2

A2p
H E Dz w~u,v,z!2P@uuv#J . ~50!

Clearly, if the functionx@x,y# is a saddle point, then also th
functionx@x,y#1r(y) for anyr(y). This degree of freedom
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is irrelevant because such termsr(y) will drop out of the
measure^ &* . Furthermore, one immediately verifies th
transformations of the formx@x,y#→x@x,y#1r(y) leave
the functionalC@ # ~49! invariant. Next we calculate the Hes
sian~or curvature! operatorH@u,v;u8,v8;x#, using Eq.~50!:

H@u,v;u8,v8;x#5
d2C

dx@u,v#dx@u8,v8#
U

x

5
e2~1/2!v2

A2p
E Dz

dw~u,v,z!

dx@u8,v8#

5d@v2v8#
e2~1/2!v2

aA2p
E Dz$d@u2u8#

3w~u,v,z!2w~u,v,z!w~u8,v,z!%.

~51!

H@u,v;u8,v8;x# is non-negative definite for eachx, and
thus the functionalC is convex, since for any function
f@u,v# for which the relevant integrals exist we find

E du dv du8dv8f@u,v#H@u,v;u8,v8;x#f@u8,v8#

5
1

a E Dv Dz@^f2@u,v#&* 2^f@u,v#&*
2 #>0.

The kernel ofH@u,v;u8,v8;x#, for a given ‘‘point’’ x in x
space, is determined by requiring equality in the above
equality, i.e.,

Š†f@u,v#2^f@u,v#&* ‡
2
‹* 50 for each v,zPR

so

]

]u
f@u,v#50.

For eachx the kernel of the second functional derivativ
H@x,y;x8,y8;x# thus consists of the set of all~integrable!
functionsf@x,y# which depend ony only.

We now find that, ifx0@x,y# andx1@x,y# are both func-
tional saddle points ofC@x#, thenx1@x,y#2x0@x,y#5r(y)
for some functionr(y). In other words, apart from the afore
mentioned irrelevant degree of freedom, the solution of
functional saddle-point equation~45! is unique. To show
this, consider two functionsx0@x,y# andx1@x,y# which are
both functional saddle points ofC, i.e., corresponding to
solutions of Eq.~45!. Define a path$x t% throughx space,
connecting these two functions:

x t@x,y#5x0@x,y#1t$x1@x,y#2x0@x,y#%, tP@0,1#.

Integration along this path will bring us fromx0 to x1 . Thus
for any functionalL@x# one has
-

e

L@x1#2L@x0#5E
x0

x1
dL@x#

5E du dvE
x0

x1
dx@u,v#

dL

dx@u,v#

5E du dv~x1@u,v#2x0@u,v# !

3E
0

1

dt
dL

dx@u,v#
U

x t

.

For the functionalL@x# we now choose a functional firs
derivative of C@x#, i.e., L@x#5dC/dx@x,y# for somex,y
PR. Since bothx0 and x1 are saddle points, one find
L@x0#5L@x1#50. Thus

E du dv~x1@u,v#2x0@u,v# !E
0

1

dt
d2C

dx@u,v#dx@x,y#
U

x t

50.

Multiply both sides byx1@x,y#2x0@x,y# and integrate the
result overx,yPR:

E
0

1

dtE du dv dx dy~x1@u,v#2x0@u,v# !

3H@u,v;x,y;x t#~x1@x,y#2x0@x,y# !50.

One concludes~since the Hessian is a symmetric no
negative operator!

E dx dy H@u,v;x,y;x t#~x1@x,y#2x0@x,y# !50

for all tP@0,1#, u,vPR.

The functionx1@x,y#2x0@x,y# is in the kernel ofHux t
for

any tP@0,1#. The kernel ofH was already determined to b
the set of all integrable functions which depend ony only,
whatever the pointx where one chooses to evaluateH.
Hencex1@x,y#2x0@x,y#5r(y) for some functionr(y). Fi-
nally, the remaining freedom in choosing a functionr is
eliminated by our normalization*dx M@xuy#51 ~for each
y!, so that the solutionM @xuy# is indeed truly unique.

Next we will show how for any given value of the scal
order parameterq and the observables$Q,R,P% ~and thus of
B!, for which the relevant integrals exist, the unique soluti
M @xuy# of the functional saddle-point equation~45! can be
constructed as the stable fixed point of the following fun
tional map:

Ml 11@xuy#

5

P@xuy#H E DzF E dx8eBz~x82x!Ml@x8uy#G21J 21

E du P@uuy#H E DzF E dx8eBz~x82u!Ml@x8uy#G21J 21

for each yPR. ~52!

Clearly all fixed points of this map correspond to normaliz
solutions M @xuy# of the functional saddle-point equatio
~45!, of which there can be only one. Thus we only need
verify the convergence of Eq.~52!, which can be done mos
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efficiently using an appropriate Lyapunov functional. No
that the functional~49! can be written as

C@M #5aE Dy C̃@M uy#1terms independent ofM @ #

with

C̃@M uy#5E Dz ln E dx M@xuy#eBxz

2E dx P@xuy# ln M @xuy#. ~53!

For any givenyPR we will show Eq.~53! to be a Lyapunov
functional for the mapping~52!, i.e., C̃@M uy# is bounded
from below and monotonically increasing during the ite
tion of Eq.~52! with stationarity obtained only whenM @ # is
the ~unique! fixed point of Eq.~52!. First we prove that a
lower bound forC̃ is given by the entropy of the conditiona
distributionP@xuy#:

C̃@M uy#>2E dx P@xuy# ln P@xuy#

for any M @ # and any yPR. ~54!

The proof is elementary~using Jenssen’s inequality!:
li-
ty
en
-

C̃@M uy#5E Dz lnH E dx P@xuy#

3exp~Bxz1 ln M @xuy#2 ln P@xuy# !J
2E dx P@xuy# ln M @xuy#

>E DzE dx P@xuy#$Bxz1 ln M @xuy#2 ln P@xuy#%

2E dx P@xuy# ln M @xuy#

52E dx P@xuy# ln P@xuy#.

Second, we show that Eq.~53! indeed decreases mono
tonically under Eq.~52! until the fixed point of Eq.~52!
is reached. To do so we introduce the short-ha
notations l l(x,y,z)5Bxz1 ln Ml@xuy#2ln P@xuy#, ^ f @x#&
5*dx P@xuy# f @x#, and

v l~x,y!5 H E Dz el l ~x,y,z!^el l ~x8,y,z!&21J 21

.

The iterative map can now be written as

Ml 11@xuy#5
Ml@xuy#v l~x,y!

E du Ml@uuy#v l~u,y!

.

This gives for the change inC̃@ # during one iteration of the
mapping, again with Jenssen’s inequality,
C̃@Ml 11uy#2C̃@Ml uy#5E Dz lnH E dx Ml 11@xuy#eBxz

E dx Ml@xuy#eBxz
J 2E dx P@xuy# lnH Ml 11@xuy#

Ml@xuy# J
5E DzH ln

^el l ~x,y,z!v l~x,y!&

^el l ~x,y,z!& J 2^ ln v l~x,y!&

< lnH K v l~x,y!E Dz@el l ~x,y,z!^el l ~x8,y,z!&21# L J 2^ ln v l~x,y!&

52^ ln v l~x,y!&

5 K ln E Dz el l ~x,y,z!^el l ~x8,y,z!&21L
< ln E Dz^el l ~x,y,z!&^el l ~x8,y,z!&2150.
s.
ith
Finally we round off our argument by inspecting the imp
cations of having strict equality in the above inequali
Equality can only occur if at both instances where Jenss
inequality was used in replacements of the form^ ln(X)&
<ln^X& the relevant stochastic variableX was a constant. In
our problem this gives the two conditions
.
’s

]

]z

^el l ~x,y,z!v l~x,y!&

^el l ~x,y,z!&
50,

]

]x
v l~x,y!50.

If the second condition is met, the first immediately follow
Working out the second condition gives, in combination w
the property thatP@xuy# is normalized,
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E Dz
Ml@xuy#eBxz

E dx8Ml@x8uy#eBx8z

5P@xuy#.

Thus we have confirmed thatC̃@Ml 11uy#5C̃@Ml uy# if and
only if Ml@ # is the ~unique! fixed point of Eq.~52!.

As a consequence of the above we may now write
normalized solution of our functional saddle-point equat
~45! in terms of repeated execution of the mapping~52! fol-
lowing an in principle arbitrary initialization:

M @xuy#5 lim
l→`

Ml@xuy#,

M0@xuy#5P@xuy# for all yPR.

This property simplifies the numerical solution of our equ
tions drastically.

C. Fourier representation and conditionally
Gaussian solutions

There are two potential advantages of rewriting our eq
tions in Fourier representation. First, after a Fourier tra
form the functional saddle-point equation~45! will acquire a
much simpler form. Second, in those cases where we ex
P@xuy# to be of a Gaussian shape inx this would simplify the
solution of the diffusion equations~39! and ~41!. Clearly,
P@x,y# being Gaussian in~x,y! is not equivalent toP@xuy#
being Gaussian inx only. The former requires

]2

]y2 E dx xP@xuy#

5
]

]y H E dx x2P@xuy#2F E dx xP@xuy#G2J 50,

which only will turn out to happen fora→`. A Gaussian
P@xuy# with moments which depend ony in a nontrivial
way, on the other hand, is found to occur also fora,`,
provided we consider simple learning rules and smallh. To
avoid ambiguity we will call solutions of the latter typ
‘‘conditionally Gaussian.’’

We introduce the Fourier transforms

P̂@kuy#5E dx e2 ikxP@xuy#,

M̂ @kuy#5E dx e2 ikxM @xuy#. ~55!

The transformed functional saddle-point equation thereby
quires a very simple form

P̂@kuy#5E Dz
M̂ @k1 iBzuy#

M̂ @ iBzuy#
. ~56!

Note that, in contrast to the original equation~45!, the trans-
formed equation~56! need not have a unique solution~it
could allow for solutions corresponding to nonintegrab
functions in the original problem!. Consider, for instance, th
transformation
e

-

-
-

ct

c-

M̂ @kuy#→Ṁ @kuy#5
e~1/2!k2/B2

M̂ @2kuy#

with the property~verified by a simple transformation o
variables!

E Dz
Ṁ @k1 iBzuy#

Ṁ @ iBzuy#
5E

ik/B2`

ik/B1`

Dz
M̂ @k1 iBzuy#

M̂ @ iBzuy#
.

If M̂ @k#, which by definition cannot have poles, is suf
ciently well behaved, a simple deformation of the integrati
path ~via contour integration! leads to the statement that
M̂ @kuy# is a solution of Eq.~56!, then so isṀ @kuy#.

Transformation of the dynamical on-line equation~39! for
P@xuy# @from which the batch equation~41! can be obtained
by expansion inh# gives

d

dt
ln P̂@kuy#

5
1

a H E dk8
P̂@k8uy#

P̂@kuy#
E dx8

2p

3exp$ ix8~k82k!2 ihkG@x8,y#%21J
2 ihk~W2UR!y1hkU

]

]k
ln P̂@kuy#2 1

2 h2k2Z

2 ihkFV2RW2~Q2R2!U

AqQ2R2P̂@kuy#
G E Dz z

M̂ @k1 iBzuy#

M̂ @ iBz#
.

~57!

We now determine the conditions for Eq.~57! to have
conditionally Gaussian solutions. IfP@xuy# is Gaussian inx,
we can solve the functional saddle-point equation~45!
~whose solution is unique!, and find the resulting pair o
measures

P@xuy#5
exp$2~1/2!@x2 x̄~y!#2/D2~y!%

D~y!A2p
,

~58!

M @xuy#5
exp$2~1/2!@x2 x̄~y!#2/s2~y!%

s~y!A2p
,

D2~y!5s2~y!1B2s4~y! ~59!

with their Fourier transforms P̂@kuy#5exp@2ikx̄(y)
21

2k
2D2(y)# and M̂ @kuy#5exp@2ikx̄(y)21

2k
2 s2(y)#. Insertion

of these expressions as an ansatz into Eq.~57!, using the
identity

E Dz z
M̂ @k1 iBzuy#

M̂ @ iBz#
5 ikBs2~y!P̂@kuy#

and performing some simple manipulations, gives the f
lowing simplified equation:
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2 ik
d

dt
x̄~y!2 1

2 k2
d

dt
D2~y!

5
1

a H E du

A2p
exp$2~1/2!@u2 ikD~y!#2

2 ikhG@ x̄~y!1uD~y!,y#%21J
2 ihk$Wy1U@ x̄~y!2Ry#%

2 1
2 k2H h2Z12hUD2~y!12hs2~y!

3FV2RW2~Q2R2!U

Q~12q! G J . ~60!

From this it follows that conditionally Gaussian solutio
can occur in two situations only:

a→`

or

]3

]k3 E du

A2p
exp$2~1/2!@u2 ikD~y!#2

2 ikhG@ x̄~y!1uD~y!,y#%50. ~61!

The first case corresponds to the familiar theory of infin
training sets~see the next section!. The second case occu
for sufficiently simple learning rulesG@x,y#, in combination
either with batch execution@so that of Eq.~61! we retain
only the term linear inh# or with on-line execution for smal
h @retaining in Eq.~61! only h and h2 terms#. The latter
cases will be dealt with in more detail later.

D. Link with the formalism for complete training sets

The very least we should require of our theory is tha
reduces to the simple~Q,R! formalism of complete training
sets@2,3# in the limit a→`. Here we will show that this
indeed happens. In the preceding section we have seen
for a→` our driven diffusion equation for the conditiona
distribution P@xuy# has conditionally Gaussian solution
with *dx xP@xuy#5 x̄(y) and *dx@x2 x̄(y)#2P@xuy#
5D2(y). Note that for such solutions we can calculate o
jects such aŝ x&* and the functionC@x,y# ~47! directly,
giving

^x&* 5 x̄~y!1zBs2~y!, F@x,y#5
x2 x̄~y!

Q~12q!@11B2s2~y!#

with D2(y)5s2(y)1B2s4(y) and B5AqQ2R2/
Q(12q). The remaining dynamical equations to be solv
are those forQ andR, in combination with dynamical equa
tions for they-dependent cumulantsx̄(y) andD2(y). These
equations reduce to
t

hat

-

d

d

dt
Q5H 2h^xG@x,y#&1h2^G2@x,y#& ~on-line!

2h^xG@x,y#& ~batch!,

d

dt
R5h^yG@x,y#&, ~62!

1

h

d

dt
@ x̄~y!2Ry#5@ x̄~y!2Ry#^F@x8,y8#G@x8,y8#&,

~63!

1

2h

d

dt
@D2~y!2Q1R2#

5^~x82Ry8!G@x8,y8#&F s2~y!

Q~12q!
21G

1^F@x8,y8#G@x8,y8#&FD2~y!2
Q2R2

Q~12q!s2~y!G
~64!

with one remaining saddle-point equation to determineq,
obtained upon working out Eq.~44! for conditionally Gauss-
ian solutions:

E Dy$@ x̄~y!2Ry#21D2~y!%1qQ2R2

5F2
qQ2R2

Q~12q!
11G E Dy s2~y!. ~65!

We now make the ansatz thatx̄(y)5Ry and D2(y)5Q
2R2, i.e.,

P@xuy#5
exp$2~1/2!@x2Ry#2/~Q2R2!%

A2p~Q2R2!
. ~66!

Insertion into the dynamical equations shows that Eq.~63! is
now immediately satisfied, that Eq.~64! reduces tos2(y)
5Q(12q), and that as a result the saddle-point equat
~65! is automatically satisfied. Since Eq.~66! is parameter-
ized by Q and R only, this leaves us with the closed equ
tions

d

dt
Q5H 2h^xG@x,y#&1h2^G2@x,y#& ~on-line!

2h^xG@x,y#& ~batch!,

d

dt
R5h^yG@x,y#&. ~67!

These are the equations found in e.g.,@2,3#. From our general
theory for restricted training sets we thus indeed recove
the limit a→` the standard formalism~66! and~67! describ-
ing learning with complete training sets, as claimed.

IV. BENCHMARK TESTS: HEBBIAN LEARNING

In the special case of the Hebb rule,G@x,y#5sgn@y#,
where weight changesDJ never depend onJ, one can write
down an explicit expression for the weight vectorJ at any
time, and thus for the expectation values of our observab
We choose as our initial field distribution a simple Gauss
one, resulting from an initialization process which did n
involve the training set:
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P0@xuy#5
exp@2~1/2!~x2R0y!2/~Q02R0

2!#

A2p~Q02R0
2!

. ~68!

Careful averaging of the exact expressions for our obs
ables over all ‘‘paths’’ $j(0),j(1),...% taken by the
question/example vector through the training setD̃ ~for on-
line learning!, followed by averaging over all realizations o
the training setD̃ of sizep5aN, and taking theN→` limit,
then leads to the followingexact result @12#. For on-line
Hebbian learning one ends up with

Q5Q012htR0S 2

p D 1/2

1h2t1h2t2F 1

a
1

2

pG ,
R5R01htS 2

p D 1/2

, ~69!

P@xuy#5E dx̂

2p
exp$2~1/2!x̂2@Q2R2#1 i x̂@x2Ry#

1~ t/a!@e2 ih x̂ sgn@y#21#%. ~70!

For batch learning a similar calculation3 gives

Q5Q012htR0S 2

p D 1/2

1h2t2F 1

a
1

2

pG ,
R5R01htS 2

p D 1/2

, ~71!

P@xuy#5
exp„2~1/2!$x2Ry2~ht/a!sgn@y#%2/~Q2R2!…

A2p~Q2R2!
.

~72!

Neither of the two field distributions is of a fully Gaussia
form ~although the batch distribution is at least conditiona
Gaussian!. Note that for both on-line and batch Hebbia
learning we have

E dx xP@xuy#5Ry1
ht

a
sgn@y#. ~73!

The generalization and training errors are, as before, give
terms of the above observables asEg5p21 arccos@R/AQ#
and Et5*Dy dx P@xuy#u@2xy#. We thus have exact ex
pressions for both the generalization error and the train
error at any time and for anya. The asymptotic values, fo
both batch and on-line Hebbian learning, are given by

lim
t→`

Eg5
1

p
arccosF 1

A11p/2a
G , ~74!

3Note that in@12# only the on-line calculation was carried out; th
batch calculation can be done along the same lines.
v-

in

g

lim
t→`

Et5
1
2 2 1

2 E Dy erfF uyuS a

p D 1/2

1
1

A2a
G . ~75!

As far asEg andEt are concerned, the differences betwe
batch and on-line Hebbian learning are confined to tr
sients. Clearly, the above exact results~which can only be
obtained for Hebbian-type learning rules! provide excellent
and welcome benchmarks with which to test general theo
such as the one investigated in the present paper.

A. Batch Hebbian learning

We compare the exact solutions for Hebbian learning
the predictions of our general theory, turning first to bat
Hebbian learning. We insert into the equations of our gene
formalism the Hebbian recipeG@x,y#5sgn@y#. This simpli-
fies our dynamic equations enormously. In particular, we
tain

U50, V5^x sgn~y!&, W5A2/p.

For batch learning we consequently find

d

dt
Q52hV,

d

dt
R5hA2/p,

d

dt
P@xuy#52

h

a
sgn~y!

]

]x
P@xuy#2hyS 2

p D 1/2 ]

]x
P@xuy#

2hFV2RS 2

p D 1/2G ]

]x
$P@xuy#F@x,y#%.

Given the initial field distribution ~68!, we immediate
obtain V05R0A2/p. From the general property
*dx P@xuy#F@x,y#50 and the above diffusion equation fo
P@xuy# we derive an equation for the quantityV
5^x sgn(y)&, resulting in (d/dt)V5h/a12h/p, which sub-
sequently allows us to solve

Q5Q012htR0S 2

p D 1/2

1h2t2F 1

a
1

2

pG ,
R5R01htS 2

p D 1/2

. ~76!

Furthermore, it turns out that the above diffusion equat
for P@xuy# meets the requirements for having conditiona
Gaussian solutions, i.e.,

P@xuy#5
exp$2~1/2!@x2 x̄~y!#2/D2~y!%

D~y!A2p
,

M @xuy#5
exp$2~1/2!@x2 x̄~y!#2/s2~y!%

s~y!A2p

provided they-dependent averagex̄(y) and they-dependent
variancesD(y) and s(y) obey the following three coupled
equations:

x̄~y!5Ry1
ht

a
sgn~y!,

d

dt
D2~y!5

2h2ts2~y!

aQ~12q!
,

D2~y!5s2~y!1B2s4~y!.
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The spin-glass order parameterq is to be solved from the
remaining scalar saddle-point equation~44!. With help of
identities like ^x&* 5 x̄(y)1zBs2(y), which only hold for
conditionally Gaussian solutions, one can simplify the lat
to

h2t2

a
1aE Dy D2~y!1~qQ2R2!~a21!

5aF2
qQ2R2

Q~12q!
11G E Dy s2~y!.

We now immediately find the solution

D2~y!5Q2R2, s2~y!5Q~12q!,

q5@aR21h2t2#/aQ, ~77!

P@xuy#5
exp$2~1/2!@x2Ry2~ht/a!sgn~y!#2/~Q2R2!%

A2p~Q2R2!

~this solution is unique!. If we calculate the generalizatio
error and the training error from Eqs.~76! and ~77!, respec-
tively, we recover the exact expressions

Eg5
1

p
arccosF R01htA2/p

FQ012htR0A2/p1h2t2S 1

a
1

2

p
D G1/2G ,

~78!

Et5
1
2 2 1

2 E Dy erfF uyu~R01htA2/p!1
ht

a

F2S Q02R0
21

h2t2

a
D G1/2G . ~79!

Comparison of Eqs.~76! and ~77! with Eqs. ~71! and ~72!
shows that for batch Hebbian learning our theory is fu
exact. This is not a big feat as far asQ andR ~and thusEg!
are concerned, whose determination did not require know
the functionF@x,y#. The fact that our theory also gives th
exact values forP@xuy# and Et , however, is less trivial,
since here the disordered nature of the learning dynam
leading to non-Gaussian distributions, is truly relevant.

B. On-line Hebbian learning

We next insert the Hebbian recipeG@x,y#5sgn@y# into
the on-line equations~38! and~39!. Direct analytical solution
of these equations, or a demonstration that they are solve
the exact result~69! and~70!, although not ruled out, has no
yet been achieved by us. The reason is that here one
conditionally Gaussian field distributions only in special lim
its. Numerical solution is in principle straightforward, b
will be quite CPU intensive~see also a subsequent sectio!.
For small learning rates the on-line equations reduce to
batch ones, so we know that in first order inh our on-line
equations are exact~for any a,t!. We now show that the
predictions of our theory are fully exact~i! for Q, R, andEg ,
~ii ! for the first moment~73! of the conditional field distri-
r

g

s,

by

as

e

bution, and~iii ! for all order parameters in the stationa
state. At intermediate times we construct an approximate
lution of our equations in order to obtain predictions f
P@xuy# andEt .

As before, we choose a Gaussian initial field distributio
Many ~but not all! of our previous simplifications still hold
e.g.,

U50, V5^x sgn~y!&, W5A2/p, Z51

~Z did not occur in the batch equations!. Thus for on-line
learning we find

d

dt
Q52hV1h2,

d

dt
R5hA2/p.

The previous derivation of the identities (d/dt)V5h/a
12h/p andV05R0A2/p still applies~just replace the batch
diffusion equation by the on-line one!, but the resultant ex-
pression forQ is different. Here we obtain

Q5Q012htR0S 2

p D 1/2

1h2t1h2t2F 1

a
1

2

pG ,
R5R01htS 2

p D 1/2

. ~80!

Comparing Eqs.~80! with ~69! reveals that also for on-line
Hebbian learning our theory is exact with regard toQ andR,
and thus also with regard toEg . Upon using V5ht/a
1RA2/p, the on-line diffusion equation simplifies to

d

dt
P@xuy#5

1

a
$P@x2h sgn~y!uy#2P@xuy#%

2hyS 2

p D 1/2 ]

]x
P@xuy#1 1

2 h2
]2

]x2 P@xuy#

2
h2t

a

]

]x
$P@xuy#F@x,y#%.

Multiplication of this equation byx followed by integration
over x, together with usage of the general propert
*dx$P@xuy#F@x,y#%50 and*dx xP0@xuy#5R0y, gives us
the average of the conditional distributionP@xuy# at any
time:

x̄~y!5E dx xP@xuy#5Ry1
ht

a
sgn@y#.

Comparison with Eq.~73! shows also this prediction to b
correct.

We now turn to observables which involve more detail
knowledge of the functionF@x,y#. Our result forx̄(y) and
the identity^x&* 5B21(]/]z)ln M̂@iBzuy# allow us to rewrite
all remaining equations in Fourier representatio
i.e., in terms of P̂@kuy#5*dx e2 ikxP@xuy# and M̂ @kuy#
5*dx e2 ikxM @xuy#:



ale

a

he

to

s-

-

ur
the

5462 PRE 62A. C. C. COOLEN AND D. SAAD
d

dt
ln P̂@kuy#5

1

a
@e2 ihk sgn~y!21#2 ihkyS 2

p
D 1/2

2 1
2 h2k2

2
ikh2t

a P̂@kuy#AqQ2R2
E Dz z

M̂ @k1 iBzuy#

M̂ @ iBzuy#

~81!

with ln P̂0@kuy#52ikR0y21
2k

2(Q02R0
2), and with the two

saddle-point equations

P̂@kuy#5E Dz
M̂ @k1 iBzuy#

M̂ @ iBzuy#
, ~82!

h2t2

a2 1E DyE dx P@xuy#@x2 x̄~y!#21S 12
1

a D ~qQ2R2!

5F2Q~12q!1
1

B2G E Dy Dz
]2

]z2 ln M̂ @ iBzuy#. ~83!

Since the fieldsx grow linearly in time@see our expression
for x̄(y)#, Eqs.~81!–~83! cannot have propert→` limits. To
extract asymptotic properties we have to turn to the resc
distribution Q̂@kuy#5 P̂@k/tuy#. We define v(y)
5(h/a)sgn(y)1hyA2/p. Careful integration of Eq.~81!,
followed by insertingk→k/t and by taking the limitt→`,
produces

ln Q̂`@kuy#52 ikv~y!2
ih2k

a
E

0

1

dulim
t→`

H t

AqQ2R2

3E Dz z
M̂ @uk/t1 iBzuy#

Q̂`@ukuy#M̂ @ iBzuy#
J ~84!

with the functional saddle-point equation

Q̂@kuy#5E Dz
M̂ @k/t1 iBzuy#

M̂ @ iBzuy#
. ~85!

The rescaled asymptotic system~84! and ~85! admits the
solution

Q̂@kuy#5exp@2 ikv~y!2~1/2!k2D̃2#,

M̂ @kuy#5exp@2 ikx̄~y!2~1/2!k2s̃2t#

with the asymptotic value ofB, D̃, s̃, andq determined by
solving the following equations:

D̃5Bs̃2, D̃5
h2

a
lim
t→`

t

AqQ2R2
, B5 lim

t→`

AqQ2R2

Q~12q!
,

h2/a21D̃21~12a21! lim
t→`

~qQ2R2!/t2

52B2s̃2 lim
t→`

Q~12q!/t.

Inspection shows that these four asymptotic equations
solved by
d

re

lim
t→`

D̃5h/Aa, lim
t→`

q51

so that

lim
t→`

P̂t@k/tuy#5exp$2 ikh@a21 sgn~y!1yA2/p#

2~1/2!h2k2/a%. ~86!

Comparison with Eqs.~69! and ~70! shows that this predic-
tion ~86! is again exact. Thus the same is true for t
asymptotic training error.

Finally, in order to arrive at predictions with respect
P@xuy# andEt for intermediate times~without rigorous ana-
lytical solution of the functional saddle-point equation!, and
in view of the conditionally Gaussian form of the field di
tribution both att50 and att5`, it would appear to make
sense for us to approximateP@xuy# and M @xuy# by simple
conditionally Gaussian distributions at any time:

P@xuy#5
exp$2~1/2!@x2 x̄~y!#2/D2%

DA2p
,

M @xuy#5
exp$2~1/2!@x2 x̄~y!#2/s2%

sA2p

with the ~exact! first moments x̄(y)5Ry1hta21 sgn(y),
and with the varianceD2 self-consistently given by the solu
tion of

D25s21B2s4, B5
AqQ2R2

Q~12q!
,

d

dt
D25

h2

a
1h21

2h2ts2

aQ~12q!
,

aD21
h2t2

a
1~qQ2R2!~a21!5as2F2

qQ2R2

Q~12q!
11G .

The solution of the above coupled equations behaves as

D25Q2R21h2t/a1O~ t3! ~ t→0!,

D25~Q2R2!@11O~ t21!# ~ t→`!

for short and long times, respectively~note Q2R2;t2 as
t→`!. Thus we obtain a simple approximate solution of o
equations, which extrapolates between exact results at
temporal boundariest50 andt5`. By setting

D25Q2R21h2t/a

with Q and R given by our previous exact result~80!, one
obtains

Eg5
1

p
arccosF R

AQ
G , Et5

1

2
2

1

2 E Dy erfF uyuR1ht/a

D&
G .

~87!

We can also calculate the student field distributionP(x)
5*Dy P@xuy#, giving
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P~x!5
exp$2~1/2!@x1~ht/a!#2/~D21R2!%

2A2p~D21R2!

3F 12erfS RFx1
ht

a
G

DA2~D21R2!
D G

1
exp$2~1/2!@x2~ht/a!#2/~D21R2!%

2A2p~D21R2!

3F 11erfS RFx2
ht

a
G

DA2~D21R2!
D G . ~88!

In Fig. 3 we compare the predictions for the generali
tion and training errors~87! of the approximate solution o
our equations with the results obtained from numerical sim
lations of on-line Hebbian learning forN510 000 ~initial
stateQ051, R050; learning rateh51!. All curves show
excellent agreement between theory and experiment. FoEg
this is guaranteed by the exactness of our theory forQ andR;
the agreement found forEt is more surprising, in that thes
predictions are obtained from a simple approximation of
solution of our equations. We also compare the theoret
predictions made for the distributionP@xuy# with the results
of numerical simulations. This is done in Fig. 4, where w
show the fields as observed at timet550 in simulations~N
510 000, h51, R050, and Q051! of on-line Hebbian
learning, for three different values ofa. In the same figure
we draw~as dashed lines! the theoretical prediction~73! for
the y-dependent average of the conditionalx distribution
P@xuy#. Finally we compare the student field distributio
P(x), as observed in simulations of on-line Hebbian learn
~N510 000,h51, R050, andQ051! with our prediction

FIG. 3. On-line Hebbian learning, simulations vs theoreti
predictions, forh51 and aP$0.25,0.5,1.0,2.0,4.0% (N510 000).
Upper curves: generalization errors as functions of time. Low
curves: training errors as functions of time. Circles: simulation
sults forEg ; diamonds: simulation results forEt . Solid lines: cor-
responding predictions of dynamical replica theory.
-

-

e
al

g

~88!. The result is shown in Fig. 5, foraP$4,1,0.25%. In all
cases the agreement between theory and experiment,
for the approximate solution of our equations, is quite sa
factory.

V. GENERAL APPROXIMATION SCHEMES

All three approximation schemes presented in this sec
aim at providing alternatives to calculating the effecti

l

r
-

FIG. 4. Comparison between simulation results for on-line H
bian learning ~system sizeN510 000! and dynamical replica
theory, for h51 and aP$0.5,1.0,2.0%. Dots: local fields (x,y)
5(J"j,B"j) ~calculated for questions in the training set!, at time t
550. Dashed lines: conditional average of student fieldx as a func-
tion of y, as predicted by the theory,x̄(y)5Ry1(ht/a)sgn(y).
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FIG. 5. Simulations of on-line Hebbian learn
ing with h51 andN510 000. Histograms: stu-
dent field distributions measured att510 and 20.
Lines: theoretical predictions for student field di
tributions. a54 ~upper!, 1 ~middle!, and 0.25
~lower!.
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measureM @xuy# at each time step from the function
saddle-point equation. Since this calculation cannot~yet! be
done analytically, it constitutes a significant numerical o
stacle in working out the predictions of our theory. Ea
scheme preserves both normalization and symmetries o
probability densityP@x,y# and its marginals, as well as th
relation*dx P@xuy#F@x,y#50 for all y. In the first two ap-
proximation schemes, a largea expansion and a condition
ally Gaussian saddle-point approximation, all Gaussian in
grals representing the disorder in the problem can be d
analytically; this leads to a significant reduction in CPU tim
when solving our equations numerically~especially the large
a approximation is extremely simple and fast, as it does
even involve a saddle-point equation forq!. We only work
out the equations for on-line learning; the batch laws foll
as usual upon expanding the equations in powers ofh and
retaining only the linear terms.
-

he

e-
ne

t

A. Large a approximation

Our first approximation scheme is obtained upon tak
into account the finite nature of the training set~i.e., the
disordered nature of the dynamics! in first nontrivial order.
The amount of disorder is effectively measured by the
rameterB, or, equivalently, by the deviation of the value o
the spin-glass order parameterq from its naive valueR2/Q.
SettingB50 in the saddle-point equation~45! immediately
give limB→0 M @xuy#5P@xuy#, so we write

M @xuy#5P@xuy#S 11(
l .0

Blml@xuy# D ,

E dx P@xuy#ml@xuy#50. ~89!

Upon inserting Eq.~89! as an ansatz into the saddle-poi
equation~45!, one easily shows that
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M @xuy#5P@xuy#exp$2~1/2!B2@x2 x̄~y!#2

1~1/2!B2@x2~y!2 x̄~y!2#1O~B3!% ~90!

with the abbreviations

x̄~y!5E dx P@xuy#x, x2~y!5E dx P@xuy#x2

@the secondO(B2) term in the exponent of Eq.~90!, being
independent ofx, just reflects the normalization require
ments#. This result enables us, in turn, to expand the funct
F@x,y# which controls the nontrivial term in our diffusio
equation forP@xuy#. Note that from the definition ofB it
follows that Q(12q)5 1

2 B22@A114B2(Q2R2)21#,
which gives

F@x,y#5
x2 x̄~y!

Q2R2 1O~B2!.

With this expression we can write our approximate equati
in explicitly closed form~i.e., without any remaining saddle
point equations!. The relevant scalar functions become

U5
^G@x,y#@x2 x̄~y!#&

Q2R2 , V5^xG@x,y#&,

W5^yG@x,y#&, Z5^G2@x,y#&. ~91!

For on-line learning we find

d

dt
Q52hV1h2Z,

d

dt
R5hW, ~92!

d

dt
P@xuy#5

1

a E dx8P@x8uy#@d†x2x82hG@x8,y#‡

2d@x2x8##2h
]

]x
$P@xuy#@U~x2Ry!1Wy#%

1 1
2 h2Z

]2

]x2 P@xuy#2hFV2RW

Q2R2 2UG
3

]

]x
$P@xuy#@x2 x̄~y!#%. ~93!

From the solution of the above equations follow, as alwa
the training and generalization errors

Et5E Dy dx P@xuy#u@2xy#

and Eg5p21 arccos@R/AQ#. The resulting theory is obvi-
ously exact in the limita→`, by construction.

B. Conditionally Gaussian approximation

Our basic idea here is a variational approach to solv
the functional saddle-point problem~valid for anya!, i.e., to
carry out the functional extremization only within the r
stricted family of conditionally Gaussian measuresM @xuy#
~which, together withq, characterizes the saddle point!:
n

s

,

g

M @xuy#5
exp$21/2@x2 x̄~y!#2/s2~y!%

s~y!A2p
.

Note that this does not imply the stronger statement t
P@xuy# itself is taken to be of a conditionally Gaussian for
~as in the case of the approximation used for on-line Hebb
learning!. Extremization of the original replica-symmetri
functionalC@q,$M %# within the conditionally Gaussian fam
ily of functions results in the requirement that the tw
y-dependent momentsx̄(y) ands2(y) be given by

x̄~y!5E dx xP@xuy#,

D2~y!5E dx x2P@xuy#2 x̄2~y!5s2~y!1B2s4~y!.

Now we can again calculate all relevant averages which
volve the effective measureM @xuy# exactly. In particular,

^x&* 5 x̄~y!1zBs2~y!, B5
AqQ2R2

Q~12q!
,

F@x,y#5
exp$2~1/2!@x2 x̄~y!#2/D2~y!%

D~y!A2pP@xuy#

@x2 x̄~y!#s2~y!

Q~12q!D2~y!
.

For on-line learning this results in the following approx
mated theory:

U5E Dy DuH us2~y!G@ x̄~y!1uD~y!,y#

Q~12q!D~y! J ,

V5^xG@x,y#&, W5^yG@x,y#&, Z5^G2@x,y#&,
~94!

d

dt
Q52hV1h2Z,

d

dt
R5hW, ~95!

d

dt
P@xuy#5

1

aE dx8P@x8uy#@d†x2x82hG@x8,y#‡

2d@x2x8##2h
]

]x
$P@xuy#@U~x2Ry!1Wy#%

1 1
2 h2Z

]2

]x2 P@xuy#

2
hs2~y!@V2RW2~Q2R2!U#

A2pQ~12q!D5~y!

3$D2~y!2@x2 x̄~y!#2%

3exp$2~1/2!@x2 x̄~y!#2/D2~y!%. ~96!



e ng

e
ent
ion

5466 PRE 62A. C. C. COOLEN AND D. SAAD
The remaining order parameterq is calculated at each tim
step by solving

^~x2Ry!2&1~qQ2R2!S 12
1

a D
5F2

qQ2R2

Q~12q!
11G E Dy s2~y!.
ur
-

se
r

l
in

th
From the solution of these equations follow the traini
and generalization errorsEt5*Dy dx P@xuy#u@2xy# and
Eg5p21 arccos@R/AQ#.

C. Partially annealed approximation

In order to construct our third and final approximation w
return to an earlier stage of the derivation of the pres
formalism, and rewrite the functional saddle-point equat
in a form where the replica limitn→0 has not yet been
taken, i.e.,
P@xuy#5

E Dz Mn@xuy#eBz@x2 x̄~y!#F E dx8Mn@x8uy#eBz@x82 x̄~y!#Gn21

E DzF E dx8Mn@x8uy#eBz@x82 x̄~y!#Gn for all x,y
with x̄(y)5*dx xP@xuy#. In our full ~quenched disorder!
calculation we find ourselves with the effective meas
M @xuy#5 limn→0 Mn@xuy#. In contrast, an alternative calcu
lation, whereby the quenched average over all training
would have been replaced by an annealed average ove
training sets, would have led us to the valuen51 rather than
n50: M @xuy#5M1@xuy#. We can now define in a natura
way an annealed approximation of our theory upon replac
the complicatedn50 functional saddle-point equation~45!
by the much simplern51 version:

P@xuy#5

E Dz M@xuy#eBz@x2 x̄~y!#

E DzE dx8M @x8uy#eBz@x82 x̄~y!#

.

The z integrations can immediately be carried out, and
resulting equation solved forM @xuy#, giving

M @xuy#5
P@xuy#exp$2~1/2!B2@x2 x̄~y!#2%

E dx8P@x8y#exp$2~1/2!B2@x82 x̄~y!#2%

.

~97!
e

ts
all

g

e

Averages involving the effective measureM @xuy# are thus
written explicitly in terms ofP@xuy#, and we are left with the
following approximate theory:

U5^F@x,y#G@x,y#&, V5^xG@x,y#&,

W5^yG@x,y#&, Z5^G2@x,y#&, ~98!

d

dt
Q52hV1h2Z,

d

dt
R5hW, ~99!

d

dt
P@xuy#5

1

a E dx8P@x8uy#@d†x2x82hG@x8,y#‡

2d@x2x8##2h
]

]x
$P@xuy#@U~x2Ry!1Wy#%

1 1
2 h2Z

]2

]x2 P@xuy#2h@V2RW2~Q2R2!U#

3
]

]x
$P@xuy#F@x,y#% ~100!

with
F@X,y#5
1

Q~12q!
E DzH E dx P@xuy#exp„2~1/2!$B@x2 x̄~y!#2z%22~1/2!$B@X2 x̄~y!#2z%2

…~X2x!

F E dx P@xuy#exp„2~1/2!$B@x2 x̄~y!#2z%2
…G2 J .

As always,B5AqQ2R2/Q(12q). The remaining spin-glass order parameterq is calculated at each time step by solving

^~x2Ry!2&1~qQ2R2!S 12
1

a D5F2~qQ2R2!1/21
1

BG E Dy Dz zH E dx P@xuy#exp„2~1/2!$B@x2 x̄~y!#2z%2
…x

E dx P@xuy#exp„2~1/2!$B@x2 x̄~y!#2z%2
…

J .
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FIG. 6. Numerical simulations
of on-lineADATRON learning, with
N510 000,a51, andh5

1
2 . The

scatter plots show the observe
student and teacher fields (x,y)
5(J"j,B"j) at times t55 ~upper
left!, 10 ~upper right!, 15 ~lower
left!, and 20~lower right!, as mea-
sured during simulations for the

data in the training setD̃, drawn
as points in the~x,y! plane. Note
the development over time of a
increasingly narrow ‘‘ridge’’
along the linex50.
ing

e

er
he

ith

e
ill
in
po

e

ing

nt
ide

sely
ion
t
ula-

-
nd-

d

we

be
olu-
From the solution of the above equations follow the train
and generalization errors Et5^u@2xy#& and Eg

5p21 arccos@R/AQ#. It should be emphasized that th
present approximation is not equivalent to~and should be
more accurate than! a full annealed treatment of the disord
in the problem; the latter would have affected not only t
equation forM @xuy# but also the saddle-point equation forq
~hence the namepartially annealed approximation!.

VI. NON-HEBBIAN RULES: THEORY VERSUS
SIMULATIONS

Henceforth we will always assume initial states w
specified values forR0 andQ0 but without correlations with
the training set, i.e.,

P0@xuy#5
exp$21/2@x2R0y#2/~Q02R0

2!%

A2p~Q02R0
2!

.

This implies that the student could initially have som
knowledge of the rule to be learned, if we wish, but w
never know beforehand about the composition of the train
set. We will inspect the learning dynamics generated u
using two of the most common non-Hebbian~error-
correcting! learning rules:

G@x,y#5sgn~y!u@2xy# for PERCEPTRON,

G@x,y#5uxusgn~y!u@2xy# for ADATRON. ~101!

Note that in the case ofADATRON learning the casesh<1
andh.1 give rise to qualitatively different behavior of th
first term in the diffusion equation~39!. For h,1, the learn-
g
n

ing process, aiming at the situation wherexy,0 never oc-
curs, remedies inappropriate student fields by slowly mov
them towards~but not immediately across! the decision
boundary. Forh.1 the adjustments made to the stude
fields could move them well into the region at the other s
of the decision boundary. The caseh51 is special, in that
changes to the student fields tend to move them preci
onto the decision boundary. The student field distribut
consequently develops ad peak at the origin, in perfec
agreement with what can be observed in numerical sim
tions ~see, e.g., the graphs referring to on-lineADATRON

learning withh51 in Fig. 1 and 2!:

d

dt
P@xuy#5

1

a H d~x!E dx8u@2x8y#P@x8uy#

2P@xuy#u@2xy#J 1¯ , h51.

In fact, the same occurs for allh<1: about half of the prob-
ability weight of P@xuy# will in due course become concen
trated in an increasingly thin ridge along the decision bou
ary x50. This is illustrated in Fig. 6, forh5 1

2 . Since such a
singular behavior~although in principle accurately describe
by our equations! will be difficult to reproduce when solving
the equations numerically, using finite spatial resolution,
will in this paper only deal with the case ofh.1 for
ADATRON learning.

A. Large a and conditionally Gaussian approximations

Our first approximated theory~the largea approximation!
is very simple, with neither saddle-point equations to
solved nor nested integrations. As a result, numerical s
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FIG. 7. Comparison between the largea approximation of the theory and numerical simulations of on-line perception learning wiN
510 000 andh51. Markers: training errorsEt ~circles! and generalization errorsEg ~squares!; finite-size effects in the simulation data a
of the order of the marker size. Lines: theoretical predictions for training errors~solid! and generalization errors~dashed! as functions of
time, according to the approximated theory. Training set sizes:a54 ~upper left!, 2 ~upper right!, 1 ~lower left!, and 0.5~lower right!.
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tion of the macroscopic equations is straightforward and f
In Fig. 7 ~on-line perceptron learning! and 8 ~on-line
ADATRON learning! we compare the results of solving th
coupled equations~91!–~93! numerically for finite values of
a, plotting the generalization and training errors as functio
of time, with results obtained from performing numeric
simulations. As could have been expected, the largea ap-
proximation underestimates the amount of disorder in
learning process, which immediately translates into an
derestimation of the gap betweenEt and Eg ~which is its
fingerprint!. It is also clear from these figures that, althou
at any given time the quality of the predictions of this a
proximation does improve whena increases~as indeed it
should!, and although there is surely qualitative agreeme
reliably accurate quantitative statements on the values of
training and generalization errors are confined to the reg
ht<a. Yet, surprisingly, the agreement obtained is ve
good, even forht.a. Apparently the present approximatio
does still capture the main characteristics of the~non-
Gaussian! joint field distribution. This is illustrated quite
clearly and explicitly in Figs. 9 and 10, where we compa
for a fixed timet510 the student and teacher fields as m
sured during numerical simulations@for N510 000, drawn as
dots in the~x,y! plane# for the p5aN questionsj m in the
training setD̃, to the theoretical predictions for the joint fiel
t.

s
l

e
-

-

t,
he
e

-

distributionP@x,y# ~drawn as contour plots!. We will not at
this stage attempt to explain the surprising effectiveness
the largea approximation for small values ofa ~note that
Figs. 7 and 8 even suggest an increase in accurateness aa is
lowered belowa51!. This would require a systematic math
ematical analysis of the nonlinear diffusion equation~93!,
which we consider to be beyond the scope of the pres
paper.

The conditionally Gaussian approximation again involv
no nested integrals, and its equations can therefore stil
solved numerically in a reasonably fast way, but it does
ready require the solution~at each infinitesimal time step! of
a scalar saddle-point equation to determine the spin-g
order parameterq. Approximations of this type work ex-
tremely well for the simple Hebbian learning rules, as w
have seen earlier. However, numerical solution of
coupled equations~94!–~96! shows quite clearly that for the
more sophisticated non-Hebbian rules such asPERCEPTRON

and ADATRON, which are of an error-correcting nature~i.e.,
where changes are made only when student and teache
agree!, the conditionally Gaussian approximation is less a
curate than the previously investigated largea approxima-
tion, in spite of the fact that the latter involved much simp
equations. Apparently, the generally non-Gaussian natur
the conditional distributionP@xuy#, and thereby of the mea
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FIG. 8. Comparison between the largea approximation of the theory and numerical simulations of on-lineADATRON learning withN
510 000 andh52. Markers: training errorsEt ~circles! and generalization errorsEg ~squares!; finite-size effects in the simulation data a
of the order of the marker size. Lines: theoretical predictions for training errors~solid! and generalization errors~dashed! as functions of
time, according to the approximated theory. Training set sizes:a54 ~upper left!, 2 ~upper right!, 1 ~lower left!, and 0.5~lower right!.
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sureM @xuy#, is of crucial importance. It is not good enoug
to try getting away with allowing they-dependent average
x̄(y) and variancesD(y) to be nontrivial functions. With
conditionally Gaussian measuresM @xuy# it turns out that
generating the right width of the conditional distributio
P@xuy# inevitably introduces tails forP@xuy# which spill into
the xy,0 region, which are found to be absent in erro
correcting learning rules such asPERCEPTRONandADATRON.
This picture is consistent with Figs. 9 and 10, where we
observe that for any fixed value of the teacher fieldy the
remaining marginal distribution forx is generally not sym-
metric around its~y-dependent! average. We conclude tha
the conditionally Gaussian approximation is generally in
rior to the largea approximation. We will not waste pape
by producing large numbers of graphs to illustrate this
plicitly and comprehensively, but we will rather draw th
conditionally Gaussian predictions together with those of
other approximations and of the full theory, by way of illu
tration.

B. Partially annealed approximation and full equations

The partially annealed approximation and the full theo
are both expected to improve upon the largea approximation
~note that the partially annealed approximation can be s
-

n

-

-

e

en

as an improved version of the largea approximation, similar
in structure but valid also for smalla, i.e., largeB!. Although
the partially annealed approximation does not involve
functional saddle-point equation to be solved~which im-
proves numerical speed!, it shares with the full theory the
appearance of nested~Gaussian! integrals, namely those ap
pearing in the functionF@x,y# and in the saddle-point equa
tion for q. Thus, solution of both the full theory and of th
partially annealed approximation involves a significa
amount of CPU time~avoiding standard instabilities of dis
cretized diffusion equations sets further limits on the ma
mum size of the time discretization, dependent on the fi
resolution@17#!, which implies that we have to reduce ou
ambition and restrict the number of experiments to a f
typical ones.

We will thus investigate two examples, both witha51:
on-line PERCEPTRON learning with h5 1

2 , and on-line
ADATRON learning withh5 3

2 . We solve numerically the full
equations of our theory, i.e., the macroscopic dynamical la
~38! and ~39! with the order parameters calculated at ea
time step by solving Eqs.~44! and~45!, and show in Fig. 11
the training and generalization errors as functions of ti
together with the corresponding values as measured du
numerical simulations, with systems of sizeN510 000. In
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addition, we plot in the same picture, for comparison, t
training and generalization errors obtained by numerical
lution of the three approximated theories as derived in
preceding section. In comparing curves, we have to take i
account that those describing the largea approximation were
generated upon solving the diffusion equation with a sign
cantly higher numerical field resolution (Dx50.015) than
the others~where we usedDx50.05!, because of CPU limi-
tations. A restricted field resolution is likely to be more crit
cal at large times, where the probability weight in thexy
,0 region, responsible for the residual error and for t
nonstationarity of the dynamics, is highly concentrated clo
to the decision boundaryx50. Especially for large times, we

FIG. 9. Comparison between the largea approximation of the
theory and numerical simulations of on-linePERCEPTRONlearning,
with N510 000 andh51. Scatter plots~left!: observed student and
teacher fields (x,y)5(J"j,B"j) as measured at timet510 during

simulations, for the data inD̃, drawn in the~x,y! plane. Contour
plots ~right!: corresponding predictions for the joint field distribu
tion P@x,y#, according to the approximated theory. Training s
sizes: a50.5,1,2,4~from top to bottom!.
e
-

e
to

-

e
e

should therefore expect the full theory, the conditiona
Gaussian approximation, and the partially annealed appr
mation to all perform better in reality than what is sugges
by the numerical solutions of their equations as shown
Fig. 11. This is particularly true forADATRON learning,
where even forh.1 ~where we do not expect to observe ad
singularity! the field distributions still tend to develop a jum
discontinuity atx50. It turns out that the curves of the fu
theory and those of the partially annealed approximation
very close~virtually on top of one another for the case
PERCEPTRONlearning! in Fig. 11; apparently for the learning
times considered here there is no real need to evaluate
full theory.

t

FIG. 10. Comparison between the largea approximation of the
theory and numerical simulations of on-lineADATRON learning with
N510 000 andh52. Scatter plots~left!: observed student and
teacher fields (x,y)5(J"j,B"j) as measured at timet510 during

simulations, for the data inD̃, drawn in the~x,y! plane. Contour
plots ~right!: corresponding predictions for the joint field distribu
tion P@x,y#, according to the approximated theory. Training s
sizes: a50.5,1,2,4~from top to bottom!.
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Finally, we show in Fig. 12 for both the full theory an
for the simulation experiments the two distributionsP6(x)
5*dy P@x,y#u@6y# for the student fields, given a specifie
sign of the teacher fieldy ~and thus a given teacher outpu!,
corresponding to the same experiments. Note thatP(x)
5P1(x)1P2(x). The pictures in Fig. 12 again illustrat
quite clearly the difference between learning with restric
training sets and learning with infinite training sets: in t
former case the desired agreementxy.0 between studen
and teacher is achieved by a qualitativedeformation of
P@xuy#, away from the initial Gaussian shape, rather than
adaptation of the first- and second-order moments.

Our restricted resolution numerics obviously have di
culty in reproducing the discontinuous behavior ofP6(x)
near x50 for on-line ADATRON learning ~as expected!,
which explains why in this regime the simplest largea ap-
proximation ~which can be numerically evaluated with a
most arbitrarily high-field resolution! appears to outperform
the more sophisticated versions of the theory~which CPU
limitations force us to evaluate with rather limited field res
lution!, according to Fig. 11.

We conclude from the results in this section that our f
theory indeed gives an adequate description of the ma
scopic process, and that the partially annealed approxima
is almost equivalent in performance to the full theory.
mentioned before, the conditionally Gaussian approxima
performs generally poorly~except, as we have seen earlie
for the simple Hebbian rule!. Which of the remaining three
versions of our theory to use in practice will clearly depe
on the accuracy constraints and available CPU time of
user, with the full theory at the higher end of the market~in
principle very accurate, but almost too CPU expensive
work out and exploit properly!, with the largea approxima-
tion on the lower end~reasonably accurate, but very chea!,
and with the annealed approximation as a sensible com
mise in between these two.

VII. DISCUSSION

In this paper we have shown how the formalism of d
namical replica theory~see, e.g.,@13#! can be successfully
employed to construct a general theory which enables on
predict the evolution of the relevant macroscopic perf
mance measures for supervised~on-line and batch! learning
in layered neural networks, with randomly chosen but
stricted training sets, i.e., for finitea5p/N, where weight
updates are carried out by sampling with repetition. In t
case the student nodes local fields are no longer describe
~multivariate! Gaussian distributions and the traditional a
familiar statistical mechanical formalism consequen
breaks down. For simplicity and transparency we have
stricted ourselves to single-layer systems and realiza
tasks.

In our approach the joint field distributionP@x,y# for the
student and teacher local fields is itself taken to be a dyna
cal order parameter, in addition to the conventional obse
ablesQ and R representing overlaps between the stude
student and student-teacher vectors, respectively. The
order parameter set$Q,R,P%, in turn, enables one to monito
the generalization errorEg as well as the training errorEt .
This then results, following the prescriptions of dynamic
d
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replica theory,4 in a diffusion equation forP@x,y#, which we
have evaluated by making the replica-symmetric ansatz
the saddle-point equations. This diffusion equation is gen
ally found to have Gaussian solutions only fora→`; in the
latter case we indeed recover correctly from our theory
more familiar formalism of infinite training sets~in the N
→` limit !, providing closed equations forQ andR only. For
finite a our theory is by construction exact if forN→` the
dynamical order parameters$Q,R,P% obey closed determinis
tic equations, which are self-averaging~i.e., independent of
the microscopic realization of the training set!. If this is not
the case, our theory can be interpreted as employing a m
mum entropy approximation.

We have worked out our equations explicitly for the sp
cial case of Hebbian learning, where the availability of ex
results, derived directly from the microscopic equations,
lowed us to perform a critical test of the theory. For bat
Hebbian learning we demonstrate explicitly that our theory
fully exact. For on-line Hebbian learning, on the other han
proving or disproving full exactness requires solving a no
trivial functional saddle-point equation analytically, whic
we have not yet been able to do. Nevertheless, we can p
that our theory is exact~i! with respect to its predictions fo
Q, R, andEg , ~ii ! with respect to the first moments of th
conditional field distributionsP@xuy# ~for any yPR!, and
~iii ! in the stationary state. In order also to generate pre
tions for intermediate times, we have constructed an appr
mate solution of our equations, which is found to descr
the results of performing numerical simulations of on-li
Hebbian learning essentially perfectly.

No exact benchmark solution is available for no
Hebbian ~i.e. nontrivial! learning rules, leaving numerica
simulations as the only yardstick against which to test
theory. Motivated by the need to solve a functional sadd
point equation at each time step in the full theory, and by
presence of nested integrations, we have constructed a n
ber of systematic approximations to the original equatio
We have compared the predictions of the full theory and
the three approximation schemes with one another and
the results obtained upon performing numerical simulatio
of nonlinear learning rules, such asPERCEPTRON and
ADATRON, in large perceptrons~of size N510 000!, with
various values of learning ratesh and relative training se
sizesa. One of the approximations, a conditionally Gauss
saddle-point approximation in the spirit of the particular a
proximation that was found to work perfectly for Hebbia
learning, turned out to perform badly for general no
Hebbian rules. The other two approximations, the largea
approximation and the partially annealed approximati
each have their specific usefulness; the former is extrem
simple and fast, whereas the latter is overall more accur
but more expensive in its CPU requirements~so that in prac-
tice its true accurateness cannot always be realized!. Yet, the
largea approximation still works remarkably well, even fo

4The reason why the replica formalism is inevitable~unless we are
willing to pay the price of having observables with two time arg
ments, and turn to path integrals! is the necessity, for finitea, to
average the macroscopic equations over all possible realization
the training set.
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FIG. 11. Comparison between the full numerical solution of our equations, as well as the three approximations of the theory
results of doing numerical simulations of on-line learning withN510 000 anda51. Markers: training errorsEt ~circles! and generalization
errorsEg ~squares!; finite-size effects are of the order of the size of the markers. Lines: theoretical predictions for training errors~lower! and
generalization errors~upper! as functions of time, according to the theory. The different line types refer to full equations~solid!, annealed
approximation~dashed!, conditionally Gaussian approximation~dashed-dotted!, and largea approximation~dotted! ~note: the dashed and
solid curves fall virtually on top of one another!. Left picture: PERCEPTRONlearning, withh5

1
2 . Right picture:ADATRON learning, with

h5
3
2 .
as

se
r

he
not
smalla, in spite of it being so simple that it can be written
a fully explicit set of equations forQ,R, and the joint field
distribution P@x,y# only. The observed accuracy of the
simple equations in the smalla regime suggests that fo
a→0 the leading term in the diffusion equation forP@xuy#
is the first term in the right-hand side, which reflects t
direct effect of pattern recycling, and which indeed has
been approximated.
-
lts
-

ic-
FIG. 12. Comparison between the full nu
merical solution of our equations and the resu
of doing numerical simulations of on-line learn
ing with N510 000 anda51. Histograms: con-
ditional student field distributions P6(x)
5*dy P@x,y#u@6y# as measured at timet55.
Smooth curves: corresponding theoretical pred
tions. Upper pictures:PERCEPTRONlearning, with
h5

1
2 @left, P2(x); right, P1(x)#. Lower pic-

tures: ADATRON learning, with h5
3
2 @left,

P2(x); right, P1(x)#.
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We believe that our theory offers an efficient tool wi
which to analyze and predict the outcome of learning p
cesses in single-layer networks. In particular, for those w
are primarily interested in the progress and the outcome
learning processes, there is no real need to understand
full details of the derivation; one can simply adopt the ma
roscopic laws~or one of the two appropriate approximation
to save CPU time! as a starting point, and just apply them
the learning rules as hand. In the applications worked ou
this paper ~Hebbian learning,PERCEPTRON learning, and
ADATRON learning!, our formalism has been found to be e
ther exact or an excellent approximation. It is not realistic
expect that simpler theories can be found with a similar le
of accuracy. While putting the finishing touch on this man
script, a manuscript was communicated@18# in which the
authors apply the cavity method to the present proble
They manage to keep their theory relatively simple by
stricting themselves to batch learning and to gradient des
learning rules, and by applying their theory only to a line
learning rule. Here also the present theory would have b
both simpler and exact. A fully exact theory for both on-lin
and batch learning and for arbitrary learning rules can
constructed@19# using a suitable adaptation of the generat
functional methods as in@10#, but in describing transients i
will be more complicated than the present one, as it will
built around macroscopic observables with two time ar
ments~correlation and response functions! and will take the
form of an effective single weight process with colored s
chastic noise and retarded self-interactions. It will, howev
be interesting to see the connection between the gener
functional theory and the present dynamical replica form
ism.
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The present study opens up new possibilities for cons
ering unrealizable learning scenarios, either due to struct
limitations or due to noise, which require some sort of reg
larization. The examination of regularization techniques
such scenarios, which is of great practical significance, w
out of reach so far as they come into effect only where
error surface is fixed by having a fixed example set. It tu
out that the case of noisy teachers can be studied with
appropriate extension of the present formalism@15#, involv-
ing a joint distribution of three rather than two fields~namely
those of student, ‘‘clean’’ teacher, and ‘‘noisy’’ teacher!.
Generalization to multilayer networks~with a finite number
of hidden nodes! is also straightforward@14#, although nu-
merically intensive. At a more fundamental level one cou
explore the effects of~dynamic! replica-symmetry breaking
~by calculating the AT surface, signaling instability of th
replica-symmetric solution with respect to replicon fluctu
tions!, or one could improve the built-in accuracy of ou
theory by adding new observables to the present set~such as
the Green’s functionA@x,y;x8,y8# itself!. Last, but not least,
our theory would simplify significantly if one could find
more explicit solution of the functional saddle-point equati
~B29!, enabling us to express the functionF@x,y# directly in
terms of our order parameters.
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APPENDIX A: DIFFUSION MATRIX ELEMENTS OF THE MACROSCOPIC FOKKER-PLANCK EQUATION

Here we show that for the observables~20! the diffusion matrix elementsGmv*** in the Fokker-Planck equation~19! vanish
for N→`. Our observables will consequently obey deterministic dynamical laws. Calculating diffusion terms associat
Q@J# andR@J# is trivial:

FGQQ
onl @ #

GQR
onl @ #

GRR
onl@ #

G5 lim
N→`

h2

N E dx dy P@x,y#G2@x,y#F 4x2

2xy
y2

G50,

FGQQ
bat @ #

GQR
bat@ #

GRR
bat@ #

G5 lim
N→`

h2

NF 4H E dx dy P@x,y#xG@x,y#J 2

2H E dx dy P@x;y#xG@x,y#J H E dx dy P@x;y#yG@x,y#J
H E dx dy P@x;y#yG@x,y#J 2

G50.

We next turn to diffusion terms with one occurrence ofP@x,y;J#. Here we repeatedly build on the cornerstone assumption
all fieldsJ"j andB"j are of order unity~which is clear from numerical simulations, and will be supported self-consistentl
the equations resulting from our theory!, in combination with two simple scaling consequences of the random compositi
D̃, asN→`:

jPD̃:
1

p (
j8PD̃

djj85p211O~p22!,
1

p2 (
jPD̃

(
j8PD̃

@12djj8#uj"j8u5O~N1/2!. ~A1!

For on-line learning we find
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FGQ,P@x,y#
onl @ #

GR,P@x,y#
onl @ # G52 lim

N→`

h2

N

]

]x K K K G2@J"j,B"j#F2J"j
B"j G~j"j8!d@x2J"j8#d@y2B"j8# L

D̃
L

D̃
L

QRP;t

52h2
]

]x
lim

N→`
K 1

N K K @12djj8#G2@J"j,B"j#F2J"j
B"j G~j"j8!d@x2J"j8#d@y2B"j8# L

D̃
L

D̃

1G2@x,y#F2x
y GŠ^djj8d@x2J"j#d@y2B"j#&D̃‹D̃L

QRP;t

52h2
]

]x
lim

N→`
^O~N21/2!1O~N21!&QRP;t50.

For batch learning we find

FGQ,P@x,y#
bat @ #

GR,P@x,y#
bat @ # G52 lim

N→`

h2

N

]

]x E dx8dy8P@x8,y8#G@x8,y8#F2x8
y8 G^Š^G@J"j,B"j#~j"j8!d@x2J"j8#d@y2B"j8#&D̃‹D̃&QRP;t

52h2
]

]x E dx8dy8P@x8,y8#G@x8,y8#F2x8
y8 G lim

N→`
K G@x,y#Š^djj8d@x2J"j#d@y2B"j#&D̃‹D̃

1
1

N
Š^@12djj8#G@J"j,B"j#~j"j8!d@x2J•j8#d@y2B•j8#&D̃‹D̃L

QRP;t

52h2
]

]x
lim

N→`
^O~N211O~N21/2!&QRP;t50.

The difficult terms are those where two derivatives of the order-parameter functionP@x,y;J# come into play. Here we have t
deal separately with four distinct contributions, defined according to which of the vectors from the trio$j,j8,j9% are identical.
For on-line learning we find

GP@x,y#,P@x8,y8#

onl
@ #5 lim

N→`

h2

N

]2

]x]x8
Š^Š^G2@J•j 9,B•j 9#~j•j 9!~j8•j 9!d@x2J•j#d@y2B•j#

3d@x82J•j8#d@y82B"j8#&D̃‹D̃&D̃‹QRP;t

5h2
]2

]x]x8
lim

N→`K NG2@x,y#d@x82x#d@y82y#^Š^djj 9dj8j 9d@x2J"j#d@y2B"j#&D̃‹D̃&D̃

1G2@x8,y8#^Š^d̄jj 9dj8j 9~j"j8!d@x2J"j#d@y2B•j#d@x82J"j8#d@y82B"j8#&D̃‹D̃&D̃

1G2@x,y#^Š^djj9d̄j8j9~j"j8!d@x2J"j#d@y2B"j#d@x82J"j8#d@y82B"j8#&D̃‹D̃&D̃

1K K K d̄jj9d̄j8j 9G2@J"j9,B"j9#
~j"j 9!~j8•j 9!

N
d@x2J"j#d@y2B"j#

3d@x82J"j8#d@y82B"j8#L
D̃
L

D̃
L

D̃
L

QRP;t

5h2
]2

]x]x8 H lim
N→`

^O~N21!1O~N21/2!1O~N21/2!&QRP;t1E dx9dy9G2@x9,y9#C@x,y;x8,y8;x9,y9#J
5h2E dx9dy9G2@x9,y9#

]2

]x]x8
C@x,y;x8,y8;x9,y9#.
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Similarly,

GP@x,y#,P@x8,y8#

bat
@ #

5 lim
N→`

h2

N

]2

]x]x8
^Š^G@J"j8,B"j8#~j"j8!d@x2J"j8#d@y2B"j#&D̃‹D̃Š^G@J"j,B"j#~j"j8!d@x82J"j8#d@y82B"j8#&D̃‹D̃&QRP;t

5h2
]2

]x]x8
lim

N→`
K H G@x,y#Š^djj8d@x2J"j#d@y2B"j#&D̃‹D̃1K K d̄jj8G@J"j8,B"j8#

j"j8

N
d@x2J"j#d@y2B"j#L

D̃

L
D̃

J
3H G@x8,y8#Š^djj8d@x82J"j#d@y82B"j#&D̃‹D̃1K K d̄jj8G@J"j,B"j#

j"j8

N
d@x82J"j8#d@y82B"j8#L

D̃

L
D̃

J L
QRP;t

5h2
]2

]x]x8
lim

N→`
^$O~N21!1O~N21/2!%$O~N21!1O~N21/2!%&QRP;t50.

For batch learning all diffusion matrix elements of Eq.~19! vanish in a straightforward manner. For on-line learning
diffusion terms vanish provided we can prove that the functionC@ # of Eq. ~24! is zero. This is indeed the case within th
present theory, as will be verified in the Appendix B.

APPENDIX B: REPLICA CALCULATION OF THE GREEN’S FUNCTION

The main objective of this appendix is to calculate the Green’s functionA@ #, with which we obtain our macroscopi
dynamic equations in explicit form. We first carry out the disorder averages, leading to an effective single-spin proble
integrations are done by steepest descent, giving a saddle-point problem for replicated order parameters at each tim
the saddle-point equations we then make the replica-symmetry~RS! ansatz, so that the limitn→0 can be taken. In addition we
show that the two functionsB@ # andC@ # do indeed vanish, as claimed.

1. Disorder averaging

The fundamental quantitiesA@x,y;x8,y8#, B@x,y;x8,y8#, C@x,y;x8,y8;x9,y9#, andP@x,y#, which control the macroscopic
equations, can be written as

We next use the definition ofP@x,y;J#, introduce integral representations for thed distributions involvingP@x,y#, and obtain
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The summations involving (xa ,ya) automatically lead to integrals, which can be performed due to thed distributions
involved. We define new conjugate functionsP̂a@x,y# via

(
xaya

pa@xa ,ya# f @xa ,ya#→E dx9dy9P̂a@x9,y9# f @x9,y9#.

We write averages over the training set explicitly in terms of thep5aN constituent vectors$j m%. Finally, we introduce
integral representations for the remainingd distributions, and obtain the following expressions~at this stage we will have to
separate the various structurally different cases!:

P@x,y#5E dx̂dŷ

~2p!2 ei @xx̂1yŷ# lim
N→`
n→0

E )
a

H d@N2~sa!2#dFNR

AQ
2t "saGdsa

3expS iNE dx9P̂a@x9,y9#Pt@x9,y9# D )
x9y9

dP̂a@x9,y9#J 1

p

3 (
m51

p K expS 2~ i /a!(
a

(
l

P̂a„~AQsa
•jl/AN!,~t "jl/AN!…2 i @ x̂AQs1

•j m1 ŷt "j m#/AND L
J

, ~B1!

HA@x,y;x8,y8#
B@x,y;x8,y8# J 5E dx̂dx̂8dŷdŷ8

~2p!4 ei @xx̂1x8x̂81yŷ1y8 ŷ8# lim
N→`
n→0

E )
a

H d@N2~sa!2#dFNR

AQ
2t "saGdsaexpS iNE dx9dy9

3 P̂a@x9,y9#P@x9,y9# D )
x9y9

dP̂a~x9,y9!J 1

p2 (
mÞn51

p K H ~j m
•jn!

1

N (
iÞ j

j i
mj i

nj j
mj j

n J expS 2~ i /a!(
a

(
l

3 P̂a@~AQsa
•jl/AN!,~t "jl/AN!#2 i @ x̂AQs1

•j m1 ŷt "j m1 x̂8AQs1
•jn1 ŷ8t "jn#/AND L

J

, ~B2!
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C@x,y;x8,y8;x9,y9#5E dx̂dx̂8dx̂9dŷdŷ8dŷ9

~2p!6 exp~ i @xx̂1x8x̂81x9x̂91yŷ1y8ŷ81y9ŷ9# !

3 lim
N→`
n→0

E )
a

H d@N2~sa!2#dFNR

AQ
2t "saGdsa

3expS iNE dx9dy9P̂a@x9,y9#P@x9,y9# D )
x9y9

dP̂a~x9,y9!J 1

p3 (
mnr51

p

d̄mrd̄nrK ~j m
•j r!~jn

•j r!

3expS 2~ i /a!(
a

(
l

P̂a@~AQsa
•jl/AN!,~t "jl/AN!#2 i @ x̂AQs1

•j m1 ŷt "j m

1 x̂8AQs1
•jn1 ŷ8t "jn1 x̂9AQs1

•j r1 ŷ9t "j r#/AND L
J

. ~B3!

The averages over the training sets^ &J in Eqs.~B1!–~B3! will now be done separately. First we define some relevant obje

D@u,v#5K expS 2~ i /a!(
a

P̂a„~AQsa
•j/AN!,~t "j/AN!…2 i @uAQs1

•j1vt "j#/AND L
j

, ~B4!

Ej@u,v#5KANj j expS 2~ i /a!(
a

P̂a„~AQsa
•j/AN!,~t "j/AN!…2 i @uAQs1

•j1vt "j#/AND L
j

, ~B5!

Ei j @u,v#5K Nj ij j expS 2~ i /a!(
a

P̂a„~AQsa
•j/AN!,~t "j/AN!…2 i @uAQs1

•j1vt "j#/AND L
j

~ iÞ j !. ~B6!

As we will see, all are of orderON0) asN→`. We next use the permutation invariance of our integrations and summa
with respect to pattern labels. First we calculate the first training sets average occurring in Eq.~B1!

1

p (
m51

p

^e¯&J5K expS 2~ i /a!(
a

P̂a„~AQsa
•j/AN!,~t "j/AN!…D L

j

p21

3K expS 2~ i /a!(
a

P̂a„~AQsa
•j/AN!,~t "j/AN!…2 i @ x̂AQs1

•j1 ŷt "j#/AND L
j

5ep ln D@0,0#
D@ x̂,ŷ#

D@0,0#
. ~B7!

The prefactorep ln D@0,0# will turn out to take care of appropriate normalization, and will drop out of the final result for all
functionsP@x,y#, A@x,y;x8,y8#, B@x,y;x8,y8#, andC@x,y;x8,y8;x9,y9#. Second, we evaluate the training sets average of
expression forA@ # in Eq. ~B2!:

1

p2 (
mÞn

p

^~j m
•jn!e¯&J5

p21

p
^~j1

•j2!e¯&J5
p21

p (
j

K expS 2~ i /a!(
a

P̂a„~AQsa
•j/AN!,~t "j/AN!…D L

j

p22

3K j jexpS 2~ i /a!(
a

P̂a„~AQsa
•j/AN!,~t "j/AN!…2 i @ x̂AQs1

•j1 ŷt "j#/AND L
j

3K j jexpS 2~ i /a!(
a

P̂a„~AQsa
•j/AN,(t "j/AN!…2 i @ x̂8AQs1

•j1 ŷ8t "j#/AND L
j

5ep ln D@0,0#H 1

N (
j 51

N Ej@ x̂,ŷ#Ej@ x̂8,ŷ8#

D2@0,0#
1O~N21!J ~B8!
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@provided we indeed show thatEj@u,v#5O(N0) asN→`#. The training sets average of the expression forB@ # in Eq. ~B2! is
given by

1

p2 (
mÞn

p K 1

N (
iÞ j

j i
mj i

nj j
mj j

ne¯L
J

5
p21

pN (
iÞ j

^~j i
1j j

1!~j i
2j j

2!e¯&J

5
p21

pN (
iÞ j

K expS 2~ i /a!(
a

P̂a„~AQsa
•j/AN!,~t "j/AN!…D L

j

p22

3K j ij jexpS 2~ i /a!(
a

P̂a„~AQsa
•j/AN!,~t "j/AN!…2 i @ x̂AQs1

•j1 ŷt "j#/AND L
j

3K j ij jexpS 2~ i /a!(
a

P̂a„~AQsa
•j/AN!,~t "j/AN!…2 i @ x̂8AQs1

•j1 ŷ8t "j#/AND L
j

5ep ln D@0,0#H 1

N3 (
iÞ j 51

N Ei j @ x̂,ŷ#Ei j @ x̂8,ŷ8#

D2@0,0#
1O~N23/2!J 5ep ln D@0,0#$O~N21!% ~B9!

@provided we indeed show thatEi j @u,v#5O(N0) asN→`#. Finally, we also obtain for the training sets average in Eq.~B3!,
in a similar fashion,

1

p3 (
r51

p

(
m,nÞr

p K 1

N
~j m

•j r!~jn
•j r!e¯L

J

5
p21

p2N (
i j

^j i
1j j

1j i
2j j

2e¯&J1
~p21!~p22!

p2N (
i j

^j i
1j j

2j i
3j j

3e¯&J

5(
iÞ j

^j i
1j j

1j i
2j j

2e¯&JO~N22!1^e¯&JO~N21!

1(
iÞ j

^j i
1j j

2j i
3j j

3e¯&JO~N21!1(
i

^j i
1j i

2e¯&JO~N21!

5D@0,0#pH(
iÞ j

D@ x̂9,ŷ9#Ei j @ x̂,ŷ#Ei j @ x̂8,ŷ8#O~N24!1O~N21!

1(
iÞ j

Ei@ x̂,ŷ#Ej@ x̂8,ŷ8#Ei j @ x̂9,ŷ9#O~N23!

1(
i

D@ x̂9,ŷ9#Ej@ x̂,ŷ#Ej@ x̂8,ŷ8#O~N22!J
5ep ln D@0,0#$O~N21!%. ~B10!

We now work out Eq.~B5! and we show that it is of orderN0. This is achieved by separating in the exponent the terms w
site labeli 5 j from those with site labelsiÞ j , followed by expansion in powers of the~relatively small! i 5 j terms, and will
involve the following two functions:

F1
a@u,v#5K ]xP̂aS AQsa

•j

AN
,

t "j

AN
D expS 2~ i /a!(

a
P̂a„~AQsa

•j/AN!,~t "j/AN!…2 i @uAQs1
•j1vt "j#/AND L

j

,

~B11!

F2
a@u,v#5K ]yP̂aS AQsa

•j

AN
,

t "j

AN
D expS 2~ i /a!(

a
P̂a„~AQsa

•j/AN!,~t "j/AN!…2 i @uAQs"j1vt "j#/AND L
j

.

~B12!

Note that there is no need to calculate the auxiliary functions~B6!; we only need to verify their magnitude to scale asO(N0)
for N→`,
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Ej@u,v#5KANj jexpH 2~ i/a!(
a

P̂aS ~AQ/AN!F(
iÞ j

s i
aj i1s j

aj j G ,~1/AN!F(
iÞ j

t ij i1t jj j G D
2 i F ~uAQ/AN!S (

iÞ j
s i

1j i1s j
1j j D 1~v/AN!S (

iÞ j
t ij i1t jj j D G J L

j

5KANj jexpH 2~ i /a!(
a

P̂aS ~AQ/AN!(
iÞ j

s i
aj i ,~1/AN!(

iÞ j
t ij i D 2 i F ~uAQ/AN!(

iÞ j
s i

1j i1~v/AN!(
iÞ j

t ij i G J
3expF2~ iAQ/aAN!(

a
s j

aj j]xP̂aS ~AQ/AN!(
iÞ j

s i
aj i ,~1/AN!(

iÞ j
t ij i D 2~ i /aAN!t jj j(

a
]yP̂aS ~AQ/AN!

3(
iÞ j

s i
aj i ,~1/AN!(

iÞ j
t ij i D Gexp$2 i @~uAQ/AN!s j

1j j1~v/AN!t jj j #1O~N21!%L
j

5K expH 2 i /a(
a

P̂aS ~AQ/AN!(
iÞ j

s i
aj i ,~1/AN!(

iÞ j
t ij i D 2 i F ~uAQ/AN!(

iÞ j
s i

1j i1~v/AN!(
iÞ j

t ij i G J
3

1

i H AQ

a (
a

s j
a]xP̂aS AQ

AN
(
iÞ j

s i
aj i ,

1

AN
(
iÞ j

t ij i D 1
1

a
t j(

a
]yP̂aS AQ

AN
(
iÞ j

s i
aj i ,

1

AN
(
iÞ j

t ij i D
1uAQs j

11vt j1O~N21/2!J L
j

so that

Ej@u,v#52 iuAQs j
1D@u,v#2 ivt jD@u,v#2

i

a
AQ(

a
s j

aF1
a@u,v#2

i

a
t j(

a
F2

a@u,v#1O~N21/2!

52 iAQ(
a

s j
aF 1

a
F1

a@u,v#1uda1D@u,v#G2 i t j(
a

F 1

a
F2

a@u,v#1vda1D@u,v#G1O~N21/2!. ~B13!

Repetition and extension of this argument, by separating in the exponent terms with two special indices~i,j! rather than one,
and by subsequent expansion~whereby each term brings down a factorN21/2!, immediately shows that terms of the form
^Nj ij j e¯&j with iÞ j will be of order O(N0). This confirms thatEi j @u,v#5O(N0) and that Eq.~B6! indeed scales as
indicated. Note that the relevant combination of intensive terms in Eq.~B8! can be abbreviated asL@u,v;u8,v8#
5(1/N)( jEj@u,v#Ej@u8,v8#:

L@u,v;u8,v8#52Q(
ab

qab~$s%!F 1

a
F1

a@u,v#1uda1D@u,v#GF 1

a
F1

b@u8,v8#1u8db1D@u8,v8#G
2R(

ab
F 1

a
F1

a@u,v#1uda1D@u,v#GF 1

a
F2

b@u8,v8#1v8db1D@u8,v8#G
2R(

ab
F 1

a
F1

a@u8,v8#1u8da1D@u8,v8#GF 1

a
F2

b@u,v#1vdb1D@u,v#G
2(

ab
F 1

a
F2

a@u,v#1vda1D@u,v#GF 1

a
F2

b@u8,v8#1v8db1D@u8,v8#G1O~N21/2!, ~B14!
s
al
at

-

where we have used the built-in properties (1/N)t "sa

5R/AQ and t25N, and in which we find the spin-glas
order parameters

qa,b~$s%!5
1

N (
i

s i
as i

b . ~B15!
Let us finally work out further the remaining fundament
objectsD@ # andF1,2

a @ #. The basic property to be used is th
for largeN then11 quantities$xa5sa

•j/AN, y5t "j/AN%
inside averages of the form̂&j will become ~zero average
but correlated! Gaussian variables, with probability distribu
tion
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P~x1 ,...,xn ,y!5
det1/2A

~2p!~n11!/2

3expF 2
1

2 S x1

]

xn

y
D •AS x1

]

xn

y
D G ,
A215S q11 ¯ q1n R/AQ

] ] ]

qn1 ¯ qnn R/AQ

R/AQ ¯ R/AQ 1

D .

This allows us to write
s

D@u,v#5
det1/2A

~2p!~n11!/2 E dx dy

3expF 2
1

2 S x1

]

xn

y
D •AS x1

]

xn

y
D 2

i

a (
a

P̂a~AQxa ,y!2 i @uAQx11vy#G ~B16!

F1,2
a @u,v#5

det1/2A

~2p!~n11!/2 E dx dy]1,2P̂a~AQxa ,y!

3expF 2
1

2 S x1

]

xn

y
D •AS x1

]

xn

y
D 2

i

a (
a

P̂a~AQxa ,y!2 i @uAQx11vy#G . ~B17!

Note that these quantities depend on the microscopic variablessa only through the macroscopic observablesqab($s%).

2. Derivation of saddle-point equations

We will now combine the results~B7!–~B10! and ~B14! with the expressions~B1!–~B3!. We use integral representation
for the remainingd functions, and isolate the observablesqab , by inserting

15E dq dq̂ dQ̂ dR̂

~2p!n212n
expS iNF(

a
~Q̂a1R̂aR/AQ!1(

ab
q̂abqabG2 i(

i
(
a

@Q̂a~s i
a!21R̂at is i

a#2 i(
ab

q̂abs i
as i

bD .

We hereby achieve a full factorization over sites in the relevant quantities„note that the objectsD@ # andL@ # depend on the
microscopic variables only viaqab($s%)…:

A@x,y;x8,y8#5E dx̂ dx̂8dŷ dŷ8

~2p!4 exp$ i @xx̂1x8x̂81yŷ1y8ŷ8#% lim
n→0

lim
N→`

E dq dq̂ dQ̂ dR̂ )
ax9y9

dP̂a~x9,y9!

3expS iNH(
a

~Q̂a1R̂aR/AQ!1(
ab

q̂abqab1(
a

E dx9dy9P̂a~x9,y9!P@x9,y9#J
1aN ln D@0,0# D)

i
H E ds expS 2 i(

a
@Q̂a~sa!21R̂at isa#2 i(

ab
q̂absasbD J L@ x̂,ŷ; x̂8,ŷ8#

D2@0,0#

and

P@x,y#5E dx̂ dŷ

~2p!2 ei @xx̂1yŷ# lim
n→0

lim
N→`

E dq dq̂ dQ̂ dR̂ )
ax9y9

dP̂a~x9,y9!

3expS iNH(
a

~Q̂a1R̂aR/AQ!1(
ab

q̂abqab1(
a

E dx9dy9P̂a~x9,y9!P@x9,y9#J 1aN ln D@0,0# D
3)

i
H E ds expS 2 i(

a
@Q̂a~sa!21R̂at isa#2 i(

ab
q̂absasbD J D@ x̂,ŷ#

D@0,0#
.

Both can be written in the form of an integral dominated by saddle points:
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A@x,y;x8,y8#5E dx̂ dx̂8dŷ dŷ8

~2p!4 exp$ i @xx̂1x8x̂81yŷ1y8ŷ8#% lim
n→0

lim
N→`

E dq dq̂ dQ̂ dR̂

3 )
ax9y9

dP̂a~x9,y9!exp~NC@q,q̂,Q̂,R̂,$P̂%#!
L@ x̂,ŷ; x̂8,ŷ8#

D2@0,0#

and

P@x,y#5E dx̂ dŷ

~2p!2 exp~ i @xx̂1yŷ# ! lim
n→0

lim
N→`

E dq dq̂ dQ̂ dR̂ )
ax9y9

dP̂a~x9,y9!exp~NC@q,q̂,Q̂,R̂,$P̂%#!
D@ x̂,ŷ#

D@0,0#

with

C@ #5 i(
a

~Q̂a1R̂aR/AQ!1 i(
ab

q̂abqab1 i(
a

E dx9dy9P̂a~x9,y9!P@x9,y9#1a ln D@0,0#

1 lim
N→`

1

N (
i

ln E ds expS 2 i(
a

@Q̂asa
21R̂at isa#2 i(

ab
q̂absasbD .
b
in

n
e

fo
f

-

for

tion

us

t of
Finally we use that fact that the above expressions will
given by the intensive parts evaluated in the dominat
saddle point ofC. We can use the expression forP@x,y# and
its property*dx dy P@x,y#51 to verify that all expressions
are properly normalized~no overall prefactors are to be take
into account!. We perform a simple transformation on som
of our integration variables:

q̂ab→q̂ab2Q̂adab , R̂a→AQR̂a ,

and finally we get

A@x,y;x8,y8#5E dx̂ dx̂8dŷ dŷ8

~2p!4

3exp~ i @xx̂1x8x̂81yŷ1y8ŷ8# !

3 lim
n→0

L@ x̂,ŷ; x̂8,ŷ8#

D2@0,0#
, ~B18!

P@x,y#5E dx̂ dŷ

~2p!2 exp~ i @xx̂1yŷ# ! lim
n→0

D@ x̂,ŷ#

D@0,0#
,

~B19!

in which all functions are to be evaluated upon choosing
the order parameters the appropriate saddle points oC

~variation with respect toq, q̂, Q̂, R̂, and$P̂%!, which itself
takes the form

C@ #5 i(
a

Q̂a~12qaa!1 iR(
a

R̂a1 i(
ab

q̂abqab

1 i(
a

E dx9dy9P̂a~x9,y9!P@x9,y9#1a ln D@0,0#

1 lim
N→`

1

N (
i

ln E ds expS 2 i t iAQ (
a

R̂asa

2 i(
ab

q̂absasbD ~B20!
e
g

r

with D@ # given by Eq.~B16!, which depends on the varia
tional parameters$P̂% and qab only. The functionL@ # is
given by Eq.~B14!. The order parametersqab have the usual
interpretation in terms of the average probability density
finding a mutual overlapq of two independently evolving
weight vectors (Ja,Jb), in two systemsa andb with the same
realization of the training set~see, e.g.,@16#!:

^P~q!&J5 K K K dFq2
Ja
•Jb

uJauuJbuG L L L
J

5 lim
n→0

1

n~n21! (
aÞb

d@q2qab#. ~B21!

Note that upon applying the above procedure to the func
B@ # andC@ # in Eqs.~B2! and ~B3!, we find again integrals
dominated by the dominant saddle point ofC; here, in view
of Eqs.~B9! and~B10!, the intensive parts are zero, and th

B@x,y;x8,y8#5C@x,y;x8,y8;x9,y9#50 ~B22!

as anticipated earlier.

3. Replica-symmetric saddle points

We now make the replica-symmetric~RS! ansatz in the
extremization problem, which according to Eq.~B21! is
equivalent to assuming ergodicity. With a modest amoun
foresight we set

qab5q0dab1q@12dab#, q̂ab5 1
2 i @r 2r 0dab#,

R̂a5 ir, Q̂a5 if, P̂a@uv#5 ix@u,v#.

This converts the quantityC of Eq. ~B20! for small n into
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lim
n→0

1

n
C@ #52f~12q0!2rR1 1

2 qr2 1
2 q0~r 2r 0!

2E dx9dy9x@x9,y9#P@x9,y9#

1 lim
n→0

a

n
ln D@0,0#1 lim

n→0
lim

N→`

3
1

Nn (
i

ln E DzE ds expS t irAQ (
a

sa

2~1/2!r 0(
a

sa
21zAr (

a
saD

with the abbreviationDz5(2p)21/2e2(1/2)z2
dz. We do the

Gaussian integral in the last term, and expand the resul
small n:

lim
n→0

1

n
C@ #52f~12q0!2rR1 1

2 qr2 1
2 q0~r 2r 0!

2 1
2 ln r 01

1

2r 0
~r 1r2Q!

2E dx9dy9x@x9,y9#P@x9,y9#

1 lim
n→0

a

n
ln D@0,0#1const. ~B23!

Note that ‘‘const’’ refers to terms which do not depend
the order parameters to be varied, and will thus not show
in saddle-point equations; such terms can, however, dep
on time via quantities such as~Q, R!. At this stage it is useful
to work out four of our saddle-point equations:

]C

]f
5

]C

]r
5

]C

]r
5

]C

]r 0
50: q051, r 05

1

12q
,

r5
R

Q~12q!
, r 5

qQ2R2

Q~12q!2 .

These allow us to eliminate most variational paramete
leaving a saddle-point problem involving only the functio
x@x,y# and the scalarq:
or

p
nd

s,

lim
n→0

1

n
C@q,$x%#

5
12R2/Q

2~12q!
1 1

2 ln~12q!2E dx8dy8x@x8,y8#

3P@x8,y8#1 lim
n→0

a

n
ln D@0,0;q,$x%#1const. ~B24!

Finally we have to work out the RS version o
D@u,v;q,$x%#:

D@u;v;x,q,1#5
det1/2A

~2p!~n11!/2 E dx dy

3expF 2
1

2 S x1

]

xn

y
D AS x1

]

xn

y
D

1
1

a (
a

x~AQxa ,y!2 i @uAQx11vy#G
~B25!

with

A215S 1 ¯ q R/AQ

] ] ]

q ¯ 1 R/AQ

R/AQ ¯ R/AQ 1

D .

The inverse of the above matrix is found to be

A5S C11 ¯ C1n g

] ] ]

Cn1 ¯ Cnn g

g ¯ g b

D , Cab5
dab

12q
2d,

g52
RAQ

Q~12q!
1O~n!, b511O~n!,

d5
q2R2/Q

~12q!2 1O~n!,

With this expression, and upon linearizing the terms in
exponents which are quadratic inx in the usual manner with
Gaussian integrals, we obtain
D@u,v;q,$x%#

5

E dx dy expS 2~1/2!x"Cx2~1/2!by22gy(
a51

n

xa1~1/a!(
a

x@AQxa ,y#2 i @uAQx11vy#D
E dx dy expS 2~1/2!x"Cx2~1/2!by22gy(

a51

n

xaD
5

E Dz Dy e2 ivy/AbF E dx exp$2x2/2~12q!1@zAd2gy/Ab#x1~1/a!x@AQx,~y/Ab!#%G n21E dx exp$2x2/2~12q!1@zAd2gy/Ab#x1~1/a!x@AQx,~y/Ab!#2 iuAQx%

E Dz DyF E dx exp$2@1/2~12q!#x21@zAd2g~y/Ab!#x%G n
.

~B26!
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For the saddle-point problem we only need to calculate limn→0(a/n)ln D@0,0;q,$x%#:

lim
n→0

a

n
ln D@0,0;q,$x%#5 lim

n→0

a

n
H ln E Dz DyF E dx exp$2x2/2~12q!1@zAd2gy/Ab#x1~1/a!x@AQx,y/Ab#%Gn

2 ln E Dz DyF E dx exp$21/2~12q!x21@zAd2gy/Ab#%xGnJ

5aE Dz Dy lnH E dx exp$2x2/2Q~12q!x@zAd2gy#/AQ1~1/a!x@x,y#%

E dx exp$2x2/2Q~12q!1x@zAd2gy#/AQ%
J

with g andd evaluated in the limitn→0. Equivalently we can define

A5R/Q~12q!, B5AqQ2R2/Q~12q!, ~B27!

which gives

lim
n→0

a

n
ln D@0,0;q,$x%#5aE Dz Dy lnH E dx exp$2x2/2Q~12q!1x@Ay1Bz#1~1/a!x@x,y#%

E dx exp$2x2/2Q~12q!1x@Ay1Bz#%
J .

Upon doing thex integration in the denominator of this expression we can write the explicit expression for the surfacC to
be extremized with respect toq and the functionx@x,y#, apart from irrelevant constants, in the surprisingly simple from@with
the shorthands~B27!#

lim
n→0

1

n
C@q,$x%#5

12a2R2/Q

2~12q!
1 1

2 ~12a!ln~12q!2E dx dyx@x,y#P@x,y#1aE Dz Dy ln

3E dx exp$2x2/2Q~12q!1x@Ay1Bz#1~1/a!x@x,y#%. ~B28!

Note that Eq.~B28! is to beminimized, both with respect toq @which originated as ann(n21)-fold entry in a matrix, leading
to curvature sign change forn,1# and with respect to the functionx@x,y# ~obtained from then-fold occurrence of the origina
function P̂, multiplied by i, which also leads to curvature sign change!.

The remaining saddle-point equations are obtained by variation of Eq.~B28! with respect tox andq. Functional variation
with respect tox gives

P@x,y#5
e2~1/2!y2

A2p
E DzH exp$2x2/2Q~12q!1x@Ay1Bz#1~1/a!x@x,y#%

E dx8 exp$2x82/2Q~12q!1x8@Ay1Bz#1~1/a!x@x8,y#%J for all x,y. ~B29!

Note thatP@x,y#5P@xuy#P@y# with P@y#5(2p)21/2e2(1/2)y2
, as could have been expected. Next we varyq, and use Eq.

~B29! wherever possible:

12a2R2/Q

2~12q!2 2
12a

2~12q!

5aE Dz DyH E dx exp$2x2/2Q~12q!1x@Ay1Bz#1~1/a!x@x,y#%F x2

2Q~12q!22xFy
]A

]q
1z

]B

]qG G
E dx exp$2x2/2Q~12q!1x@Ay1Bz#1~1/a!x@x,y#%

J
giving
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E dx dy P@x,y#~x2Ry!21~R22qQ!S 1

a
21D

5F2AqQ2R21
Q~12q!

AqQ2R2G E Dz Dy zF E dx exp$2x2/2Q~12q!1x@Ay1Bz#1~1/a!x@x,y#x%

E dx exp$2x2/2Q~12q!1x@Ay1Bz#1~1/a!x@x,y#%
G . ~B30!

4. Explicit expression for the Green’s function

In order to work out the Green’s function~B18! we need the functionL@u,v;u8,v8# as defined in Eq.~B14! which, in turn,
is given in terms of the integrals~B16! and~B17!. First we calculate then→0 limit of D@u,v;q,$x%# @Eq. ~B26!#, and simplify
the result with the saddle-point equation~B29!:

lim
n→0

D@u,v;q,$x%#5E Dz Dy e2 ivy
E dx exp$2x2/2Q~12q!1x@Ay1Bz#1~1/a!x@x,y#2 iux%

E dx exp$2x2/2Q~12q!1x@Ay1Bz#1~1/a!x@x,y#%

5E dx dy P@x,y#e2 ivy2 iux. ~B31!

Next we work out the quantitiesF1,2
a @u,v# of Eq. ~B17! in RS ansatz, using Gaussian linearizations:

lim
n→0

F1,2
a @u,v#5 i lim

n→0

E dx dy]1,2x@AQxa ,y#expF 2S 1

2D S x1

]

xn

y
D •AS x1

]

xn

y
D 1

1

a (
a

x@AQxa ,y#2 i @uAQx11vy#G
E dx dy expF 2S 1

2D S x1

]

xn

y
D •AS x1

]

xn

y
D G

5 i lim
n→0

E Dy Dz e2 ivyE dx expS (
b

$2xb
2/2~12q!1@zAd2gy#xb1~1/a!x@AQxb ,y#%

2 iux1AQD ]1,2x@AQxa ,y#.

The replica permutation symmetries of this expression allow us to conclude

lim
n→0

Fl
a@u,v#5da1Fl

1@u,v#1~12da1!Fl
2@u,v#, ~B32!

where

F1,2
1 @u,v#5 i E dx dy P@x,y#e2 ivy2 iux]1,2x@x,y#, ~B33!

F1,2
2 @u,v#5 iE Dy Dz e2 ivy

3

F E dx exp$2x2/2Q~12q!1x@Ay1Bz#1~1/a!x@x,y#%]1,2x@x,y#GF E dx exp$2x2/2Q~12q!1x@Ay1Bz#1~1/a!x@x,y#2 iux%G
F E dx exp$2x2/2Q~12q!1x@Ay1Bz#1~1/a!x@x,y#%G2 .

~B34!

We can now proceed to the calculation of Eq.~B14!. First we note that the basic building blocks of Eq.~B14! are most easily
expressed in terms of the functions
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G1@u,v#5
1

a
F1

1@u,v#1uD@u,v#, G̃1@u,v#5
1

a
F1

2@u,v#, ~B35!

G2@u,v#5
1

a
F2

1@u,v#1vD@u,v#, G̃2@u,v#5
1

a
F2

2@u,v#. ~B36!

With these short-hand notations we obtain, upon performing the summations over replica indices in Eq.~B14!,

L@u,v;u8,v8#52Q~12q!G1@u,v#G1@u8,v8#2Q~12q!~n21!G̃1@u,v#G̃1@u8,v8#2Qq$G1@u,v#1~n21!G̃1@u,v#%

3$G1@u8,v8#1~n21!G̃1@u8,v8#%2R$G1@u,v#1~n21!G̃1@u,v#%$G2@u8,v8#1~n21!G̃2@u8,v8#%

2R$G1@u8,v8#1~n21!G̃1@u8,v8#%$G2@u,v#1~n21!G̃2@u,v#%2$G2@u,v#1~n21!G̃2@u,v#%

3$G2@u8,v8#1~n21!G̃2@u8,v8#%

and so

lim
n→0

L@u,v;u8,v8#52Q~12q!~G1@u,v#G1@u8,v8#2G̃1@u,v#G̃1@u8,v8# !2Qq~G1@u,v#2G̃1@u,v# !

3~G1@u8,v8#2G̃1@u8,v8# !2R~G1@u,v#2G̃1@u,v# !~G2@u8,v8#2G̃2@u8,v8# !

2R~G1@u8,v8#2G̃1@u8,v8# !~G2@u,v#2G̃2@u,v# !2~G2@u,v#2G̃2@u,v# !~G2@u8,v8#2G̃2@u8,v8# !.

With the Fourier transforms of the functionG@ #, given by

Ĝ1@ û,v̂#5E du dv
~2p!2 eiuû1 ivv̂F 1

a
F1

1@u,v#1uD@u,v#G , Ḡ1@ û,v̂#5
1

a E du dv
~2p!2 eiuû1 ivv̂F1

2@u,v#, ~B37!

Ĝ2@ û,v̂#5E du dv
~2p!2 eiuû1 ivv̂F 1

a
F2

1@u,v#1vD@u,v#G , Ḡ2@ û,v̂#5
1

a E du dv
~2p!2 eiuû1 ivv̂F2

2@u,v#, ~B38!

the Green’s functionA@x,y;x8,y8# ~B18! can now be written in explicit form as

A@x,y;x8,y8#52Q~12q!~Ĝ1@x,y#Ĝ1@x8,y8#2Ḡ1@x,y#Ḡ1@x8,y8# !2Qq~Ĝ1@x,y#2Ḡ1@x,y# !~Ĝ1@x8,y8#2Ḡ1@x8,y8# !

2R~Ĝ1@x,y#2Ḡ1@x,y# !~Ĝ2@x8,y8#2Ḡ2@x8,y8# !2R~Ĝ1@x8,y8#2Ḡ1@x8,y8# !~Ĝ2@x,y#2Ḡ2@x,y# !

2~Ĝ2@x,y#2Ḡ2@x,y# !~Ĝ2@x8,y8#2Ḡ2@x8,y8# !. ~B39!

Finally, working out the four relevant Fourier transforms, using Eqs.~B31!, ~B33!, and~B34! gives

Ĝ1@x,y#5 iP@x,y#F 1

a

]

]x
x@x,y#2

]

]x
ln P@x,y#G , ~B40!

Ĝ2@x,y#5 iP@x,y#F 1

a

]

]y
x@x,y#2

]

]y
ln P@x,y#G , ~B41!

Ḡ1@x,y#5
i

a
P@y#E Dz

F E dx8 exp$2x82/2Q~12q!1x8@Ay1Bz#1~1/a!x@x8,y#%]1x@x8,y#Gexp$2x2/2Q~12q!1x@Ay1Bz#1~1/a!x@x,y#%

F E dx8 exp$2x82/2Q~12q!1x8@Ay1Bz#1~1/a!x@x8,y#%G2 ,

~B42!

Ḡ2@x,y#5
i

a
P@y#E Dz

F E dx8 exp$2x82/2Q~12q!1x8@Ay1Bz#1~1/a!x@x8,y#%]2x@x8,y#Gexp$2x2/2Q~12q!1x@Ay1Bz#1~1/a!x@x,y#%

F E dx8 exp$2x82/2Q~12q!1x8@Ay1Bz#1~1/a!x@x8,y#%G2 ,

~B43!
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with P@y#5(2p)21/2e2(1/2)y2

Since the distribution P@x,y# obeys P@x,y#

5P@xuy#P@y# with P@y#5(2p)21/2e2(1/2)y2
, our equations

can be simplified by choosing as our order-parameter fu
tion the conditional distributionP@xuy#. We also replace the
conjugate order-parameter functionx@x,y# by the effective
measureM @x,y#, and we introduce a compact notation f
the relevant averages in our problem:

M @x,y#5exp$2x2/2Q~12q!1Axy1~1/a!x@x,y#%,

^ f @x,y,z#&* 5

E dx M@x,y#eBxzf @x,y,z#

E dx M@x,y#eBxz

. ~B44!

Instead of the original Green’s functionA@x,y;x8,y8# we
turn to the transformed Green’s functionÃ@x,y;x8,y8#, de-
fined as

A@x,y;x8,y8#5P@x,y#Ã@x,y;x8,y8#P@x8,y8#.

With these notational conventions one finds that Eq.~B39!
translates into the following expression:

Ã@x,y;x8,y8#5Q~12q!~J1@x,y#J1@x8,y8#

2 Ĵ1@x,y# J̃1@x8,y8# !1Qq~J1@x,y#

2 J̃1@x,y# !~J1@x8,y8#2 J̃1@x8,y8# !

1R~J1@x,y#2 J̃1@x,y# !J2@x8,y8#

1R~J1@x8,y8#2 J̃1@x8,y8# !J2@x,y#

1J2@x,y#J2@x8,y8# ~B45!

with

J1@X,Y#5
]

]X
ln

M @X,Y#

P@XuY#
1

X2RY

Q~12q!
,

Ĵ1@X,Y#5P@XuY#21E DzK ]

]x
ln M @x,Y#1

x2RY

Q~12q!L
*

3^d@X2x#&* ,

J2@X,Y#5
]

]Y
ln

M @X,Y#

P@XuY#
2

RX

Q~12q!
1Y2P@XuY#21

3E DzK ]

]Y
ln M @x,Y#2

Rx

Q~12q!L
*

3^d@X2x#& .
*
c-

It turns out that significant simplification of the result~B45!
is possible, upon using the following two identities to rewr
the functionsJ1@ #, J̃1@ #, andJ2@ #:

K ]

]x
ln M @x,y#L

*
52Bz, ~B46!

K ]

]y
ln M @x,y#L

*
5

]

]y
ln E dx eBxzM @x,y#. ~B47!

Identity ~B46! results upon integrating by parts with respe
to x, whereas identity~B47! is a direct consequence ofy
dependences occurring inM @x,y# only. Note that B
5AqQ2R2/Q(12q). To achieve the desired simplificatio
of Ã@x,y;x8,y8# we define the following object:

F@X,y#5$Q~12q!P@Xuy#%21E Dz^X2x&* ^d@X2x#&* .

~B48!

We can now, after additional integration by parts with r
spect toz, simplify the above expressions forJ1@ #, J̃1@ #,
andJ2@ # to

J1@X,Y#5
X2RY

Q~12q!
2

qQ2R2

Q~12q!
F@X,Y#,

J̃1@X,Y#5J1@X,Y#2F@X,Y#,

J2@X,Y#5Y2RF@X,Y#,

and consequently

A@x,y;x8,y8#5P@x,y#Ã@x,y;x8,y8#P@x8,y8#,
~B49!

Ã@x,y;x8,y8#5yy81~x2Ry!F@x8,y8#1~x82Ry8!

3F@x,y#2~Q2R2!F@x,y#F@x8,y8#

~B50!

with F@x,y# as given in Eq.~B48!.
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