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Stokesian dynamics study of quasi-two-dimensional suspensions confined
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We present a Stokesian dynam{&D) computer simulation study of the static and dynamical properties of
a monolayer of spherical colloidal particles restricted to diffuse in the midplane between two parallel walls. SD
simulations account for hydrodynamic interactighié's) among the particles, and between particles and walls.
Three different types of systems are studied: first, a monolayer of neutral spheres and neutral hard walls;
second, particles interacting by a repulsive Yukawa-type potential of range depending on the wall separation.
As a third system, the interesting case of charged particles between charged parallel walls with a longer-range
attractive part in the pair potential is investigated, using the experimentally determined effective pair potential
of Acuna-Campaet al. [Phys. Rev. Lett80, 5802 (1998]. Various measurable quantities are calculated in
dependence of the particle concentration and the wall distance: short- and long-time self-diffusion coefficients,
radial distribution functions and static structure factors, hydrodynamic functions, mean squared displacements,
and van Hove real-space correlation functions. We assess the importance of HI's by comparing our results with
simulation results where HI's are fully or partially disregarded. Some of our results are also compared with
experimental data, and good agreement is found. Remarkable effects are investigated, like the hydrodynamic
enhancement of self-diffusion for the case of strongly charged particles, and the strong increase of the hydro-
dynamic function at small wave numbers2@0 The American Physical Society.

PACS numbgs): 82.70.Dd, 05.10.Gg, 05.40.Jc, 02.70.Lq

[. INTRODUCTION solution of the nonlinear Poisson-Boltzmann equation for
two identical colloidal particles, only repulsive forces are
The physical properties of colloidal suspensions undepbtained[19]. The linearized electrostatic part of the DLVO
conditions of significant confinement have attracted considpair potential is of Yukawa type, with a range determined by
erable interest. This interest is due not only to the practicalhe Debye-Hukel screening length. At present, to our
importance of such systems, but also to many fundament&nowledge there is no theory at hand which determines an
physical questions raised for these systems within the activéffective pair potential in agreement with the experimentally
field of colloid physics. At present, there is strong theoreticaPPserved attractions. _ ,
interest in the physics of quasi-two-dimensional suspensions, Baseéd on the linearized Poisson-Boltzmann equation,
One area of intense research is concerned with the nature glhang_and Hong3] denv_ed a repulswe pair potential with
two-dimensional melting, where the type of order that distin-S¢reening length depe_ndlng on the dls_tance b_etween the two
guishes a solid phase from a liquid phase is quaIitativeI)Pa.ra“el pla.nes confining the suspension. This approximate
different from that in a three-dimensional bulk systgir 5] pair potential was u;ed subse_quently by\m [20], qnd
According to the Kosterlitz—ThouIess-HaIperin-NeIéon- Lohle and Klein[21] n theoretlcglly stu_dylng_the micro-
) ) . structure and dynamics of quasi-two-dimensional Yukawa
Young (KTHNY) thepry [,6_10]', two—dmepsmnal sqhd; systems. In the Brownian dynami¢BD) study of Lowven,
r_nelt V|a_tW(_) successive dislocation unblndlng _and dlscllnaa[he effect of hydrodynamic interaction@l's) was com-
tion u_nblndlng transitions _through an intermediate so-calle_q)|ete|y disregarded.
hexatic phase. The question of whether the KTHNY transi- \ynile static properties are determined only by the effec-
tion scenario applies to qUaSi'tWO'dimenSional colloids W|tht|ve pair potentiaL dynamic properties are a|So Strong|y de-
long-or short-range interactions is still under deldtd 1]. pendent on solvent-induced HI's. The influence of HI's can
Another field of intensive research is the determination ofpe expected to be stronger in the quasi-two-dimensional case
effective pair potentials acting between charged sphericahan in three-dimensional bulk suspensions, since the par-
colloidal particles confined between two glass plgie513.  ticles also act hydrodynamically with each other via the con-
Recent experiments performed with real-space video microgining walls. Consequently, proper treatment of HI's is an
copy imaging method§12—-17 suggest that colloidal par- essential ingredient for quantitative and even qualitative de-
ticles attract each other at intermediate distances. This quitscriptions of the particle dynamics. Due to the presence of
surprising finding seems to conflict with the electrostatic asconfining planes and the long-range nature of HI's, this is a
pect of the well-known Derjaguin-Landau-Verwey-Overbeekvery complicated many-body problem. For this reason, not
(DLVO) theory[18] of charge stabilization. Indeed, from the much analytical work has been done so far. One example
was given in the work of Lobry and Ostrowsk22], where
diffusion of an isolated colloidal sphere perpendicular to two
*Corresponding author. Electronic address: parallel walls was investigated using a semianalytical treat-
Raphael.Pesche@Uni-Konstanz.de ment in comparison with experimental data. Only the leading
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far-field part of HI's is considered in this work, which be- 2

comes a poor description when the particle is close to a wall. }/
A BD simulation study of charge-stabilized colloids be- g T

tween parallel walls, with HI effects neglected, was per- & B ) ® & @

formed by Nuesser and Versmdl@3]. Their simulation re- g

sults are in qualitative accord with video microscopy b2 y

experiments. That HI's are of primordial importance even for

the dynamics of dilute quasi-two-dimensional systems of FIG. 1. System geometry.

particles with long-range repulsive interactions was demon-

strated in a BD study by Rinwt al. [24]. These authors given in Sec. lll. Our SD results are presented and analyzed
found excellent agreement of their BD results with corre-in Sec. IV, partially in comparison with experimental data
sponding experimental data of R¢R5] on superparamag- and earlier simulation results. Our final conclusions are con-
netic particles located in a liquid-gas interface. The authorgained in Sec. V.

of Ref.[25] included the pairwise additive leading far-field

part of HI's into their BD algorithm, reproducing in particu- Il. MODEL SYSTEMS AND STOKESIAN DYNAMICS

lar the experimentally observed hydrodynamic enhancement METHOD

of long-time self-diffusion. A corresponding enhancement of . ) ) . . )
long-time ~ self-diffusion  in  charge-stabilized three- Let us considem identical rigid spherical particles of

dimensional suspensions was predicted theoretically b§iametera suspended in an incompressible Newtonian fluid
Nagele and Bauf26], and experimentally verified subse- of viscosity . The particles are allowed to diffuse only in

quently[27]. While it is sufficient to account for the far-field the midplane between two parallel plates, a distansepa-
part of HI's in the case of dilute suspensions of stronglyrated from each other, that confine the system in the trans-

repelling particles without confining walls, the many-bodyverse direction(cf. Fig. '1). While the'motic.)n of the ﬂuid is
aspect of HI's is important in the presence of two narrowdoverned by the stationary and linearized Navier-Stokes

walls, or when the particle repulsion is of shorter range. Th&duatior(28], the particle motion is described by the coupled

strong influence of HI's in confined systems is partially due’\-Pody Langevin equation:
to the reduced hydrodynamic mobility of a particle diffusing U
close to a wall. For these theoretically demanding systems, m- — =FH+ EB+ EP. (1)
many-body HI's including lubrication effects have to be ac- dt
counted for. Lubrication effects arise when two spherical is th lized y finerti i of
particles or a particle and a wall are near contact: for sticlﬂerem.'St € generalized mass m"".‘e”t of inertia matrix o
boundary conditions the mobility for relative motion goes tod|menS|on & X 6N in a three-dimensional bulk system, and

zero at contact, due to strong lubrication stresses requiredi(rf is the velocity supervector of dimensiorNG with the

expel the fluid from the thin gap between the surface point anslational and rotational velocities of thespheres as its
of closest approacfes] components. The M-dimensional force/torque vectors

In this paper, we present calculations of static and, i consist of three different force contributions: the first contri-
' ' r‘bution F" represents the hydrodynamic forces/torques ex-

particular, dynamic properties of wall-confined quasi-two- q h icles. Th f / b h
dimensional systems of interacting colloidal particles using £rted on the particles. These forces/torques act between the

Stokesian dynamids$SD) [29—-33 simulation technique. This particles in an ind?recf[ waBy through the intervening fluid.
powerful method can be applied to a large variety of coIIoi-The second contr|but|or1_: represents stochastic forc.eg,/
dal problems where many-body hydrodynamic interactioné,orques related to Brownian motion. Finally, the determinis-

effects need to be accounted for within good accuracy. W ¢ cont_ributic_)n FP_ is due_to nonhydrodynamic potential
restrict our analysis to the study of lateral diffusion in alOrC€S: I-€., direct interparticle forces or external body force

monolayer of interacting colloidal spheres located in thefields like gravitation. Further details about these forces are

midplane between the confining walls. For the purpose ofiVen in the following subsections.
this paper, we disregard the effect of an externally applied o .
shear flow, which can be also studied with SD calculations A. Hydrodynamic interactions

[30). _ _ _ For the case of small Reynolds number flow which ap-
‘The paper is organized as follows: Sec. Il is devoted to gjies to colloidal dynamic$34], the hydrodynamic forces/
brief description of the SD numerical method by addressingorques exerted on the particles via the intervening fluid are
particularly the geometry, the pair potentials, and the hydroinstantaneously and linearly related to the translational/

dynamic forces employed in this work. Two cases of laterakotational particle velocities relative to the fluid through the
diffusion in quasi-two-dimensional colloids are considered:generalized Stokes law:

first, neutral spheres between neutral parallel walls and, sec-

ond, charge-stabilized spheres confined by parallel charged Fl=—Rgy(rV)-U. 2
walls. For the latter case, two different pair potentials are

analyzed: an approximate Yukawa-type potential due tolhe matrixRgy, which is a 8NX6N matrix for a three-
Chang and Hong3], and a potential including an attractive dimensional system, is called the resistance matrix. It de-
part at intermediate distances, as determined experimentalgends on the configuratiar of the centers of alN spheres.

by Acura-Campaet al. [12]. A discussion of various static The inverseM =R;j of the resistance matrix is known as
and dynamic properties calculated with the SD method ishe mobility matrix. We emphasize that these two matrices
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account for HI's between the particles in the presence of thevhere the superscripts 1 and 2 are used as labels of the
two planes. Hence we need the generalization of the resigorresponding walls. The two-wall approximation in Eg).
tance matrix elements for an unbounded suspergioiRef.  amounts to the neglect of higher order images. The approxi-
[30]) to the more complicated situation where walls aremation introduced in this way is expected to be reasonably
present. The authors of R¢B5] performed SD simulations good for closely spaced walls, since HI effects are then
of colloids in the presence of a single plane. The no-slipdominated by the shorter-range parts.

boundary conditions at the planar wall were handled in this

work by introducing a set of image singularities. The pres- B. Brownian forces

ence of the wall modifies not only two-body HI's between . . . .
pairs of spheres but also the motion of a single sphere which T_he StQChaSt'C forc€® in Eq. (1) arises from Brownian
corresponds to a self-interaction effect between particle anfotion driven by _th? thermal pombardment (.)f the SO'V?”t
wall. To be specific, the hydrodynamic force/torqE@ on a molecules. Its statistical properties are determined for an iso-

particle « moving with translational/rotational velocity,, is ']Elroplc _systg_m _by_thehzero mea(F*)=0, and by the
given by uctuation-dissipation theorem

N (FB(0)F®(1))=2kgTRey 4(1), (6)

Fl= —321 (RS FuT 8up(REMEu]- Up. (3 wherekg is Boltzmann’s constant, arfl denotes the abso-
lute temperature. The brackets-) refer to an equilibrium
. S . ~ ensemble average. Note that, according to &g. correla-
sHerzgrethli | ﬁf)ljitf?ggeb t?ﬂgoﬁzg);nuce:ngu;svsallth‘?thhjz;itit tions in the random force fluctuations can be considered to
gsw) is th yt P ¢ q 'b'. thq lfydecay infinitely fast on the time scale where a significant
(R."ry is the resistance tensor describing the se “change in the particle configuration occurs. This fact is ex-

interaction of a single.par.ticle through the wal. Th.e resis- pressed by the delta functia¥(t) on the right hand side of
tance tensors appearing in E8) were determined in Refs. Eq. (6).

[36—39, and will thus not be reproduced here.

The resistance tensors are commonly approximated in
such a way that both many-body far-field interactions and
lubrication forces are accounted fi80]. The far-field two- The determination of appropriate pairwise additive direct
body interactions between pairs of spheres are approximatddrces acting between the particles in a quasi-two-
by the far-field mobility matrixM*. The lubrication forces dimensional system is a nontrivial task. For the case of neu-
are introduced in a pairwise additive fashion by adding to thdral hard spheres confined to the midplane between two par-
resistance matrix NI*) "1 a two-body resistance matrix allel neutral walls, the exact pair potential is given by
(Rop)ru - To avoid double counting of the far-field part, the

C. Nonhydrodynamic forces

© r<o

far-field two-body interactions described bR ), are u(r)= ' @
subsequently subtracted. As a resBit, is approximated by 0, r>o,
RFUN(MOO)71+(sz)FU_(R;Ob)FU' (4) where is the particle diameter, andis the lateral center-

to-center distance of two spheres. For this case, lubrication

This general approximation procedure Ry, was shown to forc_es included irF_H th_rough the resistance matrix prevent
give excellent results under many circumstari@@s40, The ~ Particles from coming into contact. As a result, we can sim-
matrices in Eq(4) include the perturbation on the particles PIY useEF’:O in Eq. (1) , ,
due to the presence of a single wall. For the confined systems Consider now the case of charged colloidal spheres dif-
we are interested ifcf. Fig. 1), one has to account for an- fusing between two strongly repelling charged parallel
other perturbation due to the second wall. At first sight, thePlates. We follow the work of Chang and Honfel, and
use of an image force method now seems to be less attracti@@Proximate the direct particle interactions by an effective
because of the occurrence of an infinite number of images ifvo-dimensional Yukawa potential of the form

case of two walls. Therefore, Durlofsky and Brajdii] de-

scribed wall effects by dividing each wall into boundary el- * - r=o
ements covered by a uniform distribution of point forces. ur)=y Z*%e* _ | r>g 8
Their method requires thus a large number of boundary ele- er e '

ments to obtain good numerical accuracy. As a consequence,
the computational cost becomes excessively large for a reavhere Z* is an effective particle charge in unit of the el-
sonable large number of particles in the simulation box. ~ ementary charge, € is the dielectric constant of the solvent,

To keep the computational effort manageable, in thisand « denotes the inverse screening length. The screening
work we merely superimpose the one-wall description giverparametel is essentially determined by the counterions dis-
in Eq. (3) to describe the case of two walls, i.e., we use  sociated from the charged plates, provided that the surface

charge density of the plates is sufficiently large. Thers
y N st csn simply given by
Fo= _,521 (RepruT (RZp)FU

SW 1 SW 2 K=—F, 9
+[(Ra\N)FU+(Ra\N)FU]5aB)'UB! (5) h\/E
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' ‘ " ‘ also show the Yukawa-type potentigr), according to Eq.
(8), for h=20 andZ* = 10°. Note that the Yukawa potential

— 2-dim. Yukawa; £=2c ) is more repulsive and of longer range, even for the rather
. a C=0.020; h=4c small effective charg@* = 10?, than the experimentally de-
e o C=0.035; h=2c termined potentials at the same plate spacing. We therefore
A * C=0.063; h=2c expect a quite different behavior of the corresponding radial
distribution functions. The attractive part of the experimen-
tally determined potential occurs for all concentrations con-
sidered atr/o~1.8, as reflected in the location, of the
principal peak ofg(r).

In Fig. 2, it can be seen that the experimentally deduced
u(r) remains finite for a range of distances<o lying
within the overlap region of two spheres, manifesting itself
in nonzero values of(r<o). This apparently unphysical
3 behavior ofu(r) andg(r) arises from the fact that in the

v/o experiment, the particles have been observed from top view,
_ o leading to apparent overlapping for> o due to buckling.
_ FIG. 2. Pair potentials in units of the thermal enerigyT, used  contrary to the experiment, our SD simulations are strictly
in the SD algorithm for plate spacinggo =2 and 4. Solid line: v, gimensional. For consistency, we have thus truncated in
two-dimensional Yukawa potential( = 10°) according to Eqs(g) our calculations the experimental potential fox o, with

and (9). Symbols: experimentally determined pair potentials fromthe nonoverlapping condition taken care of by the lubrication

25 -

05 r

Ref.[12]. forces.
leading to increased screening with decreasing plate separa-
tion. In the three-dimensional bulk case, the Poisson- D. Time evolution algorithm

Boltzmann cell m(_)del employed, €.g., by AIexgncﬁraI. The SD evolution equation for the particle trajectories is
[42] gives expressions for the 'effectlve chaggjee INerms  ,hiained from two successive integrations of EL).over a

of the_ bare on*e. For the cc_)nfmed systems con5|dgre_d herf-"fme stepAt, large compared with the momentum relaxation
we wil treat; € as an adju_stable parameter, as It is fre'time tg=M/67 na of the colloidal particles of mass, but
quently done in three-dimensional bulléstuocﬁés]. Typical small compared with the characteristic timg, with 7,

* H H ]

values sz. are located n the range 2010°. Expression > 75, over which the particle configuration changes signifi-
(9) for « is justified only within the range of validity of the

following approximations: first, the plates should be highlyc.amly' The character_|st|c time, can be es.t|mated bY the

) ' ) . 2 "7 time needed for an isolated particle to diffuse a distance
charged, which means that the colloidal particles remain es- val to its radiusa ie — 22D~ where D
sentially close to the midplane. Second, image-charge effec%qk i< th if ' .ff' v Ta Hici 0 f ; IO
induced by the walls are neglected, which can be justified & 1/67 72 is the self-diffusion coefficient of an isolated

N : particle in an unbounded fluid, anglis the shear viscosity of
only for Iarge_ values .Oh Vb, whe_rep—N/_A is the areal the suspending fluid. As a result of the twofold time integra-
number density of particles. We will occasionally refer to the

colloidal particles interacting by the effective pair otentialtion and coarse graining for>rg, the following finite-
. P ing by pairp difference equation is obtained @(At?) for the vectorAr
in Eg. (8) as Yukawa particles.

: : . . of the translational and rotation&-particle displacements
We are not concerned in this work with assessing the, . L )
during the time intervalAt [45]:

accuracy of various effective pair potentials discussed in the
literature to describe particle interactions in the presence of Ar=R7} FPAt+KgTV - REJAt+X(At) + O(At?).

walls. We merely use Eq(8) as a model potential for (10)
charged spheres to assess the importance of HI on the dy-

namics. Nevertheless, the static and dynamic SD predictiongere X(At) is an N-particle translational/rotational random
arising from this two-dimensional Yukawa potential will be displacement super vector due to Brownian motion, charac-
compared with results obtained from an experimentally deterized by a zero meatX)=0, due to isotropy, and the
duced pair potential. The latter was determined in an indirec¢ovariance

way by Acura-Campaet al. [12] using integral equation

methods for the case of quasi-two-dimensional suspensions <X(At)X(At)>=2kBTR;jAt, (11

of polystyrene spheres confined between two glass plates.

These authors accurately controlled the plate spacing usingwhere, as in Eq(6), dyadic notation has been used. In the
very small amount of larger polystyrene spheres as spacerSD simulation results discussed in this work, it is assumed
By determining the radial distribution functiom(r), by  for the reason of numerical tractability that the particles are
digital video microscopy, ActaCampaet al. managed to confined to diffuse in the midplane between the two parallel
extract an effective pair potential by employing the two-walls. For a purely two-dimensional diffusion problem with-
dimensional version of the hypernetted chain integral equaeut confining walls, the translational/orientational position
tion approximation(44]. The form of the so-determined ef- and velocity vectors (t) and U(t), respectively, reduce to
fective pair potential is shown in Fig. 2 for three different vectors of dimension I8, where each particle possesses two
area fractionsC=Nwo?/4A, and two plates separatiofis  translational and one rotational degrees of freedom. With
=20 and 4, as indicated in the figure. For comparison, we confining walls, each particle has now three orientational de-
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grees of freedom, resulting inNedimensional vectors(t), Do(h—)=Dy (16)
U(t), andX(t), and in a (N X5N)-dimensional resistance
matrix Rg, . and

In our SD simulations, typicallyN=200 particles are Do(h—0)=0, (17)

equilibrated in a square periodically replicated in the infinite

midplane[29,46. After equilibration, several thousand pro- \yherep, is the Stokesian diffusion coefficient in the three-
duction time steps are generated for calculating variougjimensional bulk case. Equatiéti7) is due to hydrodynamic
structural and diffusional properties. Since the pair potential,yrication forces, since the mobility of a sphere vanishes in
used in this work decay rather quickly, it is sufficient to Usecqonact with both walls, for the stick boundary conditions
the closest image condition. The accuracy of our SD simUy e in this work. Note thad,(h) becomes independent of

lation was tested for specific examples in comparison with, 54 equal tdD, when the HI's is with the walls are disre-

published simulation data. Having explained the model SYSgarded.

tems and the SD simulation scheme used in this work, in For timest<r,, W(t) of interacting particles increases

Sec. |ll we address the calculation of various propertiesyineary in time as quantified by the short-time self-diffusion
which provide useful information on the statics and dynam-.eficientd (h). For general reasonB(h) is smaller than
ics of quasi-two-dimensional systems. the valueDy(h) at infinite dilution. The short-time self-
diffusion coefficient is calculated by performing an equilib-
lll. CALCULATION OF STATIC AND DYNAMIC rium configurational average over the traC€r) of the
PROPERTIES translational-translationatt) part of the mobility tensor for a

Static pair correlations between spherical particles locateffPresentative particle according to

in the midplane are described by the lateral two-dimensional 1 N
pair distribution function Ds(h)=kBT<miEl Tr(RF—&)itit> , (18)
1/1 2
g(r)y=— N-Z o(r—ri+ry) ), (120  where a summation over aNl particles is used to lower
p '}J;jl statistical errors. The linear initial increase \f(t) is fol-

lowed by a sublinear time dependence originating from the
wherer; is the vector pointing to the center of sphérdhe  dynamic cage of next-neighbor particles. For long tintes
functiong(r) is closely related to the two-dimensional static > 7,, W(t) again grows linear in time with a slog®,(h)
structure factoiS(q) via the Fourier-Bessel transformation referred to as the long-time self-diffusion coefficient. This

coefficient is extracted from the long-time asymptotic behav-

s@=1+2mp | “drr(g(n)-3o(an) for ot Wiw). e
d
1 N 2 N 2 D (h)= IimaW(t). (19
:N<{i21 cogq-r;)| + 21 sin(q~ri)} > t>7

For any distancén> o, the following sequence of inequali-
(13)  ties holds:D,(h)<Dy(h)<Dy(h)<Dy=D(). Analogous
to Dg(o), Di(o) =0 due to lubrication forces.
Space-time correlations between colloidal spheres are de-
scribed by the van Hove functio®(r,t), defined for an
isotropic system by44]

Here J, is the zeroth-order Bessel function of the first kind,
and q is the modulus of the scattering vectqr pointing
parallel to the midplane.

A central quantity describing the self-diffusion of par-
ticles is the mean squared displacem@iSD) W(t), de- N

fined by G(r,t)=<%ij2_l S(r—ri(t)+r;(0)) ). (20

N
W(t)= _<£2 [ri(t)—ri(O)]2> ) (14) The functionG(r,t) gives the probability density of finding
2d \Ni=1 at timet>0 a colloidal particle a distanaeapart from the
origin, subject to the condition that a particle was located at
Herer;(t) is the position of particle at timet, andd=2 is  the origin at timet=0. The van Hove function is conve-
the spatial dimension of the system. In the limit of infinite njently separated, according to

dilution, i.e., for noninteracting particles¥(t) is a linear
function in time in the diffusive regime> rg, according to G(r,t)=G4(r,t)+Gy(r,t), (21)

W(t)=Dg(h)t. (15) into a self-parti=j and a distinct part#j. The self-part
Gy(r,t), is the time dependent conditional probability den-
The slopeDy(h) of the MSD is the free-particle self- sity that a particle suffers, during tinmte a displacement
diffusion coefficient which depends on the separatiope-  =|r(t)—r(0)|. At time t=0, Gq(r,0)=4(r), whereas
tween the two plates. The asymptotic behavioDgih) is  Gg(r,t—=)=G4(r —=,t)=1/A~0. Moreover,
given by 2m[odrrGg(r,t)=1. Likewise, G4(r,t) is the conditional
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probability density of finding at timéa particle a distance 4 r ,

apart from the location of another onetat0. For the dis- \

tinct van Hove function, Gy4(r,0)=pg(r), Gy(r,t—x) | —— SD; C=0363
=Gy(r—o,t)=p, and 27 [5drrGy(r,t)=N—1. The func- “ . MC

tions G4(r,t) and G4(r,t) are essentially the Fourier trans- I ) ---- SD; C=0.453 )
form pairs of the self-intermediate scattering functie(g,t) T\lx « MC

and of the distinct pas(q,t) — G(q,t) of the dynamic struc- \\\ ——- SD: C=0.544

ture factor,S(q,t), respectively. The functio®(q,t) is the % oL *\\ » MC i

key quantity determined in dynamic light scattering experi-
ments[34]. The dynamic structure fact®(q,t) is the time-
dependent generalization 8{q).

The influence of HI on the exponential short-time decay L
of S(q,t) is contained in the so-called hydrodynamic func-
tion H(q), defined by{34,47,48

N

o
-
[
w
~
(4]

H(@O= Do |12,

q-<RFa>f}-qem~<w> o

FIG. 3. Radial distribution function for a hard disk colloidal
_ Ds(h) T (N_l)kBT<q.(R—1)tt .qeiq-(rlfrz)> fluid at various area fraction€, as indicated. Lines: SD results.
Do(h) Do(h) FU/12 ’ Symbols: MC results of Ref49].

(22

HI's, which is equivalent to considering the limit bf— oo,
where§=q/q is a two-dimensional unit vector pointing par- At any rate, the presence of the neut_ral plates does not affect
allel to the confining walls. The 22 matrix (RI;&)Itjt is a 9(r), since static quantities are not influenced by HI's. Let

submatrix of the mobility matrbRy, corresponding to the US note that Bossis and Bradg9] also found excellent
translational motion of particlésandj. Without a HI acting agreement with existing MC results in their SD calculations

between the spherebi(q)=1, whereas aj dependence of of the g(r) for hard disks. We point-out that for all _results
H(q) is a signature of hydrodynamically interacting par- s_hown subsequer_ltly, the wall spacing has bleen fixel to
ticles. At large wave numbersH(q) reduces toH(q) =20, corresponding to a screening length«of*~0.9.

At In Fig. 4, we show SD results for the lateral radial distri-
~Dg(h)/Dy(h)<1, due to the strongly oscillating exponen- . i .
tial F:fxcgor 851 t)he right-hand side ong)(/122). g &xp bution functiong(r) of a monolayer of charged spheres with

area fraction C=0.063, confined between two parallel
charged plates. The solid line represents thegdD) for the
IV. RESULTS AND DISCUSSION experimental pair potential displayed in Fig. 2 for 20, in

We present and discuss here our SD results for chargegPmparison with corresponding experimental findings of
and neutral confined colloids. Consider first the radial distri-AcUna-Campaet al.[12]. As seen, the overall agreement be-

bution function, as determined using its definition in Eq.tween the experimental and S{(r) is excellent for dis-

(12). Being a static property, this function is not affected by
HI's. The time step we have chosen in our simulations is
At=10"37,, which is an appropriate choice for calculating

g(r) and the dynamic properties presented in this work. A
suitable choice oAt is crucial: a poor choice can result in an

unphysical particle overlapping, which one needs to avoid.
To check the performance of the SD algorithm, we have 1k
calculated theg(r) of a two-dimensional system of neutral

T T T

!
|
}

/\
hard disks, in comparison with Monte CarlC) results \ZB
obtained in Ref[49] for area fractions=0.363, 0.453, and
0.544. Note that these values fGrare much lower than the

0.5 |

maximal area fraction of hard disks at triangular close pack-
ing, given byC.,~0.907. For comparison, the packing frac- .
tion of hard disks at random close packing is given by
Ccp~0.82[50]. In Fig. 3, our findings forg(r) of hard
spheres are shown in comparison with MC data. After equili- 0 lesessess P . .
bration, we have calculated(r) using 15000 production 0 1 2 3 4 5
time steps. The agreement of the SD algorithm with the MC rlc

data is excellent, with the maximal deviation at contact being FiG. 4. Radial distribution functiong(r) for a monolayer of
less than 2%. This shows that the small amount of partiClQharged spheres &=0.063 between two Charged p|a’[es of sepa-
overlapping found in the SD simulations for the chosen timeration h=20. Comparison between experimental data fr)
step is quite acceptable. In order to reduce the computation&ken from Ref[12], and SD results using the Yukawa and experi-
effort for calculatingg(r), we have disregarded particle-wall mental pair potentials respectively.

¢ experiment
---- 2-dim. Yukawa; Z =10
—— SD with experimental u(r)
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FIG. 5. Normalized short-time self-diffusion coefficient for a
monolayer of charged spheres between two charged plates sep&]
rated byh=2¢, as a function of the area fractidd Comparison
between experimental data from REE2], and SD results with full
HI's.

FIG. 6. Mean squared displacemam|t) as a function of re-
ced time for Yukawa systems with full HI's and wighw HI’s,

for Z* =107 and 16. The solid line segment indicates the sldpg

of the MSD for a free particle in an unbounded three-dimensional
fluid; the dotted line is the slop@y(h) of the MSD for an isolated
free particle diffusing midplane between two walls separateth by

tancesr >1.40, demonstrating the good accuracy of the in- —oy

tegral equation method proposed in Rf2] for extracting
an effectiveu(r). The deviations irg(r) between SD simu-
lation and experiment at small distanges1.40 arises from comes increasingly slowed down with increasi@gcorre-
the apparent particle overlapping observed in top view digisponding to a monotonic decay B{(20). Note further that
tal imaging, as remarked already in Sec. Il C. Note that thdd4(2¢) at infinite dilution is smaller than the three-
positionr ,~ 1.860, where the principal peak ig(r) occurs, dimensional Stokesian diffusion coefficieby, since even
coincides with the primary minimum in the experimental an isolated particle is slowed down significantly by the hy-
u(r). This minimum delimits the onset of an effective par- drodynamic influence of the confining walls.
ticle attraction at intermediate distances. We next analyze the mean squared displacerié) of

For comparison, we further include in Fig. 4 the SD resultcharged colloidal particles interacting by the Yukawa-type
for g(r) using the purely repulsive Yukawa-type pair poten-pair potential of Eq(8), for two different effective charges
tial of Eq. (8), with a rather small valug* =10 of the Z*=10? and 18, with h=2¢ and C=0.063 kept fixed. A
effective charge number. Due to the longer-range tail in thevalue ofC=0.063 corresponds to a geometric mean particle
Yukawa-type u(r), which includes no attractive portion, distancer=p Y?~7.1s. SD results folW(t) in units of a2
there is rather poor agreement with the experimeg(a). are plotted in Fig. 6 versus the dimensionless tirfw . In
Since the Yukawa-type potential has no attractive part, it ighis figure, W(t) with full HI's is compared with the MSD
not possible to reduce the deviations with respect to the exwhere particle-particle HI's are disregardébe case op-w
perimentalg(r) significantly below the ones observed in Fig. HI). About 15x 10° production time steps were used to ob-
4 by adjusting the value of*. tain the MSD’s in Fig. 6. Let us first consider the casgaf

We now discuss the influence of HI on dynamical prop-HI without particle-particle HI. In this case, the short-time
erties. For this analysis, it is helpful to investigate at certainself-diffusion coefficient describing the initial increase in
instances the influence of the particle-particle(k¢fferred to ~ W(t) is equal to the diffusion coefficierdy(h) of an iso-
as p-p HI) and the particle-wall Hireferred to ap-w HI) lated particle(i.e., at C=0) diffusing under the hydrody-
separately. In th@-p HI case, with only particle-particle HI  namic influence of the walls. For minimal plate distarite
considered, the resistance tensor contribution of the walls is- o, Dy(o) =0, wheready(h) increases monotonically to-
excluded. This corresponds to the lirhit>co. In thep-w HI ward a three-dimensional bulk vali, with increasingh.
case, the friction tensor contribution@iz),lzﬁ in Eq.(5) are  Inclusion of p-p HI typically leads to a short-time self-
neglected. diffusion coefficientD4(h) somewhat smaller thaB(h).

Consider first the behavior of the short-time self-diffusion However, for the rather dilute Yukawa systems considered
coefficientD¢(h) of a monolayer of charged spheres as func-here,D4(h) is nearly equal t®y(h) (cf. Fig. 6).
tion of the area fractiorC. In Fig. 5, SD results oDg(h We next focus on a system of strongly charged particles
=2¢) versusC with bothp-p andp-w HI's included (referred ~ with Z* =10%. For this system, Fig. 6 reveals an interesting
to as full HI's) are compared with experimental results of observation with regard to the prevailing influence of far-
Acuna-Campaet al.[12]. In the SD simulations, the experi- field p-p HI on W(t). Far-field HI supports the escape of a
mentally determinedi(r) of Fig. 2 is used as static input. tracer particle out of its dynamic cage of next-neighbor par-
The SD findings foiD¢ are in good agreement with the ex- ticles, leading thus to an increaseWft) at intermediate and
perimental data. As expected, short-time self-diffusion belong times. This hydrodynamic enhancement of self-
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FIG. 7. Normalized long-time self-diffusion coefficieBt(20) FIG. 8. Reduced self and distinct patisset of the van Hove

vs C for a monolayer of spheres between two parallel plates. Opegorrelation functions for a strongly charged Yukawa system with

symbols: hard sphere$iS). Filled symbols: charged spheré8S)  z* =1, at timet=0.35r,; C=0.0623 anch=2¢. Inset: reduced

interacting by a two-dimensional Yukawa potential with an effec- gistinct partGy(r,t)/p (symbolg and g(r) (dotted ling. Further

tive charge numbez* = 10°. shown is the Gaussian approximation @f(r,t)/p for full HI's
(dashed lingand no HI's(solid line).

diffusion for systems of strongly repelling charged particles

should be contrasted with hard-sphere-like dispersionsesponding to 350 and 3500 time steps, with well pro-

where HI's lead to a slowing down of self-diffusion. The nounced undulations iG4(r,t) and G4(r,t), even for the

reason for the qualitatively different diffusional behavior of later of the two times. We address, as in Fig. 6, the case of

hard-sphere-like systems is due to the fact that the hardstrongly charged particles witd* =10° and area fraction

sphere dynamics is strongly influenced by near-field HI's,C=0.063. The tim&=0.35r, corresponds, according to Fig.

since the radial distribution function attains its maximum ate, to the initial short-time linear increase f(t) with slope

or near contact distance (cf. Figs. 3 and 4 foiz* =10%).  Dy(20), whereas the timet=3.5r, is located in the

Contrary to the case witlZ*=10°, the system of more intermediate-time regime characterized by a sublinear in-

weakly charged particles a* =107 and a peak location of crease ofW(t).

g(r) at a distancer,~1.80 substantially smaller than, The normalized self-pafB4(r,t)/p of the van Hove func-

shows a hydrodynamic reduction @f(t). Whether hydro- tion, at the short time&=0.35r,, is shown in Fig. 8, as

dynamic enhancement/reduction Wf(t) is observed thus calculated in the SD scheme for the three cases where full

depends on the ratio,(Z*)/r. HI, particle-wall HI and particle-particle HI are included, and

The long-time self-diffusion coefficients of confined further for the case where HI's are completely disregarded.
Yukawa particles wittz* =10° and of hard spheres as func- Further shown in the figure are results Bg(r,t) with full
tions of the area fraction are shown in Fig. 7, for the twoandp-p HI's obtained using the two-dimensional form of the
cases of full angb-w HI's. As seen, inclusion gp-p HI gives  Gaussian approximatiofGA) for G(r,t), i.e.,[51,57,
rise to a visible increas@ecreaseof D, for highly charged
(neutra) colloidal spheres. An enhancement Bf was al-
ready theoretically predicted in Ref[26] for three-
dimensional suspensions of deionized charge-stabilized dis-
persions, and meanwhile observed experimentdfty].  Fort=0.35r,, W(t)~Dy(20)t, as can be seen from Fig. 6.
Hydrodynamic enhancement of self-diffusion was furtherAccording to Fig. 8, Eq(23) is an excellent approximation
observed in experiments and computer simulations on dilutéor ther dependence oB(r,t) both with and withoutp-w
quasi-two-dimensional superparamagnetic colloids confinetfll considered. This is an expected observation since non-
to a liquid-gas interface and exposed to a perpendicularljsaussian corrections tGg(r,t) are very small at shorter
oriented magnetic field. The superparamagnetic particles iimes. The GA allows one to relate the time dependence of
these quasi-two-dimensional systems interact via strongly reGs(r,t) to the corresponding time dependenceVdft) de-
pulsive dipolar magnetic forcd@4]. Our SD results demon- picted in Fig. 6. According to its definitiorG(r,t) is ini-
strate that similar effects can be also observed in systems tifilly a sharply peaked function aroume=0, spreading out
charged particle monolayers confined between paralléh time essentially due to self-diffusigief. Figs. 8 and 9 for
(glass plates. t/7,=0.35 and 3.5, respectivelyThe Gaussian approxima-

In the following, we discuss the influence of HI's on the tion becomes less accurate at the intermediate tifag
space-time particle correlations of confined two-dimensionak 3.5 (cf. Fig. 9, where in particular the value oB4(r
Yukawa systems, as quantified by the van Hove correlatior=0,t) with full HI's is underestimated. This finding is in
functions nondimensionalized by the areal dengityTwo  agreement with the general observation that non-Gaussian
correlation timeg = 0.35r, andt=3.57, are considered, cor- contributions are most pronounced at intermediate times

Gy(r,t AN, (23)

)= 22w ©
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FIG. 9. Same as in Fig. 8, but for a longer correlation time
=3.57,.

[52]. Notice the strong decay of particle correlations in going
from Fig. 8 to Fig. 9, with the correlation time increased by
a factor of 10.

The self-partG4(r,t) without HI and withp-p HI decays
faster as a function of time than for the cases with full HI and
particle-wall HI considered. The self-diffusion of a particle is
hydrodynamically slowed down in the presence of walls
[e.g.,Dg(20)<Dy], which is the reason why the magnitude
of G4(r,t) with walls effects includedi.e., for the cases of
full HI and p-w HI) is larger at small distancesthan for the
nonconfined cases gi-p HI and no HI. That the smal-
behavior ofG4(r,t) is strongly influenced by the walls is
also seen for short times from the Gaussian approximation
form in Eqg. (23) by noting that W(t)~Dg(h)t for t
=<0.35r, together withD¢(h)~D, without HI and D¢(h)

<Do Wi_th p-w H_I' ) fractions as indicateda) Hard spheres between neutral platés.
The intersection of the two sets of curves 8g(r,t) in  yykawa particles wittz* = 16°, at the same area fractions agéh

Figs. 8 and 9 with and without particle-wall HI considered ote thatS(q) andH(q) can be determined only for a discrete set
(filled and open symbolsrespectively, occurs roughly &t of wave numbersj=27n/A with ne{1,2,..}, due to the use of
'\"’*(4DS(20')t)1/2. As discussed above in the context of Flg periodic boundary conditions.
7, self-diffusion is slightly enhanced f@* =10° due top-p
HI. As a consequence, there is a slightly larger probabilitygiven t is expected to be more pronounced when the
for particles withoup-p HI to be found close to their starting diffusion-enhancing influence @fp HI is included. This ex-
positionr =0, whereas particles with full HI are more likely pectation is confirmed by the SD results @(r,t) with full
found at longer distances=(4Dy(20)t)"2 This explains HI and p-w HI shown in the insets of Figs. 8 and 9, for
why the values ofG4(0t) in Figs. 8 and 9 with full HI are t/7,=0.35 and 3.5 respectively. In Figs. 8 and 9, it is indeed
slightly smaller than the ones wiirw HI only. observed that the shape &f(r,t) with full HI is mainly
The zero-time limit of the reduced distinct van Hove determined byp-p HI. In comparison,p-w HI has only a
function, Gy(r,t)/p, is equal to the radial distribution func- minor effect onGy(r,t), giving rise to a somewhat slower
tion g(r), the latter being independent of HI's. The SD resultdecay of interparticle correlations.
for g(r) with Z* =10® is included in the inset of Fig. 8. The In the final part of this section, we analyze the behavior of
principal peak ofg(r) has a value of 3.4, and is located at the hydrodynamic functiofi(q) introduced in Eq(22). For
rn=~3.60. The undulations inG4(r,t)/p are progressively comparison, we first discuss the behavior of the correspond-
smeared out im as time progresses, witBy(r,t)/p—1 as ing in-plane static structure fact@®(q), as defined in Eq.
t—o. The decay of two-particle correlations described by(13). SD results for the static structure factor of hard spheres
Gq4(0;t) progresses initially very strongly, as can be seen irand of Yukawa particles a* =10° are displayed in Figs.
Fig. 8 by comparingg(r) with G4(r,t=0.35r,)/p. While  10(a) and 1@b) respectively, for three different area fractions
the p-p HI contribution is of minor importance regarding as indicated in Fig. 1@). Due to the longer-range Yukawa
G(0}), it strongly affects the shape @4(r,t), which de- type repulsion, the oscillations in tH&{q) of charged par-
scribes the space-time correlations of two distinct particlesticles are substantially more pronounced than for hard
The smearing out of undulations @y(r,t) for Z*=10*and  spheres at the same value ©f The suspensions of Fig. 10

=
D
%)

FIG. 10. Static structure factd®(q) for three different area
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‘ ‘ ‘ ‘ ‘ ‘ tatively different from that of hard spheres, sindéq,,) is
now larger than 1 and increases monotonically witficf.

. C=0.0628 | Eig. 1.1(b)]. An increase irH(qm) for incrgasing concentra-

o C=01000 (a) tion is further o.bserved in three-dlmensional charge-

. C=01500 stabilized suspensiorg7], as accurately described by theo-
retical calculations oH(qg) based on a pairwise additive HI
approacH 26].

There is, however, a striking difference in the snwll-
behavior ofH(q) between three-dimensional and quasi-two-
dimensional colloids. Whereald (q~0)<1 in the three-
dimensional case, the present SD results reveal a strong in-

° crease oH(q) whenqg=0 is approached, suggestikt(q)
[ e L I R L LR to diverge wheng—0. The strong increase in the two-
SSUOPRPRRLE T dimensionaH(q) for q— 0 is due to the lateral confinement
05 ‘ ‘ , , , ‘ ‘ with no off-plane motion of the particles allowed. For a
1 2 3 4 5 6 7 8 qualitative discussion of the smajlbehavior ofH(q), we
q0 follow Banchio[59] in neglecting wall effects, i.e., we con-

sider the casén— and use for simplicity the point-force
(i.e., Oseepapproximation 48]

ksT(Rg()ij=Do [1+FF] (24)

3/a
5ij1+(1_5ij)z F

for the mobility tensor, withr =r; —r; andf =r/r. Substitut-
ing this approximation into Eq22) leads to the result59]

Jl(qr)i

qr
(25)

2Jo(qr)—

3 C C %d
H(q)—1+3q—a+3;J0 rfg(r)—1]

for the two-dimensionaH(q), with a first-order pole ag
=0 of strength proportional to the area fracti@GnSince the
pole atg=0 in Eq. (25) is due to the leading far-field HI
contribution, it can be expected to constitute the dominant
small-q part of H(g) at all concentrations, independently of
FIG. 11. Hydrodynamic functionbi(q) corresponding to Fig. the pair potential. From the experimental work of R¢65],
10, with a plate separatidn=20¢. (a) Hard spheres between neutral [61] on a quasi-two-dimensional semidilute fluid of hard
plates.(b) Yukawa particles witiz* =10°. Further shown are the disks with attached polynethyl-methacrylatebrushes, there
asymptotes }3C/q0' aCCOfding to Eq(25), for C=0.063 (tthk is indeed Strong evidence of the divergencd—dti) when
solid line), C=0.1 (thick dashed ling and C=0.15 (thick dash- q—0.
dotted ling. In Figs. 11a) and 11b), we include graphs of the singular
asymptotic term ¥ 3C/qo of H(Qg). As seen, the smati-
are in the fluid regime for all values &f considered. This is part Of the SD—i(q) is indeed We” described by this Singuiar
in agreement with the generalized Hansen-Verlet criteriofform even in the presence of the walls. The hydrodynamic
fOI’ tWO'dimenSional ﬂu|di53,54}|, Wh|Ch states that a f|UId inﬂuence of the Wa”s On-i(q) becomes manifest oniy at
freezes when the principal peak heig¥{y,) of S(q), lo-  intermediate values afi, where it gives rise to a small in-
cated atg=(qy,, exceeds 5.25-5.75 in magnitude. crease irH(q). The smallg regime where the singular con-
Results for the hydrodynamic functioki(q) of hard  tribution in Eq.(25) dominates is restricted to smaller wave

spheres and Yukawa particles zit = 10° corresponding t0  numbers in case of charged particle§ Fig. 11(b)].
Fig. 10 are included in Fig. 184 and Fig. 11b), respec-

tively. Note that the location of thesecondarymaximum of
H(q) is very close to the corresponding locatiam,
=2mx/r,, of the principal peak ofS(q). In case of hard In this paper, we have presented and analyzed Stokesian
spheresr,= . The undulations irH(q) become larger for dynamics computer simulation results for static and dynamic
hard spheres, with an increasing area fractibriThe local  quantities describing the lateral structure and diffusion of
maximum of H(q) at g=q,, is smaller than one and de- colloidal particles forming monolayers confined in between
creases with increasing, with q,, shifted to slightly larger two parallel plates. Both monolayers of neutral and of
values ofg. This qualitative behavior dfi(q) is quite simi- charged colloidal spheres have been considered. The pair
lar to that observed for the hydrodynamic function of three-forces between charged spheres have been described by an
dimensional suspensions of colloidal hard sphé¢f&s-58. approximate model potential due to Chang and Hone, and by
The g dependence of thd(q) for Yukawa systems is quali- an empirically determined pair potential showing an attrac-

V. CONCLUSIONS
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tive part at intermediate distances. Particular focus was givearising from particle-particle and particle-wall HI's. It was
to distinguishing particle-particle HI effects from the hydro- demonstrated that the SD method described in this work can
dynamic influence of the walls. Using the experimentallybe successfully used for quantitative predictions of diffu-
determinedu(r), SD simulation results fog(r) and for the  sional properties of confined suspensions for a large variety
short-time  self-diffusion coefficientDs(2¢) have been Of interaction potentials. The SD study presented in this
shown to be in good agreement with the experimental findWork has shown that the consideration of HI effects is essen-
ings of Actira-Campaet al. For hard spheres and for mod- tidl for a quantitative interpretation of experimentally deter-
estly charged Yukawa particles of effective charge numbefined dynamic properties. . _

Z* =107, from our SD calculations we have found a modest _FOr the purpose of this paper, and to limit the numerical
slowing down (reduction of self-diffusion at intermediate €ffort, we have disregarded the possible motion of the par-
and long times. In contrast, hydrodynamic enhancement dicles out of the midplane towards the confining walls. This
self-diffusion [i.e., of D, and W(t=7,)] is observed for Off-Plane motion would give rise to anisotropic diffusion and
strongly repelling particles witiz* =10°, generalizing a bugkled layers. The modlflgatlon_ of I_atera! dn‘fursmnal_prop-
corresponding  finding for three-dimensional charge-ert'es due to off-plane particle diffusion will be investigated

stabilized systems to confined quasi-two-dimensional sys future work. In subsequent studies, we will also investi-
tems. gate the diffusion in binary quasi-two-dimensional systems

A detailed SD analysis was given of various HI contribu-©f Small and large colloidal particles, with the large particles
tions to the self-part and to the distinct part of the van HoveP€cOming immobilized through contact with the confining
correlation function of Yukawa particles. We have shownP!at€s. Such systems have been studied experimentally in
thatG(r,t) is well described, for the systems studied in this R&f-[12] Another interesting feature we are currently inves-
work, by its Gaussian approximation form. This demon-tigating using SD is related to a possible dynamic scalln.g of
strates the smallness of non-Gaussian corrections in the fluff® dynamic structure factor and of the van Hove functions
regime even for intermediate times. It was further shown thafor Systems with strong and long-range particle repulsions
the shape ofG4(r,t) is mainly determined by the particle-
particle HI contribution. A strong increase in the magnitude
of the two-dimensional hydrodynamic functieéi(q) is pre-
dicted at smally, as confirmed by analytical point-force ap-  We are grateful to J. L. Arauz-LaréJniversity of San
proximation results. Similar to the three-dimensional caseluis PotoS) for many helpful discussions, and for providing
for H(q) we observe a qualitatively different behavior nearexperimental data on the effective interaction potentials. We
its peak positiong,,, in cases of hard spheres and stronglyacknowledge helpful discussions with A. J. Bancl@ali-
repelling Yukawa particles, respectively fornia Institute of Technology, Pasad¢nand G. Bossis

It was not our intention to provide an exhaustive analysigUniversity of Nicg, and we thank R. Kleif{University of
of structural and diffusional properties of confined quasi-Konstanz for his support and interest in this work. Financial
two-dimensional colloids. Our aim was instead to exemplifysupport by the Deutsche Forschungsgemeins¢B&B 513
the power of SD simulations by analyzing interesting effectss gratefully acknowledged.
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