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Stokesian dynamics study of quasi-two-dimensional suspensions confined
between two parallel walls

Raphae¨l Pesche´* and Gerhard Na¨gele
Fachbereich Physik, Universita¨t Konstanz, Postfach 5560, D-78457 Konstanz, Germany

~Received 10 April 2000!

We present a Stokesian dynamics~SD! computer simulation study of the static and dynamical properties of
a monolayer of spherical colloidal particles restricted to diffuse in the midplane between two parallel walls. SD
simulations account for hydrodynamic interactions~HI’s! among the particles, and between particles and walls.
Three different types of systems are studied: first, a monolayer of neutral spheres and neutral hard walls;
second, particles interacting by a repulsive Yukawa-type potential of range depending on the wall separation.
As a third system, the interesting case of charged particles between charged parallel walls with a longer-range
attractive part in the pair potential is investigated, using the experimentally determined effective pair potential
of Acuña-Campaet al. @Phys. Rev. Lett.80, 5802 ~1998!#. Various measurable quantities are calculated in
dependence of the particle concentration and the wall distance: short- and long-time self-diffusion coefficients,
radial distribution functions and static structure factors, hydrodynamic functions, mean squared displacements,
and van Hove real-space correlation functions. We assess the importance of HI’s by comparing our results with
simulation results where HI’s are fully or partially disregarded. Some of our results are also compared with
experimental data, and good agreement is found. Remarkable effects are investigated, like the hydrodynamic
enhancement of self-diffusion for the case of strongly charged particles, and the strong increase of the hydro-
dynamic function at small wave numbers. ©2000 The American Physical Society.

PACS number~s!: 82.70.Dd, 05.10.Gg, 05.40.Jc, 02.70.Lq
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I. INTRODUCTION

The physical properties of colloidal suspensions un
conditions of significant confinement have attracted con
erable interest. This interest is due not only to the pract
importance of such systems, but also to many fundame
physical questions raised for these systems within the ac
field of colloid physics. At present, there is strong theoreti
interest in the physics of quasi-two-dimensional suspensi
One area of intense research is concerned with the natu
two-dimensional melting, where the type of order that dist
guishes a solid phase from a liquid phase is qualitativ
different from that in a three-dimensional bulk system@1–5#.
According to the Kosterlitz-Thouless-Halperin-Nelso
Young ~KTHNY ! theory @6–10#, two-dimensional solids
melt via two successive dislocation unbinding and discli
tion unbinding transitions through an intermediate so-ca
hexatic phase. The question of whether the KTHNY tran
tion scenario applies to quasi-two-dimensional colloids w
long-or short-range interactions is still under debate@1,11#.

Another field of intensive research is the determination
effective pair potentials acting between charged spher
colloidal particles confined between two glass plates@12,13#.
Recent experiments performed with real-space video mic
copy imaging methods@12–17# suggest that colloidal par
ticles attract each other at intermediate distances. This q
surprising finding seems to conflict with the electrostatic
pect of the well-known Derjaguin-Landau-Verwey-Overbe
~DLVO! theory@18# of charge stabilization. Indeed, from th
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solution of the nonlinear Poisson-Boltzmann equation
two identical colloidal particles, only repulsive forces a
obtained@19#. The linearized electrostatic part of the DLVO
pair potential is of Yukawa type, with a range determined
the Debye-Hu¨ckel screening length. At present, to o
knowledge there is no theory at hand which determines
effective pair potential in agreement with the experimenta
observed attractions.

Based on the linearized Poisson-Boltzmann equat
Chang and Hone@3# derived a repulsive pair potential wit
screening length depending on the distance between the
parallel planes confining the suspension. This approxim
pair potential was used subsequently by Lo¨wen @20#, and
Löhle and Klein @21# in theoretically studying the micro
structure and dynamics of quasi-two-dimensional Yuka
systems. In the Brownian dynamics~BD! study of Löwen,
the effect of hydrodynamic interactions~HI’s! was com-
pletely disregarded.

While static properties are determined only by the effe
tive pair potential, dynamic properties are also strongly
pendent on solvent-induced HI’s. The influence of HI’s c
be expected to be stronger in the quasi-two-dimensional c
than in three-dimensional bulk suspensions, since the
ticles also act hydrodynamically with each other via the co
fining walls. Consequently, proper treatment of HI’s is
essential ingredient for quantitative and even qualitative
scriptions of the particle dynamics. Due to the presence
confining planes and the long-range nature of HI’s, this i
very complicated many-body problem. For this reason,
much analytical work has been done so far. One exam
was given in the work of Lobry and Ostrowsky@22#, where
diffusion of an isolated colloidal sphere perpendicular to t
parallel walls was investigated using a semianalytical tre
ment in comparison with experimental data. Only the lead
5432 ©2000 The American Physical Society
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PRE 62 5433STOKESIAN DYNAMICS STUDY OF QUASI-TWO- . . .
far-field part of HI’s is considered in this work, which be
comes a poor description when the particle is close to a w

A BD simulation study of charge-stabilized colloids b
tween parallel walls, with HI effects neglected, was p
formed by Nuesser and Versmold@23#. Their simulation re-
sults are in qualitative accord with video microsco
experiments. That HI’s are of primordial importance even
the dynamics of dilute quasi-two-dimensional systems
particles with long-range repulsive interactions was dem
strated in a BD study by Rinnet al. @24#. These authors
found excellent agreement of their BD results with cor
sponding experimental data of Ref.@25# on superparamag
netic particles located in a liquid-gas interface. The auth
of Ref. @25# included the pairwise additive leading far-fie
part of HI’s into their BD algorithm, reproducing in particu
lar the experimentally observed hydrodynamic enhancem
of long-time self-diffusion. A corresponding enhancement
long-time self-diffusion in charge-stabilized thre
dimensional suspensions was predicted theoretically
Nägele and Baur@26#, and experimentally verified subse
quently@27#. While it is sufficient to account for the far-field
part of HI’s in the case of dilute suspensions of stron
repelling particles without confining walls, the many-bo
aspect of HI’s is important in the presence of two narr
walls, or when the particle repulsion is of shorter range. T
strong influence of HI’s in confined systems is partially d
to the reduced hydrodynamic mobility of a particle diffusin
close to a wall. For these theoretically demanding syste
many-body HI’s including lubrication effects have to be a
counted for. Lubrication effects arise when two spheri
particles or a particle and a wall are near contact: for s
boundary conditions the mobility for relative motion goes
zero at contact, due to strong lubrication stresses require
expel the fluid from the thin gap between the surface po
of closest approach@28#.

In this paper, we present calculations of static and,
particular, dynamic properties of wall-confined quasi-tw
dimensional systems of interacting colloidal particles usin
Stokesian dynamics~SD! @29–33# simulation technique. This
powerful method can be applied to a large variety of coll
dal problems where many-body hydrodynamic interactio
effects need to be accounted for within good accuracy.
restrict our analysis to the study of lateral diffusion in
monolayer of interacting colloidal spheres located in
midplane between the confining walls. For the purpose
this paper, we disregard the effect of an externally app
shear flow, which can be also studied with SD calculatio
@30#.

The paper is organized as follows: Sec. II is devoted t
brief description of the SD numerical method by address
particularly the geometry, the pair potentials, and the hyd
dynamic forces employed in this work. Two cases of late
diffusion in quasi-two-dimensional colloids are considere
first, neutral spheres between neutral parallel walls and,
ond, charge-stabilized spheres confined by parallel cha
walls. For the latter case, two different pair potentials
analyzed: an approximate Yukawa-type potential due
Chang and Hone@3#, and a potential including an attractiv
part at intermediate distances, as determined experimen
by Acuña-Campaet al. @12#. A discussion of various static
and dynamic properties calculated with the SD method
ll.
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given in Sec. III. Our SD results are presented and analy
in Sec. IV, partially in comparison with experimental da
and earlier simulation results. Our final conclusions are c
tained in Sec. V.

II. MODEL SYSTEMS AND STOKESIAN DYNAMICS
METHOD

Let us considerN identical rigid spherical particles o
diameters suspended in an incompressible Newtonian flu
of viscosity h. The particles are allowed to diffuse only i
the midplane between two parallel plates, a distanceh sepa-
rated from each other, that confine the system in the tra
verse direction~cf. Fig. 1!. While the motion of the fluid is
governed by the stationary and linearized Navier-Sto
equation@28#, the particle motion is described by the coupl
N-body Langevin equation:

m•

dU

dt
5FH1FB1FP. ~1!

Herem is the generalized mass/moment of inertia matrix
dimension 6N36N in a three-dimensional bulk system, an
U is the velocity supervector of dimension 6N, with the
translational and rotational velocities of theN spheres as its
components. The 6N-dimensional force/torque vectorsF
consist of three different force contributions: the first cont
bution FH represents the hydrodynamic forces/torques
erted on the particles. These forces/torques act between
particles in an indirect way through the intervening flui
The second contributionFB represents stochastic force
torques related to Brownian motion. Finally, the determin
tic contribution FP is due to nonhydrodynamic potentia
forces, i.e., direct interparticle forces or external body fo
fields like gravitation. Further details about these forces
given in the following subsections.

A. Hydrodynamic interactions

For the case of small Reynolds number flow which a
plies to colloidal dynamics@34#, the hydrodynamic forces
torques exerted on the particles via the intervening fluid
instantaneously and linearly related to the translation
rotational particle velocities relative to the fluid through t
generalized Stokes law:

FH52RFU~rN!•U. ~2!

The matrix RFU , which is a 6N36N matrix for a three-
dimensional system, is called the resistance matrix. It
pends on the configurationrN of the centers of allN spheres.
The inverseM5RFU

21 of the resistance matrix is known a
the mobility matrix. We emphasize that these two matric

FIG. 1. System geometry.
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5434 PRE 62RAPHAËL PESCHÉAND GERHARD NÄGELE
account for HI’s between the particles in the presence of
two planes. Hence we need the generalization of the re
tance matrix elements for an unbounded suspension~cf. Ref.
@30#! to the more complicated situation where walls a
present. The authors of Ref.@35# performed SD simulations
of colloids in the presence of a single plane. The no-s
boundary conditions at the planar wall were handled in t
work by introducing a set of image singularities. The pre
ence of the wall modifies not only two-body HI’s betwee
pairs of spheres but also the motion of a single sphere w
corresponds to a self-interaction effect between particle
wall. To be specific, the hydrodynamic force/torqueFa

H on a
particlea moving with translational/rotational velocityUa is
given by

Fa
H52 (

b51

N

@~Rab
SS!FU1dab~Ra

SW!FU#•Ub . ~3!

Here the resistance tensor (Rab
SS)FU includes the sphere

sphere HI modified by the presence of a wall. The quan
(Ra

SW)FU is the resistance tensor describing the se
interaction of a single particlea through the wall. The resis
tance tensors appearing in Eq.~3! were determined in Refs
@36–39#, and will thus not be reproduced here.

The resistance tensors are commonly approximated
such a way that both many-body far-field interactions a
lubrication forces are accounted for@30#. The far-field two-
body interactions between pairs of spheres are approxim
by the far-field mobility matrixM`. The lubrication forces
are introduced in a pairwise additive fashion by adding to
resistance matrix (M`)21 a two-body resistance matri
(R2b)FU . To avoid double counting of the far-field part, th
far-field two-body interactions described by (R2b

` )FU are
subsequently subtracted. As a result,RFU is approximated by

RFU'~M`!211~R2b!FU2~R2b
` !FU . ~4!

This general approximation procedure forRFU was shown to
give excellent results under many circumstances@30,40#. The
matrices in Eq.~4! include the perturbation on the particle
due to the presence of a single wall. For the confined syst
we are interested in~cf. Fig. 1!, one has to account for an
other perturbation due to the second wall. At first sight,
use of an image force method now seems to be less attra
because of the occurrence of an infinite number of image
case of two walls. Therefore, Durlofsky and Brady@41# de-
scribed wall effects by dividing each wall into boundary e
ements covered by a uniform distribution of point force
Their method requires thus a large number of boundary
ments to obtain good numerical accuracy. As a conseque
the computational cost becomes excessively large for a
sonable large number of particles in the simulation box.

To keep the computational effort manageable, in t
work we merely superimpose the one-wall description giv
in Eq. ~3! to describe the case of two walls, i.e., we use

Fa
H52 (

b51

N

„~Rab
SS!FU

1 1~Rab
SS!FU

2

1@~Ra
SW!FU

1 1~Ra
SW!FU

2 #dab…•Ub , ~5!
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where the superscripts 1 and 2 are used as labels of
corresponding walls. The two-wall approximation in Eq.~5!
amounts to the neglect of higher order images. The appr
mation introduced in this way is expected to be reasona
good for closely spaced walls, since HI effects are th
dominated by the shorter-range parts.

B. Brownian forces

The stochastic forceFB in Eq. ~1! arises from Brownian
motion driven by the thermal bombardment of the solve
molecules. Its statistical properties are determined for an
tropic system by the zero mean̂FB&50, and by the
fluctuation-dissipation theorem

^FB~0!FB~ t !&52kBTRFUd~ t !, ~6!

wherekB is Boltzmann’s constant, andT denotes the abso
lute temperature. The brackets^¯& refer to an equilibrium
ensemble average. Note that, according to Eq.~6!, correla-
tions in the random force fluctuations can be considered
decay infinitely fast on the time scale where a significa
change in the particle configuration occurs. This fact is
pressed by the delta functiond(t) on the right hand side o
Eq. ~6!.

C. Nonhydrodynamic forces

The determination of appropriate pairwise additive dire
forces acting between the particles in a quasi-tw
dimensional system is a nontrivial task. For the case of n
tral hard spheres confined to the midplane between two
allel neutral walls, the exact pair potential is given by

u~r !5H `, r ,s

0, r .s,
~7!

wheres is the particle diameter, andr is the lateral center-
to-center distance of two spheres. For this case, lubrica
forces included inFH through the resistance matrix preve
particles from coming into contact. As a result, we can si
ply useFP50 in Eq. ~1!.

Consider now the case of charged colloidal spheres
fusing between two strongly repelling charged para
plates. We follow the work of Chang and Hone@3#, and
approximate the direct particle interactions by an effect
two-dimensional Yukawa potential of the form

u~r !5H `, r ,s

Z* 2e2

er
e2kr , r .s,

~8!

where Z* is an effective particle charge in unit of the e
ementary chargee, e is the dielectric constant of the solven
and k denotes the inverse screening length. The screen
parameterk is essentially determined by the counterions d
sociated from the charged plates, provided that the sur
charge density of the plates is sufficiently large. Thenk is
simply given by

k5
p

hA2
, ~9!
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leading to increased screening with decreasing plate sep
tion. In the three-dimensional bulk case, the Poiss
Boltzmann cell model employed, e.g., by Alexanderet al.
@42# gives expressions for the effective chargeZ* e in terms
of the bare one. For the confined systems considered h
we will treat Z* e as an adjustable parameter, as it is f
quently done in three-dimensional bulk studies@43#. Typical
values ofZ* are located in the range 102– 104. Expression
~9! for k is justified only within the range of validity of the
following approximations: first, the plates should be high
charged, which means that the colloidal particles remain
sentially close to the midplane. Second, image-charge eff
induced by the walls are neglected, which can be justifi
only for large values ofhAr, where r5N/A is the areal
number density of particles. We will occasionally refer to t
colloidal particles interacting by the effective pair potent
in Eq. ~8! as Yukawa particles.

We are not concerned in this work with assessing
accuracy of various effective pair potentials discussed in
literature to describe particle interactions in the presence
walls. We merely use Eq.~8! as a model potential fo
charged spheres to assess the importance of HI on the
namics. Nevertheless, the static and dynamic SD predict
arising from this two-dimensional Yukawa potential will b
compared with results obtained from an experimentally
duced pair potential. The latter was determined in an indir
way by Acuña-Campaet al. @12# using integral equation
methods for the case of quasi-two-dimensional suspens
of polystyrene spheres confined between two glass pla
These authors accurately controlled the plate spacing usi
very small amount of larger polystyrene spheres as spac
By determining the radial distribution function,g(r ), by
digital video microscopy, Acun˜a-Campaet al. managed to
extract an effective pair potential by employing the tw
dimensional version of the hypernetted chain integral eq
tion approximation@44#. The form of the so-determined e
fective pair potential is shown in Fig. 2 for three differe
area fractionsC5Nps2/4A, and two plates separationsh
52s and 4s, as indicated in the figure. For comparison, w

FIG. 2. Pair potentials in units of the thermal energy,kBT, used
in the SD algorithm for plate spacingsh/s52 and 4. Solid line:
two-dimensional Yukawa potential (Z* 5102) according to Eqs.~8!
and ~9!. Symbols: experimentally determined pair potentials fro
Ref. @12#.
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also show the Yukawa-type potentialu(r ), according to Eq.
~8!, for h52s andZ* 5102. Note that the Yukawa potentia
is more repulsive and of longer range, even for the rat
small effective chargeZ* 5102, than the experimentally de
termined potentials at the same plate spacing. We there
expect a quite different behavior of the corresponding rad
distribution functions. The attractive part of the experime
tally determined potential occurs for all concentrations co
sidered atr /s'1.8, as reflected in the locationr m of the
principal peak ofg(r ).

In Fig. 2, it can be seen that the experimentally dedu
u(r ) remains finite for a range of distancesr ,s lying
within the overlap region of two spheres, manifesting its
in nonzero values ofg(r ,s). This apparently unphysica
behavior ofu(r ) and g(r ) arises from the fact that in the
experiment, the particles have been observed from top v
leading to apparent overlapping forh.s due to buckling.
Contrary to the experiment, our SD simulations are stric
two dimensional. For consistency, we have thus truncate
our calculations the experimental potential forr ,s, with
the nonoverlapping condition taken care of by the lubricat
forces.

D. Time evolution algorithm

The SD evolution equation for the particle trajectories
obtained from two successive integrations of Eq.~1! over a
time stepDt, large compared with the momentum relaxati
time tB5m/6pha of the colloidal particles of massm, but
small compared with the characteristic timeta , with ta
@tB , over which the particle configuration changes sign
cantly. The characteristic timeta can be estimated by th
time needed for an isolated particle to diffuse a distan
equal to its radius a, i.e., ta5a2/D0 , where D0
5kBT/6pha is the self-diffusion coefficient of an isolate
particle in an unbounded fluid, andh is the shear viscosity o
the suspending fluid. As a result of the twofold time integ
tion and coarse graining fort@tB , the following finite-
difference equation is obtained toO(Dt2) for the vectorDr
of the translational and rotationalN-particle displacements
during the time intervalDt @45#:

Dr5RFU
21

•FpDt1kBT“•RFU
21Dt1X~Dt !1O~Dt2!.

~10!

Here X(Dt) is an N-particle translational/rotational random
displacement super vector due to Brownian motion, char
terized by a zero mean̂X&50, due to isotropy, and the
covariance

^X~Dt !X~Dt !&52kBTRFU
21Dt, ~11!

where, as in Eq.~6!, dyadic notation has been used. In t
SD simulation results discussed in this work, it is assum
for the reason of numerical tractability that the particles
confined to diffuse in the midplane between the two para
walls. For a purely two-dimensional diffusion problem with
out confining walls, the translational/orientational positi
and velocity vectorsr (t) and U(t), respectively, reduce to
vectors of dimension 3N, where each particle possesses tw
translational and one rotational degrees of freedom. W
confining walls, each particle has now three orientational
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grees of freedom, resulting in 5N-dimensional vectorsr (t),
U(t), andX(t), and in a (5N35N)-dimensional resistanc
matrix RFU .

In our SD simulations, typicallyN5200 particles are
equilibrated in a square periodically replicated in the infin
midplane@29,46#. After equilibration, several thousand pro
duction time steps are generated for calculating vari
structural and diffusional properties. Since the pair potent
used in this work decay rather quickly, it is sufficient to u
the closest image condition. The accuracy of our SD sim
lation was tested for specific examples in comparison w
published simulation data. Having explained the model s
tems and the SD simulation scheme used in this work
Sec. III we address the calculation of various propert
which provide useful information on the statics and dyna
ics of quasi-two-dimensional systems.

III. CALCULATION OF STATIC AND DYNAMIC
PROPERTIES

Static pair correlations between spherical particles loca
in the midplane are described by the lateral two-dimensio
pair distribution function

g~r !5
1

r K 1

N (
i , j 51
iÞ j

N

d~r2r i1r j !L , ~12!

wherer i is the vector pointing to the center of spherei. The
functiong(r ) is closely related to the two-dimensional sta
structure factorS(q) via the Fourier-Bessel transformation

S~q!5112prE
0

`

dr r „g~r !21…J0~qr !

5
1

N K F(
i 51

N

cos~q•r i !G2

1F(
i 51

N

sin~q•r i !G2L .

~13!

HereJ0 is the zeroth-order Bessel function of the first kin
and q is the modulus of the scattering vectorq pointing
parallel to the midplane.

A central quantity describing the self-diffusion of pa
ticles is the mean squared displacement~MSD! W(t), de-
fined by

W~ t !5
1

2d K 1

N (
i 51

N

@r i~ t !2r i~0!#2L . ~14!

Here r i(t) is the position of particlei at time t, andd52 is
the spatial dimension of the system. In the limit of infini
dilution, i.e., for noninteracting particles,W(t) is a linear
function in time in the diffusive regimet@tB , according to

W~ t !5D0~h!t. ~15!

The slope D0(h) of the MSD is the free-particle self
diffusion coefficient which depends on the separationh be-
tween the two plates. The asymptotic behavior ofD0(h) is
given by
s
ls

-
h
s-
in
,
-

d
al

,

D0~h→`!5D0 ~16!

and

D0~h→s!50, ~17!

whereD0 is the Stokesian diffusion coefficient in the thre
dimensional bulk case. Equation~17! is due to hydrodynamic
lubrication forces, since the mobility of a sphere vanishes
contact with both walls, for the stick boundary conditio
used in this work. Note thatD0(h) becomes independent o
h and equal toD0 when the HI’s is with the walls are disre
garded.

For timest!ta , W(t) of interacting particles increase
linearly in time as quantified by the short-time self-diffusio
coefficientDs(h). For general reasons,Ds(h) is smaller than
the valueD0(h) at infinite dilution. The short-time self-
diffusion coefficient is calculated by performing an equili
rium configurational average over the trace~Tr! of the
translational-translational~tt! part of the mobility tensor for a
representative particlei, according to

Ds~h!5kBTK 1

Nd (
i 51

N

Tr~RFU
21! i i

t tL , ~18!

where a summation over allN particles is used to lowe
statistical errors. The linear initial increase ofW(t) is fol-
lowed by a sublinear time dependence originating from
dynamic cage of next-neighbor particles. For long timet
@ta , W(t) again grows linear in time with a slopeDl(h)
referred to as the long-time self-diffusion coefficient. Th
coefficient is extracted from the long-time asymptotic beh
ior of W(t), i.e.,

Dl~h!5 lim
t@ta

d

dt
W~ t !. ~19!

For any distanceh.s, the following sequence of inequali
ties holds:Dl(h)<Ds(h)<D0(h)<D05D0(`). Analogous
to Ds(s), Dl(s)50 due to lubrication forces.

Space-time correlations between colloidal spheres are
scribed by the van Hove functionG(r ,t), defined for an
isotropic system by@44#

G~r ,t !5K 1

N (
i , j 51

N

d„r2r i~ t !1r j~0!…L . ~20!

The functionG(r ,t) gives the probability density of finding
at time t.0 a colloidal particle a distancer apart from the
origin, subject to the condition that a particle was located
the origin at timet50. The van Hove function is conve
niently separated, according to

G~r ,t !5Gs~r ,t !1Gd~r ,t !, ~21!

into a self-parti 5 j and a distinct partiÞ j . The self-part
Gs(r ,t), is the time dependent conditional probability de
sity that a particle suffers, during timet, a displacementr
5ur (t)2r (0)u. At time t50, Gs(r ,0)5d(r ), whereas
Gs(r ,t→`)5Gs(r→`,t)51/A'0. Moreover,
2p*0

`dr rGs(r ,t)51. Likewise, Gd(r ,t) is the conditional
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probability density of finding at timet a particle a distancer
apart from the location of another one att50. For the dis-
tinct van Hove function, Gd(r ,0)5rg(r ), Gd(r ,t→`)
5Gd(r→`,t)5r, and 2p*0

`drrGd(r ,t)5N21. The func-
tions Gs(r ,t) and Gd(r ,t) are essentially the Fourier tran
form pairs of the self-intermediate scattering functionG(q,t)
and of the distinct partS(q,t)2G(q,t) of the dynamic struc-
ture factor,S(q,t), respectively. The functionS(q,t) is the
key quantity determined in dynamic light scattering expe
ments@34#. The dynamic structure factorS(q,t) is the time-
dependent generalization ofS(q).

The influence of HI on the exponential short-time dec
of S(q,t) is contained in the so-called hydrodynamic fun
tion H(q), defined by@34,47,48#

H~q!5
kBT

ND0~h! K (
i , j 51

N

q̂•~RFU
21! l j

t t
•q̂eiq•~r l2r j !L

5
Ds~h!

D0~h!
1

~N21!kBT

D0~h!
^q̂•~RFU

21!12
tt
•q̂eiq•~r 12r 2!&,

~22!

whereq̂5q/q is a two-dimensional unit vector pointing pa
allel to the confining walls. The 232 matrix (RFU

21) l j
t t is a

submatrix of the mobility matrixRFU
21, corresponding to the

translational motion of particlesl and j. Without a HI acting
between the spheres,H(q)[1, whereas aq dependence o
H(q) is a signature of hydrodynamically interacting pa
ticles. At large wave numbers,H(q) reduces toH(q)
'Ds(h)/D0(h),1, due to the strongly oscillating expone
tial factor on the right-hand side of Eq.~22!.

IV. RESULTS AND DISCUSSION

We present and discuss here our SD results for cha
and neutral confined colloids. Consider first the radial dis
bution function, as determined using its definition in E
~12!. Being a static property, this function is not affected
HI’s. The time step we have chosen in our simulations
Dt51023ta , which is an appropriate choice for calculatin
g(r ) and the dynamic properties presented in this work
suitable choice ofDt is crucial: a poor choice can result in a
unphysical particle overlapping, which one needs to avo
To check the performance of the SD algorithm, we ha
calculated theg(r ) of a two-dimensional system of neutr
hard disks, in comparison with Monte Carlo~MC! results
obtained in Ref.@49# for area fractionsC50.363, 0.453, and
0.544. Note that these values forC are much lower than the
maximal area fraction of hard disks at triangular close pa
ing, given byCcp'0.907. For comparison, the packing fra
tion of hard disks at random close packing is given
Crcp'0.82 @50#. In Fig. 3, our findings forg(r ) of hard
spheres are shown in comparison with MC data. After equ
bration, we have calculatedg(r ) using 15 000 production
time steps. The agreement of the SD algorithm with the M
data is excellent, with the maximal deviation at contact be
less than 2%. This shows that the small amount of part
overlapping found in the SD simulations for the chosen ti
step is quite acceptable. In order to reduce the computati
effort for calculatingg(r ), we have disregarded particle-wa
-
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HI’s, which is equivalent to considering the limit ofh→`.
At any rate, the presence of the neutral plates does not a
g(r ), since static quantities are not influenced by HI’s. L
us note that Bossis and Brady@29# also found excellent
agreement with existing MC results in their SD calculatio
of the g(r ) for hard disks. We point out that for all result
shown subsequently, the wall spacing has been fixed th
52s, corresponding to a screening length ofk21'0.9s.

In Fig. 4, we show SD results for the lateral radial dist
bution functiong(r ) of a monolayer of charged spheres wi
area fraction C50.063, confined between two parall
charged plates. The solid line represents the SDg(r ) for the
experimental pair potential displayed in Fig. 2 forh52s, in
comparison with corresponding experimental findings
Acuña-Campaet al. @12#. As seen, the overall agreement b
tween the experimental and SDg(r ) is excellent for dis-

FIG. 3. Radial distribution function for a hard disk colloida
fluid at various area fractionsC, as indicated. Lines: SD results
Symbols: MC results of Ref.@49#.

FIG. 4. Radial distribution functionsg(r ) for a monolayer of
charged spheres atC50.063 between two charged plates of sep
ration h52s. Comparison between experimental data forg(r )
taken from Ref.@12#, and SD results using the Yukawa and expe
mental pair potentials respectively.
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tancesr .1.4s, demonstrating the good accuracy of the
tegral equation method proposed in Ref.@12# for extracting
an effectiveu(r ). The deviations ing(r ) between SD simu-
lation and experiment at small distancesr ,1.4s arises from
the apparent particle overlapping observed in top view d
tal imaging, as remarked already in Sec. II C. Note that
positionr m'1.86s, where the principal peak ing(r ) occurs,
coincides with the primary minimum in the experimen
u(r ). This minimum delimits the onset of an effective pa
ticle attraction at intermediate distances.

For comparison, we further include in Fig. 4 the SD res
for g(r ) using the purely repulsive Yukawa-type pair pote
tial of Eq. ~8!, with a rather small valueZ* 5102 of the
effective charge number. Due to the longer-range tail in
Yukawa-type u(r ), which includes no attractive portion
there is rather poor agreement with the experimentalg(r ).
Since the Yukawa-type potential has no attractive part, i
not possible to reduce the deviations with respect to the
perimentalg(r ) significantly below the ones observed in Fi
4 by adjusting the value ofZ* .

We now discuss the influence of HI on dynamical pro
erties. For this analysis, it is helpful to investigate at cert
instances the influence of the particle-particle HI~referred to
as p-p HI! and the particle-wall HI~referred to asp-w HI!
separately. In thep-p HI case, with only particle-particle H
considered, the resistance tensor contribution of the wal
excluded. This corresponds to the limith→`. In thep-w HI
case, the friction tensor contributions (Rab

SS)FU
1,2 in Eq. ~5! are

neglected.
Consider first the behavior of the short-time self-diffusi

coefficientDs(h) of a monolayer of charged spheres as fun
tion of the area fractionC. In Fig. 5, SD results ofDs(h
52s) versusC with bothp-p andp-w HI’s included~referred
to as full HI’s! are compared with experimental results
Acuña-Campaet al. @12#. In the SD simulations, the exper
mentally determinedu(r ) of Fig. 2 is used as static inpu
The SD findings forDs are in good agreement with the e
perimental data. As expected, short-time self-diffusion

FIG. 5. Normalized short-time self-diffusion coefficient for
monolayer of charged spheres between two charged plates
rated byh52s, as a function of the area fractionC. Comparison
between experimental data from Ref.@12#, and SD results with full
HI’s.
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comes increasingly slowed down with increasingC, corre-
sponding to a monotonic decay ofDs(2s). Note further that
Ds(2s) at infinite dilution is smaller than the three
dimensional Stokesian diffusion coefficientD0 , since even
an isolated particle is slowed down significantly by the h
drodynamic influence of the confining walls.

We next analyze the mean squared displacementW(t) of
charged colloidal particles interacting by the Yukawa-ty
pair potential of Eq.~8!, for two different effective charges
Z* 5102 and 103, with h52s and C50.063 kept fixed. A
value ofC50.063 corresponds to a geometric mean parti
distancer̄ 5r21/2'7.1s. SD results forW(t) in units of a2

are plotted in Fig. 6 versus the dimensionless timet/ta . In
this figure,W(t) with full HI’s is compared with the MSD
where particle-particle HI’s are disregarded~the case ofp-w
HI!. About 153103 production time steps were used to o
tain the MSD’s in Fig. 6. Let us first consider the case ofp-w
HI without particle-particle HI. In this case, the short-tim
self-diffusion coefficient describing the initial increase
W(t) is equal to the diffusion coefficientD0(h) of an iso-
lated particle~i.e., at C50! diffusing under the hydrody-
namic influence of the walls. For minimal plate distanceh
5s, D0(s)50, whereasD0(h) increases monotonically to
ward a three-dimensional bulk valueD0 with increasingh.
Inclusion of p-p HI typically leads to a short-time self
diffusion coefficientDs(h) somewhat smaller thanD0(h).
However, for the rather dilute Yukawa systems conside
here,Ds(h) is nearly equal toD0(h) ~cf. Fig. 6!.

We next focus on a system of strongly charged partic
with Z* 5103. For this system, Fig. 6 reveals an interesti
observation with regard to the prevailing influence of fa
field p-p HI on W(t). Far-field HI supports the escape of
tracer particle out of its dynamic cage of next-neighbor p
ticles, leading thus to an increase ofW(t) at intermediate and
long times. This hydrodynamic enhancement of se

pa-
FIG. 6. Mean squared displacementW(t) as a function of re-

duced time for Yukawa systems with full HI’s and withp-w HI’s,
for Z* 5102 and 103. The solid line segment indicates the slopeD0

of the MSD for a free particle in an unbounded three-dimensio
fluid; the dotted line is the slopeD0(h) of the MSD for an isolated
free particle diffusing midplane between two walls separated bh
52s.
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diffusion for systems of strongly repelling charged partic
should be contrasted with hard-sphere-like dispersio
where HI’s lead to a slowing down of self-diffusion. Th
reason for the qualitatively different diffusional behavior
hard-sphere-like systems is due to the fact that the h
sphere dynamics is strongly influenced by near-field H
since the radial distribution function attains its maximum
or near contact distances ~cf. Figs. 3 and 4 forZ* 5102!.
Contrary to the case withZ* 5103, the system of more
weakly charged particles ofZ* 5102 and a peak location o
g(r ) at a distancer m'1.8s substantially smaller thanr̄ ,
shows a hydrodynamic reduction ofW(t). Whether hydro-
dynamic enhancement/reduction ofW(t) is observed thus
depends on the ratior m(Z* )/ r̄ .

The long-time self-diffusion coefficients of confine
Yukawa particles withZ* 5103 and of hard spheres as fun
tions of the area fraction are shown in Fig. 7, for the tw
cases of full andp-w HI’s. As seen, inclusion ofp-p HI gives
rise to a visible increase~decrease! of Dl for highly charged
~neutral! colloidal spheres. An enhancement ofDl was al-
ready theoretically predicted in Ref.@26# for three-
dimensional suspensions of deionized charge-stabilized
persions, and meanwhile observed experimentally@27#.
Hydrodynamic enhancement of self-diffusion was furth
observed in experiments and computer simulations on di
quasi-two-dimensional superparamagnetic colloids confi
to a liquid-gas interface and exposed to a perpendicul
oriented magnetic field. The superparamagnetic particle
these quasi-two-dimensional systems interact via strongly
pulsive dipolar magnetic forces@24#. Our SD results demon
strate that similar effects can be also observed in system
charged particle monolayers confined between para
~glass! plates.

In the following, we discuss the influence of HI’s on th
space-time particle correlations of confined two-dimensio
Yukawa systems, as quantified by the van Hove correla
functions nondimensionalized by the areal densityr. Two
correlation timest50.35ta andt53.5ta are considered, cor

FIG. 7. Normalized long-time self-diffusion coefficientDl(2s)
vs C for a monolayer of spheres between two parallel plates. O
symbols: hard spheres~HS!. Filled symbols: charged spheres~CS!
interacting by a two-dimensional Yukawa potential with an effe
tive charge numberZ* 5103.
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responding to 350 and 3500 time steps, with well p
nounced undulations inGs(r ,t) and Gd(r ,t), even for the
later of the two times. We address, as in Fig. 6, the cas
strongly charged particles withZ* 5103 and area fraction
C50.063. The timet50.35ta corresponds, according to Fig
6, to the initial short-time linear increase ofW(t) with slope
D0(2s), whereas the timet53.5ta is located in the
intermediate-time regime characterized by a sublinear
crease ofW(t).

The normalized self-partGs(r ,t)/r of the van Hove func-
tion, at the short timet50.35ta , is shown in Fig. 8, as
calculated in the SD scheme for the three cases where
HI, particle-wall HI and particle-particle HI are included, an
further for the case where HI’s are completely disregard
Further shown in the figure are results forGs(r ,t) with full
andp-p HI’s obtained using the two-dimensional form of th
Gaussian approximation~GA! for Gs(r ,t), i.e., @51,52#,

Gs~r ,t !'
1

4pW~ t !
e2r 2/4W~ t !. ~23!

For t50.35ta , W(t)'Ds(2s)t, as can be seen from Fig. 6
According to Fig. 8, Eq.~23! is an excellent approximation
for the r dependence ofGs(r ,t) both with and withoutp-w
HI considered. This is an expected observation since n
Gaussian corrections toGs(r ,t) are very small at shorte
times. The GA allows one to relate the time dependence
Gs(r ,t) to the corresponding time dependence ofW(t) de-
picted in Fig. 6. According to its definition,Gs(r ,t) is ini-
tially a sharply peaked function aroundr'0, spreading out
in time essentially due to self-diffusion~cf. Figs. 8 and 9 for
t/ta50.35 and 3.5, respectively!. The Gaussian approxima
tion becomes less accurate at the intermediate timet/ta
53.5 ~cf. Fig. 9!, where in particular the value ofGs(r
'0,t) with full HI’s is underestimated. This finding is in
agreement with the general observation that non-Gaus
contributions are most pronounced at intermediate tim

n

-

FIG. 8. Reduced self and distinct parts~inset! of the van Hove
correlation functions for a strongly charged Yukawa system w
Z* 5103, at timet50.35ta ; C50.0623 andh52s. Inset: reduced
distinct partGd(r ,t)/r ~symbols! and g(r ) ~dotted line!. Further
shown is the Gaussian approximation ofGs(r ,t)/r for full HI’s
~dashed line! and no HI’s~solid line!.
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@52#. Notice the strong decay of particle correlations in goi
from Fig. 8 to Fig. 9, with the correlation time increased
a factor of 10.

The self-partGs(r ,t) without HI and withp-p HI decays
faster as a function of time than for the cases with full HI a
particle-wall HI considered. The self-diffusion of a particle
hydrodynamically slowed down in the presence of wa
@e.g.,D0(2s),D0#, which is the reason why the magnitud
of Gs(r ,t) with walls effects included~i.e., for the cases o
full HI and p-w HI! is larger at small distancesr than for the
nonconfined cases ofp-p HI and no HI. That the small-r
behavior ofGs(r ,t) is strongly influenced by the walls i
also seen for short times from the Gaussian approxima
form in Eq. ~23! by noting that W(t)'Ds(h)t for t
<0.35ta together withDs(h)'D0 without HI and Ds(h)
,D0 with p-w HI.

The intersection of the two sets of curves forGs(r ,t) in
Figs. 8 and 9 with and without particle-wall HI considere
~filled and open symbols!, respectively, occurs roughly atr
'„4Ds(2s)t…1/2. As discussed above in the context of F
7, self-diffusion is slightly enhanced forZ* 5103 due top-p
HI. As a consequence, there is a slightly larger probabi
for particles withoutp-p HI to be found close to their startin
positionr 50, whereas particles with full HI are more likel
found at longer distancesr>„4D0(2s)t…1/2. This explains
why the values ofGs(0,t) in Figs. 8 and 9 with full HI are
slightly smaller than the ones withp-w HI only.

The zero-time limit of the reduced distinct van Hov
function, Gd(r ,t)/r, is equal to the radial distribution func
tion g(r ), the latter being independent of HI’s. The SD res
for g(r ) with Z* 5103 is included in the inset of Fig. 8. Th
principal peak ofg(r ) has a value of 3.4, and is located
r m'3.6s. The undulations inGd(r ,t)/r are progressively
smeared out inr as time progresses, withGd(r ,t)/r→1 as
t→`. The decay of two-particle correlations described
Gd(0,t) progresses initially very strongly, as can be seen
Fig. 8 by comparingg(r ) with Gd(r ,t50.35ta)/r. While
the p-p HI contribution is of minor importance regardin
Gs(0,t), it strongly affects the shape ofGd(r ,t), which de-
scribes the space-time correlations of two distinct partic
The smearing out of undulations inGd(r ,t) for Z* 5103 and

FIG. 9. Same as in Fig. 8, but for a longer correlation timet
53.5ta .
n

y
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given t is expected to be more pronounced when
diffusion-enhancing influence ofp-p HI is included. This ex-
pectation is confirmed by the SD results forGd(r ,t) with full
HI and p-w HI shown in the insets of Figs. 8 and 9, fo
t/ta50.35 and 3.5 respectively. In Figs. 8 and 9, it is inde
observed that the shape ofGd(r ,t) with full HI is mainly
determined byp-p HI. In comparison,p-w HI has only a
minor effect onGd(r ,t), giving rise to a somewhat slowe
decay of interparticle correlations.

In the final part of this section, we analyze the behavior
the hydrodynamic functionH(q) introduced in Eq.~22!. For
comparison, we first discuss the behavior of the correspo
ing in-plane static structure factorS(q), as defined in Eq.
~13!. SD results for the static structure factor of hard sphe
and of Yukawa particles atZ* 5103 are displayed in Figs.
10~a! and 10~b! respectively, for three different area fraction
as indicated in Fig. 10~a!. Due to the longer-range Yukaw
type repulsion, the oscillations in theS(q) of charged par-
ticles are substantially more pronounced than for h
spheres at the same value ofC. The suspensions of Fig. 1

FIG. 10. Static structure factorS(q) for three different area
fractions as indicated.~a! Hard spheres between neutral plates.~b!
Yukawa particles withZ* 5103, at the same area fractions as in~a!.
Note thatS(q) andH(q) can be determined only for a discrete s
of wave numbersq52pn/AA with nP$1,2,...%, due to the use of
periodic boundary conditions.
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are in the fluid regime for all values ofC considered. This is
in agreement with the generalized Hansen-Verlet criter
for two-dimensional fluids@53,54#, which states that a fluid
freezes when the principal peak heightS(qm) of S(q), lo-
cated atq5qm , exceeds 5.25–5.75 in magnitude.

Results for the hydrodynamic functionH(q) of hard
spheres and Yukawa particles atZ* 5103 corresponding to
Fig. 10 are included in Fig. 11~a! and Fig. 11~b!, respec-
tively. Note that the location of the~secondary! maximum of
H(q) is very close to the corresponding locationqm
52p/r m of the principal peak ofS(q). In case of hard
spheres,r m5s. The undulations inH(q) become larger for
hard spheres, with an increasing area fractionC. The local
maximum of H(q) at q5qm is smaller than one and de
creases with increasingC, with qm shifted to slightly larger
values ofq. This qualitative behavior ofH(q) is quite simi-
lar to that observed for the hydrodynamic function of thre
dimensional suspensions of colloidal hard spheres@55–58#.
Theq dependence of theH(q) for Yukawa systems is quali

FIG. 11. Hydrodynamic functionsH(q) corresponding to Fig.
10, with a plate separationh52s. ~a! Hard spheres between neutr
plates.~b! Yukawa particles withZ* 5103. Further shown are the
asymptotes 113C/qs according to Eq.~25!, for C50.063 ~thick
solid line!, C50.1 ~thick dashed line!, and C50.15 ~thick dash-
dotted line!.
n

-

tatively different from that of hard spheres, sinceH(qm) is
now larger than 1 and increases monotonically withC @cf.
Fig. 11~b!#. An increase inH(qm) for increasing concentra
tion is further observed in three-dimensional charg
stabilized suspensions@47#, as accurately described by the
retical calculations ofH(q) based on a pairwise additive H
approach@26#.

There is, however, a striking difference in the smalq
behavior ofH(q) between three-dimensional and quasi-tw
dimensional colloids. WhereasH(q'0),1 in the three-
dimensional case, the present SD results reveal a stron
crease ofH(q) whenq50 is approached, suggestingH(q)
to diverge whenq→0. The strong increase in the two
dimensionalH(q) for q→0 is due to the lateral confinemen
with no off-plane motion of the particles allowed. For
qualitative discussion of the small-q behavior ofH(q), we
follow Banchio @59# in neglecting wall effects, i.e., we con
sider the caseh→` and use for simplicity the point-force
~i.e., Oseen! approximation@48#

kBT~RFU
21! i j 5D0H d i j 11~12d i j !

3

4 S a

r D @11 r̂ r̂ #J ~24!

for the mobility tensor, withr5r i2r j and r̂5r /r . Substitut-
ing this approximation into Eq.~22! leads to the result@59#

H~q!5113
C

qs
13

C

s E
0

`

dr@g~r !21#F2J0~qr !2
J1~qr !

qr G
~25!

for the two-dimensionalH(q), with a first-order pole atq
50 of strength proportional to the area fractionC. Since the
pole atq50 in Eq. ~25! is due to the leading far-field H
contribution, it can be expected to constitute the domin
small-q part of H(q) at all concentrations, independently o
the pair potential. From the experimental work of Refs.@60#,
@61# on a quasi-two-dimensional semidilute fluid of ha
disks with attached poly~methyl-methacrylate! brushes, there
is indeed strong evidence of the divergence ofH(q) when
q→0.

In Figs. 11~a! and 11~b!, we include graphs of the singula
asymptotic term 113C/qs of H(q). As seen, the small-q
part of the SDH(q) is indeed well described by this singula
form even in the presence of the walls. The hydrodynam
influence of the walls onH(q) becomes manifest only a
intermediate values ofq, where it gives rise to a small in
crease inH(q). The small-q regime where the singular con
tribution in Eq.~25! dominates is restricted to smaller wav
numbers in case of charged particles@cf. Fig. 11~b!#.

V. CONCLUSIONS

In this paper, we have presented and analyzed Stoke
dynamics computer simulation results for static and dyna
quantities describing the lateral structure and diffusion
colloidal particles forming monolayers confined in betwe
two parallel plates. Both monolayers of neutral and
charged colloidal spheres have been considered. The
forces between charged spheres have been described b
approximate model potential due to Chang and Hone, and
an empirically determined pair potential showing an attr
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tive part at intermediate distances. Particular focus was g
to distinguishing particle-particle HI effects from the hydr
dynamic influence of the walls. Using the experimenta
determinedu(r ), SD simulation results forg(r ) and for the
short-time self-diffusion coefficientDs(2s) have been
shown to be in good agreement with the experimental fi
ings of Acuña-Campaet al. For hard spheres and for mod
estly charged Yukawa particles of effective charge num
Z* 5102, from our SD calculations we have found a mode
slowing down ~reduction! of self-diffusion at intermediate
and long times. In contrast, hydrodynamic enhancemen
self-diffusion @i.e., of Dl and W(t>ta)# is observed for
strongly repelling particles withZ* 5103, generalizing a
corresponding finding for three-dimensional charg
stabilized systems to confined quasi-two-dimensional s
tems.

A detailed SD analysis was given of various HI contrib
tions to the self-part and to the distinct part of the van Ho
correlation function of Yukawa particles. We have show
thatGs(r ,t) is well described, for the systems studied in th
work, by its Gaussian approximation form. This demo
strates the smallness of non-Gaussian corrections in the
regime even for intermediate times. It was further shown t
the shape ofGd(r ,t) is mainly determined by the particle
particle HI contribution. A strong increase in the magnitu
of the two-dimensional hydrodynamic functionH(q) is pre-
dicted at smallq, as confirmed by analytical point-force ap
proximation results. Similar to the three-dimensional ca
for H(q) we observe a qualitatively different behavior ne
its peak positionqm in cases of hard spheres and strong
repelling Yukawa particles, respectively

It was not our intention to provide an exhaustive analy
of structural and diffusional properties of confined qua
two-dimensional colloids. Our aim was instead to exemp
the power of SD simulations by analyzing interesting effe
a,
n
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arising from particle-particle and particle-wall HI’s. It wa
demonstrated that the SD method described in this work
be successfully used for quantitative predictions of dif
sional properties of confined suspensions for a large var
of interaction potentials. The SD study presented in t
work has shown that the consideration of HI effects is ess
tial for a quantitative interpretation of experimentally dete
mined dynamic properties.

For the purpose of this paper, and to limit the numeri
effort, we have disregarded the possible motion of the p
ticles out of the midplane towards the confining walls. Th
off-plane motion would give rise to anisotropic diffusion an
buckled layers. The modification of lateral diffusional pro
erties due to off-plane particle diffusion will be investigate
in future work. In subsequent studies, we will also inves
gate the diffusion in binary quasi-two-dimensional syste
of small and large colloidal particles, with the large particl
becoming immobilized through contact with the confinin
plates. Such systems have been studied experimental
Ref. @12#. Another interesting feature we are currently inve
tigating using SD is related to a possible dynamic scaling
the dynamic structure factor and of the van Hove functio
for systems with strong and long-range particle repulsio
@62#.
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