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Brownian motion in a single relaxation time Maxwell fluid
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A simple model of Brownian motion in a single relaxation time Maxwell fluid is described and compared to
diffusing wave spectroscopy measurements of colloidal motion in representative viscoelastic fluids, namely,
CTAB/KBr wormlike micelle solutions. The experimentally measured Brownian motion conforms to the
model predictions at long timedow frequencies and is an additional confirmation of the essentially Max-
wellian stress relaxation behavior of wormlike micelle solutions at low frequencies. Surprisingly, the Maxwell
model predicts a plateau onset time which, while capable of reducing the measured mean-square displacements
to a master curve, also grossly underestimates the actual plateau onset time. The predicted rescaling is shown
to be essentially that also predicted by the Doi-Edwards tube model for polymer solutions under good solvent
(excluded volumg conditions where a more proper accounting of the short-time dynamics is made. This
indicates that the success of the predicted Maxwell model plateau onset time rescaling is purely fortuitous.

PACS numbse(s): 83.70.Hq, 05.40.Jc, 82.70.Dd

I. INTRODUCTION parameter exponentially decaying function as a memory ker-
nel ansatZ11]. Later, Zwanzig and Bixon established the
Recently there has been strong interest in determining theonnection between a frequency-dependent friction coeffi-
local and bulk viscoelasticity of soft materials by monitoring cient in the Stokes-Einstein formalism and the memory func-
the thermal fluctuations of dispersed spherical probe particleson in a Langevin description of Brownian motion via the
with various optical techniquegl—-5]. The so-called local hydrodynamic theory[12]. A Langevin description of
viscoelasticity should be representative of small-scale struBrownian motion in more complicated media would entail a
ture and dynamics as sampled by small spherical probeproper model and development of an appropriate memory
while a technique that allows for the determination of bulkkernel pertinent to the suspending medium which, for ex-
rheological properties from small samples would prove to beample, has recently been done for the case of concentrated
invaluable to the biomedical community where sample quaneolloidal dispersions where interparticle interactions are
tites can be exceedingly minute. In addition, these opticapresen{13].
techniques can access much higher frequencies than conven-Several groups have investigated the connection between
tional mechanical rheometijl—5], are noninvasive in that a colloidal particle’s Brownian motion and the bulk rheologi-
they probe quiescent or unperturbed dynamics in theory, angal properties of the medium in which the particle is sus-
provide a potential means for testing theoretical models ovepended. There have been two different, yet related ap-
large frequency ranges. proacheg1-6]. In the first approach elasticity is built into a
Brownian motion in simple viscous liquids is well under- framework that is exact for a purely viscous fl(iil-4]. The
stood and the connection between this thermal motion antbundation of this approach is the assumption that the no-slip
hydrodynamic response is readily appargfit In a similar  Stokes-Einstein relationship can be generalized to all fre-
manner, bulk mechanical properties should be recoverable fuencies. Here a mean-field assumption is made wherein
the thermal motion of spherical probes dispersed within anacroscopic stress relaxations are directly connected to mi-
viscoelastic medium can be measured. Since viscoelastic fligroscopic stress relaxations or, more simply put, there is no
ids store energy, a certain “memory” of the particle’s pastdelineation between local and bulk viscoelasticity. This as-
motion must exist. For this reason, a memory function issumption establishes a direct relationship between the sus-
oftentimes utilized to account for the frictional resistance ex-pending medium’s shear modulus and the mean-square dis-
perienced by a diffusing particle in a Langevin description ofplacement of a Brownian particle. The second approach
Brownian motion in such systems. This frictional resistancemakes a more direct accounting of the elastic component of
is nonlocal in time and the frictional force experienced by athe suspending medium. The equation of elastic equilibrium
diffusing particle at timet is influenced by its velocity at is solved exactly for a rigid spherical surface exhibiting the
some earlier tima’ [7-9]. One of the first descriptions of no-slip boundary conditions to yield an effective compliance
the connection between correlation functions and memoryor sphere displacemef,6]. At sufficiently high frequen-
kernels was that of Zwanzid.0]. Berne and co-workers de- cies this effective compliance is directly proportional to the
rived similar results and applied them to molecular velocityinverse of the shear modulus when it is assumed that the
autocorrelation functions where they proposed a twosuspending medium is incompressible owing to viscous cou-
pling between the solvent and the matrix matefr&dl How-
ever, at lower frequencies this coupling does not exist and
*Author to whom correspondence should be addressed. Emaihe suspending medium’s osmotic compressibility may
address: johnvz@ncsu.edu also influence the Brownian motion of any suspended
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probes. Therefore, both the suspending medium’s longitudi- d? d
nal and transverse moduli may influence a probe’s Brownian 77ggz2 (V(1)-V(0)) + 75 (V(1)-v(0)) +(v(t)v(0)) =0,
motion below some critical frequency. It should be noted &)

that there has been an extensive amount of previous work
concerning long-time probe diffusion in polymer solutions, where rg denotes the Brownian time/{. The nature of the
especially by Phillies and co-workef&4]. This work has particle’s velocity autocorrelation function is strongly depen-
focused on the validity of the Stokes-Einstein relationshipdent on the values ofg and 7. For typically encountered
for long-time probe diffusion in polymer solutions and the viscoelastic materials/rz>1/4 and, therefore the particle
connection between long-time probe diffusion and polymerelocity autocorrelation, as well as the particle mean-square
solution dynamics. displacement, will exhibit oscillations. The velocity autocor-
relation function(when 7/ rg>1/4) is

Va(7l 1) — 1'[

t 0 _3kT —t/27
(v(t)-v( ))—We CoS P

II. BROWNIAN MOTION IN A SINGLE
RELAXATION-TIME MAXWELL FLUID

The standard Langevin description of a neutrally buoyant

particle of massn undergoing Brownian motion can be eas-
ily modified to include memory, or viscoelastic, effects n 1 sin V4(7/ 78) — 1t @
[7-12 Va(7rlm5)—1 27

dv(t) B This is essentially the same result calculated for the ansatz of

t
dt ——fog(t—t’)v(t’)dt’JrfR(t). (1) Berne and co-worker§8,11]. The particle’s mean-square
displacement can be calculated from the velocity autocorre-
lation function in the usual manngr—-9|. The mean-square
displacement of a Brownian particle undergoing thermal mo-
tion in a single relaxation-time Maxwell fluid is

Herev(t) is the particle velocity andiz(t) denotes the ran-
dom Brownian or thermal forces acting on the partic¢ig)

is a time-dependent memory function for an isotropic, in-
compressible viscoelastic fluid allowing for both energy loss

and storage and is related to the instantaneous friction coef- (Ar2(t))= E( et + Ta( 75— 1)
ficient. The integral term accounts for the viscous damping m

of the fluid and reflects the viscoelastic nature of the sus-
pending complex fluid. As noted before, owing to its vis-

e NA(7lTg)—1 . 1}

coelastic nature the suspending medium can store energy x|€ cos 27

upon deformation, thus motivating the use of the memory )

function form of the Langevin equation. This ability to store N Ee,UZTSinM(T/TB)— 1t
energy profoundly changes the temporal correlations of the 4 27

stochastic forces acting upon the particle at thermal equilib-
rium since the suspending medium must satisfy the y 1
fluctuation-dissipation theoremfz(0)-fr(t))=kTZ(t) [15]. N
Therefore, in principle, the mgglsurement >and analysis of par- A(rl7e)—1
ticle motions should allow the determination of the memoryThe expected particle motion is recovered in the short-time
function £(t). and long-time limits,  ballistic [lim,_o(Ar?(t))

The single relaxation-time Maxwell fluid is the simplest = (3kT/m)t?] and diffusive behavior[lim,_..(Ar?(t))
model of a viscoelastic material. As such, it is an appropriate_ gk T/¢)t], respectively. At times shorter than the terminal
place to start when considering Brownian motion in Vis-re|axation time {=< 7) the mean-square displacement is very
coelastic media. The memory function for the singlegimijar to that found for an underdamped, harmonically
relaxation-time Maxwell fluid can be found by solving the poung Brownian particlg19] in that it exhibits oscillations,
creeping flow sphere problem under the condition that th€ynile at much longer timest® 7) the mean-square displace-
symmetric, traceless part of the stress tensor obeys MaXpent s that of a free Brownian particJ@—10,19. This ob-
well's constitutive equatiori16,17. The resulting memory geryation owes to the fact that the suspending medium's vis-
function can be incorporated into the viscoelastic Langevinyge|astic response is dominated by its elastic component

—3VA4( T/TB)—ll ) . (5

equation for Brownian motion to yield (i.e., the storage moduluat high frequencies, while its vis-
. cous componenti.e., the loss modulysdominates at low
dv(t) _ _£ —(t=t") 4Vt frequencies. The plateau region oscillations are bounded
e v(t)dt' +fx(t), (2 . h :
dt TJo above by the suspending medium’s elastic response and be-

low by its viscous component. That is, the particle oscillates
where( is the particle friction coefficient andis the termi-  in an elastic cage while undergoing very slow viscous dissi-
nal relaxation time. The particle friction coefficient is given pation. The plateau region upper bound is actually twice the
by {=6m7nR where 7 is the suspending medium’s zero value expected for an overdamped, harmonically bound
shear viscosity anR is the particle radius. This equation can Brownian particlg 19|, but this overshoot is simply a result
be recast in the form of a differential equation describing theof insufficient viscous dampening at short times and eventu-
temporal evolution of the particle’s velocity autocorrelation ally decays to the result expected from equipartition when
function [18] viscous dampening becomes apprecidbke, att=r). This
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lack of viscous dampening at early times also significantlywell fluid kernel is used in their calculational scheme, which
extends the duration of the ballistic regime in comparison tas not surprising as their method neglects inertial effé¢ste
that expected for purely viscous fluids. The ballistic motionAppendix A). Interestingly this expression qualitatively cap-
persists untit=(r75)*? for the single relaxation-time Max- tures the behavior of the mean-square displacement beyond
well fluid in contrast to the case of purely viscous fluidsthe ballistic regime and should prove capable of estimating
where ballistic motion is essentially extinguished whten the terminal relaxation time from mean-square displacement
= 7. This extended ballistic motion regime is simply a re- measurements of probe motion formg) P<t<r.

sult of the single relaxation-time Maxwell fluid model used

in this calculation. A more realistic model incorporating mul- ;| WORMLIKE MICELLES AS A REPRESENTATIVE

tiple relaxation times would allow for viscous dissipation MAXWELL FLUID

over a wide frequency range and subsequently an earlier at-

tenuation of the bal.“St'C motion regime. . Several complex fluid systems are known to exhibit near

The plateau region reflects the existence of the elastig;, wellian behavior, at least in the frequency range typi-
response and as s_uch can b_e us_ed to estimate the pIatq'a&"y probed by mechanical rheometfg0]. For instance,
modulusG, or terminal relaxation time from experimental  geyeral aqueous surfactant solutions are known to contain
data. While thelslzme of the plateau onset can be shown ey |ong, flexible self-assembled wormlike micelles. These
scale ag~(77g)"*, and the onset of diffusive motion scales \yormjike micelles are similar to polymers in that they are
ast~7, the magnitude of the plateau can also be used tQite flexible(typical persistence lengths f20 nm versus
estlmgte thg relaxation time. Th|s.|s especially true for sysyiameters oft~5 nm) and they exhibit contour lengths on the
tems in which the mean-square displacement does not comgiger of microng21]. These so-called living polymers are
pletely saturate, but actually exhibits a slow monotonic in-gitferent from classical polymers in that they are constantly
crease in an apparent plateau region or for cases wherein thgs 5king and recombining and, therefore, do not exhibit a
terminal relaxation time is very long. For the single 4 enched distribution of lengths. This ability to break and
relaxation-time Maxwell fluid the mean-square displacementacompine profoundly affects the dynamical behavior of
saturates at these systemf22]. Stress relaxation in entangled classical

olymer solutions is well described via a reptation mecha-
1277gkT _ 127kT _ 27kT _ 2KT ﬁis?ln in which the polymer chains diffuse anan)] their contour
m { myR 7RGy’ path or tube until they escape, at which point the imposed
(6) stress is completely relaxd@3]. While living polymers or
) wormlike micelles can also relax stress via curvilinear diffu-
where Go= 5/7. Other than the numerical factor, the last sjon or reptation, their ability to break and recombine pro-
relation in Eq.(6) can also be derived from scaling argu- yiges another route for stress relaxation. The so-called rep-
ments[2]. It is apparent that the zero shear viscosity is re+ation time is the time a polymer chain requires to diffuse
quired to calculate the relaxation timefrom the mean-  giong its contour length thereby escaping from the stressed
square displacement plateau. While the single relaxationpjtial tube. When the wormlike micelle breaking/
time Maxwell fluid is a very simple viscoelastic system, it recombination time is much longer than the wormlike mi-
does provide some insight into more complicated systemgejle reptation time, stress relaxation is dominated by the
As most real systems typically exhibit a spectrum of relax—reptation process and the stress relaxation behavior of living
ation times occurring over a large temporal range, this plapolymers should be essentially the same as for classical poly-
teau region will not be truly flat or exhibit distinct oscilla- mers. However, when the wormlike micelle breaking/
tions in reality. However, the dominant relaxation time canrecombination time is much shorter than the reptation time,
still be estimated from the mean-square displacement plateaHe preaking/recombination kinetics dominate the stress re-
value if the zero shear viscosity is known. Of course, the beghyation process leading to monoexponential or Maxwellian
estimate of this so-called terminal time is the time at whichgtress relaxation behavig22].
the longtime diffusion behavior commences. It should be Aqueous solutions of cetyltrimethylammonium bromide
noted that for the case of extremely long terminal times thiS(CTAB) and potassium bromidé<Br) are known to form
plateau method could be the only experimentally realistiGyormlike micelles at various temperaturéd4—2g. This
approach. Also, from the previous discussion it is obviousye|l-known wormlike micelle system has been thoroughly
that there would have to be a significant separation of relaxgharacterized via mechanical rheometry and dynamic light
ation times in order to observe two distinct plateaus in th%cattering[22,24—28. The thermal motion of 0.966um
mean-square displacement. diam polystyrene latex spheres in a 0.1 gic(0.27 M)

At very late times (> 1) inertial effects completely di- cTAB-2.5 M KBr solution at various temperatures is shown
minish (i.e., the oscillations are completely dampedd the iy Fig. 1. The mean-square displacement was measured by
mean-square displacement becomes diffusing wave spectroscopy and as such is an average over
thousands of particldd—3|. The time evolution of the tracer
mean-square displacement contains a wealth of information
as to the state of the suspending medium. At first glance it
may appear that the system is behaving as a purely viscous
This is simply the result expected for free diffusion. The solution at 30.2 °C, however the mean-square displacement
latter relationship can also be derived via the approach of actually subdiffusive({Ar?(t))e«t%8 This may be an indi-
Mason and Weit41-3] if the single relaxation-time Max- cation that this system behaves as a solution of semiflexible

<A r 2(U)plateau max_

) 6kT 6kT
<Ar (t)>:T(t+7_TB)ET(t+T)- (7)
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FIG. 1. lefu5|o_n of 0.'966’“Lm dla_m polystyrene Iatex_spheres n FIG. 2. Viscoelastic CTAB-KBr systems exhibit single
a CTAB-KBr solution with{ CTAB]=0.1g/cc and KBr]=2.5M. ; . . - .
relaxation-time Maxwell fluid behavior at long times. The mean-

The CTAB-KBr system has been shown to form wormlike micelles . .
S . . . square displacement 0.966n polystyrene latex spheres dispersed
and exhibit single exponential stress relaxation behavior at low fre: . . _ =
uencies under certain conditions in a solut.|0n with [CTAB_]—O.l g/cc, [KBr]=2.0 M and T_
q ' =36.0°C is shown. The fitted curve corresponds to the predicted

. late time probe mean-square displacement in a single relaxation-
2 3/4
polymers at these frequencies (@sr “(t))<t™" for the pre- time Maxwell fluid with a zero shear viscosity of 8800 P and a

dicted semiflexible polymer solution shear modul@s, 30 terminal relaxation timer of 1.05 s both of which correspond very

(see Appendix B The lack of a plateau for this particular \ye|| with mechanical measurements on a similar system.
composition may owe to the fact that the experimental con-

figuration utilized here can only measure mean-square dis- ) N
placements below a threshold value somewhat less thakf-03 s<7<1.10s) and zero shear viscosities {8y
10 e, A plateau, albeit somewhat brief, is finally ob- =10 p) are represented. The applicability of the Maxwell
served at 36.0 °C. However, there is no distinct power-lawmodel to late time diffusion in these systems is readily ap-
scaling at either short or long times in this case. The lack oparenzt from the late time rescaling representation,
long-time diffusion is simply a result of the limited experi- M(Ar(t))/6kTr7g vs t/7, shown in Fig. 4. The measured
mentally accessible mean-square displacement range, H¥an-square dlsplacement data are collapsed onto a master
given enough time, colloidal thermal motion in any vis- curve fort/7=10"?, which demonstrates that the CTAB-
coelastic system should eventually exhibit diffusive scalingKBr solutions considered here exhibit essentially Maxwell-
Distinctly Maxwellian behavior, a nearly flat plateau that is ian dynamics at long times or low frequencies. The viscosi-
followed by purely diffusive motion at long times, is readily
apparent at both 40.5 and 46.2 °C. TABLE I. Rheological properties of CTAB/KBr solutions.

A representative mean-square displacement time trace fet
a Maxwellian 0.1 g/crh(0.27 M) CTAB-2.0 M KBr solution ~ CTAB (M) KBr (M) T (°C) 7(P) 7(3 G (dynicn?)
at 36.0 °C is shown in Fig. 2. It is apparent that the inertialess
Maxwell model for Brownian motion, Eq.7), provides an

Mean-square displacement measurements: This paper

excellent description of the experimentally observed thermal 0.27 0.50 302 3500 0.83 4200
motion at long timest=103s. The fitted curve corre- 0.27 0.50 36.0 710 0.16 4400
sponds to a single relaxation time Maxwell fluid with a zero 027 0.50 40.5 130 0.03 3800
shear viscosity of 8800 p and a terminal relaxation tinu# 0.27 2.0 36.0 8800 1.05 8400
1.05 s, both of which are of the same magnitude as mechani- 0-27 2.0 40.5 2000 0.30 6600
cal rheology measurements of similar systesese Table )l 0.27 2.0 46.2 750 012 6300
[24—-28. Deviations from the predicted Maxwellian behavior ~ 0.27 25 405 1500 0.2 1300
are apparent at short times and are most likely a result of 0.27 25 46.2 670  0.06 1200
Rouse and breathing modg23], as the influence of inertial Mechanical rheometry measureménts
effects can be entirely discounted for the systems under con- 0.25 1.50 35.0 850 0.45 1880
sideration herg¢see Appendix B That is, the downturn from 0.30 1.50 35.0 1560 0.60 2600
the plateau takes place at times much removed from the bal- 0.35 0.40 31.0 520 0.14 3700
listic path prediction. All of the strongly Maxwellian systems (.35 1.00 31.0 2000 0.69 2900
display the same behavior as that shown in Fig. 2. In all .35 1.50 31.0 4100 1.37 3000
cases of Maxwellian behavior there is no distinct, multide- ¢ 35 2.00 31.0 4000 1.36 2050
cade power-law scaling for the mean-square displacement at ¢ 35 0.40 350 300 0.05 5600
the shortest times accessible to the experimental measure- 35 1.00 350 1400 0.33 4300
ments. _ 0.35 1.50 350 2200 0.69 3200
The mean-square displacement of 0.966polystyrene 0.35 2.00 350 2000 056 3600

spheres in a whole host of Maxwellian CTAB-KBr solutions
is shown in Fig. 3. A wide range of terminal relaxation times®Reference26].
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FIG. 3. Probe diffusion in several viscoelastic CTAB-KBr solu-  FIG. 5. Probe diffusion rescaled with respect to the plateau on-
tions: [CTAB]=0.1 g/cc,[KBr]=0.5 M, andT=30.2 (@), 36.0  set time predicted for a single relaxation-time Maxwell flutd.
(M), and 40.5°C(A); [CTAB]=0.1 g/cc,[KBr]=2.0 M, andT  ~/r75, and the plateau mean-square displacement. Symbols are
=36.0(0), 40.5(0), and 46.2 °C(A); [CTAB]=0.1 g/cc,[KBr] the same as in Fig. 3.
=2.5M, andT=40.5(X) and 46.2 °q/+). The probe particles are
0.966 um diam polystyrene latex spheres. Weitz approximation at early timesee Appendix B the

following estimate can be made for the plateau onset time

ties, terminal relaxation times, and plateau moduli estimated, :
from mean-square displacement measurements are of the
same order of magnitude as mechanical rheometry measure- _ {spa’ ¢
ments made by other investigatqsee Table)l[24-28. Te= Gob® Gy’

In principle, the short-time rescaling(Ar?2(t))/6kTr7g _ ) ) )
vs t/(r75)Y2 should not be applicable since Rouse andWheregis the polymer volume fractio(concentratioh {s is
breathing modes should dominate at short times or high frethe polymer segment friction coefficient within the Rouse
quencie$23]. However, at first glance, the short-time rescal-model, b is the effective bond length, aralis the primitive
ing appears to describe the data very wsdle Fig. 5as they chaln step size, Whlch is clogely related to the tube dlamgter.
t/(r75) Y2 value of~10?— 10, not unity, indicating that this polymer so_lutlons for t!mes much less than th_e average mi-
result may be somewhat fortuitous with respect to the Max<elle breaking time, it is expected that the Doi-Edwards es-
wellian dynamics. Also, the plateau onset time in the Max-limate of the plateau onset time should be reasonably appli-
well model is the time at which the particle’s ballistic motion cable here. The plateau onset time is readily shown to exhibit
ceasesi.e., (Ar?(t))ect?]. This is not the case for the experi- the foIIO\_/w_ng scaling. When_excluded volume effects are im-
mental data where the mean-square displacement is obwortant it is expected that in the excluded volume case
ously subdiffusive before the plateau onset time and not bal= #Go *~Gg ** (good solventand in the mean-field case
listic. If the plateau onset time,, predicted by the Doi- 7e~ G, *° (theta solution As these two estimates bound the
Edwards tube model, is considered, a model that alsebserved scaling, it is apparent that the Doi-Edwards tube
predicts subdiffusive particle motion within the Mason- model can account for the observed early time scaling and
that the Maxwell fluid plateau onset time prediction was
purely fortuitous.

107 grrrremmp—rrrmm

F IV. CONCLUSIONS

10"k

171<Ar2(r)>
6kTtTy

A simple model of Brownian motion in a single
relaxation-time Maxwell fluid was developed and compared
to diffusing wave spectroscopy measurements of colloidal
motion in CTAB/KBr wormlike micelle solutions. The ex-
perimentally measured Brownian motion was observed to
conform to the model predictions at long times and thereby
provided an additional confirmation of the essentially Max-
wellian mechanical behavior of wormlike micelle solutions
at low frequencies. In addition, the plateau moduli and ter-
minal times determined from the Brownian motion measure-
ments were of the same order of magnitude as those found

FIG. 4. Probe diffusion rescaled with respect to the terminalby other investigators via conventional mechanical rheom-
relaxation-time and plateau mean-square displacement confirmingtry. Surprisingly in light of its neglect of short-time dynami-
the near Maxwellian behavior of these CTAB-KBr wormlike mi- cal processes, the Maxwell model predicted a plateau onset
celle solutions at long times. Symbols are the same as in Fig. 3. time with which the measured mean-square displacements




5394 JOHN H. van ZANTEN AND KARL P. RUFENER PRE 62

could be reduced to a master curve. However, the prediction ~ SZ(s) KT
gros;ly underesjimated the actual plateau_ onset time. The G(s)=s7(s)= 67 R STR(ATA(S))
predicted rescaling was shown to be essentially that also pre-

dicted by the Doi-Edwards tube model for polymer solutions, .. . . . L
under good solvent conditions where a more proper accounb-m.l'z'ng the expression for a single relaxatllon—n.me Maxwell
ing of the short-time dynamics was made. This indicated tha uid’s memory function or, better yet, the inertialess mean-

the success of the predicted Maxwell model plateau onseiuare d_isplaqer_nent o_fa Brownian_ part_icle undergoing _ther-
time scaling was purely fortuitous mal motion within a single relaxation-time Maxwell fluid,

the single relaxation-time Maxwell fluid’s shear modulus in
the frequency domain within the Mason-Weitz approxima-

(A5)

APPENDIX A tion is given by
An alternate approach to solving the generalized Lange-
vin equation for arbitrary memory function has been utilized G(s)=7 S _ (A6)
by Mason and co-workerfsl—3]. The exact relationship be- st+1

tween a particle’s mean-square displacement and the sus- N
pending medium’s memory function in the frequency do-The complex shear moduluS* () (the form familiar from

main is the theory of linear viscoelasticitycan be found using ana-
lytic continuation, substitutingew for s and then taking the
~ 6kT real and imaginary parts to yield the storage and loss moduli,
{(s)= Z(ATA(s)) ms (Ala  G'(w) andG"(w), respectively:
or, neglecting the inertial term, ap . o
G* (o) Mor+1 (A7)
~, . BkT Alh
{(s)= (ATY(S))” (A1b)  ith
~ 2
where f(s)=[ge s'f(t)dt denotes a Laplace transformed Gle)= 1T A8a
quantity. Utilizing our single relaxation-time Maxwell fluid (@) W’ +1 (A83)
memory function, £(t)=(¢/7)e V" with (=6myR, the
mean-square displacement in the frequency dorfreglect-  and
ing inertig is
G"(w)= —pp (AgD)
6kT(1 I
<A72(s)>27(?+ §>. (A2) wirtl

These are the exact expressions for the viscoelastic moduli of
Following the Laplace inversion the mean-square displacea single relaxation-time Maxwell fluigB1], thereby demon-

ment in the time domain is found to be strating the success of the Mason-Weitz approximation for at
least the simple, incompressible, viscoelastic continuum
) 6kT model outlined here.
(Ar (t)>ET(t+T). (A3)
APPENDIX B

This is the same result found in the long-time limit of our ) o , ,
more rigorous calculation wherein the inertial terms were 1N€ Single relaxation-time Maxwell fluid provides some
retained. However, it should be noted that the mean-squari@Sight into the validity of ignoring inertial effects in the

displacement plateau is underestimated by a factor of 2 dsAngevin representation of Brownian motion in viscoelastic
shown earlier. media. In order for this condition to be met, the following

An even more interesting result arises from a further apjnequality must be satisfied within the approximation of Ma-

proximation of Mason and co-workers wherein they attemp°n and Weitz:

to establish the connection between a Brownian particle’s -

mean-squared displacement and the suspending medium’s ms<{(s). (B1)
shear modulu§1-3]. Here they have assumed that the

Stokes-Einstein relationship is valid at all frequendies, a  For the case of a single relaxation-time Maxwell fluid this
frequency-dependent viscosity, no-slip boundary condition alhequality becomes

the sphere surface, incompressible medisoch that

. 97

4
s(st+ 1)<E—TB _—2R2pp’ (B2)

Us)=677(S)R. (A4)

Recall that this relation is exact for a purely viscous fluidwherepp is the particle density. For the terminal relaxation
with no slip boundary conditions. The suspending medium’dimes typical of viscoelastic materialsy>1 will hold near
shear modulu§(t), can be expressed in the Laplace domainthe limiting frequency. Inertial effects become important
as when the following inequality is no longer satisfied:
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9G <, sl (2—a)|"?7

2(1- a)R%pp

9y \/ 9G,
< 71/2: =
S<(77g) \/2R2pp7' 2R%pp’ (B3) s<

This is exactly the plateau onset frequency predicted by the
single relaxation-time Maxwell model mean-square displacewhere I'(x) denotes the gamma function. This leads to a
ment as expected. Interestingly, the mean-square displacéomewhat less restrictivé.e., highey frequency limit than
ment oscillations predicted by the Sing|e re|axati0n_timethe single relaxation-time Maxwell fluid model. That is, the
Maxwell fluid model begin at this time and persist until the high-frequency Rouse modes provide a means for viscous
terminal relaxation time is reached. Therefore in the singledissipation at short-time scales and thereby reduce the dura-
relaxation-time Maxwell fluid case, when inertial effects aretion of ballistic motion exhibited by a Brownian particle. If
assumed negligible, as in the Mason-Weitz approximationthis critical frequency is much larger thanrd/ then the
not only is the ballistic regime neglected as expected, bufnean-square displacement whenr, is simply given by
other components of the dynamical behavior are also elimi-
nated. This phenomenon is also manifested in the plateau (AFE(D) KT(1—a) -
mean-square displacement difference predicted by the exact r<(t))= @ te.
calculation and the Mason-Weitz approximation. 7TRG‘@eTEF(1+ a)l(2=a)

Polymer solutions and melts exhibit much more complex
stress relaxation behavior than a single relaxation-time Maxtere we have neglected the small mean-square displacement
well fluid [23]. The short-time stress relaxation modulus offset resulting from the initially ballistic motion. The ne-

found from the Doi-Edwards tube model is glected mean-square displacement offset would be of order
G/(1)=G (—Te)a (B4) k
b= t<7y —-a)(2—a T
t (Ar?) gpiger= 942 )E

whent=<r,. HereG,(t) is the stress relaxation modulus and

12—«
7 denotes the time at which tube constraints become impor- 2(1-a)pp ( )R(3a—2)/(2—a)
tant. The values o*tstsfe and « depend on the nature of the 9GtSTeT§F(2— a) '
polymer chains(i.e., flexible, semiflexible, or stiff In the (B8)

classic Doi-Edwards model for flexible chains in the melt
Gtgfe= Gy is the plateau modulus andis 1/2. In order to

neglect inertia within the Mason-Weitz approximation the ACKNOWLEDGMENTS
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