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Long-time tails in the solid-body motion of a sphere immersed in a suspension
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Institute of Theoretical Physics, Warsaw University, Hoza 69, 00-618 Warsaw, Poland

B. U. Felderhof
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~Received 12 May 2000!

Long-time tails in the translational and rotational motion of a sphere immersed in a suspension of spherical
particles are discussed on the basis of the linear, time-dependent Stokes equations of hydrodynamics. It is
argued that the coefficient of thet23/2 long-time tail of translational motion depends only on the effective mass
density and shear viscosity of the suspension. A similar expression holds for the coefficient of thet25/2

long-time tail of rotational motion. In particular, the long-time tails are independent of the sphere radius, and
therefore the expressions hold also for a particle of the suspension. On account of the fluctuation-dissipation
theorem the long-time tails of the velocity autocorrelation function and the angular velocity autocorrelation
function of interacting Brownian particles are also given by these expressions.

PACS number~s!: 82.70.Kj, 05.40.2a, 66.10.Cb
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I. INTRODUCTION

The coefficient of thet23/2 long-time tail of the velocity
autocorrelation function of a single Brownian particle im
mersed in a fluid depends only on the temperature, sh
viscosity, and mass density of the fluid. It is independen
the mass of the Brownian particle, its size, and the natur
the hydrodynamic boundary condition coupling it to the flu
motion. A similar simple expression holds for the coefficie
of the t25/2 long-time tail of the angular velocity autocorre
lation function. The coefficients follow by use of th
fluctuation-dissipation theorem from expressions for
frequency-dependent translational and rotational mobili
derived in linear hydrodynamics, as shown by Zwanzig a
Bixon @1# and others@2–5#. A similar long-time tail of the
velocity autocorrelation function of a molecule was found
Alder and Wainwright@6# in a computer simulation of a
hard-sphere fluid.

It was conjectured by Milner and Liu@7# that for a sus-
pension of interacting Brownian particles the coefficient
the long-time tail of the velocity autocorrelation function d
fers from that for the pure solvent only in the replacemen
the solvent mass density and shear viscosity by the sus
sion mass density and shear viscosity. The conjecture
based on arguments proposed by Alder and Wainwright@6#
for the hard-sphere fluid, as well as on a calculation of
long-time coefficient to first order in volume fraction. Th
calculation requires analysis of the frequency-dependent
bility of two spheres in retarded hydrodynamic interaction

Recently, Hagen, Frenkel, and Lowe@8# extended the
conjecture of Milner and Liu to the angular velocity autoco
relation function. They used the same effective fluid pictu
in which it suffices to replace the solvent viscosity and m
density occurring in the coefficient of the long-time tail b
the suspension viscosity and mass density. Their comp
simulation data support the conjecture. Recently, we h
analyzed some of the data by the method of Pade´ approxi-
mants applied to the Laplace transform of the autocorrela
function @9,10#.

Some time ago we derived a theorem in linear hydro
PRE 621063-651X/2000/62~4!/5383~6!/$15.00
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namics@11# which shows that a finite number of spheres,
in motion in a viscous fluid, eventually move with the sam
velocity. The coefficient of the long-time tail of the velocit
of any of the spheres takes the same universal value as
single sphere. We argued on the basis of the cluster ex
sion of the average hydrodynamic admittance in a susp
sion that therefore the velocity autocorrelation function
interacting Brownian particles has the same universal lo
time tail as that for a single Brownian particle@12#. In the
following we conclude that our argument was wrong, a
that the conjecture of Milner and Liu@7# is correct.

We base our conclusion on a detailed analysis of
Green function of linear hydrodynamics and its relation
the motion of a single sphere immersed in an unboun
solvent. The hydrodynamic analysis shows that in the
stage of motion the solid-body motion of a suspended sph
becomes equal to the flow velocity of the surrounding flu
which varies on a length scale much larger than the sph
diameter. In this last stage of motion the exchange of m
mentum and angular momentum is negligible. The argum
can be extended to a suspension. Since the spatial varia
of the final flow is on the macroscopic length scale, mac
scopic average equations can be used in the calculation

II. GREEN FUNCTION

We consider first an incompressible fluid of mass dens
r and shear viscosityh in infinite space without any sus
pended particles. The fluid is assumed to be at rest in
absence of applied forces. If a time-dependent force den
F0(r ,t) of small amplitude is applied to the fluid, then a flo
velocity v(r ,t) and a pressurep(r ,t) are generated. We as
sume that these satisfy the linearized Navier-Stokes eq
tions

r
]v

]t
5h¹2v2“p1F0 , “•v50. ~2.1!

After a Fourier analysis in time we find that the equations
the Fourier components with time factor exp(2ivt) are
5383 ©2000 The American Physical Society
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2 ivrvv5h¹2vv2“pv1F0v , “•vv50. ~2.2!

The solution in integral form is given by

vv~r !5
1

4ph E Ta~r2r 8!•F0v~r 8!dr 8,

pv~r !5
1

4p E Q~r2r 8!•F0v~r 8!dr 8, ~2.3!

with propagators@13#

Ta~r !51Ga~r !1a22
““@G0~r !2Ga~r !#,

Ga~r !5exp~2ar !/r , Q~r !5 r̂ /r 2. ~2.4!

We have used the abbreviation

a5~2 ivr/h!1/2, Rea.0. ~2.5!

We consider in particular a force density

F0~r ,t !5Pd~r !d~ t ! ~2.6!

corresponding to a sudden impulse applied at the origin.
verting the Fourier transform one finds that the genera
flow velocity for t.0 is given by

v~r ,t !5
1

4ph
T~r ,t!•P, ~2.7!

with the tensor

T~r ,t !51
1

A4pnt3/2
expS 2

r 2

4nt D1n““

erf~r /A4nt !

r
,

~2.8!

wheren5h/r is the kinematic viscosity. More explicitly,

T~r ,t !5
exp~2r 2/4nt !

A4pnt3/2 F S 112
nt

r 2D12S 116
nt

r 2D r̂ r̂ G
1n

2113r̂ r̂

r 3 erfS r

A4nt
D . ~2.9!

The relation to the tensor in Eq.~2.4! is

Ta~r !5E
0

`

eivtT~r ,t !dt. ~2.10!

A different derivation of the fundamental solution Eq.~2.9!
was presented by Oseen@14#.

The pressure generated by the impulse is

p~r ,t !5
1

4p

r̂•P

r 2 d~ t !. ~2.11!

The long-range pressure field is established instantaneo
because the fluid is incompressible. This corresponds to
infinite velocity of sound. There is a corresponding lon
range dipolar flow field, as is evident from the limitt
→01 in Eq. ~2.9!,
-
d

ly,
an
-

T~r ,01 !54pn1d~r !1n
2113r̂ r̂

r 3 . ~2.12!

This shows that hydrodynamic interactions between s
pended particles have an instantaneous long range.

At small distance from the origin the flow is uniform. B
Taylor expansion in Eq.~2.9!,

T~r ,t!5
1

A4pn
F S 2

3t3/22
r 2

5nt5/2D11
r 2

10nt5/2 r̂ r̂ G1O~r 3!.

~2.13!

This holds for allt.0. The flow is uniform over the viscou
length scalel v(t)5Ant.

The total momentum imparted to the fluid by the for
densityF0(r ,t) in Eq. ~2.6! amounts toP. From Eq.~2.8! one
finds

E T~r ,t !dr5
8pn

3
1, ~2.14!

so that the total momentum of the fluid fort.0 is

rE v~r ,t !dr5 2
3 P. ~2.15!

Hence att50 one-third of the imparted momentum is tran
ported to infinity by sound waves.

We also consider a force density

F0~r ,t !52 1
2 L3“d~r !d~ t ! ~2.16!

corresponding to a sudden twist applied at the origin. T
twist imparts an angular momentumL to the fluid. From Eq.
~2.8! one finds for the corresponding flow fort.0

v~r ,t !5L3r
exp~2r 2/4nt !

p3/2r~4nt !5/2 . ~2.17!

The pressure remains constant. The angular momentum
the fluid is for t.0

rE r3v~r ,t !dr5L . ~2.18!

Hence no angular momentum is transferred to infinity. N
the origin the flow is a solid-body rotation decaying ast25/2.

III. SINGLE SPHERE

Next we consider a single sphere of radiusa immersed in
the fluid and centered at the origin. We assume mixed s
stick boundary conditions at the sphere-fluid interface. F
t,0 both sphere and fluid are at rest. Att50 we suddenly
apply a force or torque to the sphere, causing both sphere
fluid to move. Both motions eventually decay in time due
viscous dissipation. In the linear regime the displacemen
the sphere may be neglected. We shall show that at l
times the motion of sphere and fluid is quite simple a
independent of the size of the sphere and the nature of
boundary conditions.

We consider a force
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E~ t !5Pd~ t ! ~3.1!

applied to the sphere. After Fourier transform the equation
motion for the sphere reads

2 ivmpUv5Kv1P, ~3.2!

wheremp is the mass of the sphere,U(t) is its velocity, and
K (t) is the force exerted by the fluid on the sphere, as gi
by a surface integral of the fluid stress tensor. The solutio
the flow problem yields

@2 iv~mp1 1
2 mf !1z t~v!#Uv5P, ~3.3!

wheremf5(4p/3)a3r is the mass of fluid displaced by th
sphere andz t(v) is the translational friction coefficient. Fo
mixed slip-stick boundary conditions with slip parametej
taking values between 0 for stick and13 for pure slip the
friction coefficient is given by@15#

z t~v!56pha~12j!
11aa

11jaa
. ~3.4!

The initial value of the velocity isU(01)5P/m* , where
m* 5mp1 1

2 mf is the effective mass. This is less thanP/mp
due to the loss of momentum to infinity via longitudin
sound waves@16#. From Eq.~3.3! one defines the transla
tional admittanceYt(v) as

Yt~v!5@2 ivm* 1z t~v!#21. ~3.5!

At low frequency this has the expansion

Yt~v!5m t~0!2
1

6ph S 2 iv

n D 1/2

1O~v!, ~3.6!

wherem t(0)51/@6pha(12j)# is the steady-state mobility
The second term gives rise to the long-time behavior of
velocity,

U~ t !'
1

12r~pnt !3/2P as t→`. ~3.7!

It is remarkable that the coefficient is independent of sph
radius and slip coefficient, and depends only on the prop
ties of the fluid. Comparing with Eq.~2.13! we see that the
long-time tail is identical to that corresponding to the sudd
impulse in Eq.~2.6!. This suggests that in the last stage
motion the flow pattern can be identified with that given
the Green function, as in Eq.~2.7!. The complete flow pat-
tern is given by Eq.~7.6! of Ref. @17#. In the notation of
Felderhof and Jones@17#,

Ta~r !•ez5A4p/3@2v10N
2 ~r !13v10P

2 ~r !#. ~3.8!

The two contributions are

v10N
2 ~r !5

a

3p
@2k0~ar !A101k2~ar !B10#,

v10P
2 ~r !5

21

3a2r 3 B10, ~3.9!
f

n
of

e

re
r-

n
f

with modified spherical Bessel functions kl(z)

5( 1
2 p/z)1/2Kl 11/2(z) and vector spherical harmonics

A105A3/4pez , B105A3/4p~123r̂ r̂ !•ez . ~3.10!

One can check that at low frequency Eq.~3.8! is identical
with the flow pattern of the sphere.

The momentum transfer from sphere to fluid at timet is
given by the forceK (t). From Eqs.~3.2! and~3.3! one finds
for its Fourier transform

Kv5@ 1
2 ivmf2z t~v!#Yt~v!P. ~3.11!

Expanding this at low frequency one finds

Kv52S 12
2

9

mp

mf~12j!
~aa!21

2

9

mp

mf
~aa!3DP1O~v2!.

~3.12!

Therefore the long-time behavior of the force is

K ~ t !'2
1

6Ap

mp

mf

a3

n3/2t5/2P as t→`. ~3.13!

This decays faster than the velocityU(t). Hence in the last
stage of motion sphere and fluid move together with ne
gible momentum transfer.

Similar considerations hold when a torque

N~ t !5Ld~ t ! ~3.14!

is applied to the sphere. After Fourier transform the equat
of motion for the sphere reads

2 ivI Vv5Tv1L , ~3.15!

where I is the moment of inertia of the sphere,V(t) is its
rotational velocity, andTv is the torque exerted by the flui
on the sphere, as given by a surface integral of the fl
stress tensor. The solution of the flow problem yields

@2 ivI 1z r~v!#Vv5L , ~3.16!

where z r(v) is the rotational friction coefficient given by
@15#

z r~v!58pha3~123j!
11aa1 1

3 ~aa!2

11aa1j~aa!2 . ~3.17!

The initial value of the rotational velocity isV(01)5L /I .
From Eq.~3.16! one defines the rotational admittanceYr(v)
as

Yr~v!5@2 ivI 1z r~v!#21. ~3.18!

At low frequency this has the expansion

Yr~v!5m r~0!1 i S Im r~0!21
1

24parn2Dv

1
1

24ph S 2 iv

n D 3/2

1O~v2!, ~3.19!
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where m r(0)51/@8pha3(123j)# is the steady-state rota
tional mobility. The third term gives rise to the long-tim
behavior of the rotational velocity,

V~ t !'
1

p3/2r~4nt !5/2L as t→`. ~3.20!

Comparing with Eq.~2.17! we see that the long-time tail i
identical with the solid-body rotation corresponding to t
sudden twist in Eq.~2.16!. This suggests that in the last sta
of motion the flow pattern can be identified with that giv
by the Green function, as given by Eq.~2.17!. The complete
flow pattern is given by Eq.~7.9! of Ref. @17#. One can check
that at low frequency the flow pattern agrees with Eq.~2.17!.

The transfer of angular momentum from sphere to fluid
time t is given by the torqueT(t). From Eqs.~3.15! and
~3.16! one finds for its Fourier transform

Tv52z r~v!Yr~v!L . ~3.21!

Expanding this at low frequency one finds

Tv52F11Im r~0!v2Im r~0!S Im r~0!1
a2

3n
~123j! Dv2

2
I

24pr S 2 iv

n D 5/2GL1O~v3!. ~3.22!

Therefore the long-time behavior of the torque is

T~ t !'2
5I

64p3/2rn5/2

1

t7/2L as t→`. ~3.23!

This decays faster than the angular velocityV(t). Hence in
the last stage of motion sphere and fluid move together w
negligible transfer of angular momentum.

IV. SUSPENSION

After these preparations we consider the velocity autoc
relation function of a selected particle in a suspension
spherical Brownian particles at temperatureT. The transla-
tional velocity autocorrelation functionCt(t) of the selected
particle is defined by

Ct~ t !5 1
3 ^U~0!•U~ t !&, ~4.1!

where the angular brackets indicate a thermal average in
thermodynamic limit. According to the fluctuation
dissipation theorem@3,18,19# its one-sided Fourier transform
Ĉt(v), defined as in Eq.~2.10!, is given by

Ĉt~v!5kBT^Yt~v;X!&, ~4.2!

whereYt(v;X) is the translational admittance of the select
particle, which depends parametrically on the configurat
X of all Brownian particles. If the particles are sufficient
large compared with the molecules of the solvent, then
admittance can by calculated from linear hydrodynam
Similar expressions hold for the rotational velocity autoc
relation function.

In earlier work @11# we have shown that the long-tim
translational motion of an arbitrary number of bodies of
t

th

r-
f

he

n

e
.

-

-

bitrary shape, interacting via arbitrary boundary conditio
with an infinite incompressible fluid of mass densityr and
shear viscosityh, is identical to that of a single sphere, a
given by Eq.~2.7!. It does not matter how the momentumP
is initially distributed over the bodies. Eventually all bodie
move with the same velocity, identical to that of the inters
tial fluid. After a time much longer thanl /An, wherel is the
size of the swarm of bodies, the flow pattern is given by E
~2.7!. The total amount of diffusing momentum is2

3 P. One-
third of the initial momentum is transported to infinity att
50 by sound waves.

This general theorem@11# can be applied to the calcula
tion of the average admittance in Eq.~4.2!. We take the
selected spherical particle of radiusa to be centered at the
origin. On the time scale under consideration the displa
ment of particles may be neglected. We assume that the
mainingN21 Brownian particles fill a volumeV of simple
shape surrounding the selected one, and that the solven
tends to infinity. The boundary of the volumeV is assumed
to have no influence on the flow of solvent. The probabil
distribution of particle centersW(R1 , . . . ,RN) is assumed
known. We are interested in the low-frequency behavior
the translational admittanceYt(v;X) of the selected particle
labeled 1, for fixed configurationX5(R1 , . . . ,RN), and the
corresponding behavior of its conditional average over
probability distributionW(X), keepingR1 fixed at the ori-
gin.

We shall argue that, although for each configurationX the
coefficient of theAv term in the low-frequency expansion o
Yt(v;X) has the universal value given by Eq.~3.6!, nonethe-
less this has no relevance in the thermodynamic limitN
→`,V→` at constant densityn5N/V. At finite N and V
the coefficient is determined by the mass density and sh
viscosity of the solvent. The corresponding long-time t
starts to be dominant at times much longer thanR/An, where
R is the size of the volumeV. However, in the thermody-
namic limit the characteristic timeR/An tends to infinity.
The long-time tail of the central particle, as observed in e
periment or computer simulation, will be dominated by t
effective mass density and the effective viscosity of the s
pension inside the volumeV.

It remains to discuss the motion of the suspension. On
macroscopic length scale, and on a time scale on which
fusion of particles can be neglected, the average flow of
suspension is governed by macroscopic equations of
form @20,21#

2 ivreff~v!^vv&5heff~v!¹2^vv&2“^pv&

1~12f!F0v1ng t~v!Ev ,

“•^vv&50. ~4.3!

We have assumed for simplicity that no external torques
on the particles. The average flow velocity^vv& incorporates
both fluid flow and solid-body motion of the particles. Th
effective coefficientsreff(v) andheff(v) vary with frequency,
but in the long-time limit only the zero-frequency value
reff(0) and heff(0) are relevant. The zero-frequency ma
density is simply

reff~0!5~12f!r1frp , ~4.4!
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where f54pna3/3 is the volume fraction andrp is the
mass density of the solid particles. On the relevant ti
scale, where particle displacements may be neglected,
effective viscosityheff(v) follows from an average over con
figurationsX of a solution of the linearized Navier-Stoke
equations. In the zero-frequency limit this becomes an a
age of the steady-state Stokes equations@22#. Numerical val-
ues of the effective viscosityheff(0) have been determined b
computer simulation for a range of volume fraction@23#.
Note that the zero-frequency limit is applied here on the ti
scale where particle displacements are neglected. The e
of Brownian motion on the distribution function is not take
into account. Thus the effective viscosityheff(0) considered
above is a high-frequency viscosity on the diffusion tim
scale.

In Eq. ~4.3! it has been assumed that the force dens
F0(r ,t) acting on the fluid and the forceE(t) acting on the
particles vary slowly in space, as compared with the int
particle distance. The convection coefficientg t(v) is given
by @20,21,24#

g t~v!511 iv~mp2mf !Yt~v!, ~4.5!

whereYt(v) is the admittance of a single particle in infini
solvent. The convection coefficientg t(v) incorporates the
single-particle equation of motion and expresses how m
mentum is transferred to the fluid after a force is applied
the particle. Clearly, in the zero-frequency limit the conve
tion coefficient may be replaced by unity, and its expans
in powers of frequency has no term of orderAv. This shows
that for the long-time motion of the suspension it is imma
rial whether the initial momentum is imparted to the fluid
to the particles. In either case the suspension flow is
scribed by the same average Green function. The long-t
common motion of fluid and particles may be calculat
from the macroscopic equation Eq.~4.3! with coefficients
replaced by their zero-frequency values. The calculation
identical to that of Secs. II and III. The long-time tail of th
local suspension velocity after an initial momentumP or
angular momentumL is imparted at timet50 in spherically
symmetric fashion in a region of finite extent is given
Eqs.~3.7! and~3.20!, respectively, withr replaced byreff(0)
andn replaced byneff(0)5heff(0)/reff(0).

In earlier work @12# we conjectured that the Fourie
Laplace transform of the velocity autocorrelation function
Brownian motion may be approximated by a simple expr
sion based on its behavior at low and high frequencies.
the low-frequency behavior we used the theorem@11# men-
tioned at the beginning of this section. The theorem imp
that the low-frequency expansion of any of the cluster in
grals in the exact expression for the average admitta
^Yt(v;X)& has the sameAv term as the one for a singl
sphere, given by Eq.~3.6!. This implies that for fixedN and
V the velocity of the sphere after an impulse att50 has the
long-time behavior given by Eq.~3.7!. The arguments pre
sented in this section show that in the thermodynamic li
N→`,V→` the Av term in the expansion of the averag
admittance attains a different value. A similar mechanism
operative for the average rotational admittance. For lo
times the flow pattern becomes smooth and is descr
nearly precisely by the macroscopic equations. The mic
e
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structure appears only in the value of the effective viscos
Thus the long-time behavior of the velocity autocorrelati
function Ct(t) is

Ct~ t !'
kBT

12reff~0!@pneff~0!t#3/2 as t→`. ~4.6!

Similarly, the long-time behavior of the rotational veloci
autocorrelation functionCr(t) is

Cr~ t !'
kBT

p3/2reff~0!@4neff~0!t#5/2 as t→`. ~4.7!

In experiment and computer simulation the thermod
namic limit value of the long-time coefficient is the releva
one. The situation is somewhat similar to that for the eq
librium radial distribution function of a simple fluid. In ex
periment and simulation the relevant value of the integra
the radial distribution function of a closed system is the o
given by the compressibility theorem, not the exact va
derived for the canonical ensemble@25#.

It will be clear that the conclusions of this section a
independent of the choice of macroscopic geometry and
the nature of the suspension. In particular, the conclusi
hold for any simple shape of the volumeV. Also, the sus-
pension may be polydisperse.

V. DISCUSSION

An analysis of the Green function of linear hydrodynam
ics and of the flow pattern caused by a single sphere mov
and rotating in a viscous fluid yields illuminating insight in
the nature of the long-time tails of translational and ro
tional motion. The same physical mechanism is operative
a sphere immersed in a suspension of spherical particles,
also for each of the particles of the suspension. We concl
that the conjecture of Milner and Liu@7# concerning the co-
efficient of the long-time tail of the velocity autocorrelatio
function of Brownian motion in a dense suspension, and
extension to rotational motion by Hagen, Frenkel, and Lo
@8#, are correct. Of course, the same conclusion holds in
dimensions.

Milner and Liu @7# supported their conjecture by a calc
lation of the first virial correction to the coefficient of th
long-time tail of the velocity autocorrelation function. In ea
lier work @12# we argued on the basis of the cluster expa
sion of the average hydrodynamic admittance in a susp
sion that their calculation must be incorrect. We derived
theorem@11# showing that the term linear in the square ro
of frequency in the integrand of the pair cluster integral va
ishes, and concluded that the coefficient of the long-time
is given by the first, single-sphere, term of the cluster exp
sion. However, in the thermodynamic limit the pair clust
integral has infinite range, and as a consequence the inte
does obtain a term linear in the square root of frequen
Milner and Liu @7# have shown how this happens. We ha
performed a complete analysis of the pair cluster integ
@26# and agree with their conclusion.
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