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Long-time tails in the solid-body motion of a sphere immersed in a suspension
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Long-time tails in the translational and rotational motion of a sphere immersed in a suspension of spherical
particles are discussed on the basis of the linear, time-dependent Stokes equations of hydrodynamics. It is
argued that the coefficient of thie®? long-time tail of translational motion depends only on the effective mass
density and shear viscosity of the suspension. A similar expression holds for the coefficient tof'the
long-time tail of rotational motion. In particular, the long-time tails are independent of the sphere radius, and
therefore the expressions hold also for a particle of the suspension. On account of the fluctuation-dissipation
theorem the long-time tails of the velocity autocorrelation function and the angular velocity autocorrelation
function of interacting Brownian particles are also given by these expressions.

PACS numbse(s): 82.70.Kj, 05.40-a, 66.10.Cb

I. INTRODUCTION namics[11] which shows that a finite number of spheres, set
in motion in a viscous fluid, eventually move with the same
The coefficient of the ~%? long-time tail of the velocity ~velocity. The coefficient of the long-time tail of the velocity

autocorrelation function of a single Brownian particle im- of any of the spheres takes the same universal value as for a
mersed in a fluid depends only on the temperature, she&ingle sphere. We argued on the basis of the cluster expan-
viscosity, and mass density of the fluid. It is independent ofion of the average hydrodynamic admittance in a suspen-
the mass of the Brownian particle, its size, and the nature ofiOn that therefor_e the v_elocr[y autocorrelation _functlon of
the hydrodynamic boundary condition coupling it to the fluid intéracting Brownian particles has the same universal long-
motion. A similar simple expression holds for the coefficienttime tail as that for a single Brownian partid&2]. In the
of the t 52 long-time tail of the angular velocity autocorre- following we conclude that our argument was wrong, and
lation function. The coefficients follow by use of the that the conjecture of Milner and Litr] is correct.
fluctuation-dissipation theorem from expressions for the We base our conclusion on a detailed analysis of the
frequency-dependent translational and rotational mobilitie§>réen function of linear hydrodynamics and its relation to

derived in linear hydrodynamics, as shown by Zwanzig andh€ motion of a single sphere immersed in an unbounded
Bixon [1] and other§2-5]. A similar long-time tail of the solvent. The hydrodynamic analysis shows that in the last

velocity autocorrelation function of a molecule was found byStage of motion the solid-body motion of a suspended sphere
Alder and Wainwright[6] in a computer simulation of a bec_:omes gqual to the flow velocity of the surrounding fluid,
hard-sphere fluid. vv_hlch varies on a length scale mu_ch larger than the sphere
It was conjectured by Milner and Li[i7] that for a sus- diameter. In this last stage of m9t|on the_ exchange of mo-
pension of interacting Brownian particles the coefficient ofMentum and angular momentum is negligible. The argument
the long-time tail of the velocity autocorrelation function dif- ¢@n be extended to a suspension. Since the spatial variation
fers from that for the pure solvent only in the replacement ofof the final flow is on the macroscopic length scale, macro-
the solvent mass density and shear viscosity by the suspeficOPIC average equations can be used in the calculation.
sion mass density and shear viscosity. The conjecture was
based on arguments proposed by Alder and Wainwiight Il. GREEN FUNCTION
for the hard-sphere fluid, as well as on a calculation of the
long-time coefficient to first order in volume fraction. The
calculation requires analysis of the frequency-dependent m
bility of two spheres in retarded hydrodynamic interaction.

We consider first an incompressible fluid of mass density
& and shear viscosity, in infinite space without any sus-

pended particles. The fluid is assumed to be at rest in the
absence of applied forces. If a time-dependent force density

Recently, Hagen, Frenkel, and LowW8] extended the , : . ,
conjecture of Milner and Liu to the angular velocity autocor- Fo(r:t) of small amplitude is applied to the fluid, then a flow
velocity v(r,t) and a pressurp(r,t) are generated. We as-

relation function. They used the same effective fluid picture . ) | .
in which it suffices to replace the solvent viscosity and masS$UMe that these satisfy the linearized Navier-Stokes equa-

density occurring in the coefficient of the long-time tail by 10NS
the suspension viscosity and mass density. Their computer

simulation data support the conjecture. Recently, we have ﬂ: V2V —Vp+F V.v=0 21
analyzed some of the data by the method of Papleroxi- Pgr =7 P o, ' @3
mants applied to the Laplace transform of the autocorrelation

function[9,10]. After a Fourier analysis in time we find that the equations for

Some time ago we derived a theorem in linear hydrodythe Fourier components with time factor exp@t) are
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—iwpv,=nV?,-Vp,+Fo,, V-v,=0. (2.2

The solution in integral form is given by

1
v, (r)= mf T (r—r")-Fo,(r')dr’,

1
D= 2= | QU1 Forar, 23

with propagator$13]
To(1)=1G(r)+a ?VV[Gy(r)—Gu(r)],
G, (r)=exp(—ar)lr, Q(r)=Ff/r. (2.9
We have used the abbreviation
a=(—iwp/n)*? Rea>0. (2.5
We consider in particular a force density

Fo(r,t)=P&(r)s(t) (2.9

corresponding to a sudden impulse applied at the origin. In-
verting the Fourier transform one finds that the generated

flow velocity fort>0 is given by
v(r,t)=LT(r,t)oP, (2.7
4y
with the tensor
I.2

1 oxd — erf(r/\4vt)
Va3 4vt r ’

T(r!t):]- )+VVV
(2.9

wherev= 7/p is the kinematic viscosity. More explicitly,

_exp(—r2/4vt) vt vt
T(r,t)—W +2r—2 1- 1+6r—2 rr
—1+3ff r
+v 3 erf \/ﬂ . (2.9
14

The relation to the tensor in E¢R.4) is

T, (r)= f:eith(r,t)dt. (2.10

A different derivation of the fundamental solution EG.9)
was presented by Osegid].
The pressure generated by the impulse is

1 7P

(2.11
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—1+3Ff
T(r,0+)=47v15(r)+ v

(2.12

This shows that hydrodynamic interactions between sus-
pended particles have an instantaneous long range.

At small distance from the origin the flow is uniform. By
Taylor expansion in Eq2.9),

2 2

r

2
T(r!t): (Wz_ 5Vt5/2 +O(r3)

(2.13

This holds for allt>>0. The flow is uniform over the viscous
length scald ,(t)= \/t.

The total momentum imparted to the fluid by the force
densityF,(r,t) in Eq.(2.6) amounts td®. From Eq.(2.8) one
finds

r
n .
Ay ! 101/t5/2rr

8wy
f T(rtdr=—5-1, (2.14
so that the total momentum of the fluid for 0 is
pf v(r,t)dr=3%P. (2.15

Hence at =0 one-third of the imparted momentum is trans-
ported to infinity by sound waves.
We also consider a force density
Fo(r,t)=—3L XV &(r)(t) (2.1
corresponding to a sudden twist applied at the origin. The
twist imparts an angular momentumto the fluid. From Eq.
(2.8 one finds for the corresponding flow for-0

DL x exp( —r?/4pt) 01
v(r,t)= (A (2.17
The pressure remains constant. The angular momentum of
the fluid is fort>0

pf rxv(r,t)ydr=L. (2.18
Hence no angular momentum is transferred to infinity. Near
the origin the flow is a solid-body rotation decayingtas'’.

Ill. SINGLE SPHERE

Next we consider a single sphere of rad&usnmersed in
the fluid and centered at the origin. We assume mixed slip-
stick boundary conditions at the sphere-fluid interface. For
t<<O both sphere and fluid are at rest. tAt0 we suddenly
apply a force or torque to the sphere, causing both sphere and
fluid to move. Both motions eventually decay in time due to
viscous dissipation. In the linear regime the displacement of

The long-range pressure field is established instantaneouslihe sphere may be neglected. We shall show that at long
because the fluid is incompressible. This corresponds to atimes the motion of sphere and fluid is quite simple and
infinite velocity of sound. There is a corresponding long-independent of the size of the sphere and the nature of the

range dipolar flow field, as is evident from the limit

—0+ in Eq. (2.9,

boundary conditions.
We consider a force
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E(t)=P4(t) (3.1) with modified spherical Bessel functionsk(z)

_ _ = (3 w12)YK, . 1,(2) and vector spherical harmonics
applied to the sphere. After Fourier transform the equation of

motion for the sphere reads A= 3l4me,, Bjo=\3l4w(1-3FF)-e,. (3.10
—fomyU,=K,+P, (3.2 One can check that at low frequency HE8.8) is identical

) o ) with the flow pattern of the sphere.
wherem, is the mass of the spher(t) is its velocity, and The momentum transfer from sphere to fluid at titrie

K(t) is the force exerted by the fluid on the sphere, as giverien by the forcek (t). From Eqs(3.2) and(3.3) one finds
by a surface integral of the fluid stress tensor. The solution ofy, its Fourier transform

the flow problem yields

[—iw(mp+%mf)+§t(w)]uw=P, (3.3 Ko):[% lom;— {()]V(w)P. (3.11

wherem;= (47/3)a%p is the mass of fluid displaced by the Expanding this at low frequency one finds

sphere and(w) is the translational friction coefficient. For m 2m
mixed slip-stick boundary conditions with slip parameger K = —(1— ——P __(qa)?+ = —2(@a)®|P+0O(w?).
taking values between 0 for stick ardfor pure slip the 9 mi(1-¢) 9 my

friction coefficient is given by15] (3.12
Therefore the long-time behavior of the force is

_6 1 l+aa 3.4
L) =6m7a(l=8) 1 . (3.4 L om
K(t)y~— —=— —3pspP ast—x. (3.13
The initial value of the velocity idJ(0+)=P/m*, where 67 My I

m* =m,+ 3 my is the effective mass. This is less thaim, _ )
due to the loss of momentum to infinity via longitudinal This decays faster than the veloclt)(t). Hence in the last
sound waveg16]. From Eq.(3.3) one defines the transla- Stage of motion sphere and fluid move together with negli-
tional admittance)y(w) as gible momentum transfer.
Similar considerations hold when a torque
V(w)=[—iom*+{(w)] " (3.5
i ‘ N(t)=L &(t) (3.14

At low frequency this has the expansion ) ] . )

is applied to the sphere. After Fourier transform the equation

1 w\? of motion for the sphere reads
V()= pu(0)— 6an| v +0(w), (3.6

—iwlQ,=T,+L, (3.15

wherep(0)=1167»a(1~£)] is the steady-state mobility. wherel is the moment of inertia of the spher@(t) is its

Igli;glcond term gives rise to the long-time behavior of therotational velocity, and' , is the torque exerted by the fluid

on the sphere, as given by a surface integral of the fluid
stress tensor. The solution of the flow problem yields

1
U(t)~ =P oo, 3.
= p(my®" 2t at [—iwl+{(0)]Q,=L, (3.16

It is remarkable that the coefficient is independent of sphergyhere ¢, (w) is the rotational friction coefficient given by
radius and slip coefficient, and depends only on the properr 5

ties of the fluid. Comparing with Eq2.13 we see that the
long-time tail is identical to that corresponding to the sudden 1+ aa+t (aa)?
impulse in Eq.(2.6). This suggests that in the last stage of {(w)=8mpa’(1—3¢)
motion the flow pattern can be identified with that given by
the Green function, as in E¢2.7). The complete flow pat-
tern is given by Eq(7.6) of Ref. [17]. In the notation of
Felderhof and Jond4.7],

(3.17

1+ aa+é&(aa)?”

The initial value of the rotational velocity i&(0+)=L/I.
From Eq.(3.16 one defines the rotational admittangd o)
as

To(r)-e,=a4m/3[2vyg(r)+3Vipe(r)]. (3.8 Vw)=[—iwl+&(0)] (3.18

The wo contributions are At low frequency this has the expansion

3 @
Vion(1) = 3—[2Ko(ar)Asg+Ka(ar)Bagl, yr(w):Mr(0)+i(|Mr(0)2+W ©

_ -1 1 —jw\3? .

Vioe(N) = 3-23B10, (3.9 +m —] +0(e9), (3.19
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where ,(0)=1[8m7na3(1—3¢)] is the steady-state rota- bitrary shape, interacting via arbitrary boundary conditions
tional mobility. The third term gives rise to the long-time with an infinite incompressible fluid of mass densijtyand
behavior of the rotational velocity, shear viscosityy, is identical to that of a single sphere, as
given by Eq.(2.7). It does not matter how the momentun

(3.20 is initially distributed over the bodies. Eventually all bodies

' move with the same velocity, identical to that of the intersti-
) . ) ~tial fluid. After a time much longer thakl /v, wherel is the
Comparing with Eq(2.17) we see that the long-time tail is  sjze of the swarm of bodies, the flow pattern is given by Eq.
identical with the solid-body rotation corresponding to the(2_7)_ The total amount of diffusing momentum jsP. One-
sudden twist in Eq(2.16). This suggests that in the last stage hird of the initial momentum is transported to infinity &t
of motion the flow _pattern can be identified with that given _ by sound waves.
by the Green function, as given by E@.17. The complete This general theorerfil1] can be applied to the calcula-
flow pattern is given by Eq7.9) of Ref.[17]. One can check tion of the average admittance in E.2). We take the
that at low frequency the flow pattern agrees with &17).  gejected spherical particle of radiasto be centered at the
~ The transfer of angular momentum from sphere to fluid atyrigin. On the time scale under consideration the displace-
time t is given by the torquel (). From Egs.(3.19 and  ment of particles may be neglected. We assume that the re-
(3.16 one finds for its Fourier transform mainingN— 1 Brownian particles fill a volum& of simple

Q(t)%wL as t—ce.

a2
To=—

L+0(wd). (3.22

_ shape surrounding the selected one, and that the solvent ex-
To= =&))L 329 tends to infinity. The boundary of the volumeis assumed
Expanding this at low frequency one finds to have no influence on the flow of solvent. The probablllty
distribution of particle centergV(R;, ... ,Ry) is assumed
) known. We are interested in the low-frequency behavior of
1+ (0o =1 (0)] T4, (0) + 5(1_35) w the translational admittangg(w;X) of the selected particle,
labeled 1, for fixed configuratiod=(R,, ... ,Ry), and the
| —iw)|%? corresponding behavior of its conditional average over the
B 24mp\ v probability distributionW(X), keepingR; fixed at the ori-
gin.
Therefore the long-time behavior of the torque is We shall argue that, although for each configuratiathe
51 1 coefficient of theJw term in the low-frequency expansion of
~_ o Vi(w;X) has the universal value given by E&.6), nonethe-
T~ 5273 2PV52'E_7,?L astoe. (329 less this has no relevance in the thermodynamic likit
) ) —o,V—oo at constant densitp=N/V. At finite N andV
This decays faster than the angular velodityt). Hence in - he coefficient is determined by the mass density and shear
the last stage of motion sphere and fluid move together witlyscosity of the solvent. The corresponding long-time tail
negligible transfer of angular momentum. starts to be dominant at times much longer tRAN v, where
R is the size of the volum&. However, in the thermody-
namic limit the characteristic tim&/\/v tends to infinity.
After these preparations we consider the velocity autocor] he long-time tail of the central particle, as observed in ex-
relation function of a selected particle in a suspension of€riment or computer simulation, will be dominated by the

tional velocity autocorrelation functioB,(t) of the selected ~Pension inside the volumé.

IV. SUSPENSION

particle is defined by It remains to discuss the motion of the suspension. On the
macroscopic length scale, and on a time scale on which dif-
Ci(t)=3(U(0)-U(1)), (4.1)  fusion of particles can be neglected, the average flow of the

suspension is governed by macroscopic equations of the
where the angular brackets indicate a thermal average in thigrm [20,21]
thermodynamic limit. According to the fluctuation-

dissipation theorerf8,18,19 its one-sided Fourier transform —iwpei(@)(Vy) = e @) VA(V,) = V(P,,)
Ci(w), defined as in Eq2.10, is given by + (1= $)Fgy+ Nyy()E
Ci(@) =kgT(W(@;X)), (4.2 V- (v,)=0. 4.3

where)(w;X) is the translational admittance of the selectedywe have assumed for simplicity that no external torques act
particle, which depends parametrically on the configuratiorpn the particles. The average flow velodfty,) incorporates

X of all Brownian particles. If the particles are sufficiently poth fluid flow and solid-body motion of the particles. The
large compared with the molecules of the solvent, then theffective coefficient qq(w) and 744(w) vary with frequency,
admittance can by calculated from linear hydrodynamicspyt in the long-time limit only the zero-frequency values
Similar eXpreSSionS hold for the rotational VeIOCity autocor'peﬁ(O) and neﬁ(O) are relevant. The Zero_frequency mass

relation function. density is simply
In earlier work[11] we have shown that the long-time

translational motion of an arbitrary number of bodies of ar- pei(0)=(1—)p+ bp,, (4.9
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where ¢p=4mna®3 is the volume fraction angh, is the  structure appears only in the value of the effective viscosity.
mass density of the solid particles. On the relevant timeThus the long-time behavior of the velocity autocorrelation
scale, where particle displacements may be neglected, tHanction C,(t) is
effective viscosityy«(w) follows from an average over con-

figurations X of a solution of the linearized Navier-Stokes K
equations. In the zero-frequency limit this becomes an aver- Ci(t)~ BT -
age of the steady-state Stokes equat[@2. Numerical val- 12p(0)[ ven( 0)t]
ues of the effective viscositye(0) have been determined by

computer simulation for a range of volume fractigs]. Similarly, the long-time behavior of the rotational velocity

Note that the zerp-freq_uency limit is applied here on the t'mea%ltocorrelation functior, (t) is
scale where particle displacements are neglected. The effec

of Brownian motion on the distribution function is not taken

ast—o, (4.6

into account. Thus the effective viscosityx(0) considered kgT
f;\(k:)gl\ée is a high-frequency viscosity on the diffusion time Ci ()= 7 (O Ave (02 2° t—oo. (4.7
In Eq. (4.3 it has been assumed that the force density
Fqo(r,t) acting on the fluid and the fordg(t) acting on the In experiment and computer simulation the thermody-

particles vary slowly in space, as compared with the internamic limit value of the long-time coefficient is the relevant
particle distance. The convection coefficien{w) is given  one. The situation is somewhat similar to that for the equi-
by [20,21,24 librium radial distribution function of a simple fluid. In ex-
periment and simulation the relevant value of the integral of
Yi(w)=1+iw(m,—m) (), (4.5 the radial distribution function of a closed system is the one
given by the compressibility theorem, not the exact value
where),(w) is the admittance of a single particle in infinite derived for the canonical ensemi5].
solvent. The convection Coefﬁciem(w) incorporates the It will be clear that the conclusions of this section are
single-particle equation of motion and expresses how motndependent of the choice of macroscopic geometry and of
mentum is transferred to the fluid after a force is applied to¢he nature of the suspension. In particular, the conclusions
the particle. Clearly, in the zero-frequency limit the convec-hold for any simple shape of the volunwe Also, the sus-
tion coefficient may be replaced by unity, and its expansiorPension may be polydisperse.
in powers of frequency has no term of ordép. This shows
that for the long-time motion of the suspension it is immate-
rial whether the initial momentum is imparted to the fluid or
to the particles. In either case the suspension flow is de- An analysis of the Green function of linear hydrodynam-
scribed by the same average Green function. The long-timgs and of the flow pattern caused by a single sphere moving
common motion of fluid and particles may be calculatedand rotating in a viscous fluid yields illuminating insight into
from the macroscopic equation E(.3) with coefficients  the nature of the long-time tails of translational and rota-
replaced by their zero-frequency values. The calculation igional motion. The same physical mechanism is operative for
identical to that of Secs. Il and Ill. The Iong-time tail of the a Sphere immersed in a Suspension of spherica| partides' and
local suspension velocity after an initial momentnor  also for each of the particles of the suspension. We conclude
angular momenturh is imparted at time=0 in spherically  that the conjecture of Milner and Li¥] concerning the co-
symmetric fashion in a region of finite extent is given by efficient of the long-time tail of the velocity autocorrelation
Egs.(3.7) and(3.20, respectively, withp replaced bye(0)  function of Brownian motion in a dense suspension, and its
and v replaced byven(0)= 71(0)/pes(0). extension to rotational motion by Hagen, Frenkel, and Lowe
In earlier work [12] we conjectured that the Fourier- [8], are correct. Of course, the same conclusion holds in two
Laplace transform of the velocity autocorrelation function of dimensions.
Brownian motion may be approximated by a simple expres- Milner and Liu[7] supported their conjecture by a calcu-
sion based on its behavior at low and high frequencies. Fogation of the first virial correction to the coefficient of the
the low-frequency behavior we used the theofd men-  |ong-time tail of the velocity autocorrelation function. In ear-
tioned at the beginning of this section. The theorem impliegier work [12] we argued on the basis of the cluster expan-
that the low-frequency expansion of any of the cluster intesion of the average hydrodynamic admittance in a suspen-
grals in the exact expression for the average admittancsion that their calculation must be incorrect. We derived a
(V(w;X)) has the same/w term as the one for a single theorem[11] showing that the term linear in the square root
sphere, given by E(3.6). This implies that for fixedN and  of frequency in the integrand of the pair cluster integral van-
V the velocity of the sphere after an impulsetatO has the ishes, and concluded that the coefficient of the long-time tail
long-time behavior given by Ed3.7). The arguments pre- is given by the first, single-sphere, term of the cluster expan-
sented in this section show that in the thermodynamic limitsion. However, in the thermodynamic limit the pair cluster
N—a,V—oo the Jw term in the expansion of the average integral has infinite range, and as a consequence the integral
admittance attains a different value. A similar mechanism igloes obtain a term linear in the square root of frequency.
operative for the average rotational admittance. For londviilner and Liu[7] have shown how this happens. We have
times the flow pattern becomes smooth and is describegerformed a complete analysis of the pair cluster integral
nearly precisely by the macroscopic equations. The microf26] and agree with their conclusion.

V. DISCUSSION
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