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Depletion potential in hard-sphere mixtures: Theory and applications
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~Received 8 May 2000!

We present a versatile density functional approach~DFT! for calculating the depletion potential in general
fluid mixtures. For the standard situation of a single big particle immersed in a sea of small particles near a
fixed object, the system is regarded as an inhomogeneous binary mixture of big and small particles in the
external field of the fixed object, and the limit of vanishing density of the big species,rb→0, is taken
explicitly. In this limit our approach requires only the equilibrium density profile of a one-component fluid of
small particles in the field of the fixed object, and a knowledge of the density independent weight functions
which characterize the mixture functional. Thus, for a big particle near a planar wall or a cylinder or another
fixed big particle, the relevant density profiles are functions of a single variable, which avoids the numerical
complications inherent in brute force DFT. We implement our approach for additive hard-sphere mixtures,
comparing our results with computer simulations for the depletion potential of a big sphere of radiusRb in a
sea of small spheres of radiusRs near~i! a planar hard wall, and~ii ! another big sphere. In both cases our
results are accurate for size ratioss5Rs /Rb as small as 0.1, and for packing fractions of the small sphereshs

as large as 0.3; these are the most extreme situations for which reliable simulation data are currently available.
Our approach satisfies several consistency requirements, and the resulting depletion potentials incorporate the
correct damped oscillatory decay at large separations of the big particles or of the big particle and the wall. By
investigating the depletion potential for high size asymmetries we assess the regime of validity of the well-
known Derjaguin approximation for hard-sphere mixtures and argue that this fails, even for very small size
ratios s, for all but the smallest values ofhs where the depletion potential reduces to the Asakura-Oosawa
potential. We provide an accurate parametrization of the depletion potential in hard-sphere fluids, which should
be useful for effective Hamiltonian studies of phase behavior and colloid structure. Our results for the depletion
potential in a hard-sphere system, with a size ratios50.0755 chosen to mimic a recent experiment on a
colloid-colloid mixture, are compared with the experimental data. Although there is good overall agreement, in
particular for the dependence of the oscillations onhs , there are some significant differences at high values of
hs .

PACS number~s!: 82.70.Dd, 61.20.Gy
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I. INTRODUCTION

Two big colloidal particles immersed in a fluid of small
colloidal particles or non-adsorbing polymers or micelles
perience an attractive depletion force when the separatioh
of the surfaces of the big particles is less than the diamete
the small ones. The expulsion or depletion of the small p
ticles gives rise to an anisotropy of the local pressure wh
results in the effective attractive force between the big p
ticles. Asakura and Oosawa and, independently, Vrij, u
excluded volume arguments to determine the effective po
tial between two big hard spheres~modeling the colloids!,
assuming that the small particles or polymers form a mu
ally noninteracting fluid whose centers are excluded from
surfaces of the colloids by a distanceRs @1#. The resulting
depletion potential is attractive forh,2Rs and is zero for
h>2Rs ; it increases monotonically withh from its value at
contact,h50, and is proportional tohs , the packing fraction
of the small particles@see, cf., Eq.~12!#. Much attention has
been paid to depletion induced attraction within colloid s
ence, since it provides an important driving force for pha
separation and flocculation phenomena in mixtures of c
loids and in colloid-polymer mixtures. From a statistical m
PRE 621063-651X/2000/62~4!/5360~18!/$15.00
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chanics viewpoint depletion forces are of considerable in
est, since they arise primarily from entropic effects beca
the bare interactions between the particles are hard-sph
like. Formally, it is the integrating out of the degrees
freedom of the small particles which gives rise to the effe
tive interaction between two big ones.

Although colloid-polymer mixtures can, under favorab
circumstances, be modeled by a binary mixture of h
spheres and ideal, noninteracting polymers~we term this the
Asakura-Oosawa model!, for mixtures of colloids or colloids
and micelles a more appropriate zeroth-order model is a
nary hard-sphere mixture, i.e., the small particles are not
terpenetrating but are experiencing mutual hard-sphere
pulsion. In this case it becomes a key question as to how
depletion potential between two big hard spheres is in
enced by interactions between the small spheres. For
packing fractionshs , one might suppose that the sma
spheres exhibit pronounced short-ranged correlations~layer-
ing!, leading to significant changes in the depletion potent
This would, in turn, have repercussions on the phase be
ior of the bulk mixture, making this significantly differen
from that of the Asakura-Oosawa model. Such consid
ations have prompted several recent theoretical invest
5360 ©2000 The American Physical Society
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PRE 62 5361DEPLETION POTENTIAL IN HARD-SPHERE . . .
tions of phase behavior based on an effective one-compo
depletion potential description of model colloidal mixtur
@2–4#. The crucial ingredient in such investigations is
accurate depletion potential.

Having a proper understanding of depletion potentials
not only relevant for bulk phase behavior; it is of intrins
interest. In recent years a variety of experimental techniq
have been developed which measure, directly or indirec
the depletion potential between a colloidal particle, i
mersed in a sea of small colloids or polymers, and a fix
object such as a planar wall@5#. Video microscopy has also
been used to determine depletion forces for a single big
loid in a solution of small colloids inside a vesicle—a syste
which resembles hard spheres inside a hard cavity@6#. Very
recently Crockeret al. @7# measured the depletion potenti
between two big polymethylmethacrylate spheres immer
in a sea of small polystyrene spheres for a range of pac
fractions of the latter~see Sec. V B!. At low values ofhs the
measured depletion potential is well described by
Asakura-Oosawa result, but at higher packing fractions
potential exhibits a repulsive barrier and forhs*0.26 the
depletion potential is damped oscillatory, with a wavelen
that is of the order of the small particle diameter. As expe
ments grow in sophistication and resolution, it is likely th
further details of depletion potentials will be revealed who
interpretation will require a reliable and versatile theoreti
approach. Such an approach should be able to tackle ex
mental situations wherehs is rather high and to treat gener
‘‘confining’’ geometries. The latter include a big partic
near a planar wall or in a wedge or cavity, as well as the c
of a big particle near another, fixed big particle. In this pa
we describe such a theory for the depletion potential ba
on a density functional treatment~DFT! of a fluid mixture.
Our treatment avoids the limitations of the virial expansi
~in powers ofhs) and the uncontrolled nature of the De
jaguin approximation which are inherent in recent a
proaches@8,9# to depletion forces in hard-sphere mixtures.
is less cumbersome than the alternative integral equa
treatments@10,11#, and more easily adapted to different g
ometries. A key feature of our treatment is that it doesnot
require the calculation of the total free energy of the inh
mogeneous fluid or of the local density of the small partic
in contact with the big particle@10,12#. The method is much
easier to implement than a direct minimization of the fre
energy functional, which is numerically very demandi
when any symmetry of the density profile of the sm
spheres is broken by the presence of the big particle.

The paper is arranged as follows: Sec. II A defines
depletion potential in an arbitrary mixture, showing how th
is related to the one-body inhomogeneous direct correla
function of the big particles. In Sec. II B we use this result
derive an explicit formula for the depletion potential in th
low-density limit, where the densities of all species approa
zero. For the particular case of a binary hard-sphere mix
in this limit we recover the Asakura-Oosawa result. Sect
II C describes the general asymptotic behavior of the de
tion potential forh→`, while Sec. II D describes the imple
mentation of the theory for a binary hard-sphere mixture
ing the DFT of Rosenfeld@13#. In Sec. III we present severa
comparisons of our hard-sphere DFT results, for both sph
sphere and~planar! wall-sphere depletion potentials, wit
nt
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those of computer simulation@14,15#. Our theory performs
well for all size ratioss[Rs /Rb and packing fractionshs for
which simulation results are available. We show that
leading-order asymptotic result for the depletion poten
provides an excellent account of the oscillations in the c
culated potential, not only at longest range but also at in
mediate separations of the big spheres. Section IV is c
cerned with assessing the regime of validity of the we
known Derjaguin approximation which relates the for
between two big objects to the integral of the solvation for
or excess pressure, of the small particles confined betw
two planar walls@see Eq.~35!#. We argue that this approxi
mation is not reliable for the hard-sphere mixture even wh
the size ratios is very small. In Sec. V A we describe
simple but accurate parametrization of the depletion poten
suitable for a big hard sphere near a planar hard wall, and
the potential between two big hard spheres. Such a par
etrized form should prove useful for effective Hamiltonia
studies of phase behavior and colloid structure@2–4#. Sec-
tion V B presents results for the depletion potential in a
nary hard-sphere mixture where the size ratio is chosen
mimic the system considered in the experiments of Ref.@7#.
We conclude in Sec. VI with a discussion and summary
our results.

II. DEPLETION POTENTIAL

A. General theory

We consider a general mixture ofn components in which
each speciesi ( i 51, . . . ,n), characterized by its radiusRi ,
is coupled to a reservoir with chemical potentialm i , and is
subject to an external potentialVi(r ). The mixture at ther-
modynamic equilibrium can be described by the set of nu
ber density profiles$r i(r )%. For such a mixture we wish to
calculate the depletion potential, or the depletion force,
tween an object fixed at positionr1 and a second one fixed a
r2. Without loss of generality the positionr1 of the first
object is chosen as the origin of the coordinate system. T
fixed object then exerts an external potential on the partic
constituting the mixture. The external potential can repres
a planar hard wall@16# or a fixed particle of the mixture, o
more generally, a curved surface@17# or soft planar walls
@18#. If the depletion potential between two particles of t
mixture is to be calculated either particle can be chosen
act as the external potential, and this point will be addres
in more detail below.

In the following the second object is a test particle of
species denoted asb. The grand potential of the mixture
when the test particle is fixed at the positionrb in the pres-
ence of the fixed object exerting the external potentialVb(r )
is denoted byV tb(rb ;$m i%;T). Wt(rb), the quantity of inter-
est here, is defined as the difference of grand potential
tween a configuration in which the test particle is in t
vicinity of the fixed object and one in which the test partic
is deep in the bulk, i.e.,rb→`:

Wt~rb!5V tb~rb ;$m i%;T!2V tb~rb→`;$m i%;T!. ~1!

In order to calculate this difference the test particle can
moved along any path from one configuration to the other
particular path which simplifies the calculation is via th
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5362 PRE 62R. ROTH, R. EVANS, AND S. DIETRICH
reservoir. This path can be divided into two steps. In the fi
step the test particle is removed from the bulk atrb→` and
put into the reservoir. In the second step the test particl
taken from the reservoir and is inserted back into the m
ture, but now atrb . The formal means to describe partic
insertion in a general mixture is the potential distributi
theorem and we employ this in the grand ensemble@19#.

The potential distribution theorem provides an express
for the partition functionJ tb(rb ;$m i%;T) of the mixture af-
ter a test particle of speciesb is inserted at positionrb in

terms of the partition function of the mixtureJ̃($m i%;T) and
the number density profilerb(r ) of speciesb beforethe par-
ticle insertion:

J tb~rb ;$m i%;T!

5exp@b„Vb~rb!2mb…#Lb
3 rb~rb! J̃~$m i%;T!, ~2!

whereb215kBT andLb is the thermal wavelength of spe
ciesb. Together with a well-known result from DFT@20#,

Lb
3 rb~r !5exp@b„mb2Vb~r !…1cb

(1)~r ;$m i%!#, ~3!

it follows that the one-body direct correlation functioncb
(1) of

speciesb can be written as

cb
(1)~rb ;$m i%!5 ln@J tb~rb ;$m i%;T!/J̃~$m i%;T!#

5bṼ~$m i%;T!2bV tb~rb ;$m i%;T!, ~4!

i.e., 2b21cb
(1)(rb ;$m i%) describes the change in the gra

potential of the whole system due to insertion of a test p
ticle. The grand potential difference defined by Eq.~1! can
now be expressed in terms of the difference of one-b
direct correlation functions:

bWt~rb!5cb
(1)~rb→`;$m i%!2cb

(1)~rb ;$m i%!. ~5!

As the potential distribution theorem@Eq. ~2!# is a general
result, valid for any number of components, for arbitra
densities of all components and, in fact, for any interparti
potential function, the same generality holds for Eq.~5!. No
approximations have been made so far. However, in orde
use Eq.~5! to calculatebWt(r ) an explicit procedure tha
can treat a mixture must be applied. Simulations prov
such a procedure as does density functional theory. We s
consider both here.

We emphasize that the direct correlation function enter
Eq. ~5! depends on the equilibrium density profilesbefore
the test particle of speciesb is inserted at positionrb . This
observation simplifies the calculation ofbWt(r ) dramati-
cally, because the symmetry of the relevant density profi
$r i(r )% is determined solely by the symmetry of the extern
potentials, and therefore depends only on the nature of
object that is fixed at the origin. If this object is a structur
less planar wall and in the absence of spontaneous symm
breaking such as prefreezing or crystalline layer format
the density profiles of all species reduce to one-dimensio
profiles$r i(z)%, with z the distance perpendicular to the wa
For a fixed spherical or cylindrical wall or particle the de
sity profiles$r i(r )% depend only on the radial distance. Ev
if the fixed object is a wall of more general shape, so t
t
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there is no simple symmetry involved in the problem, calc
lating the density profiles before particle insertion is mu
easier than after insertion, when the broken symmetry du
the presence of the test particle leads to a more com
dependence of the profiles on the coordinates.

While Eq. ~5! can be evaluated for arbitrary densities
speciesb within the present DFT approach, a particular lim
in which the density of speciesb goes to zero is now con
sidered. This dilute limit is especially important since
arises in the context of measuring depletion forces and
formal procedures for deriving effective Hamiltonians f
big particles by integrating out the degrees of freedom of
small particles. For example, if in a binary mixture the d
grees of freedom of the small particles are integrated out,
resulting effective one-component fluid can be described
an effective Hamiltonian containing a volume term, to whi
only the small particles contribute, a one-body term,
which a single big particle in a ‘‘sea’’ of small particle
contributes, a two-body term, a three-body term, and so
@2#. For highly asymmetric mixtures the most important co
tributions come from the volume and the one- and two-bo
terms. This assumption is substantiated by the results of
culations of three-body contributions reported in Ref.@14#
for a size ratios50.1. Three-body contributions also seem
be small fors50.2 @21#. Note that the two-body term de
scribes an effective pairwise interaction potential betwe
two big particles which turns out to be precisely the dep
tion potential, i.e.,bWt(r ), evaluated in the dilute limit@2#.

In the grand ensemble the dilute limit can be obtained
taking the limit in which the chemical potential of speciesb,
mb→2`, with the chemical potentials of all other speci
$m iÞb% kept fixed. The depletion potential is then given b

bW~r ![ lim
mb→2`

bWt~r !

5cb
(1)~r→`;$m iÞb%,mb→2`!

2cb
(1)~r ;$m iÞb%,mb→2`!, ~6!

which contains no explicit dependence on the external po
tials that are present, i.e., the depletion potential depe
only on theintrinsic change of the grand potential.

Although in the dilute limit both the density profilerb(r )
and the bulk densityrb

bulk5rb(`) of speciesb vanish, the
ratio stays finite and the depletion potential can also be
tained from the result

bW~r !52 lim
mb→2`

lnS rb~r !

rb~`! D2Vb~r !1Vb~`!, ~7!

which takes a more familiar form if we rewrite Eq.~7! as
p(r )/p(`)5exp@2b„W(r )1Vb(r )…#, where p(r ) is the
probability density of finding the particle of speciesb at a
position r , and we assumeVb(`)50. This route to the
depletion potential was employed successfully in a gra
canonical Monte Carlo simulation of a big sphere in a sea
small hard spheres near a hard wall@16#. It is also the route
used to obtainW(r ) from experiment @18,5–7#. Note
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that in the same limitmb→2` the density profiles of all
other species$r iÞb(r )% reduce to those of an21 component
mixture.

B. Low density limit

In order to implement the formal result in Eq.~6!, a way
of determining the direct correlation functioncb

(1) is required.
It is convenient to adopt a DFT perspective. In density fu
tional theory the intrinsic Helmholtz free-energy function
can be divided into an ideal gas contribution plus an exc
over the ideal gas contribution. While the former is know
exactly, in general, only approximations are available for
excess part@20#. One important exception is the excess fre
energy functional for a general mixture in the low dens
limit, i.e., in the limit of all densities going to zero. By
means of a diagrammatic expansion it can be shown tha
exactexcess free energy functional in this limit is given b

lim
$m i→2`%

bFex@$r i%#52
1

2 (
i , j

E d3r E d3r 8 r i~r !r j~r 8!

3 f i j ~r2r 8!, ~8!

where f i j is the Mayer bond between a particle of speciei
and one of speciesj.

For a binary mixture in the low density limit the depletio
potential acting on a big particleb can be calculated from
Eq. ~8! using the definition of the one-body direct correlati
function given within density functional theory,

cb
(1)~r ;$m i%!52b

dFex@$r i%#

drb~r !
, ~9!

and we obtain

bW~r !52E d3r 8 „rs~r 8!2rs~`!…f bs~r2r 8!, ~10!

wheres refers to the small particles. In the same limit t
density profile of the small particles reduces to the den
profile of an ideal gas in the external potentialVs(r ), i.e.,
rs(r )5rs(`)exp„2bVs(r )…, and the depletion potential ca
be written as

bW~r !52rs~`!E d3r 8 „exp@2bVs~r 8!#21…f bs~r2r 8!.

~11!

This result is more familiar for the case of a binary ha
sphere mixture with sphere radiiRb and Rs , where f bs(r
2r 8)52Q„(Rb1Rs)2ur2r 8u…, whereQ is the Heaviside
function. Then Eq.~11! reduces to the well-known Asakura
Oosawa depletion potential@1#. As an example we conside
the depletion potential between two big spheres; in this c
exp@2bVs(r)#215fbs(r) and the sphere-sphere depletion p
tential can be expressed as@9#
-
l
ss

e
-

he
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bWbb
AO~h!52rs~`!p~2Rs2h!H RsFRb1

2

3
RsG

2
h

2 FRb1
Rs

3 G2
h2

12J for h,2Rs

50 for h.2Rs , ~12!

where h is the separation between the surfaces of the
hard spheres. As a second example we consider a big sp
near a planar, structureless hard wall. The depletion pote
is then

bWwb
AO~h!522rs~`!p~2Rs2h!H RsFRb1

Rs

3 G
2

h

2 FRb2
Rs

3 G2
h2

6 J for h,2Rs

50 for h.2Rs , ~13!

whereh is the separation between the surface of the big h
sphere and the hard wall.

It is important to recognize that Eq.~11! provides the
exact low density expression for the depletion potential e
if the interactions between the species or between the
and speciess are soft, and possibly contain an attractive pa
so that the Mayerf functions cannot be expressed in terms
the Heaviside functionQ. In general there is also a direc
interaction potential between two big particles, or betwee
single big particle and a wall, so that the total effective p
tential, after integrating out the degrees of freedom of
small particles, is the sum of theintrinsic contribution—the
depletion potential—and the direct interaction potent
Vb(r ), i.e.,

F tot~r !5W~r !1Vb~r !. ~14!

For example, the total effective potential between two b
hard spheres in the sea of small hard spheres isF tot(r )
5W(r )1Vb(r ), with Vb(r ) the hard-sphere potential be
tween the two big ones, and it isF tot(r ) which constitutes
the effective pair potential in the effective one-compone
Hamiltonian for the big spheres@2#.

It is instructive to note that the functional defined by t
right-hand side of Eq.~8! suffices to generate the appropria
depletion potential for the original Asakura-Oosawa mo
@1# of a mixture of colloids andideal, noninteracting poly-
mers @22#. This model binary mixture is specified byf cc ,
f cp , and f pp , the Mayerf functions describing the pairwis
interactions between two colloids, between a colloid an
polymer, and between two polymers, respectively.f pp is set
to zero in order to describe the ideal, noninteracting polym
coils. The resulting depletion potential is still given by E
~11!, but this result now holds forall polymer densities
rs(`), not just in the dilute limitrs(`)→0, because the
polymer is taken to be ideal. The total effective potent
between two colloids is then given by Eq.~14!, with the
Asakura-Oosawa result@Eq. ~12!# for W(r ), which may be
employed in an effective Hamiltonian for the colloids@3#.
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C. Asymptotic behavior

In Sec. II B we showed that for the case of hard sphe
the depletion potential reduces in the low density limit to t
Asakura-Oosawa result. Examination of Eqs.~12! and ~13!
shows that this potential is identically zero for separationh
between the big spheres or between the sphere and the
that are greater than 2Rs[ss . Outside the low density limit
of the small particles, this is no longer valid. From the ge
eral theory of the asymptotic decay of correlations@23# it is
known that for systems in which the interatomic forces
short ranged, i.e., excluding power-law decay, the den
profiles of both components of a binary mixture exhibit
commondamped oscillatory form in the asymptotic regim
far from the wall or fixed particle, which is determined ful
by the pole structure of the total pair correlation functio
hi j (r ) of the bulk mixture. The depletion potential is relate
to the density profile of speciesb via Eq. ~7!, and therefore
its asymptotic behavior should be related directly to that
this density profile. In order to understand this connection
more detail, we first recall some arguments from Ref.@23#.

A bulk binary mixture consisting of small particles o
densityrs

bulk and big particles of densityrb
bulk is considered.

The total correlation functions in the bulk,hi j (r ), with i , j
5s,b, are related to the radial distribution functionsgi j (r )
via hi j (r )5gi j (r )21, and to the two-body direct correlatio
functionsci j

(2)(r ) via the Ornstein-Zernike relation for mix
tures. In Fourier space the latter can be expressed as

ĥi j ~q!5
N̂i j ~q!

D̂~q!
, ~15!

where ĥi j (q) is the three-dimensional Fourier transform
hi j (r ), the numerator is given by

N̂aa~q!5 ĉaa
(2)~q!1rb

bulk
„ĉab

(2)~q!22 ĉaa
(2)~q!ĉbb

(2)~q!…,

N̂bb~q!5 ĉbb
(2)~q!1ra

bulk
„ĉba

(2)~q!22 ĉaa
(2)~q!ĉbb

(2)~q!…,
~16!

N̂ab~q!5 ĉab
(2)~q!,

and

D̂~q!5„12rs
bulkĉss

(2)~q!…„12rb
bulkĉbb

(2)~q!…

2rs
bulkrb

bulkĉsb
(2)~q!2 ~17!

is a common denominator. The total correlation function
real space can be obtained by taking the inverse Fou
transform,

rhi j ~r !5
1

2p2E0

`

dq qsin~qr ! ĥi j ~q!, ~18!

which can then be evaluated by means of the residue t
rem. If qn denotes thenth pole in the upper complexq half-
plane, andRn the corresponding residue ofqĥi j (q), the total
correlation function can be written as@23#
s

all

-

e
ty

,

f
n

er

o-

rhi j ~r !5
1

2p (
n

eiqnrRn . ~19!

From this equation it becomes clear that the asymptotic
havior ofhi j (r ) is dominated by the pole or polesqn with the
smallest imaginary part, since this gives rise to the slow
exponential decay.

For all pairs i , j 5b,s the poles are determined by th
condition D̂(q)50 @23#. For a binary mixture in the dilute
limit of the big particles, i.e.,rb

bulk→0, the general theory o
the asymptotic decay simplifies considerably, and from
~17! we see that the pole structure of all three total corre
tion functions can be obtained from the solutions of t
equation

12rs
bulkĉss

(2)~q!50, ~20!

with ĉss
(2)(q) referring to the fluid of pures at densityrs

bulk .
In general there will be an infinite number of solutions of E
~20!, but only the solutionqn[q5a11 ia0, with the smallest
imaginary part a0, is important for the following. The
asymptotic behavior of the radial distribution function
r i(r )/r i

bulk of speciesi around a fixed particle, which can b
a small one or a large one, can be ascertained, and it foll
that the density profiles exhibit asymptotic decay of the fo

r i~r !2r i
bulk;

Api

r
exp~2a0r !cos~a1r 2Qpi!, r→`,

~21!

with a common characteristic inverse decay lengtha0
21 and a

wavelength of oscillations 2p/a1 for both speciesi 5s,b.
Remarkably, exactly the same inverse decay length
wavelength also characterize the asymptotic decay of
density profiles close to a planar wall. This is given
@23,24#

r i~z!2r i
bulk;Awiexp~2a0z!cos~a1z2Qwi!, z→`

~22!

for i 5s,b. The amplitudesApi andAwi and the phasesQpi
andQwi do depend on speciesi, and on whether a particle o
wall is the source of the external potential. Note that fro
Eq. ~20! it follows that in the dilute limit for the big particles
a0 anda1 are functions of the packing fraction of the sma
particles only; thus they do not depend on the size ratio.

The asymptotic behavior of the depletion potential c
now be obtained from Eq.~7!. Assuming that the externa
potential acting on the big spheres is of finite range,
depletion potential between two big spheres has
asymptotic behavior of the form

bW~r !;2 lnS 11
Apb

r
exp~2a0r !cos~a1r 2Qpb!/rb

bulkD
;2

Apb

r
exp~2a0r !cos~a1r 2Qpb!/rb

bulk , r→`,

~23!
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and that between a single big sphere and a planar wall t
the form

bW~z!;2Awb exp~2a0z!cos~a1z2Qwb!/rb
bulk , z→`.

~24!

We shall see later that our DFT results for the density p
files and the depletion potential conform with the
asymptotic results at very large separations and, strikingly
intermediateseparations.

D. A density functional approach for hard spheres

For the system of primary interest, namely, the mixture
hard spheres, a very reliable DFT exists, namely, the Ro
feld fundamental measures functional@13#. While, in prin-
ciple, this functional also can treat generally shaped con
hard particles@25#, its application has been restricted to t
particular cases of hard spheres and parallel hard cubes@26#.

In the low density limit the Rosenfeld functional reduc
to the exact excess free-energy functional of Eq.~8!. For
arbitrary densities it has the structure

Fex@$r i%#5E d3r F„$na~r !%…, ~25!

whereF is a function of a set of weighted densities$na%,
which are defined by

na~r !5(
i 51

n E d3r 8r i~r 8! v i
a~r2r 8!. ~26!

The weight functionsv i
a in Eq. ~26! depend only on the

geometrical features, the so-called fundamental measure
speciesi. Explicit expressions for the weight functions o
hard-sphere mixtures and forF can be found in Refs.@13#
and @27#. The Rosenfeld functional has the following pro
erties: ~i! the free-energy of the homogeneous mixture
identical to that from Percus-Yevick or scaled-partic
theory; and~ii ! the pair direct correlation functions of th
homogeneous hard-sphere mixture, generated by functi
differentiation of Fex , are identical to those of Percus
Yevick theory. The indexa labels four scalar plus two vec
tor weights@13#. While theoriginal functional given in Ref.
@13# did not account for the freezing transition of pure ha
spheres, more sophisticated extensions@27# do account for
freezing; the weight functions remain the same, butF is
changed slightly. For the depletion potential problems un
consideration the different versions give almost identical
sults for bulk packing fractionshs&0.3 @28#. At higher pack-
ing fractions the density profiles of the small spheresrs(z)
close to a hard planar wall, orrs(r ) close to a fixed particle
do display small deviations between the different versions
the Rosenfeld functional. Moreover, when calculating
depletion potential for size ratios ofs50.1 or smaller, these
deviations are amplified, and one observes slightly sma
amplitudes of oscillation for the more sophisticated versio
of the theory. An example is given in Sec. V B~see Fig. 11!.

The one-body direct correlation function, defined with
density functional theory by Eq.~9!, can be written as
es

-

at

f
n-

x

of

s

al

r
-

f
e

er
s

cb
(1)~r ;$m i%!52(

a
E d3r 8S b]F~$na%!

]na
D

r8

vb
a~r 82r !

~27!

for the Rosenfeld functional. In the limit where all speci
have the same radius it is easy to check that the weigh
densitiesna in Eq. ~26!, and henceF, reduce to the corre-
sponding quantities for the pure fluid and, since the wei
functionsvb

a in Eq. ~27! reduce to the weight functions o
the pure system,cb

(1) reduces to the one-body direct correl
tion function of the pure~s! fluid. The depletion potential is
then given bybW(r )52 ln„rs(r )/rs(`)…, which is the cor-
rect result@9#.

Defining functionsCa as

Ca~r 8![S b]F~$na%!

]na
D

r8

2S b]F~$na%!

]na
D

`

, ~28!

the grand potential difference in Eq.~5! can be written as a
sum of convolutions of these functions with the weight fun
tions of speciesb:

bWt~r !5(
a

E d3r 8Ca~r 8! vb
a~r 82r !. ~29!

This expression is valid for arbitrary densities. The dilu
limit of speciesb can now be taken, within the Rosenfe
functional, by considering the weighted densities@Eq. ~26!#,
which in this case reduce to

na
dilute~r !5(

iÞb
E d3r 8r i~r 8! v i

a~r2r 8!, ~30!

where the set of density profiles$r i(r )% that enters Eq.~30!
is that of then21 component fluid, i.e., the one obtaine
after taking the limit. It follows that the Helmholtz free en
ergy in Eq.~25! and, consequently, the functionsCa in Eq.
~28!, are those of an21 component mixture. Speciesb en-
ters into the calculation of the depletion potential, i.e., t
dilute limit of Eq. ~29!, only through its geometry, i.e., via
the weight functionsvb

a .
This feature of the theory becomes especially importan

the number of componentsn is small. In the particular case
of a binary mixture,n52, the minimization of the functiona
in the dilute limit reduces to the minimization of the fun
tional of a pure fluid and the weighted densities depend o
on the density profilers(r ) of the small spheres:

na
dilute~r !5E d3r 8rs~r 8! vs

a~r2r 8!. ~31!

Although the direct approach of calculating the depleti
potential via evaluating grand potential differences by br
force requires only a functional describing the pure fluid, o
present approach based on the one-body direct correla
function of the big spheres in a sea of small ones clea
requires a functional that describes the binary mixture.
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III. RESULTS FROM THE DFT APPROACH AND
ASSESSMENT OF THEIR ACCURACY

In this section we examine the accuracy of some of
approximations inherent in the present DFT approach
comparing our DFT results for the depletion potential w
those of simulations and with the predictions of the gene
asymptotic theory given in Sec. II C.

A. Consistency check

We first consider the results of two separate routes
obtaining the dilute limit for the case of a binary hard-sph
mixture. In the first route both components of the mixture
treated on an equal footing, so that one calculates bothrb(r )
andrs(r ) and obtainsWt(r ) using Eq.~29!. By requiring the
chemical potential of the big spheresmb to become more and
more negative, the bulk densityrb(`) of this component
approaches zero, and the dilute limit is taken numerica
For all the mixtures we investigated, a bulk packing fracti
of the big spheres ofhb51024 was sufficiently small to
ensure that the density profile of the small spheres is in
tinguishable from that of a pure fluid at the samehs . More-
over the convergence ofrs(r ) and Wt(r ) to their limiting
values is rather fast; an explicit example is given in Fig. 1
an earlier paper@16#. Using the second route, employing th
weighted densities of Eq.~31!, the dilute limit is taken di-
rectly in the functional. In Fig. 1 depletion potentials corr
sponding to both routes are shown for a big hard sphere
a planar wall and a size ratios5Rs /Rb50.1. The bulk pack-
ing fraction of the small spheres ishs50.3. We find excel-
lent agreement between the two sets of results. The s
level of agreement is found for a wide range of size ratios
and packing fractionshs . From this we conclude that th
limit can be taken directly in the functional, which makes t

FIG. 1. Comparison of the depletion potential for a big ha
sphere near a planar hard wall, calculated via two different rou
These correspond to taking the dilute limit directly in the function
~solid line!, and to taking the dilute limit numerically with a pack
ing fraction of the big spheres ofhb51024 (h). In both cases the
size ratio iss5Rs /Rb50.1 and the packing fraction of the sma
hard spheres ishs50.3. h is the separation between the wall an
the surface of the big sphere;ss52Rs is the diameter of the smal
spheres.
e
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l
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ar
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calculations significantly easier to perform, and all the resu
for the depletion potential we present subsequently will
based on this route.

B. Comparison with simulation data

The results presented in Fig. 1 test the self-consistenc
the two routes to the dilute limit within the given DFT ap
proach. In order to test the accuracy of approximations in
duced by employing the Rosenfeld functional, the results
the present approach are compared with those of simulati
Fortunately some independent sets of simulation results
depletion potentials are available for both the sphere-sph
and wall-sphere cases. In Fig. 2 the depletion potentials
tween two big spheres in a sea of small spheres, at a
ratio of s50.1 and various packing fractions up tohs
50.6p/6'0.314, obtained from the molecular dynami
simulations of Ref.@14#, are compared with results of th
present DFT approach. The agreement is generally v
good. At the higher packing fractions small deviations can
seen near contact and near the first minimum, but the de
tions are within the error bars of the simulations@29# which
are not indicated here. We note that in Ref.@14# the depletion
force was the quantity measured in the simulations, and
depletion potential was calculated by integrating asmoothed
force. For a higher packing fraction,hs50.7p/6'0.367, the
agreement between the depletion potential obtained in
simulations of Ref.@14# and our present result is poorer~not
shown in Fig. 2!, but for this large value ofhs the error bars
of the simulations are probably larger than for small valu
of hs @29#.

In Ref. @16# the depletion potential for a single big har
sphere near a planar hard wall calculated within DFT w
compared with the results of two independent sets of sim
lations for a size ratios50.2 and a packing fractionhs
50.3. Very good agreement was found. In Fig. 3 we pres
a comparison of our results with simulation results from R

s.
l

FIG. 2. The depletion potential between two big hard sphere
a sea of small hard spheres calculated for various packing fract
hs of the small spheres and a fixed size ratios50.1. We compare
simulation results~symbols! from Ref. @14# with results from our
DFT approach~solid lines!. h is the separation between the surfac
of the two big spheres, andss is the diameter of the small sphere
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@15# for size ratioss50.2 ~a! and s50.1 ~b!, for various
packing fractions of the small spheres up tohs50.3. The
original simulation results did not oscillate aroundW50,
which led us to follow the procedure described in Ref.@16#
and to shift the data by a small constant amount in orde
match the contact values with those of our DFT result. W
note that in the simulations of Ref.@15# the depletion force

FIG. 4. The number density profiles of the two components o
binary hard-sphere mixture near a planar hard wall as obtained
DFT. The reservoir packing fraction of the small spheres ishs

50.3, and that of the big spheres ishb51024. For the three differ-
ent size ratioss50.1, 0.1333, and 0.2 the profiles of the sm
spheres~a! are indistinguishable while the profiles of the b
spheres~b! differ considerably. The contact values of the dens
profiles of the big spheres arerb(z5sb

1)sb
3 5 0.0279, 0.2518, and

2.1814 fors50.2, 0.1333, and 0.1, respectively.z50 denotes the
position of the wall, andss is the diameter of the small spheres.

FIG. 3. The depletion potential between a big hard sphere a
planar hard wall calculated for various packing fractionshs of the
small hard spheres and size ratioss50.2 ~a! and s50.1 ~b!. We
compare processed simulation data from Ref.@15# ~symbols! with
those of our calculations~solid lines!. The only significant devia-
tions occur in~b! for hs50.3 ~see text!. h is the separation betwee
the wall and the surface of the big sphere;ss is the diameter of the
small spheres.
to
e
was measured, and the depletion potential was obtained
integrating the force. Since the data for the force are av
able only for h<hmax, the integral depends on the cuto
hmax.We surmise that this cutoff dependence is respons
for W(h) not oscillating around zero. The agreement b
tween our DFT results and those of the shifted simulat
data is very good. The differences probably lie within t
error bars of the simulations, for all packing fractions wh
s50.2, and forhs50.1 andhs50.2 whens50.1. However,
for hs50.3 ands50.1, clear deviations remain between o
results and those of the simulations. In this case the shi
simulation data for the depletion potential are close to
DFT results forh,ss—the height and position of the firs
maximum are the same—but, in contrast to the DFT resu
the simulation data do not oscillate around zero. Clea
some alternative procedure for interpreting the simulat
data is required.

C. Density profiles

In Fig. 4 the number density profiles of a binary har
sphere mixture near a planar hard wall as obtained from D
are shown for three size ratios. The packing fraction of
small spheres ishs50.3, and that of the big spheres ishb
51024. The latter is sufficiently low that the density profile
of the small spheres,rs(z), shown in Fig. 4~a!, are practi-
cally equal to that corresponding to pure small spher
Therefore, they are indistinguishable for all size ratios. B
cause of the hard-body interaction between the small sph

a
m

FIG. 5. The asymptotic decay of the number density profiles
the two components of a binary hard-sphere mixture near a pl
hard wall for three different size ratioss. The packing fraction of
the small spheres ishs50.3, and that of the big spheres ishb

51024. In each case the natural logarithm of the modulus of
density profile minus the corresponding bulk density is plotted. T
upper lines denote the density profiles of the small spheres; t
are practically the same for alls. The lower lines denote the densit
profiles of the big spheres, and it can be seen that the amplitud
the oscillations depends on the size ratios. However, forz/ss*2
the same characteristic decay lengtha0

21 and wavelength of oscil-
lation 2p/a1 characterize the decay ofbothdensity profiles, i.e., for
big and small spheres~see text!. Note that the density profiles in
Fig. 4 have been shifted, so that herez measures the distance from
contact.ss is the diameter of the small spheres.

a
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and the wall, the density profilers(z) exhibits a discontinu-
ous fall to zero atz5ss/2. The density profiles of the big
spheres for size ratioss50.1 ~full line!, 0.1333~dotted line!,
and 0.2~dashed line! are shown in Fig. 4~b!. These density
profiles do differ significantly for different size ratios. Th
hard-body interaction between the wall and the big sphe
does not allow their centers to encroach closer thanz
5sb/2, and we find that the contact value is very different
all three cases~see the caption to Fig. 4!. We note that the
wavelength of the oscillations in bothrs(z) and rb(z) is
approximatelyss . In order to display the asymptotic beha
ior of these density profiles the logarithm of the differen
between each density and its bulk value is shown in Fig
For z/ss*2 these plots conform very closely to th
asymptotic form given by Eq.~22!. Straight lines joining the
maxima have a common slope, and the distance betw
adjacent maxima is the same in all cases. Only the am
tudes of the oscillations inrb(z) differ for different values of
s. It follows that the decay length,a0

21, and the wavelength
of the oscillation, 2p/a1, are the same forboth density pro-
files, i.e., for the big and small spheres, and are indepen
of the size ratio. We have confirmed that the same values
a0 anda1 are obtained from plots of the density profiles
the same binary mixture in the presence of a fixed big h
sphere, i.e., our results are consistent with Eq.~21!. At high
packing fractions of the small spheres, e.g.,hs50.42, we can
easily resolve up to 25 damped oscillations. At long ran
we find the calculated density profiles to be in excelle
agreement with the predictions of the theory of asympto
decay. As the amplitude of the 24th oscillation is smal
than the amplitude of the first one by a factor of appro
mately 531026, this attests further to the high numeric
accuracy of our results. In addition we numerically co
firmed that the modifications of the Rosenfeld function
which we employed lead to the same asymptotic behavio
the density profiles as the original functional@28#.

D. Asymptotic behavior

The asymptotic behavior of the depletion potential cal
lated within DFT is shown in Fig. 6. Forz/ss*2 our results
conform very closely to Eq.~24!: although the amplitude o
the oscillations depends ons, W(z) is characterized by the
same, common decay lengtha0

21 and wavelength 2p/a1

which describe the density profiles of the mixture. The
sults displayed in Figs. 5 and 6 indicate that the asympt
behavior of the density profiles and of the depletion poten
set in at rather small distances from the wall. For wall-sph
surface separations of typicallyz;2ss , or even smaller, the
asymptotic formulas are already remarkably accurate. Th
in keeping with the results of earlier studies of the bulk pa
wise correlation functions of hard-sphere mixtures@23#,
where leading-order asymptotics were shown to be accu
down to second-nearest-neighbor separations. We shall m
use of this observation in a later section, in which we d
velop an explicit parametrized form for the depletion pote
tial.

As a final examination of the validity of the asymptot
analysis we calculated values ofa0 anda1 from plots of~the
logarithm of! the density profiles of the small spheresrs(z)
near the planar hard wall~see Fig. 5! for a range of values for
s
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hs and various size ratios froms50.5 to s50.1. In accor-
dance with the above statement, the results fora0 anda1 do
not depend ons, and are shown in Fig. 7 together with th
values obtained using the Percus-Yevick result forcss

(2)(r ) in
the pure fluid to solve Eq.~20! for the polesq5a11 ia0; we
recall that the Rosenfeld hard-sphere functional generates
Percus-Yevick two-body direct correlation functions for

FIG. 6. The asymptotic decay of the depletion potentialsW(z)
for a big hard sphere near a planar hard wall for the same par
eters as shown in Fig. 5, i.e.,hs50.3, and three size ratioss. The
same decay lengtha0

21 and wavelength 2p/a1 that determine the
asymptotic decay of the density profiles determine the decay
W(z) ~see text!. Only the amplitude of the oscillations depends
s. In each casez measures the distance from contact.ss is the
diameter of the small spheres.

FIG. 7. Comparison of~a! the inverse decay lengtha0 and ~b!
the inverse wavelength (2p/a1)21, as determined from the theor
of asymptotic decay of the bulk pairwise correlation@see Eq.~20!#
using the Percus-Yevick two body direct correlation functi
css

(2)(r ) ~solid line!, with the corresponding results obtained fro
density profiles calculated using the Rosenfeld functional (h) for
hard-sphere fluids near a planar hard wall.hs is the packing frac-
tion, andss is the diameter of the small spheres.
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bulk mixture @13#. For small packing fractionshs the oscil-
lations are damped very rapidly, i.e., the decay lengtha0

21 is
small, so that the numerical determination of the wavelen
from a density profile is quite difficult. Nevertheless, t
level of agreement between the two sets of results is v
good, for all values ofhs that were considered, confirmin
that the DFT results are consistent with the general pre
tions for the asymptotic behavior.

Our approach predicts depletion potentials for both w
sphere and sphere-sphere cases which are in very
agreement with simulations for distances close to cont
and which are consistent with predictions of the gene
theory of the asymptotic decay of correlations in hard-sph
mixtures for distances away from contact. From our co
parisons we conclude that our approach yields accurate
sults in the whole range of distances, for packing fractions
to ~at least! hs50.3 and for size ratios down to~at least! s
50.1. We emphasize that the full structure of the deplet
potential, which is correctly described by the present
proach, is not captured by the Asakura-Oosawa approxi
tion or by a truncated virial expansion@8,9#.

E. Large asymmetries

So far it is not apparent how well our present approa
will fare for extreme asymmetries, i.e., fors!1. The Rosen-
feld functional, which is the density functional we apply f
all calculations of the depletion potentials, is designed
treat a multicomponent hard-sphere mixture with arbitr
inhomogeneities. While its accuracy in describing the d
sity profiles for a pure fluid@13# and for binary mixtures@30#
at moderate packing fractions and moderate size ratios
been confirmed by comparison with simulation results
highly asymmetric binary mixture has not yet been stud
systematically using this functional. Thus it is not known f
which size ratios the results calculated with this functio
are accurate. We recall that the Percus-Yevick approxima
becomes increasingly less accurate for bulk propertiess
→0, but here we are interested, in particular, in the relia
ity of our approach for determining depletion potentials. T
latter are obtained from density profiles, having taken
dilute limit of one of the species@see Eq.~7!#.

In this context it is instructive to consider the depleti
potential between a hard sphere of radiusR1 and one of
radiusR2 in a sea of small hard spheres of radiusRs at a
packing fractionhs . This system is formally a mixture o
three components in which two are dilute. The radius ra
Rs /R1 is chosen such that on the basis of our previous res
we know that the Rosenfeld functional can treat a mixture
species 1 ands accurately. On the other hand, the radiusR2
is chosen to be much larger thanRs and R1. The depletion
potential can be calculated in two different ways. In the fi
route, sphere 2~with large radiusR2) is fixed, and enters
into the calculation as an external potential for sphere 1
speciess. The density profile of the small spheres in t
presence of this external potential can be calculated,
from it the depletion potential, using the theoretical approa
described in Sec. II. Thus in this calculation the Rosenf
functional treats a mixture with a moderate size ratioRs /R1
exposed to an external potential. Therefore we expect th
results to be very accurate. In the second route, the role
th
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spheres 1 and 2 are exchanged. The sphere of medium ra
R1 is fixed, and acts as an external potential for the v
large sphere 2 and the small speciess. Now the Rosenfeld
functional must treat a very asymmetric mixture. Of cour
in an exact treatment of this problem it does not matt
which sphere is fixed first, as the depletion potential is s
ply the difference in the grand potential between a confi
ration in which spheres 1 and 2 are fixed and position
close to each other and one in which both spheres ar
infinite separation. The result of an exact treatment can
depend upon which sphere is regarded as an external po
tial. However, it is not immediately obvious that the unde
lying symmetry is respected in an approximate DFT tre
ment. At first sight one way of calculation might appear to
less demanding on the theory than the other.

In Fig. 8 we show the depletion potential between t
large spheres when sphere 2 is fixed~solid line! and then
with sphere 1 fixed~symbols!, for a packing fraction of the
small sphereshs50.3 andR155Rs . Two different values of
R2 are considered, namely,Rs /R250.02 ~a! and Rs /R2
50.01 ~b!. We find excellent agreement between the resu
of the two routes for both~a! and ~b!. Only very small dif-
ferences between the curves can be ascertained, and
occur for separations close to contact where numerics
most difficult. Note that the results in Figs. 8~a! and 8~b! lie
very close to each other. This can be understood easily w
R2 is the fixed sphere. For cases~a! and ~b!, R2@R155Rs
and one is effectively in the planar-wall limit so that bo
sets of results lie close to those in Fig. 3~a!, with hs50.3.
From the results shown in Fig. 8 and further comparisons
other values ofhs , it is evident that the Rosenfeld functiona
does maintain the required symmetry between 1 and 2.

FIG. 8. The depletion potential between a hard sphere 1 w
radiusR155Rs and a hard sphere 2 with radiiR2550Rs ~a! and
R25100Rs ~b!, in a sea of small hard spheres with radiusRs and
packing fractionhs50.3. The solid line denotes the depletion p
tential calculated by fixing sphere 2 first, so that 2 enters into
calculation as an external potential, whereas the symbols denot
depletion potential obtained with sphere 1 acting as the exte
potential. The two routes should lead to the same results~see text!.
h is the separation between the surfaces of spheres 1 and 2
ss52Rs .
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5370 PRE 62R. ROTH, R. EVANS, AND S. DIETRICH
important to understand this. In the low density limit, i.e.,
the ternary mixture is considered with the density of t
small spheres also approaching zero, the depletion pote
can be expressed in terms of Mayerf functions, and the
equivalence of the two routes can be verified directly. St
ing from the functional given in Eq.~8! we follow the deri-
vation of Eq.~11!, and obtain

bW21~r !52rs~`!E d3r 8 f 2s~r 8! f s1~r2r 8! ~32!

for the depletion potential with sphere 2 fixed, and

bW12~r !52rs~`!E d3r 8 f 1s~r 8! f s2~r2r 8! ~33!

for that with sphere 1 fixed. Heref 1s and f 2s are the Mayer
f functions between a small sphere and spheres 1 an
respectively, and it is evident thatW21(r )[W12(r ). The
Rosenfeld functional will reproduce this result for packi
fractionshs→0, since it reduces to Eq.~8! in this limit. For
arbitrary values ofhs it is necessary to reconsider the gene
of the functional, and recognize that although the ha
sphere pairwise potentialsF i j (r ) between speciesi and j do
not enter explicitly, the functional does respect the equi
lence of F i j (r ) and F j i (r ); the Mayer functions and the
weight functions which were used in constructing the fun
tional are symmetric with respect toi and j. It is straightfor-
ward to show that the equivalence ofW21(r ) andW12(r ) is
guaranteed provided the functional respects this symme
Thus the two sets of results shown in Fig. 8~a! shouldagree
with each other, as should those shown in Fig. 8~b!. That
there are small discrepancies reflects only numerical ina
racies rather than any fundamental shortcoming of the D
approach. It is pleasing that what appear to be two dist
ways of calculating the depletion potential yield the sa
results, even for high degrees of asymmetry. Whether o
functionals, not based on fundamental measure theory,
respect the symmetry requirements remains to be as
tained. Although the present calculations should be regar
as a further test of the internal consistency of our appro
rather than a formal demonstration that it is accurate for
treme asymmetries, the results, when coupled with the ex
lent agreement between theory and simulations fors50.1,
do suggest that the approach should remain accurate
smaller size ratios.

IV. DERJAGUIN APPROXIMATION

In the well-known Derjaguin approximation@31# the force
between two large convex bodies is expressed in terms o
interaction energy of two parallel plates. This approxim
mapping is valid in the limit where the minimal separation
surfacesh is much smaller than the radii of curvature, a
was developed assuming the force between the surfaces
be calculated by integration over all interactions betwe
pairs of points of the two bodies. Recently the Derjagu
approximation was implemented for the depletion force
tween two big hard spheres in a sea of small hard sphe
employing a truncated virial expansion to calculate the
cess pressure of the small spheres between planar hard w
and results were compared with simulation data for a s
ial
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ratio s50.1 @8#. There is, however, an important conceptu
difference from earlier applications of the Derjaguin appro
mation, as depletion effects are global effects arising fr
packing of the small spheres, and it is not obvious that
original derivation remains applicable or what the regime
validity of the approximation should be. Some of its limit
tions were discussed in Ref.@9#, where it was argued that th
Derjaguin approximation should not be reliable fors50.1 if
the packing fractionhs*0.3. Here we examine some of th
key predictions of the Derjaguin approximation by maki
comparison with results of our DFT approach. From the
guments of Sec. III E, it is safe to assume that the pres
DFT approach remains reliable for rather large size rat
where the Derjaguin approximation might be expected to
valid.

There is an elegant scaling relation connecting the de
tion force F(h)[2]W(h)/]h between two big spheres
Fbb(h), in a sea of small spheres with that between a sin
big sphere and a planar hard wall,Fwb(h). In the limit of
infinite asymmetry,s→0, the forces are equal except for
factor of 2, i.e.,

2Fbb~h!5Fwb~h!, ~34!

with h the minimal separation of the surfaces of the two b
objects. This scaling relation follows directly from the De
jaguin approximation, and if it is found to be obeyed it
sometimes inferred@10,11# that the Derjaguin approximation
itself is valid. However, it was shown@9# that this scaling
relation follows from geometrical considerations without i
troducing the explicit Derjaguin approximation. This can
illustrated by comparing the explicit Asakura-Oosawa dep
tion potentials@see Eqs.~12! and ~13!#. In the limit Rb@Rs
both formulas reduce to2(«/2)rs(`)pRb(2Rs2h)2, for h
,2Rs , where«51 corresponds to the sphere-sphere c
and«52 to the wall-sphere case. Thus, achieving the corr
scaling property in Eq.~34! does not prove that the Der
jaguin approximation

FDer j~h!52«p~Rb1Rs!E
h

`

dL fs~L ! ~35!

is accurate. Heref s(L) is the solvation force, or the exces
pressure, for the small-sphere fluid confined between
planar parallel hard walls separated by a distanceL @9#.

From our DFT calculations we find that the scaling re
tion is already well obeyed at moderate size ratios. In Fig
the scaled depletion forceb f bb* (h)52bFbb(h)Rs

2/(Rb

1Rs) between two big hard spheres~solid line! and that
between a single big hard sphere and a planar hard wall (h),
b f wb* (h)5bFwb(h)Rs

2/(Rb1Rs), in a sea of small hard
spheres at a packing fraction ofhs50.3, is shown for size
ratioss50.1 and 0.02. While small deviations from the sca
ing relation in Eq.~34! are visible close to contact fors
50.1, these deviations have almost disappeared fors50.05
~not shown in the figure!, and near perfect agreement
found fors50.02. Note also that the scaled depletion forc
corresponding to the different values ofs lie close to each
other.
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An explicit result of the Derjaguin approximation@Eq.
~35!# is that the depletion force between two big spheres
between a big sphere and a planar wall can be written as@9#

FDer j~h!5«p~Rb1Rs!„p~hs!~h22Rs!2g~hs!…,

h,2Rs , ~36!

wherep(hs) is the bulk pressure of the small spheres, a
g(hs) is twice the surface tension of the small-sphere fluid
a planar hard wall. The geometrical factor« is the same as in
Eq. ~35!. Thus for a given size ratio the slope of the dep
tion force predicted by the Derjaguin approximation is co
stant forh,2Rs , and depends only on the equation of sta
of the small spheresp(hs). For the particular case of har
spheres, we obtain

db FDer j~h!

dh
5«~Rb1Rs!

3hs

4Rs
3

11hs1hs
22hs

3

~12hs!
3

, h,2Rs ,

~37!

where the quasi-exact Carnahan-Starling equation of s
@32# was used.

However, the depletion forces calculated within t
present approach show a qualitatively different behav
from that predicted by Eq.~37!. It was found that even for
small size ratios (s<0.05), only in the limiths→0, in which
the Asakura-Oosawa approximation becomes exact, is t
agreement between the Derjaguin approximation and the
sults of our approach. The depletion force calculated a
packing fraction ofhs50.3 does not have constant slope f
h,2Rs ~see Fig. 9!. This is in clear contradiction to Eq

FIG. 9. The scaled depletion force between two big hard sph
b f * (h) 5 2bF(h)Rs

2/(Rb1Rs) ~solid line!, and between a single
big hard sphere and a planar hard wallb f * (h) 5 bF(h)Rs

2/(Rb

1Rs) (h) in a sea of small hard spheres at a packing fractionhs

50.3 for size ratioss50.1 ~a! and s50.02 ~b!. For s50.02, the
scaling relation in Eq.~34! is obeyed almost perfectly.h is the
separation between the surfaces of the big spheres or betwee
wall and the surface of the big sphere.ss52Rs is the diameter of
the small spheres.
r

d
t

-
-
e

te

r

re
e-
a

~37!. Simulation results@15# for the depletion force also ex
hibit nonconstant slopes forh,2Rs .

Another prediction of the Derjaguin approximation in E
~36! is that the contact valueW(0) of the depletion potentia
can be expressed simply in terms of the equation of s
p(hs) and the surface tensiong(hs). Using the Carnahan
Starling result forp(hs) @32# and the scaled particle resu
for g(hs) @33#, we obtain@9#

bWDer j~0!52
«~Rb1Rs!3hs

2Rs

122hs22hs
22hs

3

~12hs!
3

,

~38!

which becomes positive at high packing fractions of t
small spheres@9#. Providedhs,0.2, the contact values from
Eq. ~38! are in reasonable agreement with the results of
DFT approach for small values ofs. However, the contac
values obtained from Eq.~38! change sign aths'0.3532,
which is in complete contradiction to the results of t
present approach, where we find negative contact values
all packing fractions and all size ratioss under consideration
@34#.

In Ref. @9# it was shown that a third-order virial expansio
~in powers of hs) for the depletion potential calculate
within the Derjaguin approximation does not yield positi
contact values. However, expansion to fourth or fifth ord
shows a qualitatively different behavior from third order a
already indicates the onset of positiveW(0). Thus, in keep-
ing with Ref.@9# we conclude that the Derjaguin approxim
tion is not very useful for the calculation of depletion force
The good level of agreement, observed forh,2Rs , between
the results of the third-order virial expansion@8# and those of
simulation@14# for s50.1, should be regarded fortuitous.

V. APPLICATIONS

A. A parametrized form for the depletion potential
of hard spheres

As mentioned in Sec. II A, recent studies of correlati
functions and phase equilibria of highly asymmetric bina
mixtures have shown that it is very advantageous to m
such mixtures onto effective one-component fluids@2,3#. The
effective pairwise potential between the big particles is th
the bare pair potential between two big particles plus
depletion potential@see Eq.~14!#. Thus, in calculating the
phase behavior of binary hard-sphere mixtures, it is nec
sary to adopt a specific form for the depletion potential b
tween two big hard spheres. Previous simulation studies@2#
of binary mixtures have employed the simplified third-ord
virial expansion formula given by Go¨tzelmannet al. @9#, and
the same potential has been used in a perturbation th
treatment of the phase behavior@3#. Although this formula is
convenient for global investigations of phase behavior, as
depletion potential is given explicitly as a function ofhs ,
clearly it would be valuable to have a simple, parametriz
form for the depletion potential that~i! is better founded than
the formula provided by Go¨tzelmannet al., and~ii ! captures
the correct intermediate and long-range oscillatory struct
as well as the important short-range features. Note tha
Refs.@2# and@3# the effective pair potential was set equal
zero for separationsh.2Rs .
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We have used depletion potentials calculated within
present DFT approach, for a single big sphere near a pl
hard wall and for two big spheres, to develop a suita
parametrization scheme. Although this parameterization
fairly simple it yields rather accurate fits. The depletion p
tential close to contact is fitted by a polynomial and is co
tinued by the known asymptotic behavior. In the followin
the variablex measures the minimal distance from contact
units of the small sphere diameterss , i.e., x[h/ss . These
parametrized depletion potentialsW̄ are also scaled: the ac
tual potentialsW are recovered by multiplying by a factor o
«(Rb1Rs)/(2Rs) with «52 for the wall-sphere and«51
for the sphere-sphere potential:

W5
«~Rb1Rs!

2Rs
W̄. ~39!

Between contact atx50 and the locationx0 of the first
maximum the scaled depletion potential is fitted by a cu
polynomial,

bW̄~x,hs!5a~hs!1b~hs!x1c~hs!x
21d~hs!x

3,

x,x0 , ~40!

where the coefficientsa, b, c, and d are functions of the
packing fraction of the small sphereshs . More details of this
polynomial and the determination of the coefficients are p
sented in the Appendix.

In order to obtain the depletion potential forx.x0 we
assume that the asymptotic decay already sets in at the
x0. This assumption is supported by the results presente
Fig. 6. Thus, forx.x0 we adopt the form@cf. Eq. ~22!#

bW̄asympt
w ~x,hs!5Aw~hs!exp„2a0~hs!ssx…

3cos„a1~hs!ssx2Qw~hs!…, x.x0

~41!

for the scaled depletion potential between a wall and
sphere, and@cf. Eq. ~21!#

bW̄asympt
p ~x,hs!5

Ap~hs!

s211x
exp„2a0~hs!ssx…

3cos„a1~hs!ssx2Qp~hs!…, x.x0

~42!

for the potential between two spheres. The denominato
Eq. ~42! measures the separationsb1h between the center
of the spheres in units ofss . Both forms contain the func
tions a0(hs) and a1(hs), which can be calculated from th
Percus-Yevick bulk pair direct correlation functioncss

(2)(r )
~see Sec. III D and Fig. 7!. The amplitudesAj (hs) and
phasesQ j (hs), j 5p,w are chosen so that the depletion p
tential and its first derivative are continuous atx0 . Ap(hs)
andQp(hs) are weakly dependent on the size ratios.

With this prescription the scaled depletion potential
completely determined. For a given packing fractionhs the
coefficientsa, b, c, and d are given by Eq.~A7!, and the
position of the first maximum can be calculated from E
e
ar
e
is
-
-

c

-

int
in

a

in

.

~A1!. Using those values as input, the amplitudeA and phase
Q of the asymptotic decay are readily obtained from eith
Eqs. ~A4! and ~A3! or Eqs. ~A6! and ~A5!. Thus in this
parametrization the scaled depletion potential has the fo

bW̄~x,hs!5H a1bx1cx21dx3, x<x0

bW̄asympt
p,w ~x,hs!, x.x0 .

~43!

In Fig. 10~a! fits ~lines! of the form given by Eq.~43! are
compared with the scaled depletion potentials between a
hard sphere and a hard wall calculated within DFT~symbols!
for a size ratios50.1. Although the fit is relatively simple
its accuracy is high. The position of the first maximum
which depends sensitively on the packing fractionhs , is
reproduced very accurately. The valuebW̄05bW(x0) of the
potential at the first maximum is also given quite accurate
and only forhs50.3 are small deviations of the fit from th
full DFT results visible. Clearly the full structure of th
depletion potential is reproduced well by this parametri
tion. In order to demonstrate the wide range of applicabi
of this parametrization, in Fig. 10~b! we show a comparison
of the parametrized scaled depletion potential (h) for a
packing fractionhs50.3 with scaled DFT results~lines! for
the depletion potential between two spheres and size ra
s50.2 and 0.05. Although fors50.2 the scaling relation
@Eq. ~34!# is not satisfied particularly accurately, the agre
ment between our parametrization and the DFT results
rather good. This gives us confidence that we have de
oped a satisfactory parametrized form for the depletion
tential which properly incorporates all essential features.

FIG. 10. ~a! Comparison of the scaled wall-sphere depleti
potential @Eq. ~39!# for various packing fractionshs of the small
hard spheres and size ratios50.1, as calculated fully within DFT
~symbols!, and as given by the parametrization of Eq.~43! ~lines!.
~b! Comparison of the scaled sphere-sphere depletion potential
a packing fractionhs50.3 and size ratioss50.2 and 0.05 as cal-
culated within DFT~lines!, and as given by the parametrization
Eq. ~43! (h). Differences between the parametrized results fos
50.2 and 0.05 are not visible.h is the separation between the wa
and the surface of the big sphere, or between the surfaces of the
big spheres.ss is the diameter of the small spheres.
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B. Oscillatory depletion potential at high packing fractions
of the small spheres

In a recent experiment by Crockeret al. @7# the equilib-
rium probability distributionp(r ) for two ~large! polymeth-
ylmethacrylate spheres of diametersb51.1mm immersed in
a sea of~small! polystyrene spheres of diameterss583 nm
was measured using line-scanned optical tweezers and d
videomicroscopy at various packing fractions in the ran
betweenhs50.04 and 0.42. The solvent contains added s
and surfactant to prevent colloidal aggregation, and
‘bare’ interactions between the colloidal particles are
pected to be screened Coulombic repulsion with a scree
length of about 3 nm@7#. Since the latter is small compare
with the colloid diameters the bare interactions can be
garded, to a good approximation, as hard-sphere-like.
depletion potentialsbW(r )52 ln„p(r )/p(`)… ~see Sec. II
A! obtained from these experiments are shown in Fig. 1
Ref. @7#. At low packing fractions,hs50.04 and 0.07, rathe
good agreement with the results of the Asakura-Oosawa
proximation was found, after taking into account the effe
of limited spatial resolution of the optical instruments. F
hs50.15 and 0.21 the measured depletion potential
played a pronounced repulsive barrier. For higher pack
fractions, i.e.,hs50.26, 0.34, and 0.42, damped oscillatio
were observed, these being particularly pronounced for
two highest packing fractions for which three maxima a
clearly visible. Reference@7# appears to be the first report o
an experimental observation of an oscillatory depletion
tential and, indeed, of a repulsive contribution arising fro
purely entropic or packing effects@35#.

Motivated by these experiments we consider an addi
binary hard-sphere mixture in the dilute limit with a siz
ratio s50.0755, as in the experiment.~We do not attempt to
include the increase of the effective radius of the sphe
arising from screened Coulomb repulsion and, in keep
with the authors of Ref.@7#, we do not include any dispersio
forces.! As previously, the depletion potential between tw
big spheres is calculated using Eq.~29! in the dilute limit.
The functionsCa are functionals ofrs(r ), the density pro-
files of the small spheres close to a big sphere fixed at
origin, which depend only on the radial distancer. The re-
sults are shown in Fig. 11 for the same values ofhs as in the
experiments. It is encouraging to find that the theoretical
experimental results have many common features. As
pected, the calculated oscillations become much more
nounced ashs increases. The wavelength decreases slow
and the decay length of the envelope increases rapidly
hs—as predicted by the theory of asymptotic decay~see Fig.
7!. The experimental data are consistent with both obse
tions. Moreover the wavelength of the oscillations forhs
50.34 is close toss5 83 nm in theory and experiment. Fo
hs50.42 both theory and experiment yield a slightly smal
wavelength. The amplitude of the calculated oscillations
larger than in the experiment. However, we emphasize
we made no attempt to take into account effects of ins
mental resolution or the polydispersity of the small polys
rene particles. Nor have we attempted to include the effe
of the softness of the interparticle potentials and any n
additivity of the effective diameters; both are likely to lead
a reduction in the amplitude of the oscillations. The quali
ital
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tive agreement between the experimental results and thos
our calculations persuades us that the hard-sphere mod
an appropriate starting point for describing the colloidal s
tem, and that the observed oscillations do reflect the pack
of the small spheres—as inferred in Ref.@7#.

Significant deviations between our results and the exp
mental ones do occur, at largehs , for separations near con
tact or near the first maximum in the depletion potential. O
results imply that the height of the first maximum and t
magnitude of the contact valueuW(0)u are larger than the
experimental ones by about a factor of 2 forhs50.34. Al-
though the source of these differences may well reside in
experimental situation, it is important to check that the p
ticular DFT which we employ is performing reliably at thes
high values ofhs . It is precisely this regime of high densit
and very strong confinement of the small spheres where
ferences between the various DFT theories, i.e., the impro
ments on the original Rosenfeld version, might reveal the
selves. These circumstances are reminiscent of th
investigated by Gonza´lez et al. @36# in their DFT studies of
hard spheres in small spherical cavities. Those authors w
able to ascertain that the improved theories fared better
the original version under conditions of extreme confin
ment.

FIG. 11. The depletion potential between two big hard sphe
in a sea of small hard spheres at various values of the small sp
packing fractionhs as obtained from the original Rosenfeld fun
tional. In order to mimic the experiment of Ref.@7# the diameters
were chosen to besb51.1 mm andss50.083mm, so that the size
ratio is s50.0755.h measures the separation between the surfa
of the big spheres. Note that for display purposes each curve
been shifted downward by a constant amount;W(h) oscillates
around zero ash→`. The dotted line forhs50.42 corresponds to
the depletion potential calculated with the modified interpolat
form of the Rosenfeld functional@28#.
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5374 PRE 62R. ROTH, R. EVANS, AND S. DIETRICH
To this end we repeated our calculations of the deple
potential with the improved versions of the Rosenfeld fun
tional that can account for the freezing transition@28#. At
packing fractionshs&0.3 we obtained, as stated earlier, r
sults almost identical to those of the original functional.
higher packing fractions, however, we find that the amp
tude of the oscillations is slightly smaller than those obtain
from the original functional. This is illustrated in Fig. 11 fo
hs50.42, using the interpolation form of the functional@28#
~dotted line!. The antisymmetrized version of the functiona
with q53 @28#, yields a depletion potential very close to th
of the interpolation form. In view of the smallness of the
deviations the discrepancies between the experimental
ings and the theoretical results at highhs cannot be blamed
on the performance of the DFT but most probably reside
differences between the actual experimental sample and
model of additive hard spheres.

VI. SUMMARY AND DISCUSSION

In this paper we have developed a versatile theory
determining the depletion potential in general fluid mixtur
While our approach is based on a mixture functional, it
quires only a knowledge of the equilibrium density profi
rs(r ) of the small particlesbefore the big ~test! particle is
inserted, i.e.,rs(r ) has the symmetry of the external pote
tial. If the latter is exerted by a fixed particle or by a plan
wall, then in these casesrs(r ) simplifies to functionsrs(r )
or rs(z) of one variable. Since a one-dimensional profile c
be calculated very accurately, the resulting depletion po
tials can be obtained without the numerical complicatio
and limitations that are inherent in brute-force DFT@37#. The
latter requires the calculation of the local density of the sm
particles around the big particles in the presence of the
ternal potential@21# or the calculation of the total free energ
as a function of the separation of the big particles@38#; both
calculations require considerable numerical effort due to
reduced symmetry of the density distributions. We have e
ployed our approach in a comprehensive study of the de
tion potential for hard-sphere systems, using Rosenfe
fundamental measure functional. The main conclusi
which emerge from our study are as follows.

~1! The depletion potential can be obtained by consider
a liquid mixture in the limit of vanishing concentration o
one of the species. Two different ways to implement t
limit lead to the same result~Fig. 1!.

~2! Detailed comparison of our results with those of sim
lations, for both sphere-sphere and~planar! wall-sphere
depletion potentials~see Figs. 2 and 3!, demonstrate that the
theory is very accurate for size ratioss5Rs /Rb as small as
0.1 and for packing fractionshs as large as 0.3. These are t
most extreme cases for which reliable simulation data
presently available. The theory describes accurately
short-ranged depletion attraction, the first repulsive bar
and the subsequent oscillations in the depletion potentia

~3! By performing consistency checks we argue that
least up to moderate packing fractions the predictions of
Rosenfeld DFT for depletion should be quantitatively re
able even for large asymmetries between the sizes of
solvent and the solute particles~Fig. 8!. Section III E pro-
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vides a theoretical understanding of this feature of our D
approach.

~4! Extensions of the Rosenfeld functional@28# yield very
similar results~see Fig. 11! for the cases we have studied.
would be of considerable interest to test the performance
the proposed functionals against simulation data for sma
size ratios and for higher values ofhs , for which more ex-
treme packing constraintsmight discriminate between the
various functionals.

~5! Our DFT approach incorporates the correct, expon
tially damped, oscillatory asymptotic (h→`) decay of the
depletion potentialW(h). This is inherent in the constructio
of the theory, is preserved by the approximate Rosen
functional, and is exhibited explicitly by the numerical r
sults ~Fig. 6!. The decay lengtha0

21 of the oscillations in-
creases and the wavelength 2p/a1 decreases with increasin
hs ~Fig. 7!, but these quantities are independent of the s
ratio s. The same values fora0 and a1 characterize the os
cillatory decay toward the bulk values of the number dens
profiles of hard-sphere mixtures near a hard wall when
packing fraction of the large spheres is vanishly small~Figs.
4 and 5!.

~6! We have developed simple parametrization schem
for the depletion potential between a big hard sphere an
planar wall and that between two big hard spheres wh
provide accurate fits to our DFT results~see Fig. 10!. The
fitting procedure makes use of the fact that the lead
asymptotic behavior ofW(h→`) provides an accurate ac
count of the oscillatory structure of the depletion potentia
intermediate separations as well as at the longest range.
parametrizations are designed to provide a more accurat
ternative to the third-order virial expansion formula given
Götzelmannet al. @9#. Since these new parametrizations c
be easily implemented, we recommend that they should
employed in subsequent studies of the phase behavio
highly asymmetric binary hard-sphere mixtures of the ty
reported in Refs.@2# and @3#.

~7! In Sec. IV we investigated the regime of validity o
the Derjaguin approximation@Eq. ~35!# for the depletion po-
tential and showed that this fails, for all but the smalle
packing fractionshs , for which the depletion potential re
duces to the Asakura-Oosawa result. However, the sca
relation Eq.~34!, connecting the depletion force between tw
big spheres to that between a big sphere and a planar wa
which is predicted by the Derjaguin approximation b
which also follows from geometrical considerations—do
remain accurate even at moderate size ratios~Fig. 9!.

We conclude with several remarks concerning the ac
racy and usefulness of our approach. One might be surpr
that a DFT which corresponds to the Percus-Yevick the
for the bulk mixture ~the Rosenfeld functional yields th
same bulk free-energy density and bulk pair direct corre
tion functions! performs so well for small size ratios, fo
which it is known that Percus-Yevick theory becomes ina
curate. For example, Percus-Yevick theory fails to pred
the fluid-fluid spinodals for additive hard-sphere mixture
However, our present approach involves only the calculat
of a one-body direct correlation functioncb

(1)(r ;$m i%) and,
therefore, the determination of one-body density profil
The minimization of approximate functionals can yie
rather accurate one-body profiles in spite of the limitations
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the underlying approximations; e.g., this is the reason w
the test particle route to the bulk radial distribution functi
g(r ) is very successful within DFT@13,39#. Furthermore, in
determining the depletion potentialW(r ) we require only
solutions of the Euler-Lagrange equation forrs(r ) in the
limit where rb→0, i.e., in the absence of the big particle
The DFT is likely to be more accurate in this limiting regim
than for a mixture concentrated in all species. We empha
that taking the dilute limit of the big particles numericall
i.e., working at nonzero but very small values ofhb , in-
volves more computation than taking the limit directly in t
functional. Moreover, caution should be exercised in ha
sphere mixtures with extreme size ratios,s<0.1, at high
packing fractionshs of the small spheres, since the fluid
solid phase boundary already occurs at very low pack
fractionshb of the big spheres@2#. The fluid-solid coexist-
ence region is avoided if the dilute limit is taken direct
@40#.

Our procedure for calculatingWt(r ) at arbitrary concen-
trations of the big particles might prove useful for interpr
ing ~future! measurements of the effective interaction pote
tial when the mixture is not in the dilute limit. Figure 1 o
Ref. @16# illustrates how the wall-sphere potentialWt(z) var-
ies with the large sphere packing fractionhb for a mixture
with size ratios50.2 andhs50.2. For hb50.025, Wt(z)
already differs by a few percent from its dilute limitW(z).

It is possible to calculate the depletion potential by us
as input density profiles obtained by other means. In part
lar one might take simulation data forrs(r ), computed in the
absence of the big test particle, and insert these into Eq.~31!
to determine the weighted densities. Although such a pro
dure does not offer the appeal of a self-consistent appro
in which both the equilibrium density profiles and the dep
tion potential are calculated within the same framework,
practice this could be a profitable route for complex geo
etries where a direct simulation of the depletion potentia
force is very difficult.

Finally we mention that the techniques we have dev
oped here are not restricted to additive, binary hard-sph
mixtures. Our general approach to the calculation of dep
tion potentials can be applied to hard-sphere mixtures w
nonadditive diameters, to ternary mixtures, and to syste
where the interparticle potentials are soft.
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APPENDIX: PARAMETRIZING THE DEPLETION
POTENTIAL

In the range between contact,x5h/ss50, and the posi-
tion x0 of the first maximum the scaled depletion potentialW̄
is parametrized by a cubic polynomial@Eq. ~40!#, which is
the simplest polynomial fit that remains accurate close
contact. SincebW̄(x50,hs)5a(hs), the first coefficient is
y
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the contact value of the depletion potential. The positionx0
and the heightW0 of the first maximum can be obtaine
easily by differentiating Eq.~40!. The cubic polynomial has
two extrema, with the maximum located at

x0~hs!52
c1Ac223bd

3d
, ~A1!

and a maximal value of

bW̄0~hs!5bW̄„x5x0~hs!,hs…

5
2c329bcd127ad212~c223bd!3/2

27d2
.

~A2!

Beyond the position of the first maximum of the depleti
potential, the parametrized form is continued by impos
the known asymptotic behavior for largeh. The asymptotic
behaviors of the wall-sphere and sphere-sphere depletion
tentials are slightly different, and must be considered se
rately. For the wall-sphere depletion potential the asympto
behavior is given by Eq.~41!, and the amplitudeAw and the
phaseQw are chosen such that the function and its first d
rivative are continuous atx0. From the requirement of a con
tinuous derivative at the first maximum, i.e.,

dbW̄asympt
w ~x,hs!

dx
U

x5x0

50,

the phase can be determined to be

Qw~hs!5a1ssx01arccosS a1

Aa0
21a1

2D . ~A3!

From the requirement that the function is continuous atx0,
i.e., W̄asympt

w (x0 ,hs)5W̄0(hs), together with the phase from
Eq. ~A3!, the amplitude of the asymptotic decay follows a

Aw~hs!5bW̄0 exp~a0ssx0!Aa0
21a1

2

a1
2

. ~A4!

A similar calculation for the sphere-sphere case using
~42! leads to slightly different expressions for the phase,
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Qp~hs!5a1ssx01arccosS a1~x0ss1sb!

A112a0~x0ss1sb!1~a0
21a1

2!~x0ss1sb!2D , ~A5!

and the amplitude,

Ap~hs!5bW̄0

exp~a0ssx0!

a1ss
A112a0~x0ss1sb!1~a0

21a1
2!~x0ss1sb!2. ~A6!
-

or

o
th

he

on
05

ing
Unlike Qw andAw , Qp andAp depend~weakly! on the size
ratio s5ss /sb .

The coefficientsa, b, c, andd are fitted to depletion po
tentials calculated within DFT. Scaled depletion potentialsW̄
obtained for a big hard sphere near a planar hard wall, f
size ratios50.1, are used in the range 0<hs<0.3. The re-
sulting coefficients are given by

a~hs!522.909hs ,

b~hs!56.916hs24.616hs
2178.856hs

3 ,
~A7!

c~hs!524.512hs115.860hs
2293.224hs

3 ,

d~hs!52hs exp~21.73418.957hs11.595hs
2!.

There is no particular significance in the chosen form
parametrization, but we note that the contact values of
scaled depletion potentialbŴ(0,hs)5a(hs) are linear inhs
for this choice of parametrization. It is interesting that t
ns

be

S.

ys
.

h,

h,

A

i-
a

f
e

coefficient22.909 is rather close to the value23 obtained
from the Asakura-Oosawa result~valid as hs→0) in the
limit of small size ratios, see Eqs.~12! and~13! and also Eq.
~38!.

The quantitiesa0 anda1 are obtained by solving Eq.~20!,
using the Percus-Yevick pair direct correlation functi
css

(2)(r ). The results are shown in Fig. 7. In the range 0.
<hs<0.4 they can be fitted accurately by

a0~hs! ss54.674exp~23.935hs!

13.536 exp~256.270hs! ~A8!

and

a1~hs!ss520.682exp~224.697 hs!

14.72014.450hs . ~A9!

These formulas specify all the ingredients for determin
the parametrized form of the depletion potential.
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