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We present a versatile density functional approd2RT) for calculating the depletion potential in general
fluid mixtures. For the standard situation of a single big particle immersed in a sea of small particles near a
fixed object, the system is regarded as an inhomogeneous binary mixture of big and small particles in the
external field of the fixed object, and the limit of vanishing density of the big spepjes,0, is taken
explicitly. In this limit our approach requires only the equilibrium density profile of a one-component fluid of
small particles in the field of the fixed object, and a knowledge of the density independent weight functions
which characterize the mixture functional. Thus, for a big particle near a planar wall or a cylinder or another
fixed big particle, the relevant density profiles are functions of a single variable, which avoids the numerical
complications inherent in brute force DFT. We implement our approach for additive hard-sphere mixtures,
comparing our results with computer simulations for the depletion potential of a big sphere of Rgdius
sea of small spheres of raditg near(i) a planar hard wall, andi) another big sphere. In both cases our
results are accurate for size rat®s Rg/R,, as small as 0.1, and for packing fractions of the small spheges
as large as 0.3; these are the most extreme situations for which reliable simulation data are currently available.
Our approach satisfies several consistency requirements, and the resulting depletion potentials incorporate the
correct damped oscillatory decay at large separations of the big particles or of the big particle and the wall. By
investigating the depletion potential for high size asymmetries we assess the regime of validity of the well-
known Derjaguin approximation for hard-sphere mixtures and argue that this fails, even for very small size
ratios s, for all but the smallest values ofs where the depletion potential reduces to the Asakura-Oosawa
potential. We provide an accurate parametrization of the depletion potential in hard-sphere fluids, which should
be useful for effective Hamiltonian studies of phase behavior and colloid structure. Our results for the depletion
potential in a hard-sphere system, with a size rat00.0755 chosen to mimic a recent experiment on a
colloid-colloid mixture, are compared with the experimental data. Although there is good overall agreement, in
particular for the dependence of the oscillationszan there are some significant differences at high values of
s -

PACS numbds): 82.70.Dd, 61.20.Gy

[. INTRODUCTION chanics viewpoint depletion forces are of considerable inter-
est, since they arise primarily from entropic effects because
Two big colloidal particles immersed in a fluid of smaller the bare interactions between the particles are hard-sphere-
colloidal particles or non-adsorbing polymers or micelles exdike. Formally, it is the integrating out of the degrees of
perience an attractive depletion force when the separation freedom of the small particles which gives rise to the effec-
of the surfaces of the big particles is less than the diameter afve interaction between two big ones.
the small ones. The expulsion or depletion of the small par- Although colloid-polymer mixtures can, under favorable
ticles gives rise to an anisotropy of the local pressure whicltircumstances, be modeled by a binary mixture of hard
results in the effective attractive force between the big parspheres and ideal, noninteracting polym@ve term this the
ticles. Asakura and Oosawa and, independently, Vrij, usedsakura-Oosawa modeffor mixtures of colloids or colloids
excluded volume arguments to determine the effective poterand micelles a more appropriate zeroth-order model is a bi-
tial between two big hard spherésiodeling the colloids  nary hard-sphere mixture, i.e., the small particles are not in-
assuming that the small particles or polymers form a mututerpenetrating but are experiencing mutual hard-sphere re-
ally noninteracting fluid whose centers are excluded from thepulsion. In this case it becomes a key question as to how the
surfaces of the colloids by a distanBg [1]. The resulting depletion potential between two big hard spheres is influ-
depletion potential is attractive fdr<2Rg and is zero for enced by interactions between the small spheres. For high
h=2Rg; it increases monotonically with from its value at  packing fractionszs, one might suppose that the small
contacth=0, and is proportional ta, the packing fraction spheres exhibit pronounced short-ranged correlafitayer-
of the small particlegsee, cf., Eq(12)]. Much attention has ing), leading to significant changes in the depletion potential.
been paid to depletion induced attraction within colloid sci-This would, in turn, have repercussions on the phase behav-
ence, since it provides an important driving force for phasaor of the bulk mixture, making this significantly different
separation and flocculation phenomena in mixtures of colfrom that of the Asakura-Oosawa model. Such consider-
loids and in colloid-polymer mixtures. From a statistical me-ations have prompted several recent theoretical investiga-
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tions of phase behavior based on an effective one-componetttose of computer simulatiofi4,15. Our theory performs
depletion potential description of model colloidal mixtures well for all size ratioss=R4/R,, and packing fractiong, for
[2—4]. The crucial ingredient in such investigations is anwhich simulation results are available. We show that the
accurate depletion potential. leading-order asymptotic result for the depletion potential
Having a proper understanding of depletion potentials iorovides an excellent account of the oscillations in the cal-
not only relevant for bulk phase behavior; it is of intrinsic culated potential, not only at longest range but also at inter-
interest. In recent years a variety of experimental techniqued1ediate separations of the big spheres. Section IV is con-
have been developed which measure, directly or indirectlycemed with assessing the regime of validity of the well-
the depletion potential between a colloidal particle, im-Known Derjaguin approximation which relates the force
mersed in a sea of small colloids or polymers, and a fixedP€tween two big objects to the mtegral_of the solyat|on force,
object such as a planar wéb]. Video microscopy has also OF €XCeSS pressure, of the small particles confined between

been used to determine depletion forces for a single big colV0 Planar wallgsee Eq(35)]. We argue that this approxi-
loid in a solution of small colloids inside a vesicle—a systemMation is not reliable for the hard-sphere mixture even when

which resembles hard spheres inside a hard cé6iyVery the size ratios is very small._ In_Sec. VA we d_escrlbe a

recently Crockeret al. [7] measured the depletion potential S|n_1ple but accurate parametrization of the depletion potential

between two big polymethylmethacrylate spheres immerseguitable for a big hard spher@T near a planar hard wall, and for

in a sea of small polystyrene spheres for a range of packinfj!€ Potential between two big hard spheres. Such a param-

fractions of the lattetsee Sec. V B At low values of7 the etrlzgd form should prove useful for. effective Hamiltonian

measured depletion potential is well described by thetudies of phase behavior and colloid structize4]. Sec-

Asakura-Oosawa result, but at higher packing fractions thdon V B presents results for the depletion potential in a bi-

potential exhibits a repulsive barrier and fgt=0.26 the "a"Y hard-sphere mixture Wh‘?re the size ratio Is chosen to

depletion potential is damped oscillatory, with a wavelengthMimic the system considered in the experiments of R&f.

that is of the order of the small particle diameter. As experi-V& conclude in Sec. VI with a discussion and summary of

ments grow in sophistication and resolution, it is likely that OUr "esults.

further details of depletion potentials will be revealed whose

interpretation will require a reliable and versatile theoretical Il. DEPLETION POTENTIAL

approach. Such an approach should be able to tackle experi-

mental situations where is rather high and to treat general

“confining” geometries. The latter include a big particle =~ We consider a general mixture efcomponents in which

near a planar wall or in a wedge or cavity, as well as the caseach species(i=1, ... ), characterized by its radiug; ,

of a big particle near another, fixed big particle. In this papeiis coupled to a reservoir with chemical potentigl, and is

we describe such a theory for the depletion potential basesubject to an external potentigl(r). The mixture at ther-

on a density functional treatmefDFT) of a fluid mixture.  modynamic equilibrium can be described by the set of num-

Our treatment avoids the limitations of the virial expansionber density profilegp;(r)}. For such a mixture we wish to

(in powers of ) and the uncontrolled nature of the Der- calculate the depletion potential, or the depletion force, be-

jaguin approximation which are inherent in recent ap-tween an object fixed at position and a second one fixed at

proacheg8,9] to depletion forces in hard-sphere mixtures. Itr,. Without loss of generality the position, of the first

is less cumbersome than the alternative integral equationbject is chosen as the origin of the coordinate system. This

treatment4 10,11}, and more easily adapted to different ge- fixed object then exerts an external potential on the particles

ometries. A key feature of our treatment is that it do@$  constituting the mixture. The external potential can represent

require the calculation of the total free energy of the inho-a planar hard wal[16] or a fixed particle of the mixture, or

mogeneous fluid or of the local density of the small particlesmore generally, a curved surfa¢&7] or soft planar walls

in contact with the big particlgl0,12. The method is much [18]. If the depletion potential between two particles of the

easier to implement than a direct minimization of the free-mixture is to be calculated either particle can be chosen to

energy functional, which is numerically very demandingact as the external potential, and this point will be addressed

when any symmetry of the density profile of the smallin more detail below.

spheres is broken by the presence of the big particle. In the following the second object is a test particle of a
The paper is arranged as follows: Sec. Il A defines thespecies denoted ds The grand potential of the mixture

depletion potential in an arbitrary mixture, showing how thiswhen the test particle is fixed at the positignin the pres-

is related to the one-body inhomogeneous direct correlatioence of the fixed object exerting the external potentigir)

function of the big particles. In Sec. Il B we use this result tois denoted by}, (ry;{ui};T). W(ry,), the quantity of inter-

derive an explicit formula for the depletion potential in the est here, is defined as the difference of grand potential be-

low-density limit, where the densities of all species approachween a configuration in which the test particle is in the

zero. For the particular case of a binary hard-sphere mixtur@icinity of the fixed object and one in which the test particle

in this limit we recover the Asakura-Oosawa result. Sectionis deep in the bulk, i.er,—o:

Il C describes the general asymptotic behavior of the deple-

tion potential forh— o, while Sec. Il D describes the imple- Wi(rp) = QMo i{ifs T) = Quo(rp— 2 {uifs T). (D)

mentation of the theory for a binary hard-sphere mixture us-

ing the DFT of Rosenfelfl13]. In Sec. Ill we present several In order to calculate this difference the test particle can be

comparisons of our hard-sphere DFT results, for both spherenoved along any path from one configuration to the other. A

sphere and(planay wall-sphere depletion potentials, with particular path which simplifies the calculation is via the

A. General theory
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reservoir. This path can be divided into two steps. In the firsthere is no simple symmetry involved in the problem, calcu-
step the test particle is removed from the bulk gt and  lating the density profiles before particle insertion is much
put into the reservoir. In the second step the test particle isasier than after insertion, when the broken symmetry due to
taken from the reservoir and is inserted back into the mixthe presence of the test particle leads to a more complex
ture, but now atr,,. The formal means to describe particle dependence of the profiles on the coordinates.

insertion in a general mixture is the potential distribution While Eq. (5) can be evaluated for arbitrary densities of
theorem and we employ this in the grand ensenib®. specied within the present DFT approach, a particular limit

The potential distribution theorem provides an expressiorn which the density of specids goes to zero is now con-

for the partition function=,(ry, ;{xi};T) of the mixture af- sidered. This dilute limit is especially important since it
ter a test particle of specidsis inserted at positiom, in  arises in the context of measuring depletion forces and in

terms of the partition function of the mixtué({,ui};T) and fqrmal procedures for _deriving effective Hamiltonians for
the number density profilg,(r) of species beforethe par- big particles by integrating out the degrees of freedom of the
ticle insertion: small particles. For example, if in a binary mixture the de-

grees of freedom of the small particles are integrated out, the

Ew(rp:iuihT) resulting effective one-component fluid can be described by
_ an effective Hamiltonian containing a volume term, to which
=exp{ﬁ(vb(rb)—,ub)]A§ pp(ry) E{uihT), (2) only the small particles contribute, a one-body term, in

which a single big particle in a “sea” of small particles
where g~ 1=kgT and A, is the thermal wavelength of spe- contributes, a two-body term, a three-body term, and so on
ciesb. Together with a well-known result from DHRO], [2]. For highly asymmetric mixtures the most important con-
3 B (1), tributions come from the volume and the one- and two-body
Ap po(r)=exd B(up—Ve(N)+cy’(H{unil)], (3 terms. This assumption is substantiated by the results of cal-
culations of three-body contributions reported in Rdf4]

it follows that the one-body direct correlation functiog of {7 - Gize ratics=0.1, Three-body contributions also seem to

speciesh can be written as be small fors=0.2 [21]. Note that the two-body term de-
. . _— _ = _ scribes an effective pairwise interaction potential between
Cp (Mo {mih) =IN[Ew(rp{nih T/ EQui}:T)] two big particles which turns out to be precisely the deple-
~ tion potential, i.e.,8W,(r), evaluated in the dilute limif2].
=BAmis T = BQw(rp{mis ), (4 In the grand ensemble the dilute limit can be obtained by

taking the limit in which the chemical potential of specigs
Mmp— —o°, with the chemical potentials of all other species
Tui-p) kept fixed. The depletion potential is then given by

i.e., —B *cV(rp:{ui}) describes the change in the grand
potential of the whole system due to insertion of a test par
ticle. The grand potential difference defined by EL. can
now be expressed in terms of the difference of one-body

direct correlation functions: BW(r)= lim BW(r)

.
BW,(rp) = c(ry—ei () —c(ry i {m}).  (5) :

As the potential distribution theoreffeq. (2)] is a general ).

result, valid for any number of components, for arbitrary ~Cp (Fi{Kizph mo— ~%), ©®
densities of all components and, in fact, for any interparticle

potential function, the same generality holds for 8. No  \hich contains no explicit dependence on the external poten-
approximations have been made so far. However, in order tga|s that are present, i.e., the depletion potential depends
use Eq.(5) to calculateBW,(r) an explicit procedure that only on theintrinsic change of the grand potential.

can treat a mixture must be applied. Simulations provide Ajthough in the dilute limit both the density profije,(r)
such a procedure as does density functional theory. We shalhq the bulk density"™*= py(=) of speciesb vanish, the

consider both here. _ _ _ _ ratio stays finite and the depletion potential can also be ob-
We emphasize that the direct correlation function enteringzined from the result

Eq. (5) depends on the equilibrium density profilbsfore

the test particle of specidsis inserted at positiom,. This

observation simplifies the calculation @gfW,(r) dramati-

cally, because the symmetry of the relevant density profiles BW(r) =~
{pi(r)} is determined solely by the symmetry of the external

potentials, and therefore depends only on the nature of the

object that is fixed at the origin. If this object is a structure-which takes a more familiar form if we rewrite E¢7) as
less planar wall and in the absence of spontaneous symmetp(r)/p(e)=exd —BW(r)+Vy(r))], where p(r) is the
breaking such as prefreezing or crystalline layer formatiorprobability density of finding the particle of specibsat a
the density profiles of all species reduce to one-dimensionglosition r, and we assumé/,(«)=0. This route to the
profiles{p;(z)}, with zthe distance perpendicular to the wall. depletion potential was employed successfully in a grand
For a fixed spherical or cylindrical wall or particle the den- canonical Monte Carlo simulation of a big sphere in a sea of
sity profiles{p;(r)} depend only on the radial distance. Evensmall hard spheres near a hard wak]. It is also the route

if the fixed object is a wall of more general shape, so thaused to obtainW(r) from experiment[18,5—-7. Note

:Cél)(rﬂw?{ﬂi;ﬁb},ﬂbﬂ—m)

lim
/j,b—vfac

( pb(r)
In

W) —Vp(r)+Vp(*), (7)
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that in the same limitu,— — the density profiles of all 20 2
other specie$p;..,(r)} reduce to those of a— 1 component BWyp (h) == ps() m(2Rs—h)| Ry Ryt 2 Rs
mixture.
h{ + RS} hz] for h<2R
—=|Ry+ = |—z%; for
B. Low density limit 2 3 12 °
In order to implement the formal result in E@), a way =0 for h>2R,, (12

of determining the direct correlation functicﬁl) is required.

Itis convenient to adopt a DFT perspective. In density funcwhere h is the separation between the surfaces of the big
tional theory the intrinsic Helmholtz free-energy functional hard spheres. As a second example we consider a big sphere
can be divided into an ideal gas contribution plus an excesgear a planar, structureless hard wall. The depletion potential
over the ideal gas contribution. While the former is knownis then

exactly, in general, only approximations are available for the

excess paif20]. One important exception is the excess free- R
energy functional for a general mixture in the low density BWvAv(b)(h): —2ps(oo)77(2Rs—h)( Ry Ry + 3
limit, i.e., in the limit of all densities going to zero. By 3
means of a diagrammatic expansion it can be shown that the h R] h?
exactexcess free energy functional in this limit is given by — 5{ b— f} - E] for h<2Rg
1
lim Bfe){{pi}]:_zz fdg’r fd:"r’ pi(N)py (1) =0 for h>2Rq, (13
{mi— =} )
Xf.(r—r") (8) whereh is the separation between the surface of the big hard
i ’

sphere and the hard wall.

It is important to recognize that Eq11) provides the
wheref;; is the Mayer bond between a particle of spedies exact low density expression for the depletion potential even
and one of specigs if the interactions between the species or between the wall

For a binary mixture in the low density limit the depletion and species are soft, and possibly contain an attractive part,
potential acting on a big particle can be calculated from so that the Mayef functions cannot be expressed in terms of
Eq. (8) using the definition of the one-body direct correlationthe Heaviside functior®. In general there is also a direct
function given within density functional theory, interaction potential between two big particles, or between a
single big particle and a wall, so that the total effective po-
tential, after integrating out the degrees of freedom of the

cMri{uh= _ﬁM, (9)  small particles, is the sum of thstrinsic contribution—the
pu(T) depletion potential—and the direct interaction potential
Vp(r), i.e.,
and we obtain
Doy(r) =W(r) +Vy(r). (14

BW(f):—j A’ (ps(r')—ps(@NFfpr=r"), (100  For example, the total effective potential between two big
hard spheres in the sea of small hard sphere®is(r)
=W(r)+Vp(r), with Vy(r) the hard-sphere potential be-
wheres refers to the small particles. In the same limit the tween the two big ones, and it #,,,(r) which constitutes
density profile of the small particles reduces to the densitthe effective pair potential in the effective one-component
profile of an ideal gas in the external potenti&(r), i.e.,  Hamiltonian for the big spherdg].
ps(r)=ps(*)exp(— BV4(r)), and the depletion potential can It is instructive to note that the functional defined by the
be written as right-hand side of Eq(8) suffices to generate the appropriate

depletion potential for the original Asakura-Oosawa model

[1] of a mixture of colloids anddeal, noninteracting poly-
ﬁW(r):—pS(oc)f d3r’ (exgd —BVs(r')]—Dfpr—r"). mers[22]. This model binary mixture is specified dy.,

(11) fep, andfy,, the Mayerf functions describing the pairwise

interactions between two colloids, between a colloid and a
polymer, and between two polymers, respectivéfy, is set
This result is more familiar for the case of a binary hard-to zero in order to describe the ideal, noninteracting polymer
sphere mixture with sphere radi, and R, where f,(r coils. The resulting depletion potential is still given by Eq.
—1r')=—0((R,+Ry)—|r—r’|), where® is the Heaviside (11), but this result now holds fomll polymer densities
function. Then Eq(11) reduces to the well-known Asakura- p¢(%), not just in the dilute limitpg(c)—0, because the
Oosawa depletion potentifll]. As an example we consider polymer is taken to be ideal. The total effective potential
the depletion potential between two big spheres; in this casketween two colloids is then given by E(l4), with the
exd —BV(r)]—1=f.{r) and the sphere-sphere depletion po-Asakura-Oosawa resulEq. (12)] for W(r), which may be
tential can be expressed [ employed in an effective Hamiltonian for the colloig.
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C. Asymptotic behavior 1 )
()= — iOnr
In Sec. IIB we showed that for the case of hard spheres rh; (1) 27 2 e Ry (19
the depletion potential reduces in the low density limit to the

Asakura-Oosawa result. Examination of E¢s2) and (13)  prom this equation it becomes clear that the asymptotic be-
shows that thls_ potential is identically zero for separations p5vior ofhy;(r) is dominated by the pole or poleg with the
between the big spheres or between the sphere and the wgll 5jjest imaginary part, since this gives rise to the slowest
that are greater tharR2= 0. Outside the low density limit exponential decay.

of the small particles, this is no longer valid. From the gen- g4, g pairsi,j=b,s the poles are determined by the

eral theory of the asymptotic decay of correlati¢@g] it is A . . . :
known that for systems in which the interatomic forces ar condition D(q) =0 [23]. For %uﬁ(lnary mixture in the dilute

short ranged, i.e., excluding power-law decay, the densit jmit of the big particles,'i.e.gb' -0, the general theory of
profiles of both components of a binary mixture exhibit a he asymptotic decay simplifies considerably, and from Eq.
commondamped oscillatory form in the asymptotic regime, (.17) we see that the pole st_ructure of all three t(_)tal correla-
far from the wall or fixed particle, which is determined fully tion fgnctlons can be obtained from the solutions of the
by the pole structure of the total pair correlation functions€duation

hi;(r) of the bulk mixture. The depletion potential is related bulk (2

to the density profile of specidsvia Eq.(7), and therefore 1-p2"c@(q)=0, (20

its asymptotic behavior should be related directly to that of

this density profile. In order to understand this connection inyith ¢(2)(q) referring to the fluid of pure at densityp2“'%.

more detail, we first recall some arguments from RB8l. | general there will be an infinite number of solutions of Eq.
A bulI;uIEmary mixture consisting ofbjlinall particles of (20), but only the solutiom,=q=a, +iao, with the smallest

densityps™" and big particles of density,” " is considered.  imaginary parta,, is important for the following. The
The total correlation functions in the bulk;;(r), with i,j  asymptotic behavior of the radial distribution functions

via hyj (1) ~Ju (r)—1, and to the two-body direct correlation 3 small one or a large one, can be ascertained, and it follows
functionscji”(r) via the Ornstein-Zernike relation for mix- that the density profiles exhibit asymptotic decay of the form

tures. In Fourier space the latter can be expressed as

A A
. N;; () —pPul~ Plexp —agr)coga;r—0,)), r—o,
fy ()= i @y~ ATATTT e adncosar=0y),
D(aq) (21
where ﬁij(q) is the three-dimensional Fourier transform of with a common characteristic inverse decay Ieng}ﬁ and a
hi;(r), the numerator is given by wavelength of oscillations 2/a, for both species =s,b.
Remarkably, exactly the same inverse decay length and
Naa(q):{;gi)(q)+pgulk(6g@(q)2_6%)(@6&)(@), wavelength also characterize the asymptotic decay of the
density profiles close to a planar wall. This is given by
- A A A A 23,2
Ros(@) =) + 2 €2 )2~ EQ( @) e @), (23,24
B0 @ ot Avexp - agz)cotaz—0,), 72—

n N 22
Nap(a)=c)(a), &2

for i=s,b. The amplitudeA,; andA,,; and the phase®

and and®,,; do depend on speciésand on whether a particle or
. bulk (o bulke (2 wall is the source of the external potential. Note that from
D(q)=@1-p2""c@(a)@-pp"ciP(a) Eq. (20) it follows that in the dilute limit for the big particles
bulk bulk> (2 a, anda, are functions of the packing fraction of the small
- cP(a)? (17 i : ize rat
Ps  Pp Csp particles only; thus they do not depend on the size ratio.

The asymptotic behavior of the depletion potential can
is a common denominator. The total correlation function innow be obtained from Eq(7). Assuming that the external
real space can be obtained by taking the inverse Fourigjotential acting on the big spheres is of finite range, the
transform, depletion potential between two big spheres has an

asymptotic behavior of the form

1 (= _ R
rhij(r):_ZJ dg gsin(gr) h;;(q), (18 A,p
2mJo BW(r)~—In| 1+ Tpexp(—aor)cos(alr—pb)/pE””‘

which can then be evaluated by means of the residue theo- A
rem. If g, denotes thath pole in the upper complex half- ~_ —pbexp( —ayr)cogayr — ®pb)/pE”'k, o0
plane, andR, the corresponding residue qﬁij(q), the total '
correlation function can be written &23] (23
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and that between a single big sphere and a planar wall takes

ab({n,

a

) wp(r'=r)

r/

bulk (27)
BW(Z)~ — Ayp eXpl—apz)cos 12— Oyp)/pp ",  Z—.

(24) for the Rosenfeld functional. In the limit where all species

. have the same radius it is easy to check that the weighted
We shall see later that our DFT results for the density Proyensitiesn . in Eq. (26), and hencab, reduce to the corre-

files and_ the depletion potential c_onform With _thesesponding quantities for the pure fluid and, since the weight
asymptotic results at very large separations and, strikingly, afbnctionSwg in Eq. (27) reduce to the weight functions of

intermediateseparations. the pure system;gl) reduces to the one-body direct correla-

_ _ tion function of the purds) fluid. The depletion potential is
D. A density functional approach for hard spheres then given byBW(r) = —In(ps(r)/ps(>)), which is the cor-

For the system of primary interest, namely, the mixture of/€Ct re_Sl;'“[9]- _
hard spheres, a very reliable DFT exists, namely, the Rosen- Defining functions¥* as
feld fundamental measures functioridB]. While, in prin-
ciple, this functional also can treat generally shaped convex ) BId({n,}) Bod({n,})
hard particle§25], its application has been restricted to the we(r )E( an ) _( an
particular cases of hard spheres and parallel hard d@6és “ r
In the low density limit the Rosenfeld functional reduces

to the exact excess free-energy functional of E&). For  the grand potential difference in Etp) can be written as a
arbitrary densities it has the structure sum of convolutions of these functions with the weight func-

tions of specie®:

) . (29

a

Flioll= | o wanop. @9
BW,(r)=>, fd3r'\1fa(r') wf(r'=r. (29
where® is a function of a set of weighted densitigs,},

which are defined by This expression is valid for arbitrary densities. The dilute

limit of speciesb can now be taken, within the Rosenfeld

: o w , functional, by considering the weighted densitjigs). (26)],
na(r):; f drpi(r) off(r=r"). (26)  which in this case reduce to
The weight functionsw{* in Eq. (26) depend only on the ndilute(r)zz fd3r’p-(r’) w(r=r") (30)
geometrical features, the so-called fundamental measures, of * i#b ' ' '

speciesi. Explicit expressions for the weight functions of

hard-sphere mixtures and fdr can be found in Refd13]  \yhere the set of density profildg;(r)} that enters Eq(30)
and[27]. The Rosenfeld functional has the following prop- is that of they—1 component fluid, i.e., the one obtained
erties: (i) the free-energy of the homogeneous mixture isafter taking the limit. It follows that the Helmholtz free en-
identical to that from Percus-Yevick or scaled—partlcleergy in Eq.(25) and, consequently, the functiods® in Eq.
theory; and(ii) the pair direct correlation functions of the (2g) are those of a—1 component mixture. Specidsen-
homogeneous hard-sphere mixture, generated by functiongd;s into the calculation of the depletion potential, i.e., the
differentiation of F,,, are identical to those of Percus- djjyte limit of Eq. (29), only through its geometry, i.e., via
Yevick theory. The index labels four scalar plus two vec- e weight functionso .

tor weights[13]. While theoriginal functional given in Ref. This feature of the theory becomes especially important if
[13] did not account _fo_r the freezmg_transmon of pure hardie number of componentsis small. In the particular case
spheres, more sophisticated extensif2ig] do account for of a binary mixturepy= 2, the minimization of the functional

freezing; the weight functions remain the same, Butis i the dilute limit reduces to the minimization of the func-

changed slightly. For the depletion potential problems undefj, 4| of 4 pure fluid and the weighted densities depend only
consideration the different versions give almost identical rey,, the density profile(r) of the small spheres:

sults for bulk packing fractiong,=<0.3[28]. At higher pack-
ing fractions the density profiles of the small sphepegl&)
close to a hard planar wall, gi(r) close to a fixed particle, niilute(r):f d3r/pg(r’) wi(r—r"). (31)
do display small deviations between the different versions of
the Rosenfeld functional. Moreover, when calculating the
depletion potential for size ratios e&=0.1 or smaller, these Although the direct approach of calculating the depletion
deviations are amplified, and one observes slightly smallepotential via evaluating grand potential differences by brute
amplitudes of oscillation for the more sophisticated versiongorce requires only a functional describing the pure fluid, our
of the theory. An example is given in Sec. V(Bee Fig. 11 present approach based on the one-body direct correlation
The one-body direct correlation function, defined within function of the big spheres in a sea of small ones clearly
density functional theory by Ed9), can be written as requires a functional that describes the binary mixture.
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FIG. 1. Comparison of the depletion potential for a big hard  FIG. 2. The depletion potential between two big hard spheres in
sphere near a planar hard wall, calculated via two different routesa sea of small hard spheres calculated for various packing fractions
These correspond to taking the dilute limit directly in the functional 5 of the small spheres and a fixed size ratio0.1. We compare
(solid ling), and to taking the dilute limit numerically with a pack- simulation resultgsymbol$ from Ref.[14] with results from our
ing fraction of the big spheres of,=10"* (). In both cases the DFT approact{solid lines. his the separation between the surfaces

size ratio iss=Rs/Rp=0.1 and the packing fraction of the small of the two big spheres, and is the diameter of the small spheres.
hard spheres ig;=0.3. h is the separation between the wall and

the surface of the big sphere;=2R; is the diameter of the small

spheres. calculations significantly easier to perform, and all the results
for the depletion potential we present subsequently will be
lll. RESULTS FROM THE DFT APPROACH AND based on this route.

ASSESSMENT OF THEIR ACCURACY

. . . B. Comparison with simulation data
In this section we examine the accuracy of some of the

approximations inherent in the present DFT approach by The results presented in Fig. 1 test the self-consistency of
comparing our DFT results for the depletion potential withthe two routes to the dilute limit within the given DFT ap-
those of simulations and with the predictions of the generaproach. In order to test the accuracy of approximations intro-
asymptotic theory given in Sec. Il C. duced by employing the Rosenfeld functional, the results of
the present approach are compared with those of simulations.
Fortunately some independent sets of simulation results for
depletion potentials are available for both the sphere-sphere
We first consider the results of two separate routes tand wall-sphere cases. In Fig. 2 the depletion potentials be-
obtaining the dilute limit for the case of a binary hard-spheretween two big spheres in a sea of small spheres, at a size
mixture. In the first route both components of the mixture areratio of s=0.1 and various packing fractions up tg,
treated on an equal footing, so that one calculates pg(th =0.67/6~0.314, obtained from the molecular dynamics
andpg(r) and obtaindV,(r) using Eq.(29). By requiring the  simulations of Ref[14], are compared with results of the
chemical potential of the big sphergg to become more and present DFT approach. The agreement is generally very
more negative, the bulk densify,(«) of this component good. At the higher packing fractions small deviations can be
approaches zero, and the dilute limit is taken numericallyseen near contact and near the first minimum, but the devia-
For all the mixtures we investigated, a bulk packing fractiontions are within the error bars of the simulatid28] which
of the big spheres ofy,=10 * was sufficiently small to are not indicated here. We note that in Hé&#] the depletion
ensure that the density profile of the small spheres is indisforce was the quantity measured in the simulations, and the
tinguishable from that of a pure fluid at the samg More-  depletion potential was calculated by integratingnaoothed
over the convergence gfy(r) and W,(r) to their limiting  force. For a higher packing fractioms=0.77/6~0.367, the
values is rather fast; an explicit example is given in Fig. 1 ofagreement between the depletion potential obtained in the
an earlier papelrl6]. Using the second route, employing the simulations of Ref[14] and our present result is poorrot
weighted densities of Eq31), the dilute limit is taken di- shown in Fig. 2, but for this large value of)s the error bars
rectly in the functional. In Fig. 1 depletion potentials corre- of the simulations are probably larger than for small values
sponding to both routes are shown for a big hard sphere neaf 7 [29].
a planar wall and a size ratg&=Rs/R,=0.1. The bulk pack- In Ref.[16] the depletion potential for a single big hard
ing fraction of the small spheres ig,=0.3. We find excel- sphere near a planar hard wall calculated within DFT was
lent agreement between the two sets of results. The santwmpared with the results of two independent sets of simu-
level of agreement is found for a wide range of size rasios lations for a size ratios=0.2 and a packing fractiom
and packing fractionsys. From this we conclude that the =0.3. Very good agreement was found. In Fig. 3 we present
limit can be taken directly in the functional, which makes thea comparison of our results with simulation results from Ref.

A. Consistency check
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FIG. 5. The asymptotic decay of the number density profiles of
FIG. 3. The depletion potential between a big hard sphere and the two components of a binary hard-sphere mixture near a planar
planar hard wall calculated for various packing fractiopsof the hard wall for three different size ratics The packing fraction of
small hard spheres and size rat®s 0.2 (a) ands=0.1 (b). We  the small spheres is;=0.3, and that of the big spheres ig,
compare processed simulation data from R&§] (symbolg with =10"%. In each case the natural logarithm of the modulus of the
those of our calculationgsolid lineg. The only significant devia-  density profile minus the corresponding bulk density is plotted. The
tions occur in(b) for »,=0.3(see texk his the separation between upper lines denote the density profiles of the small spheres; these
the wall and the surface of the big sphewg;is the diameter of the  are practically the same for @l The lower lines denote the density
small spheres. profiles of the big spheres, and it can be seen that the amplitude of
the oscillations depends on the size ratidHowever, forz/os=2
[15] for size ratioss=0.2 (a) and s=0.1 (b), for various the same characteristic decay lengft and wavelength of oscil-
packing fractions of the small spheres up4g=0.3. The lation 27/a, characterize the decay bbthdensity profiles, i.e., for
original simulation results did not oscillate arould=0,  big and small spheregee text Note that the density profiles in
which led us to follow the procedure described in HaB]  Fig. 4 have been shifted, so that hermeasures the distance from
and to shift the data by a small constant amount in order t&ontact.o is the diameter of the small spheres.
match the contact values with those of our DFT result. We
note that in the simulations of R€f15] the depletion force was measured, and the depletion potential was obtained by
integrating the force. Since the data for the force are avalil-

able only forh<h,,,, the integral depends on the cutoff
W 27 @ hmax-We surmise that this cutoff dependence is responsible
o for W(h) not oscillating around zero. The agreement be-
1\71) 1 ] tween our DFT results and those of the shifted simulation
e data is very good. The differences probably lie within the
error bars of the simulations, for all packing fractions when
0 AR . . . 0 s=0.2, and forps=0.1 and»;=0.2 whens=0.1. However,
0.01 — 4: : : for »s=0.3 ands=0.1, clear deviations remain between our
| (b) results and those of the simulations. In this case the shifted
0.008 } v i ; . ) .
F i 8 —eioq i simulation data for the depleyon potentlal_ are close to the
< 00% N | R S otas DFT results forh< o<—the height and position of the first
= 0004 1 ool e se02 maximum are the same—but, in contrast to the DFT resullts,
0.002 $ noo IR the simulation data do not oscillate around zero. Clearly
0 LI SUPE L.\ ; some alternative procedure for interpreting the simulation
0 2 4 6 8 10 data is required.
z/o,

C. Density profiles
FIG. 4. The number density profiles of the two components of a

binary hard-sphere mixture near a planar hard wall as obtained from In Flg.. 4 the number density profiles of a.bmary hard-
DFT. The reservoir packing fraction of the small spheresyis sphere mixture near a planar hard wall as obtained from DFT

=0.3, and that of the big spheressig=10"*. For the three differ- &€ shown for t_hree size ratios. The pack_ing fraction_of the
ent size ratioss=0.1, 0.1333, and 0.2 the profiles of the small SMall spheres is)s=0.3, and that of the big spheres 4g,
spheres(a) are indistinguishable while the profiles of the big =10"*. The latter is sufficiently low that the density profiles
spheres(b) differ considerably. The contact values of the density Of the small spheres¢(z), shown in Fig. 4a), are practi-
profiles of the big spheres apg(z=o07 )oi = 0.0279, 0.2518, and cally equal to that corresponding to pure small spheres.
2.1814 fors=0.2, 0.1333, and 0.1, respectively=0 denotes the Therefore, they are indistinguishable for all size ratios. Be-
position of the wall, andr, is the diameter of the small spheres. cause of the hard-body interaction between the small spheres
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and the wall, the density profiles(z) exhibits a discontinu-
ous fall to zero az=o4/2. The density profiles of the big

spheres for size ratias= 0.1 (full line), 0.1333(dotted ling, ol
and 0.2(dashed ling are shown in Fig. é). These density

profiles do differ significantly for different size ratios. The 21
hard-body interaction between the wall and the big spheres =

does not allow their centers to encroach closer tlzan = 4
=o/2, and we find that the contact value is very different in =

all three casessee the caption to Fig.)4We note that the £ 57
wavelength of the oscillations in bothy(z) and p,(2) is sl
approximatelyo. In order to display the asymptotic behav-

ior of these density profiles the logarithm of the difference 10 ¢

between each density and its bulk value is shown in Fig. 5.
For z/los=2 these plots conform very closely to the
asymptotic form given by Eq22). Straight lines joining the
maxima have a common slope, and the distance between z/o,
adjacent maxima is the same in all cases. Only the ampli-

tudes of the oscillations ip,(z) differ for different values of
s. It follows that the decay Iengtmal, and the wavelength

of the oscillation, 2r/a,, are the same fdooth density pro- decay length, * and wavelength 2/a, that determine the

files, i.e_., for t_he big and small_spheres, and are independeggymptotic decay of the density profiles determine the decay of
of the size ratio. We have confirmed that the same values fqu(z) (see text Only the amplitude of the oscillations depends on

ao anda; are obtained from plots of the density profiles of 5 |y each case measures the distance from contaet, is the
the same binary mixture in the presence of a fixed big har@jjameter of the small spheres.
sphere, i.e., our results are consistent with €4). At high

packing fractions of the small spheres, exgi=0.42, we can ns and various size ratios from=0.5 tos=0.1. In accor-

easily resolve up to 25 damped oscillations. At long rang&-nce with the above statement, the resultsafpanda, do

we find the (_:alculated o_Ier_15|ty profiles to be in exceller)tnot depend ors, and are shown in Fig. 7 together with the
agreement with the predictions of the theory of asymptotlcvalues obtained using the Percus-Yevick resultc@(r) in
decay. As the amplitude of the 24th oscillation is smaller 9

: . - the pure fluid to solve Eq20) for the polesg=a,+ia,; we
tmtheIt;lzxainoglétu?ﬁsogtt:;itgrfltjr?hneer ?g/ igaﬁga c;:uif')g rriggll recall that the Rosenfeld hard-sphere functional generates the

accuracy of our results. In addition we numerically Con_Percus-Yewck two-body direct correlation functions for a

firmed that the modifications of the Rosenfeld functional
which we employed lead to the same asymptotic behavior of
the density profiles as the original functiori@B].

FIG. 6. The asymptotic decay of the depletion potentillz)
for a big hard sphere near a planar hard wall for the same param-
eters as shown in Fig. 5, i.eps=0.3, and three size ratias The

D. Asymptotic behavior <&

The asymptotic behavior of the depletion potential calcu-
lated within DFT is shown in Fig. 6. Fa/ 0s=2 our results
conform very closely to Eq24): although the amplitude of
the oscillations depends @) W(z) is characterized by the
same, common decay Iengtstgl and wavelength 2/a,
which describe the density profiles of the mixture. The re-
sults displayed in Figs. 5 and 6 indicate that the asymptotic s
behavior of the density profiles and of the depletion potential -
set in at rather small distances from the wall. For wall-sphere
surface separations of typically- 20, or even smaller, the
asymptotic formulas are already remarkably accurate. This is
in keeping with the results of earlier studies of the bulk pair-
wise correlation functions of hard-sphere mixturgz3],
where leading-order asymptotics were shown to be accurate e
down to second-nearest-neighbor separations. We shall make ;5 7 Comparison ofa) the inverse decay lengt, and (b)
use of this observation in a later section, in which we deng inverse wavelength (2a,) %, as determined from the theory
velop an explicit parametrized form for the depletion poten-of asymptotic decay of the bulk pairwise correlatimee Eq(20)]
tial. using the Percus-Yevick two body direct correlation function
As a final examination of the validity of the asymptotic ¢)(r) (solid line), with the corresponding results obtained from
analysis we calculated valuesaf anda, from plots of(the  density profiles calculated using the Rosenfeld functiona) or
logarithm of the density profiles of the small spheregz) hard-sphere fluids near a planar hard wal.is the packing frac-
near the planar hard wakee Fig. bfor a range of values for tion, andoy is the diameter of the small spheres.
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bulk mixture[13]. For small packing fractiong the oscil-
lations are damped very rapidly, i.e., the decay Ierzag',tﬁ is

. . . _ O N
small, so that the numerical determination of the wavelength £
from a density profile is quite difficult. Nevertheless, the = 21 o sphere 1 fixed
level of agreement between the two sets of results is very / R/=5R, — sphere 2 fixed
good, for all values ofy that were considered, confirming 4 7 R, =50R,

that the DFT results are consistent with the general predic-
tions for the asymptotic behavior.

Our approach predicts depletion potentials for both wall-
sphere and sphere-sphere cases which are in very good __ 41
agreement with simulations for distances close to contact, =

and which are consistent with predictions of the general i 271 f o sphere 1 fixed
theory of the asymptotic decay of correlations in hard-sphere 4 | 4 Ri=5R,  — sphere 2 fixed
mixtures for distances away from contact. From our com- ) ¥ RZf 100 Rs. . .
parisons we conclude that our approach yields accurate re- (') oi5 1 1_'5 2 05

sults in the whole range of distances, for packing fractions up

to (at least 7s=0.3 and for size ratios down ft@t leas} s h/o,

=0.1. We emphasize that the full structure of the depletion ) ] )

potential, which is correctly described by the present ap-_ d'I:JSGR 8. ggeadn%plae“ho:r de:)ehnetlrzl gevtv"i‘;ﬁerr;; h_arso(I)Rsp?ae)rznld with
roach, is n r he Asakura- imas 17> 27 ~Ms

proach, is not captured by the Asakura-Qosawa appmx'ma{?flO(Rs (b), in a sea of small hard spheres with radRisand

tion or by a truncated virial expansig8,9). packing fractiony,=0.3. The solid line denotes the depletion po-
) tential calculated by fixing sphere 2 first, so that 2 enters into the
E. Large asymmetries calculation as an external potential, whereas the symbols denote the
So far it is not apparent how well our present approacniepletion potential obtained with sphere 1 acting as the external
will fare for extreme asymmetries, i.e., fer<1. The Rosen- Potential. The two routes should lead to the same regsits text
feld functional, which is the density functional we apply for h is the separation between the surfaces of spheres 1 and 2, and
all calculations of the depletion potentials, is designed td”s= 2Rs.
treat a multicomponent hard-sphere mixture with arbitrary
inhomogeneities. While its accuracy in describing the denspheres 1 and 2 are exchanged. The sphere of medium radius
sity profiles for a pure fluidi13] and for binary mixture$30] R, is fixed, and acts as an external potential for the very
at moderate packing fractions and moderate size ratios hdarge sphere 2 and the small specieNow the Rosenfeld
been confirmed by comparison with simulation results, aunctional must treat a very asymmetric mixture. Of course,
highly asymmetric binary mixture has not yet been studiedn an exact treatment of this problem it does not matter
systematically using this functional. Thus it is not known for which sphere is fixed first, as the depletion potential is sim-
which size ratios the results calculated with this functionalply the difference in the grand potential between a configu-
are accurate. We recall that the Percus-Yevick approximatioration in which spheres 1 and 2 are fixed and positioned
becomes increasingly less accurate for bulk properties as close to each other and one in which both spheres are at
—0, but here we are interested, in particular, in the reliabilinfinite separation. The result of an exact treatment cannot
ity of our approach for determining depletion potentials. Thedepend upon which sphere is regarded as an external poten-
latter are obtained from density profiles, having taken theial. However, it is not immediately obvious that the under-
dilute limit of one of the specielsee Eq(7)]. lying symmetry is respected in an approximate DFT treat-
In this context it is instructive to consider the depletion ment. At first sight one way of calculation might appear to be
potential between a hard sphere of radRs and one of less demanding on the theory than the other.
radiusR, in a sea of small hard spheres of radRsat a In Fig. 8 we show the depletion potential between the
packing fractionys. This system is formally a mixture of large spheres when sphere 2 is fix@ualid line) and then
three components in which two are dilute. The radius ratiownith sphere 1 fixedsymbols, for a packing fraction of the
Rs/R; is chosen such that on the basis of our previous resultsmall spheres)s=0.3 andR;=5Rg. Two different values of
we know that the Rosenfeld functional can treat a mixture ofR, are considered, namel)Rs/R,=0.02 (a) and R¢/R,
species 1 and accurately. On the other hand, the radRys  =0.01(b). We find excellent agreement between the results
is chosen to be much larger th&; andR;. The depletion of the two routes for bottia) and (b). Only very small dif-
potential can be calculated in two different ways. In the firstferences between the curves can be ascertained, and these
route, sphere Qwith large radiusR,) is fixed, and enters occur for separations close to contact where numerics are
into the calculation as an external potential for sphere 1 andhost difficult. Note that the results in Figs(a8 and 8b) lie
speciess. The density profile of the small spheres in thevery close to each other. This can be understood easily when
presence of this external potential can be calculated, anR, is the fixed sphere. For casé and (b), R,>R;=5Rq
from it the depletion potential, using the theoretical approactand one is effectively in the planar-wall limit so that both
described in Sec. Il. Thus in this calculation the Rosenfeldsets of results lie close to those in FigaB with 7,=0.3.
functional treats a mixture with a moderate size riRidR; From the results shown in Fig. 8 and further comparisons for
exposed to an external potential. Therefore we expect thessher values ofys, it is evident that the Rosenfeld functional
results to be very accurate. In the second route, the roles afoes maintain the required symmetry between 1 and 2. It is
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important to understand this. In the low density limit, i.e., if ratio s=0.1[8]. There is, however, an important conceptual
the ternary mixture is considered with the density of thedifference from earlier applications of the Derjaguin approxi-
small spheres also approaching zero, the depletion potentialation, as depletion effects are global effects arising from
can be expressed in terms of Maykefunctions, and the packing of the small spheres, and it is not obvious that the
equivalence of the two routes can be verified directly. Startoriginal derivation remains applicable or what the regime of
ing from the functional given in Eq8) we follow the deri-  validity of the approximation should be. Some of its limita-
vation of Eq.(11), and obtain tions were discussed in R¢R], where it was argued that the
Derjaguin approximation should not be reliable $¢ 0.1 if
— 3y , o the packing fractionps=0.3. Here we examine some of the

AWa(r) pS(Oo)f drfa(rfalr=r") (32 key predictions of the Derjaguin approximation by making
comparison with results of our DFT approach. From the ar-
guments of Sec. Il E, it is safe to assume that the present
DFT approach remains reliable for rather large size ratios,
BW,o(r)= —ps(oo)f d3r'f,(r")feu(r—r') (33  where the Derjaguin approximation might be expected to be
valid.

There is an elegant scaling relation connecting the deple-
jon force F(h)=-0W(h)/oh between two big spheres,
wp(h), in a sea of small spheres with that between a single

big sphere and a planar hard wdf,,,(h). In the limit of
infinite asymmetrys— 0, the forces are equal except for a
Sfac:tor of 2, i.e,

for the depletion potential with sphere 2 fixed, and

for that with sphere 1 fixed. Herlg s and f,¢ are the Mayer

f functions between a small sphere and spheres 1 and
respectively, and it is evident thaW,,(r)=W,(r). The
Rosenfeld functional will reproduce this result for packing
fractions »s— 0, since it reduces to E@8) in this limit. For
arbitrary values ofy; it is necessary to reconsider the genesi
of the functional, and recognize that although the hard-

sphere pairwise potentiads;;(r) between specieisandj do 2Fpp(h) =Fp(h), (34
not enter explicitly, the functional does respect the equiva-

lence of ®;;(r) and ®;;(r); the Mayer functions and the i 1 the minimal separation of the surfaces of the two big
weight functions which were used in constructing the func-gpyiects This scaling relation follows directly from the Der-

tional are symmetric with rgspect t@andj. It is straightfqr- jaguin approximation, and if it is found to be obeyed it is
ward to show that the equivalence \Why(r) andWiy(r) IS gometimes inferreftL0,11] that the Derjaguin approximation
guaranteed provided the functlonal_res_pects this symmetryicaif is valid. However, it was showf] that this scaling
Thus the two sets of results shown in Figashouldagree  o|5tion follows from geometrical considerations without in-
with each other, as should those shown in Fig)8That  q4cing the explicit Derjaguin approximation. This can be
there are small discrepancies reflects only numerical inaccyn strated by comparing the explicit Asakura-Oosawa deple-
racies rather than any fundamental shortcoming of the DF;,, potentialysee Eqs(12) and (13)]. In the limit R,>R
approach. It is pleasing that what appear to be two distincf) i, formulas reduce te- (£/2) pe() Ry(2R— h)2, for ﬁ
ways of calculating the depletion potential yield the same_on ~ \vheree— 1 correspondsé to the sphsere-sp,)here case
results, even for high degrees of asymmetry. Whether otheg, % 5 5 the wall-sphere case. Thus, achieving the correct

functionals, not based on fundamental measure theory, wi caling property in Eq(34) does not prove that the Der-
respect the symmetry requirements remains to be ascef;

tained. Although the present calculations should be regardelggum approximation
as a further test of the internal consistency of our approach
rather than a formal demonstration that it is accurate for ex-
treme asymmetries, the results, when coupled with the excel-
lent agreement between theory and simulationssfe0.1,

do suggest that the approach should remain accurate for . .
smalle?gsize ratios PP is accurate. Herd (L) is the solvation force, or the excess

pressure, for the small-sphere fluid confined between two
planar parallel hard walls separated by a distan¢®].
IV. DERJAGUIN APPROXIMATION From our DFT calculations we find that the scaling rela-

In the well-known Derjaguin approximatid81] the force tion is already well obeyed at moderate size ratios. In Fig. 9
between two large convex bodies is expressed in terms of tHéie scaled depletion forcegfy,(h)=28F,u()RZ/ (R,
interaction energy of two parallel plates. This approximatet Rs) between two big hard spherésolid line) and that
mapping is valid in the limit where the minimal separation of between a single big hard sphere and a planar hard gl (
surfacesh is much smaller than the radii of curvature, and Bf%,(h)=BF,u(h)RZ/(Ry+Ry), in a sea of small hard
was developed assuming the force between the surfaces capheres at a packing fraction @f=0.3, is shown for size
be calculated by integration over all interactions betweematioss=0.1 and 0.02. While small deviations from the scal-
pairs of points of the two bodies. Recently the Derjaguining relation in Eq.(34) are visible close to contact fos
approximation was implemented for the depletion force be=0.1, these deviations have almost disappeared+dd.05
tween two big hard spheres in a sea of small hard sphere@ot shown in the figupe and near perfect agreement is
employing a truncated virial expansion to calculate the exfound fors=0.02. Note also that the scaled depletion forces
cess pressure of the small spheres between planar hard wakksrresponding to the different values sfie close to each
and results were compared with simulation data for a sizether.

FDerj(h)Z—SW(Rb+Rs)fhde fs(L) (35
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(37). Simulation result$15] for the depletion force also ex-
‘ @ hibit nonconstant slopes fdr<2R;.
= s — Another prediction of the Derjaguin approximation in Eq.
< o wall-sphere (36) is that the contact value/(0) of the depletion potential
= — sphere-sphere | can be expressed simply in terms of the equation of state
s=0.1 p(7s) and the surface tensiop( 7). Using the Carnahan-
! ' ' ' ' = Starling result forp(#) [32] and the scaled particle result
0 1 2 3 4 5 for y(7s) [33], we obtain[9]
1 ®) veripo_ &Ryt RI3ns 1=2n5— 20— 73
~ ot [\ A — BWPET(0)= — —— T
£ = S (1—1n)
;_ o1 v wall-sphere 1 (38
— sphere-sphere . . . . .
s=0.02 which becomes positive at high packing fractions of the
-4 ; ; ' ; T small spheref9]. Providedz,<0.2, the contact values from
0 1 2 3 4 5 Eq. (38) are in reasonable agreement with the results of our

DFT approach for small values af However, the contact
values obtained from E(Q38) change sign atys~0.3532,

FIG. 9. The scaled depletion force between two big hard sphere/hich is in complete contradiction to the results of the
Bf*(h) = 28F(h)R¥/(Ry+Ry) (solid line), and between a single Present approach, where we find negative contact values for
big hard sphere and a planar hard wafi* (h) = BF(h)R%/(R, all packing fractions and all size ratigsinder consideration
+R,) (O) in a sea of small hard spheres at a packing fractjgn
=0.3 for size ratioss=0.1 (a) and s=0.02 (b). For s=0.02, the In Ref.[9] it was shown that a third-order virial expansion
scaling relation in Eq(34) is obeyed almost perfectiyh is the  (in powers of ;) for the depletion potential calculated
separation between the surfaces of the big spheres or between théthin the Derjaguin approximation does not yield positive
wall and the surface of the big sphere,=2R; is the diameter of contact values. However, expansion to fourth or fifth order
the small spheres. shows a qualitatively different behavior from third order and

already indicates the onset of posit\Mg0). Thus, in keep-

An explicit result of the Derjaguin approximatiditq.  ing with Ref.[9] we conclude that the Derjaguin approxima-
(35)] is that the depletion force between two big spheres otion is not very useful for the calculation of depletion forces.
between a big sphere and a planar wall can be writtd®las The good level of agreement, observedlier 2R, between

_ the results of the third-order virial expansi8] and those of
FPei(h)=em(Ry+ Rs)(p(75)(h—2Rs) — ¥(75)), simulation[14] for s=0.1, should be regarded fortuitous.

h/gc,

h<2R., (36) V. APPLICATIONS

A. A parametrized form for the depletion potential

wherep(#s) is the bulk pressure of the small spheres, and of hard spheres

v(7ns) is twice the surface tension of the small-sphere fluid at

a planar hard wall. The geometrical factois the same as in As mentioned in Sec. Il A, recent studies of correlation

Eq. (35). Thus for a given size ratio the slope of the deple-functions and phase equilibria of highly asymmetric binary

tion force predicted by the Derjaguin approximation is con-Mixtures have shown that it is very advantageous to map
stant forh<2Rs, and depends only on the equation of stateSUch mixtures onto effective one-component flyiS]. The

of the small spherep(7.). For the particular case of hard effective pairwise potential between the big particles is then
spheres, we obtain the bare pair potential between two big particles plus the

depletion potentia[see Eq.(14)]. Thus, in calculating the
phase behavior of binary hard-sphere mixtures, it is neces-
. h<2R, sary to adopt a specific form for the depletion potential be-
tween two big hard spheres. Previous simulation stuidés
(37)  of binary mixtures have employed the simplified third-order
virial expansion formula given by Gzelmanret al.[9], and
where the quasi-exact Carnahan-Starling equation of stathe same potential has been used in a perturbation theory
[32] was used. treatment of the phase behavj@i. Although this formula is
However, the depletion forces calculated within theconvenient for global investigations of phase behavior, as the
present approach show a qualitatively different behaviodepletion potential is given explicitly as a function gf,
from that predicted by Eq37). It was found that even for clearly it would be valuable to have a simple, parametrized
small size ratios$=<0.05), only in the limitys— 0, in which  form for the depletion potential th&t) is better founded than
the Asakura-Oosawa approximation becomes exact, is thethe formula provided by (Gmelmannet al,, and(ii) captures
agreement between the Derjaguin approximation and the re¢he correct intermediate and long-range oscillatory structure
sults of our approach. The depletion force calculated at as well as the important short-range features. Note that in
packing fraction ofp,=0.3 does not have constant slope for Refs.[2] and[3] the effective pair potential was set equal to
h<2Rs (see Fig. 9 This is in clear contradiction to Eq. zero for separations>2R;.

dB FPei(h) 375 1+ ns+ 72— 73
Tzs(Rb+ RS)_3 —3
4Rs (1_775)
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We have used depletion potentials calculated within the
present DFT approach, for a single big sphere near a planar =
hard wall and for two big spheres, to develop a suitable 3z
parametrization scheme. Although this parameterization is &
fairly simple it yields rather accurate fits. The depletion po-
tential close to contact is fitted by a polynomial and is con-
tinued by the known asymptotic behavior. In the following + + ' ' '
the variablex measures the minimal distance from contact in 0 0.5 1 1.5 2 25 3
units of the small sphere diameteg, i.e.,x=h/og. These ' y y y y
parametrized depletion potential¢ are also scaled: the ac-
tual potentials/V are recovered by multiplying by a factor of ; :
e(Ry*+Rs)/(2Rs) with ¢=2 for the wall-sphere and=1 = 4  n,=03 o sphere-sphere fit

(h)

for the sphere-sphere potential: o 05 — DFT,s=02
------- DFT, s = 0.05
e(Rp+Rg) — -1 & ' ' ' ' ' T
=——5 —W. (39 0 05 1 15 2 25 3
2R,

h/o
Between contact at=0 and the locatiorx, of the first °

maximum the scaled depletion potential is fitted by a cubic FIG. 10. (a) Comparison of the scaled wall-sphere depletion

polynomial, potential [Eq. (39)] for various packing fractiongs of the small
. hard spheres and size ratie=0.1, as calculated fully within DFT
BW(X, 75) =a( s) + b( 7s) X+ c( 9s) X2+ d( 75) X3, (symbolg, and as given by the parametrization of E4g) (lines).
(b) Comparison of the scaled sphere-sphere depletion potentials for
X<Xg, (40) a packing fractionp=0.3 and size ratios=0.2 and 0.05 as cal-

culated within DFT(lines), and as given by the parametrization of
where the coefficients, b, ¢, and d are functions of the Eq. (43) (). Differences between the parametrized resultssfor
packing fraction of the small spheres. More details of this  =0.2 and 0.05 are not visiblé.is the separation between the wall
polynomial and the determination of the coefficients are preand the surface of the big sphere, or between the surfaces of the two
sented in the Appendix. big sphereso is the diameter of the small spheres.

In order to obtain the depletion potential farx, we

assume that the asymptotic decay already sets in at the poifAl). Using those values as input, the amplitdand phase
Xo. This assumption is supported by the results presented if? of the asymptotic decay are readily obtained from either
Fig. 6. Thus, forx>x, we adopt the fornjcf. Eq. (22)] Egs. (Ad4) and (A3) or Egs.(A6) and (A5). Thus in this
parametrization the scaled depletion potential has the form

IBW‘;Vsym p(x’ 7s) = Au( 1s)€XP(— ag( 75) 07sX)

XCOS(al(nS)O'SX—W(nS)), X>Xp V_V _ o
(41) PVSTIZ| gy i, X%,

atbx+ex®+dx,  x=x,
(43

for the scaled depletion potential between a wall and a

In Fig. 10a) fits (lines) of the form given by Eq(43) are
sphere, andcf. Eq. (21)] i. 10 fits (lines) given by Eq(43)

compared with the scaled depletion potentials between a big
hard sphere and a hard wall calculated within DE¥mbolg

for a size ratios=0.1. Although the fit is relatively simple,

its accuracy is high. The position of the first maximum,
which depends sensitively on the packing fractigg, is

X cod@y(7s)osx = Op(75),  X>Xo reproduced very accurately. The val@#/,= BW(X,) of the
(42 potential at the first maximum is also given quite accurately,
and only forn,=0.3 are small deviations of the fit from the
for the potential between two spheres. The denominator ifyll DFT results visible. Clearly the full structure of the
Eq. (42) measures the separatiofg+h between the centers depletion potential is reproduced well by this parametriza-
of the spheres in units afs. Both forms contain the func- tion. In order to demonstrate the wide range of applicability
tions ag(7s) anday(#s), which can be calculated from the of this parametrization, in Fig. 18) we show a comparison
Percus-Yevick bulk pair direct correlation functi@¥®)(r)  of the parametrized scaled depletion potential)(for a
(see Sec. llID and Fig.)7 The amplitudesA;(7s) and  packing fractionys=0.3 with scaled DFT result§ines) for
phasedd(7s), j=p,w are chosen so that the depletion po-the depletion potential between two spheres and size ratios
tential and its first derivative are continuousxgt Ay(7s) s=0.2 and 0.05. Although fos=0.2 the scaling relation
and® (7s) are weakly dependent on the size ratio [Eqg. (34)] is not satisfied particularly accurately, the agree-
With this prescription the scaled depletion potential isment between our parametrization and the DFT results is
completely determined. For a given packing fractipnthe  rather good. This gives us confidence that we have devel-
coefficientsa, b, ¢, andd are given by Eq(A7), and the oped a satisfactory parametrized form for the depletion po-
position of the first maximum can be calculated from Eq.tential which properly incorporates all essential features.

— Ap(7s)
IBWgsym p(x! 7s) = S_pl-l-SX exp(—ag( 7s) osX)
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B. Oscillatory depletion potential at high packing fractions

M = 0.04
of the small spheres 0
. - N, =0.07
In a recent experiment by Crocket al. [7] the equilib- 2 / 1
rium probability distributionp(r) for two (large polymeth- 4 ¥ N = 0.15
ylmethacrylate spheres of diametgg=1.1um immersed in 5 /\ N, =0.21
a sea of(small) polystyrene spheres of diametef=83 nm
8

was measured using line-scanned optical tweezers and digital

videomicroscopy at various packing fractions in the range 10 ]
betweenn;=0.04 and 0.42. The solvent contains added salt . 0}
and surfactant to prevent colloidal aggregation, and the § ’

‘bare’ interactions between the colloidal particles are ex- = 147
pected to be screened Coulombic repulsion with a screening 16

length of about 3 nni7]. Since the latter is small compared

with the colloid diameters the bare interactions can be re- 18

garded, to a good approximation, as hard-sphere-like. The -20 1

depletion potentialsBW(r)= —In(p(r)/p()) (see Sec. Il 22 ]

A) obtained from these experiments are shown in Fig. 1 of

Ref.[7]. At low packing fractionsy;s=0.04 and 0.07, rather 241

good agreement with the results of the Asakura-Oosawa ap- -26 1

proximation was found, after taking into account the effects 28 : , ,

of limited spatial resolution of the optical instruments. For 0 0.1 0.2 0.3 0.4
7s=0.15 and 0.21 the measured depletion potential dis- h

played a pronounced repulsive barrier. For higher packing [um]

fractions, i.e.,7,=0.26, 0.34, and 0.42, damped oscillations g, 11. The depletion potential between two big hard spheres
were observed, these being particularly pronounced for thg a sea of small hard spheres at various values of the small sphere
two highest packing fractions for which three maxima arepacking fractions, as obtained from the original Rosenfeld func-
clearly visible. Referencfr] appears to be the first report of tional. In order to mimic the experiment of Réf] the diameters
an experimental observation of an oscillatory depletion powere chosen to be,=1.1 um andos=0.083m, so that the size
tential and, indeed, of a repulsive contribution arising fromratio is s=0.0755.h measures the separation between the surfaces
purely entropic or packing effec{85]. of the big spheres. Note that for display purposes each curve has
Motivated by these experiments we consider an additivéeen shifted downward by a constant amouwM{h) oscillates
binary hard-sphere mixture in the dilute limit with a size around zero aB— <. The dotted line forp,=0.42 corresponds to
ratio s=0.0755, as in the experimeritVe do not attempt to the depletion potential calculated with the modified interpolation
include the increase of the effective radius of the spherefrm of the Rosenfeld function428].
arising from screened Coulomb repulsion and, in keeping

with the authors of Ref.7], we do notinclude any dispersion tjye agreement between the experimental results and those of
forces) As previously, the depletion potential between two oy calculations persuades us that the hard-sphere model is
big spheres is (l:lalculated using H@9) in the dilute limit. g appropriate starting point for describing the colloidal sys-
The functions'?* are functionals ops(r), the density pro- 4o "and that the observed oscillations do reflect the packing
files of the small spheres close to a big sphere fixed at th8f the small spheres—as inferred in REH]

origin, which depent_ﬂ only on the radial d|stam:eTh_e re- Significant deviations between our results and the experi-
sults are shown in Fig. 11 for the same values;ohs in the mental ones do occur, at largg, for separations near con-

experiments. It is encouraging to find that the theoretical an L ct or near the first maximum in the depletion potential. Our
experimental results have many common features. As ex- b b :

pected, the calculated oscillations become much more prJ—eSUItS imply that the height of the first maximum and the

nounced as;, increases. The wavelength decreases slowlyMagnitude of the contact valgv(0)] are larger than the

and the decay length of the envelope increases rapidly wit§XPerimental ones by about a factor of 2 fpy=0.34. Al-
n—as predicted by the theory of asymptotic de¢sse Fig. though the source qf thesg ghfferences may well reside in the
7). The experimental data are consistent with both observa@Xperimental situation, it is important to check that the par-
tions. Moreover the wavelength of the oscillations fpg  ticular DFT which we employ is performing reliably at these
=0.34 is close tars= 83 nm in theory and experiment. For high values ofys. Itis precisely this regime of high density
7ns=0.42 both theory and experiment yield a slightly smallerand very strong confinement of the small spheres where dif-
wavelength. The amplitude of the calculated oscillations iderences between the various DFT theories, i.e., the improve-
larger than in the experiment. However, we emphasize thanents on the original Rosenfeld version, might reveal them-
we made no attempt to take into account effects of instruselves. These circumstances are reminiscent of those
mental resolution or the polydispersity of the small polysty-investigated by Gontez et al. [36] in their DFT studies of
rene particles. Nor have we attempted to include the effectard spheres in small spherical cavities. Those authors were
of the softness of the interparticle potentials and any nonable to ascertain that the improved theories fared better than
additivity of the effective diameters; both are likely to lead tothe original version under conditions of extreme confine-
a reduction in the amplitude of the oscillations. The qualita-ment.
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To this end we repeated our calculations of the depletiovides a theoretical understanding of this feature of our DFT
potential with the improved versions of the Rosenfeld func-approach.
tional that can account for the freezing transiti@8]. At (4) Extensions of the Rosenfeld functiorjaB] yield very
packing fractionsp,=<0.3 we obtained, as stated earlier, re-similar results(see Fig. 11for the cases we have studied. It
sults almost identical to those of the original functional. At would be of considerable interest to test the performance of
higher packing fractions, however, we find that the ampli-the proposed functionals against simulation data for smaller
tude of the oscillations is slightly smaller than those obtainedize ratios and for higher values gf, for which more ex-
from the original functional. This is illustrated in Fig. 11 for treme packing constraintsight discriminate between the
ns<=0.42, using the interpolation form of the functionag]  various functionals.
(dotted ling. The antisymmetrized version of the functional, ~ (5) Our DFT approach incorporates the correct, exponen-
with g=3 [28], yields a depletion potential very close to that tially damped, oscillatory asymptotidi(-) decay of the
of the interpolation form. In view of the smallness of thesedepletion potentiaW(h). This is inherent in the construction

deviations the discrepancies between the experimental fin f thtg th:aory,dis preﬁ%r_\t/e(;j by I"(h'?l agpr?hximate R.Osfnfeld
ings and the theoretical results at high cannot be blamed unctional, and 1s exhibited explicitly by the numerical re-

. 71 . . .
on the performance of the DFT but most probably reside ir?u“S(F'g' 6. The decay lengtia, ~ of the oscillations in-

differences between the actual experimental sample and tfgeases and the Wavelengtlil'r[‘hl decrgases with Increasing
model of additive hard spheres. 75 (Fig. 7), but these quantities are independent of the size

ratio s. The same values far, anda; characterize the os-

cillatory decay toward the bulk values of the number density

profiles of hard-sphere mixtures near a hard wall when the
In this paper we have developed a versatile theory foPacking fraction of the large spheres is vanishly srifais.

determining the depletion potential in general fluid mixtures.4 and 3. , o

While our approach is based on a mixture functional, it re-f (Ea V\ée rlma\_/e developed simple parametrization schemes

quires only a knowledge of the equilibrium density profile (?r the e'ﬁ etlodn tﬂoiegtl?l betwteen g_ b'ﬁ hgrd shphere arr:_d ha

ps(r) of the small particleeforethe big (tes) particle is planar wall and that between two big hard spheres whic

; ) provide accurate fits to our DFT resulisee Fig. 10 The

inserted, i.e.p4(r) has the symmetry of the external poten—f. . ,

. . . ) itting procedure makes use of the fact that the leading

tial. If the latter is exerted by a fixed particle or by a planar

I then in th imolifies to functi asymptotic behavior ofV(h—«) provides an accurate ac-
wall, then in these casqs(r) simplifies to functionss(r)  cqnt of the oscillatory structure of the depletion potential at

or ps(2) of one variable. Since a one-dimensional profile cantermediate separations as well as at the longest range. Such
be calculated very accurately, the resulting depletion potenyarametrizations are designed to provide a more accurate al-
tials can be obtained without the numerical complicationsernative to the third-order virial expansion formula given by
and limitations that are inherent in brute-force DIBV]. The  Gitzelmannet al.[9]. Since these new parametrizations can
latter requires the calculation of the local density of the smalbe easily implemented, we recommend that they should be
particles around the big particles in the presence of the exemployed in subsequent studies of the phase behavior of
ternal potential21] or the calculation of the total free energy highly asymmetric binary hard-sphere mixtures of the type
as a function of the separation of the big partidle8]; both  reported in Refs[2] and[3].

calculations require considerable numerical effort due to the (7) In Sec. IV we investigated the regime of validity of
reduced symmetry of the density distributions. We have emthe Derjaguin approximatiofEq. (35)] for the depletion po-
ployed our approach in a comprehensive study of the deplgential and showed that this fails, for all but the smallest
tion potential for hard-sphere systems, using Rosenfeld'packing fractionsyg, for which the depletion potential re-
fundamental measure functional. The main conclusionsluces to the Asakura-Oosawa result. However, the scaling
which emerge from our study are as follows. relation Eq.(34), connecting the depletion force between two

(1) The depletion potential can be obtained by consideringig spheres to that between a big sphere and a planar wall—
a liquid mixture in the limit of vanishing concentration of which is predicted by the Derjaguin approximation but
one of the species. Two different ways to implement thiswhich also follows from geometrical considerations—does
limit lead to the same resu(Fig. 1). remain accurate even at moderate size raffog. 9).

(2) Detailed comparison of our results with those of simu- We conclude with several remarks concerning the accu-
lations, for both sphere-sphere arfdlanay wall-sphere racy and usefulness of our approach. One might be surprised
depletion potentialésee Figs. 2 and)3demonstrate that the that a DFT which corresponds to the Percus-Yevick theory
theory is very accurate for size ratisssRi/R, as small as for the bulk mixture(the Rosenfeld functional yields the
0.1 and for packing fractions, as large as 0.3. These are the same bulk free-energy density and bulk pair direct correla-
most extreme cases for which reliable simulation data aréion functiong performs so well for small size ratios, for
presently available. The theory describes accurately thwhich it is known that Percus-Yevick theory becomes inac-
short-ranged depletion attraction, the first repulsive barriecurate. For example, Percus-Yevick theory fails to predict
and the subsequent oscillations in the depletion potential. the fluid-fluid spinodals for additive hard-sphere mixtures.

(3) By performing consistency checks we argue that atHowever, our present approach involves only the calculation
least up to moderate packing fractions the predictions of thef a one-body direct correlation functicn{,l)(r;{ui}) and,
Rosenfeld DFT for depletion should be quantitatively reli- therefore, the determination of one-body density profiles.
able even for large asymmetries between the sizes of th€he minimization of approximate functionals can yield
solvent and the solute particlébig. 8). Section Il E pro-  rather accurate one-body profiles in spite of the limitations of

VI. SUMMARY AND DISCUSSION
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the underlying approximations; e.g., this is the reason whyhe contact value of the depletion potential. The positign
the test particle route to the bulk radial distribution functionand the height, of the first maximum can be obtained
g(r) is very successful within DFT13,39. Furthermore, in  easily by differentiating Eq(40). The cubic polynomial has
determining the depletion potenti@l/(r) we require only two extrema, with the maximum located at

solutions of the Euler-Lagrange equation fey(r) in the

limit where p,—0, i.e., in the absence of the big particles.

The DFT is likely to be more accurate in this limiting regime e

than for a mixture concentrated in all species. We emphasize Xo( 7¢) = — ¢+ ye'—3bd (A1)
that taking the dilute limit of the big particles numerically, s 3d ’

i.e., working at nonzero but very small values gf, in-

volves more computation than taking the limit directly in the

functional. Moreover, caution should be exercised in hardand a maximal value of

sphere mixtures with extreme size raties=0.1, at high

packing fractionszns of the small spheres, since the fluid-

solid phase boundary already occurs at very low packing

fractions 7, of the big sphere$2]. The fluid-solid coexist- BWol(775) = BW(X=Xo(75),775)
ence region is avoided if the dilute limit is taken directly 2c3— 9bcd+ 27ad?+ 2(c2— 3bd) 3?2
[40]. = )
Our procedure for calculatingV,(r) at arbitrary concen- 27d?
trations of the big particles might prove useful for interpret- (A2)

ing (future) measurements of the effective interaction poten-
tial when the mixture is not in the dilute limit. Figure 1 of

Ref.[16] illustrates how the wall-sphere potentig}(z) var- Beyond the position of the first maximum of the depletion

ies with the large sphere packing fractiag for a mixture  potential, the parametrized form is continued by imposing

with size ratios=0.2 and 7s=0.2. For 7,=0.025, W(2)  the known asymptotic behavior for larde The asymptotic

already differs by a few percent from its dilute linfW(z).  pehaviors of the wall-sphere and sphere-sphere depletion po-
Itis possible to calculate the depletion potential by usingientials are slightly different, and must be considered sepa-

as input density profiles obtained by other means. In particurately. For the wall-sphere depletion potential the asymptotic

lar one might take simulation data fpg(r), computed in the  pehavior is given by Eqi41), and the amplitudé,, and the

absence of the big test particle, and insert these intd®.  phased,, are chosen such that the function and its first de-

to determine the weighted densities. Although such a proc&iyative are continuous at,. From the requirement of a con-

dure does not offer the appeal of a self-consistent approagfhyous derivative at the first maximum, i.e.,

in which both the equilibrium density profiles and the deple-

tion potential are calculated within the same framework, in

practice this could be a profitable route for complex geom- o

etries where a direct simulation of the depletion potential or dﬂwgvsymp(x,ns)

force is very difficult. dx
Finally we mention that the techniques we have devel-

oped here are not restricted to additive, binary hard-sphere

mixtures. Our general approach to the calculation of deple- )

tion potentials can be applied to hard-sphere mixtures witfh€ phase can be determined to be

nonadditive diameters, to ternary mixtures, and to systems

where the interparticle potentials are soft.
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APPENDIX: PARAMETRIZING THE DEPLETION

POTENTIAL a(2)_‘_ a%

In the range between contaat=h/o¢=0, and the posi- Awl775) = BWo EXP(890°5Xo) a2 (A4)
tion X of the first maximum the scaled depletion poterﬁal
is parametrized by a cubic polynomifq. (40)], which is
the simplest polynomial fit that remains accurate close to A similar calculation for the sphere-sphere case using Eq.
contact. SinceBW(x=0,7)=a(7s), the first coefficient is (42) leads to slightly different expressions for the phase,
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a1(Xgost op)
0O(7s) =a,0sXp+arcco \/1 5 — = | (A5)
+2ay(Xgost o) + (ag+aj)(Xeost op)
and the amplitude,
— explagosXp)
Ap(ns)=BWy Tgs\/l"' 2a(Xo0s+ op) + (a5 +a5) (Xgo s+ 7). (AG)
S

Unlike ®,, andA,,, ®, andA, dependweakly on the size coefficient—2.909 is rather close to the value3 obtained

ratio s=ogs/oyp,. from the Asakura-Oosawa resultalid as »s—0) in the
The coefficientsa, b, ¢, andd are fitted to depletion po- limit of small size ratios, see Eg&l2) and(13) and also Eq.

tentials calculated within DFT. Scaled depletion potentls  (38).

obtained for a big hard sphere near a planar hard wall, for a The quantities, anda, are obtained by solving E¢20),

size ratios=0.1, are used in the range<Oy.<0.3. The re- using the Percus-Yevick pair direct correlation function

sulting coefficients are given by c(szs)(r). The results are shown in Fig. 7. In the range 0.05

< 7,=0.4 they can be fitted accurately by
a(ns)=—2.909s,

a os=4.674exp—3.93
b(75)=6.916n;—4.6167%+78.85673, o(7s) s ) 5)

(A7) +3.536 exp—56.270) (A8)
c(ns) = —4.5129,+ 15.860p2— 93.224,3 and
d(7s)=— nsexp(— 1.734+8.957n5+ 1.5957). a1(7s) o= —0.682exp— 24.697 1)
There is no particular significance in the chosen form of +4.720+ 4.450y;. (A9)

parametrization, but we note that the contact values of the

scaled depletion potenti@W(0,7.) =a(7.) are linear inp; ~ These formulas specify all the ingredients for determining
for this choice of parametrization. It is interesting that thethe parametrized form of the depletion potential.
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