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Theoretical results for sandpile models of self-organized criticality with multiple topplings

Maya Paczuskiand Kevin E. Basslér
IDepartment of Mathematics, Huxley Building, Imperial College of Science, Technology, and Medicine,
London SW7 2BZ, United Kingdom
2Department of Physics, University of Houston, Houston, Texas 77204-5506
(Received 23 May 2000

We study a directed stochastic sandpile model of self-organized criticality, which exhibits multiple top-
plings, putting it in a separate universality class from the exactly solved model of Dhar and Ramaswamy. We
show that in the steady-state all stable states are equally likely. Using this fact, we explicitly derive a discrete
dynamical equation for avalanches on the lattice. By coarse graining we arrive at a continuous Langevin
equation for the propagation of avalanches and calculate all the critical exponents characterizing avalanches.
The avalanche equation is similar to the Edwards-Wilkinson equation, but with a noise amplitude that is a
threshold function of the local avalanche activity, or interface height, leading to a stable absorbing state when
the avalanche dies.

PACS numbegps): 81.05.Rm, 05.65:b, 87.23.Ge, 87.23.Kg

[. INTRODUCTION sion of the BTW model, and solved for the avalanche distri-
bution and many other properties exactly. In the DR model,
Sandpile models of stick-slip dynamics have receivedt can be rigorously proven that no multiple topplings occur.
considerable attention as canonical models of self-organize@onsequently, the elegant DR solution, as it has been con-
criticality (SOQ [1]. SOC refers to the widespread tendencyceived thus far, does not address the full complexity of dis-
of many extended, dissipative dynamical systems to evolverete or granular models of SOCThe fixed scale transfor-
inevitably towards a complex state with power-law correla-mation method of Pietronero and collaboratdisl] also
tions in space and time: a “critical” state. Of course, a criti- explicitly ignores the presence of multiple topplings. One
cal state is only one possible example of complex phenomeonsequence of this fact is that this method puts the stochas-
ena that can emerge in large, self-organizing systemsc Manna model and the BTW model into the same univer-
composed of many strongly interacting parts. No doubt thersality class, which is not consistent with most numerical
are other types of complex states that have not yet been sworks [7,15] (except Ref.[8]), including those measuring
well characterized mathematically, e.g., for example in netunequivocal differences in aging behavid]. Multiple
works[2]. From this viewpoint, the phenomena of SOC itself topplings, by definition, do not appear in any mean-field de-
is a prototype for how complexity emerges in nature withoutscription [17], since in high-enough dimensions, the ava-
fine tuning parameters. In spite of the gross simplicity oflanche activity is not recurrent at any site. Multiple topplings
various cellular models that have been introduced, and hurare a fluctuation effect associated with self-intersections of
dreds if not thousands of numerical studies of SOC, onlythe avalanche cluster in space and tih8].
minimal analytic understanding has been achieved. Certainly, the intricacies associated with multiple top-
In fact, a survey of analytic works on sandpile models ofplings are not the only ones that present themselves in at-
SOC is exceedingly short. The model of SOC introduced bytempting an analytic treatment of granular models of SOC.
Bak, Tang, and WeisenfeldTW) [3] has yielded to some For example, the fact that the dissipation process is confined
analytic treatment associated with its Abelian properties, prito the boundary, which forces the system to self-organize, is
marily due to the work of Dhar and collaboratdis. The  an important and subtle point because the boundary cannot
scaling properties of waves, where each site only topples dve scaled out in the limit of large system sizes as is usually
releases grains once, has been understood by Priezzhev amhe in statistical physics. In principle, the boundary is al-
collaboratorg5,6]. Nevertheless, the large scale properties ofways important, because the incoming sand grains must be
avalanches, where each site can topple many times in reéransported to it, no matter how large the system size. The
sponse to a single grain being added to the system, remabroken translational invariance associated with the boundary
unsolved and the numerical situation controverfiat9]. In  often leads to long-range boundary effects in the metastable
fact, intermittent, multiple topplings within an avalanche ap-states(see, for examplg,19,20). It might be useful to pry
pear in most othefunsolved discrete sandpile models, such these complications apart, treating one issue at a time. Here
as the stochastic Manna modi&D], the Oslo rice pile model we focus on the problem of recurrent or multiple topplings,
[11], cellular models of vortex dynamid4 2], etc. The dif- and seek a model that does not present other difficulties.
ficulties preventing progress in solving any of these simpli- Recently, Pastor-Satorras and Vespigriadi have stud-
fied models in particular, or finding general analytic tools foried numerically a stochastic directed sandpile m@¢&&M),
granular systems exhibiting SOC, appear to be related, iwhich is a stochastic version of the exactly solvable model
part, to the existence of multiple topplings. introduced by DR. This stochastic model is simpler and pre-
This statement is further supported by the following facts:sumably unrelated to the directed models introduced and
Dhar and RamaswamypR) [13] introduced a directed ver- studied by Tadiand collaborator§22]. Pastor-Satorras and
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Vespignani demonstrated by numerical simulations that the
model exhibits multiple topplings, which changes the univer-

sality class, making it distinct from the DR model. This was t
accomplished by numerically measuring and comparing vari-
ous critical exponents characterizing the avalanches. Its close l

relation to the DR model, which has an exact solution, sug-
gests to us an analytic study.

A. Summary

We proceed with an analysis of the SDM as follows: First X —
we define the DR model and the SDM. For pedagogical rea-
sons, in Sec. “.I’ we review the proof that the (?rltlcal state Ofrowt topple onto sites in rovt+1. For example, grains from the
thg ,DR model is th? set of all stable states with equal prObéite indicated by the open circle topple only onto the nearest-
ability. We also review some necessary parts of Dhar's congjghhor sites indicated by the arrows.
struction of an operator algebra for stochastic models. Com-

bining these two works, we then show that for the SDM thegplez(x,t) is assigned. Thith grain is added to a randomly
critical state is also the set of all stable states with equatnosen sitex; on the top rowt=0. Therez(x;,0)— z(x;,0)
probability, described by a product measure. Using this fact.. 1 \when any site acquires a height greater than1 it

we show in Sec. IV that the SDM can be recast as a 9eneppples, i.e.z(x,t)—z(x,t)— 2 for z(x,t)>z.

alized branching process propagating in an uncorrelated en-'the two models differ with respect to the transmission of
vironment, enabling a study of the infinite system. By care-grains out of a toppling site. In the DR model, one grain is

fully analyzing the microscopic dynamics of this process onyansferred to the left downstream neighbor and one grain to
the lattice, we explicitly derive a discrete dynamical equation,o right so the toppling rule is far(x,t)>z:

for the propagation of flowing grains in avalanches. In Sec.

FIG. 1. Directed sandpile models. Grains from active sites in

V, coarse graining this discrete equation gives a continuum z(x,t)—z(x,t)— 2,
equation for avalanches that should describe the large scale
properties of any microscopic model with the same symme- zZ(Xx—1t+1)—z(x—1t+1)+1,
try, conservation of grains, and stochastic effects.

Notably, our equation is similar to the Edwards- Z(X+1t+1)—z(x+1t+1)+1.

Wilkinson (EW) equation[23] except that the amplitude of i )
the nonconservative noise is a Heavisidg function of the ~ FOr the SDM, on the other hand, each grain from a toppling
local activity. Crucially, the noise amplitude is a threshold Sit€ iS given equal probability to go to any downstream near-
function, rather than being a constant, such as the tempera€St n€ighbor. In this case, when the sitet] topples,

ture. The height of the interface represents the number of 2(X,1)— Z(X,t) — 2

topplings in an avalanche. The steady state that is eventually ' '
reached in the limit of large times is always the state of nogng
activity where the height of the interface is zero everywhere

and the avalanche has died. Thus the equation describing zZ(x—1t+1)—z(x—1t+1)+1,
avalanche dynamics corresponds to an absorbing state phase
transition where the the transient state is governed by the Z(Xx+1t+1)—z(x+1t+1)+1

EW equation in the region where it survives. Section V also . .

describes an analysis of this nonlinear equation. We extrad¥ith probability 1/2, or

all the (nontrivial) critical exponents for avalanches, i.e., in _ _

d=1, D=7/4, r=10/7,2=2, r,= D=7/4, distinct from the 2x= L+ D —=z(x =L+ 1) +2,
DR model, and ford=2 where multiple topplings are not
relevant,D=3/2, r=4/3, z=2, and ,=3/2 as in the DR.
All of these results agree perfectly with previous numericalyith probability 1/4, or
works. We also write down the Fokker-Planck equation for

Z(X+1t+1)—z(x+1t+1)

the probability distribution of the number of topplings at zZ(x—1t+1)—z(x—1t+1),
each site in an avalanche, although we do not solve it. Fi-
nally, we conclude with a brief comment on the possibilities Z(x+1t+1)—z(x+1t+1)+2

for future analytical work on granular models of SOC. ) N ) ] )
with probability 1/4. Thus, the SDM is a directed version of

IIl. DEFINITION OF DIRECTED MODELS the model introduced by Manna. ,
In both directed models, grains are conserved during each
Consider a two-dimensional square lattice as shown inoppling event. This is true except at the open boundary

Fig. 1. The direction of propagation is labeled hywith O =T where toppling sites simply discharge their grains out of
<t<T. The transverse direction is labeledyywith periodic  the system. Sites are relaxed according to a parallel update
boundary conditions. Only sites witkx¢t) even are on the until there are no more unstable sites, and the properties of
lattice so thatx is a positive integer moduloX, and the the resulting avalanche are recorded. Then a new avalanche
lattice has a total o X sites. On each site, an integer vari- is initiated by adding a single grain to a randomly chosen site
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on the top rowt=0. An avalanche can be characterized bystead of associating probabilities with each toppling, we can
its longitudinal extent,, the largest row affected, its width ~ assign to each site an infinite stack of random numbers, uni-
X¢, the largest transverse distance from the avalanche origiformly distributed between zero and one, say. The quenched
to any site affected by the avalanche, its aseahe total random numbers in each site’s stack then determine the al-
number of sites affected, its sizethe total number of top- location of grains during each toppling event. Thus, jtie
pling events, and the maximum number of topplings at a sitsandom number atq;t) determines at thgth toppling of that
Ne. site where the grains will go. There is a one-to-one corre-
It is straightforward to generalize this definition to higher spondence between any realization of the dynamics of the
dimensions, with the number of directions transverse to thstochastic model, and the dynamics of a deterministic system
direction of propagation being. In this casez,=2d—1. At  with a random array(chosen appropriately to model the
a toppling sitez—z—2z.—1. In the DR case each down- probability distribution of grain allocationunder the same
stream neighbor receives exactly one grain. In the stochastimondition of particle additions.
case, each downstream neighbor has equal probability 1/2 If we specify the height configuration of the sandpile as
to receive each grain. For simplicity of notation and conceptsvell as the infinite stack of random numbers at each site,
we will focus our discussion on the cade=1 unless other- Dhar shows that the model is also Abelian. It is easy to check
wise noted. that given any unstable configuration with two or more un-
stable sites, we get the same configuration by toppling at an
unstable sité, and then at unstable site as we would get if
we first toppled at’ and then at, if the same list of random
For both directed models, any configuration satisfying Onumbers in the array is provided. Iterating this until a meta-
<z(x,t)<z for all (x,t) is stable. The total number of such stable state is reached proves the Abelian property of the
configurations iggx. For clarity, we now review the argu- model.
ment showing that in the steady state, all such stable states
are equally likely in the DR model.

Ill. STATES ON THE ATTRACTOR

B. New results

The directed stochastic model is also equivalent to a de-
) ) ) ] _ _ terministic directed model with an infinite stack of quenched
Let Co be a starting configuration with thi¢h particle  random numbers at each site. Since the latter model is Abe-
added at site; , resulting in the new stable configurati@®).  jian we can choose to relax each row, one site at a time, until
Then C; is uniquely determined by the dynamics given it is completely stable, before going on to the next higher
and C;_;. The crucial point is that this dynamics is invert- row. In this case, it is easy to see that the model shares the
ible. On the top rowC; differs fromC;_, only at the sitex;,  same property of invertibility as the DR model.
with z(x;,0) in C; being more than its value iG;_; by one Let C, be the starting configuration arR{(x,t,j) be the
(mod2. Other rows inC;_, are the same as i€; if there  infinite array of random numbers, with the initial pointers
was no toppling atX;,0); otherwise the’s in the first row  j,(x,t)=0 for all entries &,t). Theith particle being added
t=1,inC;_, are the same as i@;, except at the two down- at sjtex;, and the current pointefis_;(x,t) in the arrayR
stream neighborsx(—1,1) and & +1,1) of (x;,0) whose known, this results in a new stable configurati®n, and a
heights are less by orfenod? than their values irC; . This  new set of pointerg;(x,t) in the fixed arrayR. Invertibility
obviously continues for subsequent rows. Thus gi@gmand  follows. In this case we are given the current configuration
X; we can uniquely determin€; ;. C; and the current set of pointejgx,t) in the fixed arrayR
For a givenC;, there are preciselX distinct choices of and x;. In order to prove invertibility we must determine
Ci_1 andC;, 4, corresponding t&X distinct possible choices both C;_; andj;_(x,t).
of x; and x;;,. The master equation for the evolution of  On the top rowC,_, differs from C; only at the sitex;,
probabilities of configurations, is with z(x;,0) in C;_; being less than its value i€; by
1(mod2. If z(x;,0)=1 in C;, then no toppling occurred and
dP(C)/dt=— TecP(C)+ > TeaP(C'). (1) Ci-1is the same aL; at all other sites; also the set of
c’ c’ pointers{j;_,=j;}. If z(x;,0)=0 then one toppling occurred
at that site. We locate the pointg(x;,0) and move it back
Since there ar& distinct choices for th&€' into C and also  one step in the stadR(x;,0) giving j;_,(x;,0)=j;(x;,0)— 1.
for the C’ out of C, each having probability X/, the prob-  This pointer now points to a number that tells us where the
ability distribution P(Cy,=a)=const, independent of, is  two grains were placed. The heights at the sites in the second
invariant in time. Thus the probability distribution of statesrow t=1 in configurationC;_, are the same as those @
on the attractor is a product measure, with each site indepemxcept at the forward neighbors framthat received a grain
dently occupied with one particle with probability 1/2, oth- according taR[x;,0,j;_1(X;,0)]. If both sites received a grain
erwise being empty. then we apply the same procedure to those sites as we ap-
In a recent work, Dhaf24] has shown that the stochastic plied to (x;,0). If one site receives two grains then that site
Manna model also exhibits the Abelian property and is amust have toppled once. Its height in the previous configu-
special case of the Abelian distributed processors modetation is the same as its height in the current one, and its
Correspondingly some of the the analytic techniques of th@ointer is moved back by one unit, determining which down-
BTW model also apply to the stochastic Manna model. It isstream neighbors receive grains. One continues in this fash-
only necessary to realize that for the stochastic models, inon increasing the rowt.

A. Review of some exact results by Dhar and Ramaswamy
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Unlike the DR model, eventually one can encounter a sitobserve there is a source of nonconservative noise in the
receiving three or more grains from sites in the previous rowdynamics of n during an avalanche that comes from the pres-
If the total number of grains received at a sites even, then ence or absence of grains in the metastable st&@#xe the
the site must topple exactly’2 times. The pointer at that site number of grains going into a site can only arise as a conse-
is moved back/2 steps, sg;_(x,t)=]i(x,t)—n/2, reading duence of grains going into its immediate upstream neigh-
the intervening numbers in the stack at that site to determinBOrs, we arrive at the following discrete equation
where the grains from that site are sent is odd and inC;
the height is one, then the site must have toppled 1)/2
times, with its height inC;_; being 0. Thusj;_;(x,t) + 0 [n(Xx+ 1) ] p(Xx+1t)+ [ n(x—1t)]
=ji(x,t)—(n—1)/2. Similarly if n is odd and inC; the
height is zero, then the site must have toppled-(Q)/2

tl”.‘es’ with |tsl r}glggt mC‘*dl bhem_g L Thusji_y(xt) g average each site will get 1/2 of the grains going into its
=]ji(x,1)—(n+1)/2. One reads the Intervening sequence Ir‘upstream neighbors. There are two sources of stochastic
the array pf random numbers for th"’.‘t site to det.ermlne oW ariations from the average. One is conservative: Each up-
][nar;]y _Igr:alns _eacrg: downstre;_m nelghb_ohr refgen:jes, and Hream neighbor may divide its out flowing grains unevenly
orth. Thus, givenC;, x;, and ji(x,t), with a fixed array oy yeen its two downstream sites, but what is taken away

R(x,t,j), we can uniquely determin€;_, and ji-1(X.1).  fom one downstream neighbor is added to the other accord-
This proves the invertibility of the dynamics of the SDM. 15 the binomial distribution. This gives a stochastic cur-

For a given arrajR and set of pointersj }, for any state rentj, which is either directed to the riglthere defined as

C; there are preciselX distinct choices oCi—; andCi,1  pogitive or to the left(here defined as negativier each site.

corresponding to th& possible choices ok andX;.1. It Thg first two moments of the stochastic current of flowing
then follows, as before, from the master equation for thegrains are. from the binomial distribution

evolution of probabilities of configurations, that the state pre-

n(x,t+1)=3i[n(x—1t)+n(x+1pt)]

Xp(X—=11)—j(x+1t)+j(x—=1}). (2)

pared with a uniform distribution over all stable states is (j(x,1))=0,
invariant in time.
Thus for the directed Manna model, the self-organized _ . n(x,t)
critical state is the set of all stable states with equal likeli- DX )= TV250(X,X')5O(U')- 3

hood; it is a product measure state, where the probability for

a site to be empty is equal to the probability for it to havesince this is a discrete equation, h&#& refers to the dis-
one grain, which are both equal to 1/2. This is exactly thegrete Laplacian operator, and the Kronecker delta functions
same as in the DR model, so for the SDM the presence of  are defined on the set of integers.

multiple topplings does not lead to any correlations in the ~ The nonconservative noise is the most interesting and, as

states on the attractor. we shall see, relevant noise. It is associated with the fact that

the metastable states either add or absorb flowing grains

IV. DISCRETE EQUATION FOR AVALANCHES IN THE from the avalanche. However, as mentioned before, the num-
CRITICAL STATE ber of flowing grains can only change by one unit irrespec-

tive of the local number of flowing grains as long as it is
Honzero. This gives rise to the discrete Heaviside step func-
tions in Eq.(2) defined asf,(u)=1 foru=1,2,3... and
rgi]u)=0 otherwise. With this convention, the nonconserva-
fiVe noise is at each point in space time eithet with equal
probability or 0. Thus

The fact that the critical state is a product measure stat
leads to a significant simplification; namely, the critical dy-
namics can be described as a type of generalized branchi
process. Thus one can simulate or describe avalanches in
infinite system as follows. Consider a site that we we will
call the origin. The origin in the equivalent branching pro-

cess represents the site that receives a grain in the critical (p(x,0))=0

state of the SDM. The height at that site is either one or zero ' ’

with equal probability. Add one grain to it. If the height now (1) 7(x" 1)) =L 8,(x,x") So(t,t") ()
3 [ 0 [l o\t .

is greater than one it topples. Then define the heights at sites

(1,1) and (- 1,1); they are one or zero with equal probabil- The appropriate initial condition to describe the avalanche is
ity. They receive grains from the origin according to then(x t)= §,(x,0). The avalanche propagates and spreads out;
stochastic rules of toppling in the directed model, and toppleyentually it dies out. Then a new avalanche, represented by

the avalanche propagates and one can simulate the infinite

system, albeit always for a finite time. . V. CONTINUUM EQUATION FOR THE AVALANCHES

We define the quantitp(x,t) to be the number of grains
added to k,t) given that one grain was added to the origin.  One could consider a rigorous derivation of the con-
The total number of grains that leave a gitg«(x,t) can at  tinuum limit of Egs.(2)—(4), taking the lattice size in space
most differ by one from the number of grains going in. If A,, and timeA,, as well as the grain sizd,, to zero.
n(x,t) is even them,(x,t) =n(x,t). If n(x,t) is odd, then, Instead, here we invoke the usual “hand-waving,” coarse
since the number of grains that can leave any site is alwaygraining procedure to obtain a smooth functioof continu-
evenng(x,t)=n(x,t)x=1. The process is critical and the ous variablesx andt. Expanding to leading order in gradi-
increase or decrease occur with equal probabilityus we ents, and time derivatives, we arrive at
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an(xt) 1_, . ~x~W(X/TY?). The constraint on the average size then gives
5V NG 2D +26[n(x,H)]7(x.0), 1=D(2—17) or 7=10/7. Similarly, from conservation of
(5) probability, z—1=D(7—1)=(7,—1)/z, gives,=D=7/4
and r,=5/2.
where the threshold functiof(u)=0 for u<0 and 6(u) It is straightforward to check that Eq&)—(4) also apply
=1 for u>0. By the central limit theorem, the noise terms to the case where there at¢ransverse dimensions. The only
are both Gaussian with first and second moments factors that are changed are various constants. Applying di-
mensional analysis, we find that thtransverse dimensions
(n(x,1))=0, X.~t¥2, andn~x?"92 a~t32 ands~t?>~ (@4 giving 7,
=D=2—(d/4) andr=2—-1/2—(d/4) ford=<2. The upper
(n(x, D) (X", t"))=38(x—x")8(t—t'), critical dimension isl,= 2, above which the maximum num-
ber of topplings does not diverge with the size of the ava-
(J(x,1))=0, lanche, and the mean-field results obtain widh=3/2, z

=2, 7=4/3, and7;=3/2. This corresponds to the fact that
the surface described by the EW equation is flat above two
dimensions rather than being rough.

. . ’opr n(X,t) 2 ’ '
(DI )= = V28(x—x)8t—t).  (6)

The appropriate initial condition for the avalanche is 1. The threshold term

n(x,0)=4(x). The avalanche grows by increasing or de- Qutside the region covered by the avalanche, the thresh-
creasingn locally, wheren is nonzero. Eventually the ava- g1d function @ has a major effect on the dynamics. In par-
lanche dies and(x,t)=0 everywhere. This equation de- ticylar, in regions whera(x,t)=0, the interface is pinned
scribes the transient out of an absorbing state associated wWiffq cannot move. The noise does not act where there are no
the avalanche. In particular, the state with no flowing grainqqowing grains! This is completely different than the usual
n(x,t)=0 for all (x,t) is stable, which is a requirement of models of stochastic interfacial growth. The threshhold func-

any equation describing avalanche dynamics. tion importantly breaks the translational symmetry of the
EW equation i— n+const) and leads to an absorbing state.
A. Analysis Typically absorbing state phase transitions have been consid-

Dimensional analysis is the simplest tool we can app|y,ered where the amplitude of the noise depends on the activity

and the first step in any theoretical analysis. The dimensioR 0 Some positive powej25]. Here we find a very weak
of the conservative noise §12=([n]/[t][x]%), and dimen- effect simply distinguishing between having activity and not

sion of the nonconservative noise(is]?= (1[x][t]). Thus having it in terms of a threshold function. This effect is so
as long agn]<[x]?, then the conservative noise is irrel- weak that the scaling dimensions of the propagating ava-

evant with respect to the nonconservative noise. Ignoring thi%nChe are the same as the linear EW eq“a“fj’?- Obviously if
term we arrive at the threshhold functio@(n) were replaced by* in Eq. (5)

that would no longer be the case. Thus E@.and(6) is a

an(x.t) 1 hybrid combining interface dynamioghe number of top-
( L ) 2
o~ 2 v Nt +260nx,H]n(x.t). (7)  plings of the avalanche being the interfae@d an absorbing
state model.

In the region covered by the avalanchéx,t)>0 and the
threshold functiond, may be ignored, resulting in an ava-
lanche dynamics described by the linear Edwards-Wilkinson Averaging over avalanches corresponds to averaging Eq.
equation[23]. Dimensional analysis then gives the correct(7) over noise and we arrive at a linear diffusion equation for
scaling of various quantities. Thus for the SDNL,~tg’Z the average propagation of flowing grains in response to a
with z=2 precisely as in the DR model. However, the single grain being added at (0,0) to the critical system:
Edwards-Wilkinson equation gives a rough surface in one

2. Averaging over noise

dimension and the maximum number of topplings scales as a(n(x.t)) _ EV2<n(x t) )
the transverse extent of the avalanch@as?. This differs at 2 I

markedly from the DR model whene=1, independent of o

the transverse extent,. whose solution is

Continuing with our scaling analysis, the area covered by
the avalanche ia~x.t.~t>? (as in the DR modal but the
size of the avalanche includes the extra effect of multiple
topplings. The size scales as nx.t.~t”*. Since on aver-
age, for every grain added one grain must be transported th@bviously, this solution has the important property of con-
entire length of the system to the open boundary, we haveervation, namelyfdx(n(x,t))=1, which is required for
that (s)=T. Since all the geometric quantities associatedstationarity. Note that the DR model also obeys exactly the
with avalanches exhibit scaling, it is reasonable to assum&ame equation for the average propagation of activity. This
and can perhaps be proven, that the distribution of avalanchequation is enforced by the local conservation and symmetry
sizes, times, and spatial extent are power laws, namelyroperties of the system and is in no way related to the pres-
P(s,T)~s 7f(s/TP), Py(t,T)~t 7g(t/T), and P(x,T) ence or absence of multiple topplings.

1
(n(x,t))= (Trt)llzeixzm' ©)
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3. The Fokker-Planck equation equally likely. Even in this simplified setting, the occurrence
Ideally one would like to determine the full probability ©f Multiple topplings has a profound affect on the critical
distribution for the number of topplingsi(x,t) in ava- properties of the system, changing the universality class.

lanches. The dynamics of this probability distributiefn:t] This fact suggests that any reasonable theory of avalanche

: . dynamics in sandpile models of SOC must treat the effect of
is expressed by the Fokker-Planck equation. The FOkkerr'nultiple topplings.

Planck equation can be obtained by straightforward means lanch d ibed by the d . f ic|
from the Langevin equatiofEqgs.(6) and(7)]. It is Ava anches are described by the dynamics of particles
that exhibit an absorbing state phase transition. This picture
IP[N;t] 1 S of avalanches as reaction-diffusion systems with an absorb-
o Ef dx%{(vzn)P} ing state was first suggested in Rg26] as applicable to
SOC systems and later in R¢R7]. In the case discussed
S S here, the particles, representing topplings, are known to
+f dX%[ 9(”){&[0(H)PJ] ] (100 propagate in an uncorrelated environment because the prob-
ability distribution of metastable states on the attractor is

Unfortunately we are not currently able to analyze this equadescribed by a product measure. In the general case, there

tion in any significant way. will be important correlations from the background that must
be included along with boundary effects, leading among
VI. OUTLOOK FOR FUTURE WORK other things, to correlations between avalanches. It seems to

us that Dhar’s construction of an operator algebra for sto-
A major limitation of the present paper is that it applies chastic models might provide a fruitful avenue to pursue
only to a set of directed models where all stable states arfirther research.
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