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Wetting-induced effective interaction potential between spherical particles
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Using a density-functional-based interface displacement model, we determine the effective interaction po-
tential between two spherical particles which are immersed in a homogeneous fluid such as the vapor phase of
a one-component substance or #ech liquid phase of a binary liquid mixture composedfoandB particles.

If this solvent is thermodynamically close to a first-order fluid-fluid phase transition, the spheres are covered
with wetting films of the incipient bulk phase, i.e., the liquid phase orBkrech liquid, respectively. Below a

critical distance between the spheres their wetting films snap to a bridgelike configuration. We determine phase
diagrams for this morphological transition, and analyze its repercussions on the effective interaction potential.
Our results are accessible to various types of force microscopy and scattering experiments, and may be relevant
to flocculation in colloidal suspensions.

PACS numbsgfs): 68.45.Gd, 68.16-m, 82.70.Dd

[. INTRODUCTION the thermodynamic variables of the system such as pressure
and temperature.

In view of understanding a particular phenomenon in con- The effective pair potential acquires additional new fea-
densed matter, theory is supposed to identify the corresponddres if the solvent is enriched with particles of medium size
ing relevant degrees of freedom and to provide the effectivesuch as, e.g., polymers. If the colloidal particles come close
interaction between them by, approximately, integrating outo each other the depletion zones around them, generated by
the remaining ones so that one is left with a manageabléhe finite size of the medium particles, overlap, leading to an
model. It is a major challenge to determine the effectiveentropically driven attraction of the colloidal particlgz 3.
interactions because that requires calculating the partitio@orrelation effects can modify the form and the range of
function of the whole system under the constraint of a fixedthese depletion forces considerapdy5]. These effective po-
configuration of the relevant degrees of freedom. The benefientials have indeed turned out to be successful in describing
of carrying out this constrained calculation, which in generalthe phase behavior of colloidal suspensifk
is more difficult than the original full problem, is twofold. Qualitatively new aspects arise if the solvent particles ex-
First, there is a gain in transparency by describing the systemibit a strong cooperative behavior of their own such as a
in terms of relevant degrees of freedom. Second, it is typiphase transition which proliferates to the effective potential
cally less risky to apply approximations for the partial tracebetween the large particles. If the solvent undergoes a con-
because they only concern the less relevant degrees of freeauous phase transition, thermal Casimir forces between the
dom. large particles are induced due to the geometrical constraint

The determination of the phase behavior and of the structhey pose for the critical fluctuatiorj,8]. Such forces are
tural properties of multi-component fluids represents a castng ranged, and have a strong influence on the phase behav-
study for this general approach. If the composing particles ofor of the colloidal particle$9,10]. If the solvent is thermo-
the mixture are of a comparable size and shape, their degredgnamically close to a first-order phase transition, wetting
of freedom have to be treated on equal footing. The welphenomend11] can occur at the surfaces of the dissolved
developed machinery of liquid state thedfy offers various particles(see Ref[12], and references therein, for a system-
techniques to cope with this problem. However, these techatic analysis of wetting transitions at the surface of a single
niques falil to yield reliable results if, e.g., one component issphere or cylinder providing the necessary prerequisite for
much larger than the others; in this case numerical simulathe present study of the interaction between two such ob-
tions become inefficient, and integral theories lose their acjects. If the bulk phase of the solvent is the vapor phase of a
curacy. Colloidal suspensions are a paradigmatic case fane-component fluid, the surfaces of the large spheres can be
such highly asymmetric solutions. For their description theseovered by a liquidlike wetting film. This situation corre-
difficulties can be overcome by resorting to a general schemsponds to aerosol particles floating in a vapor. If the bulk
laid out at the beginning with the positions of the colloidal phase of the solvent is th&-rich liquid phase of a binary
particles as the relevant degrees of freedom. Accordingly théquid mixture composed ofsmall) A andB molecules, the
degrees of freedom of the small solvent particles are to bédissolved colloidal particles can be coated by Bigch lig-
integrated out for a fixed configuration of the colloidal par-uid phase of the mixture. If the wet spheres approach each
ticles, which we assume to be smooth, monodispersether, at a critical distance the two wetting films snap to a
spheres. At sufficiently low concentrations of the suspendetiridgelike structure. This morphological phase transition is
particles this leads to an effective pair potential betweerexpected to yield a nonanalytic form of the effective interac-
them. In many cases the effective potential resembles théon potential between the large spheres. This nonanalyticity
bare one, i.e., the one in the absence of the solvent, but withemonstrates that cooperative phenomena among those de-
modified, effective interaction parameters which depend omrees of freedom which are integrated out can leave clearly
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visible fingerprints on the effective interaction between the (a)
remaining relevant degrees of freedom. The study of this

kind of profileration is not only of theoretical interest in its
own right, but seems to play an importaatbeit not exclu-
sive [13]) role for the experimentally observed flocculation
of colloidal particles dissolved in a binary liquid mixture
close to its demixing transition intA rich andB rich liquid
phases[14-18. This observation has triggered numerous
theoretical efforts devoted to various possible explanations
of it. Since they are reviewed in Sec. | of REf2], and more
recently in Ref[19], the interested reader is referred to there
and we refrain from repeating this discussion here.

In our present analysis of this problem we apply density
functional theory[20] which offers two advantages. First,
this technique is particularly well suited to calculating, as
required here, free energies under constraints. Second, it al-
lows one to keep track of the basic molecular interaction
potentials of the system. We focus our interest on thermody-
namic states of the solvent which are sufficiently far away
from its critical point so that the emerging liquid-vapor in-

terfaces of the wetting films exhibit only a .Sma” W'd'.[h' homogeneous spheres of radRisvhich are separated by a distance
Therefore, we can apply the so-called sharp-kink approximag, - e \whole system is rotationally symmetric around thexis

tion, which considers only steplike variations of the solvent,nich runs through both centers of mass. The position of the liquid-
density distribution, and thus leaves the interface position ag,,or interface which encloses both spheres is described by a func-
the main statistical variable. This approximation has turnedion n(z), i.e., in cylindrical coordinates the sharp interface is given
out to be surprisingly accurate for a description of wettingpy the manifold{r(r, ,$,z)=(r, cosé,r, sin$2) eR¥r, =h(z)}.
phenomen21]. Our analysis extends and goes beyond preThe origin of the coordinate system is in the middle between the
vious efforts[22,23, which are based on a similar interface two spheres so that their centers are located=at-D/2. a=D
displacement model grounded on a phenomenological an-2R is the shortest separation between the surfaces of the spheres.
satz. Whereas Reff22] and[23] aimed at mapping out the Within the so-called sharp-kink approximation this interface sepa-
phase diagram in terms of interaction parameters for theates a region of constant liquid number dengityfrom the sur-
bridging transition mentioned above, we focus on the effecrounding bulk vapor phase of constant number dengjtyClose to

tive interaction potentials between the wet spheres, which arée surfaces of the spheres the repulsive interaction leads to a vol-
not presented in Refg22] and[23], and on their micro- ume with thicknessls excluded for the centers of the fluid particles.
scopic origin.Inter alia, this allows us to compare the effec- For sufficiently large values db the bridgelike wetting film con-

tive interaction potential between the colloidal particles withfiguration shown in(@) breaks up into two disjunct pieces, so that
the bare one, i.e., in the absence of the solvent, and thus f§2) =0 for a finite interval around=0 (b).

comment on the quantitative relevance of the solvent-

(b) liquid

FIG. 1. Wetting film(thick full line) surrounding two identical

mediated interaction. Moreover, we present the phase diseparated by a distan&e(see Fig. 1. They are immersed in
gram of the system in terms of the thermodynamic variables fluid of particles of number densip(r) which interact via
temperature and chemical potential which is also not cona Lennard-Jones potential
tained in Refs[22] and[23]. 1 6
In Sec. Il we describe the implementation of a simple ¢(r):4€( f) _(g) ) 2.1)
version of density-functional theory for the present problem. r r) /) ’
For reasons of simplicity we confine our analysis to the
liquid-vapor coexistence of a one-component solvent; th . . .
generalization to a binary solvent is straightforward. In Secel;]he SYSterﬂ. '; symmetric r\]N ith respectfto a rota;tur)]n arohund
[l we present some examples for the numerically calculatec% € axis whic .connects the centers of mass o the Spheres
wetting film morphologies, and discuss a phase diagram fo F_|g. 1), and with respect to a re_flectlon at a plane in the
the aforementioned morphological transition, and in Sec. | iddle be_twegn the spheris_that IS pe(;pendmu_larl to the S)&m
we analyze the effective wetting-induced interaction poten_medtryhax;ls..dSmce_v;/e wor '”b?‘ gran hcanonlca Iensem 'eI
tial between the spheres as a function of the distance betwe the fluid particles are subject to the external potentia
the spheres and the undersaturation. The experimental r(?_xerted by thg Sphe“?s' the equ!hbnum number densﬂy pro-
evance of our model calculations is discussed in Sec. V an le of the fluid par_tlcles exhibits _these_ symmetries too.
Sec. VI summarizes our main results. The Appendix contain herefore, we descrlbe.the s_ystem in cylindrical c_oordlnates
some technical details. r,,¢,z), with the z axis being the symmetry axis of the
system. The two centers of mass of the spheres are located at

Il. DENSITY FUNCTIONAL THEORY (r=0,z= =D/2), such that the spheres occupy the volumes
S.={r(r.,¢,2)=(x,y,2)=(r, cos¢r sin¢2) eR3|+D/2
A. Model —R=z=<*D/2+R,i?+(z+D/2)?’<R}. The external po-

We consider two identical, homogeneous, and smootltential exerted by both spheres on each individual fluid par-
spherical particles of radiuR whose centers of mass are ticle is
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Viodr 1, ZZR)=v(\r?+(z-D/2)%R) sive parteyep(r). The latter gives rise to an effective, tem-

perature dependent hard-sphere diameter
+o(Jr?+(z+D/2)%R), (2.2
o : 218 ¢rep(r)
d(T)= dril—expg — ——=—] |, (2.6
0

where[see Eq.(A4) in Ref.[12]] KgT
(r'R) 9 1 1 which is inserted into the Carnahan-Starling expresg
v(r;R)=zu -
g ? rr+R® r(r—-Rr)® 4y—372
1 1 fHS(P-T):kBTP( In(pA%) -1+ W) 2.7
~Uo 9 9
(r+R)* (r—R)

for the free energy density,s of the hard-sphere fluid,
where = (/6)p(d(T))? is the dimensionless packing frac-

3 1 1
—5Us 5~ 5 tion and\ is the thermal de Broglie wavelength. We ap-
r(r+R)* r(r=R) proximate the attractive part of the interactign,(r) by
1 1 3
— 4W00' _
S T RE R 23 W(n="—5-(r+a?) %, 28

is the interaction potential between a single sphere of radiug;t,
R and a fluid particle at a distanee>R from the center of

mass of the sphere. In a continuum descriptiofr,;R) fol- 5 s 32 s
lows from an integration of the Lennard-Jones potential Wo= Jgsd rw(r)= fR3d r dau(r)=— 3\/57760 :
2.9
PPN [ Uity B o
sf s\l r r ' in order to simplify subsequent analytical calculations. The

double integral in Eq(2.5) takes into account this attractive

between a molecule of thgpherical substrate and dluid  interaction within the mean-field approximation.
particle. The subscriggf denotes the parameters of the dis-  In the bulk the particle density,, (wherey=1,g denotes
persion interaction between a particle in the fluid and a parthe liquid and vapor phase, respectively spatially con-
ticle in the spheres. One hag=(27/3)eps0l; anduy  stant, leading tdsee Eq(2.5)]
= (47/45)egipsoss where pg is the number density of the
particles forming the spherefMany colloidal particles ex-
hibit an even more complicated substrate potential because
they are coated by a material different from their core so that
they are no longer radially homogeneous as assumed for Efpr the grand canonical free energy density of ik fluid.
(2.3.] Minimization of (), with respect tg ., yields the equilibrium

Within our density-functional approach, the equilibrium densities. The lingu=uy(T) of bulk liquid-vapor coexist-
particle number density distribution of the inhomogeneousnce and the two bulk densitigg and p, at coexistence
fluid surrounding the spheres in a grand canonical ensembfellow from
minimizes the functiondl20]

1
Qu(py Top) =Fus(py T)+5Wops—pp, (2,10

a0,

o,
Qe T, 1)) ap 9p

== =0 and Qu(pg)=Qp(p)).
Pl (2.1

For u# o, i.e., off coexistence, only the liquid phase or the
1 vapor phase is stable. In this case the density of the meta-
+§f f d3rd®r’w(|r—r'|)p(r)p(r’). (2.5  stable phase corresponds to the second local minimum of
Vi J Vs

b .

P=pgy

=jv Er[Fs(p(r),T)+ @i 1)— )p(1)]

Vi=W(S,US_) is the volume accessible for the fluid par-
ticles, andy is the total volume of the syster— R2 in the
thermodynamic limit. Equatiorf2.5) does not include the
bare interaction potentiab(D;R) (see Sec. Ybetween the Henceforth we consider the case that the substrate is suf-
solid spheres, separated by vacuum, generated by the dispéiciently attractive so that the liquid phase is preferentially
sion forces between the molecules forming the two spheresidsorbed. Therefore, if in the bulk the vapor phase is stable
fus(p,T) is the free energy density of a hard-sphere fluid of(u=< ), the fluid density is significantly increased in the
number densityp at temperaturdl. In Eq. (2.5), the hard-  vicinity of both spheres. In the spirit of the so-called sharp-
sphere reference fluid is treated in the local density approxikink approximation(see Sec. | and Ref21]) we assume that
mation. We apply the Weeks-Chandler-Andersen procedura thin film of constant density, but with locally varying

[24] to split ¢(r) into an attractive pard,(r) and a repul- thickness is adsorbed at the surfaces of the spheres, separat-

B. General expressions for the contributions to the effective
interaction potential
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ing the spheres from the bulk vapor phase of densjly  which is always considered hereanalogously,K_ is the
This wetting film encapsulating both spheres is characterizegart of the setC with z<0. In Eq.(2.16 we introduce the
by a functionh(z): interaction potential

P(r):P(ri 1¢!Z)
=0(r,—(R+d))[O((2) 1, )p+ O —h(2))pg],

(212 between a fluid particle at and a regionM (with r & M)

where® denotes the Heaviside step function. The lergigh nomogeneously filled with the same fluid particlesalo-
takes into account the excluded volume at the surfaces of tHgPUs to the function(z) introduced in Refs.11] and[21] in
spheres, which the centers of the fluid particles cannot perih€ case of a planar substrate., is the total interaction
etrate due to repulsive forces. The profii€z) as given by potentlall between a fluid particle and both sphdsse Eq.
Eq. (2.12 can describe both a configuration in which the (2-2]- Finally,
wetting films surrounding each sphere are connected by a
quuid bridge as well as the config.uration in yvhich both Q|g[h(z)]=—(Ap)2f dBrt(r ) +t(r:K,))
single spheres are surrounded by disjunct wetting layers. In V_\K_
the latter configuration there is a region around0 with (2.18
h(z)=0. . I o .
Insertingp(r, ,#,2) from Eq.(2.12) into the functional} is the free energy contribution from the frequid-gas inter-
in Eqg. (2.5 leads to a decomposition & =V(Vy)Qy(pg) face. It is anonlocal functional ofh(z) in contrast to€) .
+Qs into a bulk and subdominant contributiong(V;) is  and{le; whose dependence dr{z) enters only via the inte-
the volume measure of;. The bulk contribution is gration volumelC_ . Thelocal approximation thereof, which
V() Qu(py) [with Q, given by Eq.(2.10], and corre- is provided by the gradient expansion of £.18), is
sponds to the vapor phase which is stable in the bulk. The
subdominant contribution is Qloc—

o [ / dh\?

In Eqg.(2.19,

t(r;M)=fMd3r’W(|r—r’|) (2.1

Qg h]=Q4+Qefh]+ Qe[ h]+Qg[h],  (2.13

where onlyQg, is independent oh(z), and the other three
contributions are functionals df(z). Since we have not 1 o w
found an indication for spontaneous symmetry breaking, in  o{f)=— —(Ap)zf dzf dz’f d?ryw(\rf+2z'%)
the following we discuss only symmetric configurations with 2 0 z R2

h(z)=h(-2), (2.20

Q. Th(2)1=V(L)(Q e , 21 is the interfacial tension of a planar, free liquid-vapor inter-
L N(2)]=VIL) Qelp) o(Pg)) 219 face in the sharp-kink approximation. We note that, strictly

where speaking, the surface tension of a curved liquid-vapor inter-
face depends on the local radius of curvat(gee Fig. 2 in
Lz 8 Ref. [12], and references therein concerning the Tolman
V(ﬁ)=277f0 dz hz(z)_?Rs (219 |ength. This curvature dependence is omitted in the local
model presented here. However, for spheres of ra&us
is anexcess contribution which takes into account that the™ 200, as considered henceforth, the curvature correction is
volume L=\ (S, US+) is filled with the metastable |IQU|d less thgn 1'%.. Similar_arg.uments h0|.d for.the deviation of the
instead of the vapor phas&€={r(r, ,$,z) e R¥r, <h(2)} actual liquidlike density in the wetting film from the bulk
is the volume enclosed by the liquid-vapor interfacghe ~ Valuep .

excluded volume due tdg enters into) [see Eq(2.21)]). For our choice of interaction potential&gs. (2.1) and
This free energy contributiof)., vanishes at the two-phase (2.4)] a tedious calculation leads to explicit expressions for

coexistenceu= u(T) [compare Eq(2.11)]. 2L, is the ex- the contributionde; and(2,y which are given in the Appen-
tension of the total volume of the systein thez direction; ~ diX- The remaining contribution

L,—< in the thermodynamic limit ant(z>z,,,) =0 with

Zmax<lz, Qslz_plfv s dsr[PI(t(r-S—)+t(r-S+))_thot(r)]

Quh]=28p [ @rlptr.8)+11.5.) o ¥ (Re R 02
_\K_ 3 s l .

—vtor(N)], (2.16
which is independent di(z), is thespheretiquid interfacial
can be interpreted as the integrat#fictive interaction be- free energy corresponding to the interface between the
tween the spheres and the liquid-vapor interface described kypheres and the liquid phase. The last term in @R1)
h(z): Ap=p,—pgy. V- is that part of the volumé& with z  takes into account the excluded volumes at the surfaces of
<0 (we note again that_— R* in the thermodynamic limit the spheres. In the limit of large separatidhsone has
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Qg (D—x)—20)~D"8 (2.22

with the sphere-liquid interfacial free ener)t} of a single
sphere immersed in the liquid phase. The leading power law
~D~%in Eq. (2.22 can be inferred from the following con-
sideration: if present, the second sphere displaces a spherical
volume from the homogeneous liquid phase, so that the free
energy of the interaction of the first sphere with the bulk
liquid is reduced by the interaction free energy of that sphere
with the displaced spherical liquid volume. This latter inter-

action decays ab ~® for large separationB, at which the 20
dispersion interaction between two spherical objects re- b
sembles the dispersion interaction between two pointlike par- x 0
ticles. [Here, as before, we have not yet taken into account (b)
the bare interaction potentidi(D;R) between the two solid 20 1 , " . . ,
spheres; but see, for comparison, Sed. V. 60 40 20 0 20 40
Up to the bulk contribution the grand canonical potential
of the system is the minimum dR 4 h(z)] with respect to z/o
the profileh(z):
20
0s=04D;R)=min(@dh(2)]). (223 6
{h(9)} ~ 0
x
Thus the equilibrium interface morpholodyz) minimizes 20
Qdh(z)] which includes the contributionq.,[h(z)], t t + + t
Qei[h(2)], Qi4[h(2)], and Q. The functional used in 60 40 20 0 20 40
Refs. [22] and [23] [Eg. (1) in both referencdsis, albeit z/6G

formulated in another coordinate system and using a more . S . .
phenomenological ansatz for the basic interaction potentials, FIG. 2. Morphologies of liquidlike wetting layers on two adja-
essentially identical with the surr()d°°+ Qo+ Q)[N(2)] cent, identical spheres with radiis=200. The center-of-mass dis-

g . _ . .
However, this model description incorporates neither thdace between them I8 =500. The pictures show cross sections
bare dispersion interaction of the two sphefes. Sec. \j ~ 1vough the system defined by the plane0; the system is rota-
nor the free energy contributiofd,, which describes the tionally symmetric around the axis (see Fig. 1L The thick full

S

sphere-liquid interfacial free ener We emphasize that thIines denote the liquid-vapor interface, the thin dashed lines the
phere-liquid 1 ! € energy. . phasiz Surfaces of the sphere&@) and (b) layer configuration with and
consideration of the contributiof ;—which does not de-

- . T without liquid bridge, respectively, for the temperatuie®
pend onh(z)—is not essential for the determination of the —kgT/e=1.3>T% and at liquid-vapor coexistencau=0. Be-

equilibrium wetting film morphology, and hence it is not cayse of its higher free energy, the configuration without bridge is
relevant for the thermodynamic phase diagram of thin-thickyetastable(cf. Fig. 4. These configurations are characterized by
and bridging transition&Fig. 2 in Ref.[23]) for afixedsepa-  the interaction potential parametars=6.28%¢2, us=0.83&¢°,
ration D between the spheres. But the tefly, is crucial to  andd.=o. The temperature is above the thin-thick transition tem-
the shapeof the effective, wetting-induced interaction poten- peratureT~1.271 for each single sphere. (o) the interaction

tial between the spheres, i.e., its dependenc®dsee Eq. parameters and are the same, but the temperatdre=1.2 is
(2.22]. below the thin-thick transition temperatufg , so that the wetting
layer around a single sphere is thinner than(an and (b). Also
IIl. MORPHOLOGY OF THE WETTING LAYERS at this temperature the bridge configuration is the stable one
cf. Fig. 4.
A. Interface profiles ( %9

The actual wetting layer morpholody(z) follows from  result known for a single individual sphere enclosed by a
numerical minimization of the functionafddh(z)] [Eq.  wetting film (compare Ref[12]). This observation amounts
(2.13)] for a given temperaturd and undersaturatiod . ~ to a useful check of the numerical procedure.
= uo(T)— u, with the contributionsQ, [Eq. (2.14], Q; As a first example, in Fig. 2 we present the numerical
[Eq. (2.16], Qg [Eq. (2.2D)], and Q4 [Eq. (2.18 within  results for a wetting layer enclosing two spheres of radius
nonlocal theory and Eq2.19 for local theory. Within a ~ R=20c. For our particular choice of interaction parameters,
range of parametersT(Aw) the numerical minimization at coexistencé u=0 the wetting film on each of the single
yields two different solutions foh(z), one with a liquid spheres alone exhibits a first-ordénin-thick transition
bridge and one without, depending on the initial function(which is the remnant of the first-order wetting transition on
h(z) used in the iteration scheme for the minimization. Forthe corresponding planar substrate; see Hig.i8 Ref.[12])
small separationa<2R only the solution which exhibits a at T;;=kgT/e~1.271 (which corresponds tol/T.~0.9
liquid bridge is stable, whereas for large separatiag2R  whereT. is the critical temperature of gas-liquid coexistence
only the solution without bridge minimizeQ¢. For large in the bulk. The planar substrate, i.e., a single sphere in the
distancesD the minimization consistently yields twice the limit R—, exhibits a genuine first-order wetting transition
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(with the film thickness jumping to a macroscopic vala¢
T¥~1.053 (T, /T,~0.75, T;/T,~1.21). Figure 2a) de- 40 1
picts a typical solution with a bridge, here for a separation \b
a=D—-2R=100 (D=500) and the thermodynamic param- x 20 4
etersT*=1.3>T}, andAup=0, i.e., at liquid-vapor coexist-
ence. The solution without a bridge for the same choice of
parameters is shown in Fig(t8. The latter solution has a
higher free energy than the former one. Therefore the solu-
tion with bridge is thermodynamically stable, whereas the
solution without bridge is metastable. For the solution with-
out a bridge the distortion of the liquidlike layer around one 40 ¢
sphere due to the presence of the other sphere is not visible.
Finally, Fig. 2c) displays the wetting film morphology for
the stable state with bridge at the temperaflite=1.2, i.e.,
below the thin-thick transition temperatufig; . (We note
that the thin-thick transition temperatufg for each sphere 0
is slightly shifted by the presence of the second sphere. How-
ever, as already pointed out in Rg23], this effect is negli-
gibly small) In any case, the difference between nonlocal
and local theories is very small. This latter result is in accor- 40 1
dance with the findings for the comparison between the non-
local and local descriptions of the three-phase contact line on
a homogeneous substrate, and of the wetting layer morphol- 20 1 N ’
ogy on a chemically structured substratempare Ref(26)). © i
For this reason, henceforth we only consider the local theory. 0 ; —— et : :
Figure 3 shows another pertinent example. Here we study -40 -20 0 20 40
the wetting layer morphology for two larger spheres of ra-
dius R=500 as a function of the undersaturatidrn. along
the isothermT* =1.2. The interaction potential parameters  FIG. 3. Morphologies of liquidlike wetting layers on two adja-
are the same as for the previous first example, and the sepéent, identical spheres with radii=500 andD = 1200, and for the
ration of the surfaces is 200 (D=1200). At coexistence same choice of interaction parameters as in Fig. 2. The thick full
each single sphere exhibits a first-order thin-thick transitiorlines denote the liquid-vapor interface, the thin dashed lines the
at T;‘tm1,191(i_e,,Ttt/Tcmo,84 andT,/T,~1.13). In anal- surfaces of the spheres. These pictures magnify the region between
ogy to the prewetting line on a homogeneous substrate thetB€ spheres. The temperatureTis=1.2, which is above the thin-
is a line of thin-thick transition§T,A u(T)] which inter-  thick transition temperaturﬂ%l._lgl at coexistence for a single
sects the liquid-vapor coexistence line =T, ,Au=0) sphere, and the plt_:tures dlffer_wnh respect tc_) the undersaturation:
(compare with Figs. 4 and® in Ref.[12]). At the tempera- Ap* ZA“/EZ*O'% in(@), 0.015 in(b), and 0.01 in(c). Between@
ture T* :1'2>T£kt considered here, the thin-thick transition and(b), at A uj,~0.0235 the system undergoes a first-order transi-

. _ . tion from the state without bridge to the state with bridge, and at
occurs aid uy = Ay /€~0.0103. Upon reducmg*the under- Auk~0.0103 betweeib) and(c) there is a thin-thick transition of
saturation along the isotherm, starting at, e/y* =0.05,

> - ; : o - ’ . the wetting layer around the single spheres which is the remnant of
first the configuration with thin films and without bridge is yhe prewetting transition on the corresponding flat substisge

stable[Fig. 3@]. For Au<A uy, (bridging transition with Fig. 4. Note that in(b) there are six turning points®) of the
A up=0.0235> A ui (T) the solution with bridge becomes profile h(z), whereas in(c) there are only two.

stable, but the layers enclosing the spheres still remain thin

[Fig. 3(b)]. Upon further reduction ofAu, at A uy(T) the
second transition from a solution with bridge and thin films
to a solution with bridge and thick filmgFig. 3(c)] takes
place.[As before, concerning the value ®f; at coexistence,
the valueA uf; (T) is also practically unchanged by the pres-
ence of the second sphere—even for the bridge configura- The example presented in Sec. Il A shows that besides the
tion.] We note that for this choice of parameters and in thegas-liquid coexistence curvau=0 the T-Au phase dia-
case of a solution with bridge artin films [Fig. 3(b)], the  gram of the system contains two distinct lines of first-order
profile h(z) exhibitssix turning points instead of only two as phase transitions: a line of thin-thick transitidiig A u(T) ]

for the case of a solution with bridge amiick films [Fig.  on the single sphere@vhich is the remnant of the line of
3(c)]. This rich curvature behavior is caused by the details oprewetting transitions on the corresponding flat substrate and
the effective interaction potential between the spherical subwhich is, as stated above, practically unshifted by the pres-
strate surfaces and the liquid-vapor interfésee Sec. 2.3 in ence of the second sphg@nd a secondndependentine of

Ref. [12]), similar to the curvature behavior of the liquid- bridging transitions T,A up(T)]. If one crosses the latter
vapor interface, when it meets a homogeneous, planar sulddong an isothernT =T, approaching coexistencd {,A u
strate forming a three-phase contact lijpempare Ref[26]). —0), at Au=Auu(To) a transition from a configuration

x/o

20 +

xl/o

zlo

These features may also occur for a bridge configuration
with thin films at coexistence anti<Tj;.

B. Phase diagram
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the second minimum of the bulk free energy at a high fluid
density[Eqg. (2.10] ceases to exist, so that for larger under-
saturations the liquid phase is not even metastable. Within a
more sophisticated approach, e.g., by seeking the full mini-
mal density distributions of Eq2.5), the line of bridging
transitions is expected to end in a critical point t¢Gon-
cerning the effect of fluctuations on these mean field predic-
tions, see the following paragrapfhe line of bridging tran-
sitions is entirely located in the region where the liquidlike
\ films on the spheres are thin. Moreover, the effect of the
012 1, . , , presence of the liquid bridge on the line of thin-thick transi-
1.05 11 115 12 1.25 13 tions is negligibly small. In Fig. 4 the relative location of the
ks T/e bridging transition line and the thin-thick transition line cor-
responds to our specific choice of the interaction potential
FIG. 4. Temperature-undersaturation phase diagram of wettingarameters as well as the chosen size of and distance be-
layer configurations for two spheres witr 200 at afixeddistance  tween the spheres. Changing these parameters will lead to
D=500 (a=100c). The interaction potential parameters are theshifts of these lines and, possibly, to different topologies of
same as in Fig. 2. The three configurations shown in Figs=2(c)  the phase diagram. Here we refrain from exhaustingly pre-
are located at the respective thermodynamic statesc (# ). The  senting all possibilities which can occur according to Refs.
line of liquid-vapor coexistencA u =0 separates the region where [22] and[23].
in the bulk the vapor phase is stable and the liquid phase is meta- Since the liquid volume enclosed by the interfae) is
stable (-An<0) from the region where the liquid phase is stable quasi-zero-dimensional, fluctuation effects destroy the sharp
and the vapor phase is metastablen>0). The dotted “meta- first-order phase transitiofsee Refs[27] and[28]). In Sec.
stability line” (ml) separates the region where the liquid phase in4 of Ref.[12], it has been extensively discussed how finite
the bulk is still metastabl¢—Ap>—Apny(T)] from the region  gjze effects smear out the thin-thick transition such that the
where only the vapor phase is stable in the bllkkAu<  thickness increases sharply but continuously within a range
._AMFT"(T)]' The I.|qU|d.I|ke Iaye.r.on each individual sphere exhib- Su aroundA u,(T); these results apply analogously to the
its a first-order thin-thick transition at Ap=—Auy(T) (dashed  ,oqont case. Using similar approximations we obtain a range
I|rle tt). This line intersects t_he Ilquu_nl-vapc_)r coexistence line at Sp betweensu* ~0.004 forT* =1.16 anddu* ~0.02 for
Ti~1.271 and ends at a critical poin®( in the vapor phase * —1.26 over which théridaing t it h in Ei
L Tk * . ging transitions shown in Fig.
region: Tg .~1.275 and —Auf .~—0.0144. For the present _
choice of interaction potential barameters, at lower temperature‘s1 are_ S_meared OUt_arowm“bt(T)_' _Thus, close td&,u—_O_,
and larger undersaturationsA u=— Ay (T) (full line bt) the quasi-first-order thin-thick transitions are clearly VI.SIble.
first-order bridging transitions between the configurations WithHowever, for larger values _(ﬁ,u,_t_hey be_come pr_ogresswely
bridge [—Au>—Auy(T)] and without bridge [—Au< s_meared out, such that their cr|t|ca_l points predicted by mean
— Aup(T)] oceur. This line intersects the coexistence line linearly. field theory are erased by fluctuations.
Within the sharp-kink approximation the line of bridging transitions
happens to be cut off by the “metastability line”; within a more IV. EFFECTIVE FILM-INDUCED
sophisticated approach the litd is expected to end at a critical INTERACTION POTENTIAL
point too. The locations of the thin-thick transitions in the phase
diagram are practically not affected by the presence of the bridge.
The dash-double-dotted lines-( - —) are metastable extensions of
the thin-thick and bridging transition lines, respectively. The dash- |n the following we change our point of view: we vary the
dotted linep (—-—) is the prewetting line for the corresponding distanceD between the centers of mass of the spheres instead
planar substrate. It joins the liquid-vapor coexistence libg=0  of the thermodynamic parametéFsindA u. Figure 5 shows
tangentially at the first-order wetting transition temperatiijp the grand canonical potentiéls corresponding to the wet-
~1.053 (A), and ends at a critical poinfl{) in the vapor phase ting layer morphologies for the case=20s and T* =1.2
r_egion. For a_discussion of the effects of fluctuations on this mean[Fig' )] as a function of the separatica=D— 2R for
field phase diagram, see the main text. several values oA u. Qg is the minimum ofQ{ h(z)] [Eq.
(2.13)] for the given set of parametefis Au, andD=2R
without bridge [Au>Aupn(To)] to a configuration with  +a. For each value oA u there are two branches of the free
bridge [ A u<Aup(To)] occurs. The derivativedQ g/dA u energy; one corresponding to the solution without bridge,
is discontinuous ah uy,, indicating that the bridging transi- which for the caséR=200 considered here exists only for
tion is first order. Figure 4 shows theAu phase diagram a=0.15R, and the other corresponding to the solution with
for the two spheres witR= 200 for D=500 (a=100). The  bridge which exists up t@~0.65R anda~0.6R for Au*
line of thin-thick transitions intersects the liquid-vapor coex-=0 and Au*=0.01, respectively. At a certain valu@
istence line affj;~1.271, with a finite, negative slojeom- =Dy, or, equivalentlya=a,,, which are functions oA «, a
pare Fig. 8a) in Ref.[12]]. It extends into the vapor phase first-order phase transition occurs with a discontinuous de-
region (A u>0) of the phase diagram, and ends at a criticalrivative 9Q)5/dD between solutions with and without bridge.
point. The line of bridging transitions also intersects the co-The main effect of increasing the undersaturatiqn is that
existence line with a finite, negative slope. On the other endthe free-energy curves are rigidly shifted upward. This shift
within our sharp-kink interface model, it happens to be cutis approximately proportional th . and larger in the case of
off at that metastability line in the phase diagram at whichthe solution with bridge, resulting in the dependenc®gf

-0.02

-0.04

-0.06 1

—-Ap/e

-0.08

-0.1

A. Shape of the effective potential, metastability, and
asymptotic behavior
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-0.19 s The thermodynamic states which are located on the meta-

(a) tii._ziﬂ?"dged /237’ stable branches of the free-energy curves survive during an
— | T Cyfaiiaiiy average lifetimer~ r, exp(AQgs/ksT), where AQg is the
aﬁ 027 height of the energy barrier that separates the metastable
b ) from the stable branch, ang is a characteristic microscopic
c 021 1 7 orid time scale for the dynamics associated with the transition
s . ‘ ged . . .
& / from a metastable to a stable wetting layer configuration.
':('D — Awe=0 The energy barrier is highest in the vicinity of the bridging
G o022t | T Awe = 0.001 transition, and vanishes near the ends of the metastable
--- A =0.005 branches. An estimation of the energy barrier height yields,
—— Awe=0.01 e.g., AQg~75¢ for Au=0 and D=500 (a=0.5R), and
-0.23 ' + + with kgT~€ it follows that expAQg/ksT)~10%, i.e., the
0 0.2 0.4 0.6 metastable unbridged state fa=0.5R near the bridging
a/R transition remains stable practically forever. However, at,
e.g.,a=0.2R, one has exg{Qs/kgT)~10", so that withr,
(b) . 2 ~1 ps...1 nsone magbserve a decay of the metastable
«._unbridged 5 states near the ends of the metastable branches within sec-
) 0 onds or minutes. Thus the change of the morphology of the
5 wetting films is expected to exhibit pronounced hysteresis
« -0.01 ¢ effects as function ob.
© bridged Obviously, in the limit of large separatioD—o (in
o, which only the configuration without a bridge is stablbe
;u 0.02 4 — Awe=0 grand canonical potentiallg(D) approaches the limiting
"""" Awe =0.001 value 0| corresponding to the free energy of two indi-
7T Awe=0.005 vidual spheres, each surrounded by a wetting layer. It is con-
003 1 : L, Awe=001 venient to separate this constant contributid®$? from the
0 0.2 0.4 0.6 grand canonical potentidd g of the system, and thus to de-
a/R fine an excess free enerdye(D)=Qg(D)—20Q) which

contains all contributions from the wetting-layer-induced in-

FIG. 5. (a) Dependence of the grand canonical poterfiglon  teraction between the two spheres. In the liBit-, i.e., in
the separat_ioa_= D—-2R and the undersaturatiahu for the same  the absence of a liquid bridge, this excess free enfrgiD)
system as in Figs.(2) and 4, i.e., forR=200 andT*=1.2<T{.  decays a® © [see Eq(2.22 and Sec. \. We note that for
The dots indicate the end points of metastable branchesaFor the example shown in Fig. 5 the coefficient of this leading
<2d; (with ds=0=0.0%R here the excluded volumes around the order ispositive i.e., the effective potential in the absence of
spheres overlap. In the limD—c the stable solution is the one liquid bridge isrepulsive This is owed to the choicd
without a liquid bridge; in this limitdg(D—c)=20¢" is wice T _{or this example: the spheres disfavor the adsorption of
the free energy of a single sphere surrounded by a wetting layer. Abyicy iquid films and the presence of the second sphere with
the separatioy, or ay, where the two free energy branches in- o\, unding liquidlike layer leads to an additional cost in

tersect foraglvgm,u,_a flrst_-order_ mprphc_)loglcal phase trans_ltlon free energy which diminishes for increasi For the
between a configuration with a liquid bridge and a state without . . . .
hoice T>Ty,, i.e., if the spheres favor the adsorption of

bridge takes place. The equilibrium thickness of the homogeneous ™. " S
wetting layer around a single sphereljs=1.30, so thatD,/(R |_q_U|d [e.g.,_fgr_T* B 1.3_as in Figs. @&) anc_i Zb_)] the C_Oef'_
+15)~2.39; the slight deviation from the prediction of Eqs.2  ficient of D7 is negative and the effective interaction is

and(4.3) is due to the still rather small size of the spheres. We noteéttractive However, in the presence of a liquid bridge, i.e.,
that, in contrast to the case shown here, TorT,, the free energy  for sufficiently small values oD, the effective potential
curve corresponding to the solutions without bridge approaches it§hows the same qualitative behavior as in Fig. 5 for the case
asymptote fronbelow (b) Same as in@), showing the excess free 0f thick wetting layers T*=1.3>T};) as well as for the
energy Qe=Q¢—20%) . In this presentation the results for the larger spheresR=500) with thin or thick films.

solutions without bridge and for different undersaturatians col-

lapse onto a single lind2g(D— ) decays ad ~°. B. Effective interaction potential for large spheres

In this subsection we consider the limiting case that the
on Au. The values ofl)g shown in Fig. 5 are obtained gsphere radiuR is much larger than the diameter of the
within the local theory. The nonlocal theory ylelds the Samegplyent partidesy and that the Separatiartmtween the sur-
functional dependenc€g(D), but with a slight and rigid faces of the spheres are proportionaRoR> o, o<a~R.
shift of the free-energy curves, relative to the results of theFor such large separations as comparedrtthe contribu-
local theory, of the order of 0.1% and of the same sign andions Qg [Eq. (2.21)], Q; [Eq. (2.16], and® [Eg. (5.1)]
size for both the solutions with and without bridge. Finite- become vanishingly small relative to the contributidig,
size effects again destroy the sharp first-order bridging tran-Eq. (2.18] and Q. [Eq. (2.14)]. For the case described
sition; we obtain a rangéD ~0.10 (corresponding taSD above()|y and{)., scale proportional to the surface area of
~0.00R), over which the bridging transitions shown in Fig. the spheres, i.e5-R?, whereas fora/c—», R/g—, and
5 are smeared out. a/R finite, ®(D;R) remains finite,~ e, .ol p?2, with a pro-
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0.005 thickness on a single sphere. Since the line of bridging tran-
0 / sitions lies below the line of thin-thick transitiorlg,remains
= unbridged microscopically small at the bridging transitiaffrig. 4).
5 -0.005 § Therefore one has
S oo Dy Ap=0)=\(R+1y), 4.2
@, bridged
C\S‘.u -0.015 1 with a universal number
-0.02 1 A~2.32 (4.3
-0.025 ' ' ' ' . ) . .
0 01 02 03 04 05 determined byf(\)=1 (compare Fig. & If one applies this
a/R reasoning to Fig. 5, one finds~2.39. Therefore, even for

R= 200 this macroscopic approximation leads to a surpris-

FIG. 6. Excess free energe=Qs—20{" for Au=0 inthe  ingly small error of only 3% foD,(Ax=0). Accordingly,
limit of large spheres, i.eR>o, o<a~R. In this limit the excess jn Fig. 5 the full curves corresponding =0 closely
free energy branch for the unbridged solution vanishes if it is mearesemble the ones in Fig. 6 describing the case of large
sured in units of &R?. Off two-phase coexistence, i.e., fdiu  gpheres. The only differences appear for small separations
#0, Fhe _branch for the bridged solution is determined only by the,here the bridged branch linearly extends down to its mini-
contributions()4 [Eq. (2.1.8)] and Q. [Eq. (2.1{!)] to the free e mum vaIueQE/(87T(R/0')2)~ —0.022% ata/R=0 (Fig. 6).
ergy. At two-phase coexistenceu and{le, vanish, so thafle is 5 i this range of separations does the effect of the con-
solely determined by),y. Therefore within the local theory with tributions Q; and O, become significant, leading to the
Q9 [Eq. (2.19] the bridged solution is a minimal area surface, deeper mini?rlwm Visist;Ie in Fig. 5. Thus fﬂl',L'LZO and large
i.e., its mean curvature is zero. Sinae-ds~ o the excluded vol- o . -
L€ | HIvatre 1s z ! =7 xeu v R the dependence of the effective interaction potentiaRon

ume at smalla disappears from the figure. Therefore, compared . . S S
with the full curve in Fig. Bb) the potential curve here is effectively for the bridged configuration is captured by the indicated

shifted to smaller values @ Moreover, the actual minimum of the f€scaling of the axes in Fig.(13. However, our numerical
effective interaction potential at sma#i=c (compare Fig. §  analysis shows that the smallness of the deviations between

which is due to the influence of the contributiofig; andQ,, is  the macroscopic description valid fé6t>¢ and the actual
not visible on this scale either. The critical separation for the bridgresults forR=200 is somewhat fortuitous. Whereas the de-
ing transition (¢ ) is given bya,/R~0.32[Egs.(4.2) and(4.3)].If  pendence oD, (Aux=0) onRis indeed weak, the shape of
the thermodynamic state of the system is driven into the off-the potential(for Ax=0) reduces to that shown in Fig. 6
coexistence regioA u >0, the whole excess free energy branch for only for R larger than several hundreel and, surprisingly,
the bridged solution is shifted upwafgompare Fig. b For any  for R up to 20 to 3@, with the deviations being maximal for
finite value of Ay, in the limit R—oo there is no longer any bridg- R~1000.

ing transition(see the main text Off coexistenced = Qp(p)) — Qp(pg) ~ApAp is posi-

) . . tive so that Eq(4.1) has to be augmented correspondingly,
portionality constant of the order 1. Analogously, in the

same limit Q,;—20Q8 [Eq. (2.16] and Q-2 [Eq. 87AQ, AQ,
(2.20)] are determined by finite terms-App eo®and 87T(R+|0)2+W((R+|0)3—R3)2A+ WV([')'
~Appsesiol, and of terms~pZea® and ~ ppsesiol;, re- 307 Tig
spectively, each with a proportionality constant of order 1. (4.4
Therefore measured in units ofr&R? the unbridged branch where A and V(£) [Eq. (2.19] are the area of the liquid-
of Qg in Fig. Sb) vanishes in the limiR—cc. Moreover, on ahor interface and the volume of the liquid, respectively, for
this scale the excluded volume at smeadlisappears fromthe e prigged configuration. They are obtained by inserting
figure, too, becausés/R—0. o _ _into Egs.(2.19 and(2.15 that profileh(z) which solves the
F_|gure 6 s_hows the excess effective interaction potentiaittarential equation determining the minimum 6f,[h]
Qg in the limit of large spheres for the casq.=0, i.e., at | ) rh] together with the appropriate boundary conditions.
two-phase c_oeX|stence in the solveqt. Ip this limit and forBy splitting off a factor R+1,)2 from A and R+ 1) from
Ap=0, Qg4 is the only relevant contribution s because ;) " dimensional analysis shows that up to termb, /R

Qex(Ap=0)=0. Accordingly, in this case the bridging tran- ¢ ritical distance for the bridging transition is given by a
sition is determined by the equality of the surface areas of i ersal scaling functior

the liquid-vapor interfaces for the unbridged and bridged

configurations. From this condition, and from dimensional

analysis, it follows that for large spherd®,;(Au=0) is Dbt(AM)=A<
determined by the equation

ApAuR

ofp)

R, 4.5

with A(0)=\. Thus off coexistence the critical bridging
(4D transition depends, apart from an explicit fackron R and

A via the scaling variablé pAuR/c{? . This property is
wheref is, for dimensional reasons, a universal function ofshared by the whole bridged branch of the effective interac-
D/(R+1p) alone, which describes the surface area of theion potential. Thus increasing for a fixed undersaturation
bridged configurationj, is the equilibrium wetting layer Au has the same effect as increasihg for fixed R. From

Dyt

87(R+I 0)20f5)= 87 (R+ |0)20'|(§)f BT
0
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Fig. 5b), in which the unbridged branch will disappear in

the limit R> ¢, one infers that the range and depth(®§ o
decrease for increasing at fixed undersaturatiod x. The
behavior ofD,; and of the bridged branch of the effective
interaction potential off coexistence and fer-o is deter-
mined by the behavior of the scaling functian(x) in the
limit x—o0. Our numerical data indicate that(x—»)<2,
so that due to the geometric constraii=2R there is no
bridging transition, and the bridged branch of the effective 004 +
potential vanishes for any value d&fu in the limit R— oo,

The cost in free energy due to the excess contribufign
suppresses the formation of a liquidlike bridge in the case of
macroscopically large spheres. In turn, this means that for a/R

any finite value ofAu there is a large but finite critical _ 1 )
radiusR, for which the critical separatioay, for the bridg- FIG. 7. Excess free ener@ffﬂs_ 2%)(5) (dashed linesand
ing transition attains the valua,=0, such that foR>R excess total frfi energQE,tgt—st 2057+ (full lines) for
. . .\ L ¢ Au=0. HereT*=1.2 andR=200, so that the dashed lines are
there is no bridging transition. The determinationRyfre- 4o nical with the full lines in Fig. &). The dots indicate the end
quires one to f’:lnalyze the fu_II de_pendence&crﬁn the Sca"”g points of metastable branches. The parametgysand o of the
variable X. _T_h's’ however, implies such a large numerical pajr potential between the particles forming the spheres are chosen
effort that it is beyond the scope of the present paper.  sych that the conditions;= \AAg for the corresponding Hamaker
constants is satisfied. Although the wetting-layer induced potential
V. DISCUSSION for the solutions without bridge isepulsive the total interaction
potential including the bare dispersion potentialatsractive For
small separationa or D the bare dispersion potential dominates. In
The bare dispersion interaction between the two spheres tbe limit D—, i.e., for the configurations without bridg8,z and
not included in Eq(2.5). According to Hamakef29], this Qg decay asD~°, as expected for dispersion interactions.
contribution is given by

.. unbridged o

-0.02 1

Q/[8r (R /c) €]

0 0.2 0.4 0.6

A. Total interaction potential

placed by a medium of condensed matter the interaction be-
Ass( 4AR? 4R? tween the spheres is screeri@@]. In our present model this
FT) +— medium is the bulk vapor phase modified by the presence of
12 \(D-2R)(D+2R 2
( ) ) D the liquidlike films adsorbed on the spheres and the screen-
) ing effect is described microscopically by the functional

®(D:R)=—

- +
(DZ2RNDT2R) 1 QUp0)]. o |
D In Refs.[31] and[32] this additional screening effect—

, o ) i , due to spherical shells of adsorbed, homogeneous layers sur-
as the dispersion interaction between two identical spheres 9f,nqing spherical particles—on the dispersion interaction
radiusR at a center-of-mass distan@ In the limit a/R  pepveen the latter immersed in another homogeneous me-
<1, wherea=D — 2R [see Fig. 18)] is the smallest separa- giym was calculated macroscopically. Beyond molecular
tion between the surfaces of the spheres,(Bd) reduces to  gqgjes these results should closely correspond to the configu-
A R ration without liquid bridge discussed herein, because the
®(D=2R+a;R>a)~— = (5.2 deviation of the spherical shape of one wetting layer due to
12 a the presence of the second sphere is very small. Indeed, the
interaction energy calculated in Ref81] and[32] is prac-
ically the same as the sum of tBedependent contributions
in Q¢ [Eqg. (2.16] and Qg [Eq. (2.21)] for configurations
without bridge—for these configuratiofiy, and(},, do not
contribute to the dependence 8fg on D—and the direct
Qioi(D;R)=0g(D;R)+®(D;R), (5.3 dispersion interactio®(D;R). In Ref.[31] the total disper-
sion interaction is shown to be always attractive if the Ha-
where Qg(D;R) is given by the minimum value maker constantd;; corresponding to the interaction between
Ming(Qgh(2)]) for given D and R [Egs. (2.13 and  any two mediai andj are chosen such that; = VA;A;;.
(2.23]; in analogy toQg we define the excess total free Although the effective interaction induced by the wetting
enerngE,toFth—ZQ(Sl). A is the Hamaker constant layers shown in Figs.(6) and 7 for the configuration with-
appertaining to the bare dispersion interaction between theut bridge is repulsive, we note that the s, of this
particles in the spheres. In the case of pairwise additivity ofnteraction and of the bare dispersion potendd|D;R) is
the molecular interactions and in the absence of retardatioalso attractive if we choose the Hamaker constant in Eq.
effects, one had =4 m2eoSp? if the interaction potential  (5.1) accordingly, i.e.,Asc=A2/A (Fig. 7). Therefore our
between two individual molecules in the spheres is given byesults are consistent with those obtained in [R&f]. Since
a Lennard-Jones potent{&q. (2.4)], with the parameters;;  only effective interactions between finite volumes enter into
ando. Typically Agis of the order of 10%° J, or, equiva-  the total excess interaction potentfak .., and these effec-
lently, (10—100%. If the vacuum between the spheres is re-tive interactions decay & ~° in the limit of large separa-

+2 In(

which corresponds to the Derjaguin approximation, wherea
®(D>R;R)=—16A,R%(9D°®). Thus, except for the
D-independent bulk contribution Valg)Q,(pg), the total
grand canonical potential of the system is
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tions D, the same holds fof)g ;. range themselves within a periodic array; the lattice spacing
Figure 5 shows that as soon as the wetting films snap to ean be determined accurately by light scattering. This allows
liquidlike bridge, whether it is stable or metastable, there isone to infer the effective pair potential—in the absence of the

an attractive wetting-layer-induced force 9Qg/dD that  external fields—which balances the known induced dipolar
pulls the spheres together. From Fig. 5 one can infer that thigttraction.
attractive force is of the order of 40v in the range between Finally we note that small angle neutron scattering, tur-

a~4o (i.e., 0.R for R=200 discussed in this figureand  pidity measurements, and dynamic light scattering, in com-
a~10o (0.5R), where the effective potential varies almost pination with theoretical support, yield access to the effective
linearly. At the small separatioani,~2.50" the effective jnteraction potential between colloidal particlésee, e.g.,
potential{)e induced by the bridgelike wetting layer is mini- Ref, [44]). The theoretical interpretation of such structure
mal, and the wetting-induced force is zero. Finally, altyciors as obtained by neutron scattering can be eased con-

smaller separations the interaction is repulsive, leading to @iderably by suitable scattering-length matchiisge, e.g
stabilization of the spheres Bt=D pin=2R+ay;. Within - 5 [45)) Y

the rangea<R the bare, direct dispersion interaction be-
tween the spherd&qgs.(5.1) and(5.2)] gives rise to a force
Fpare(@)~—AR/12a%. The estimateAg~4m2eZoiip?l
€o®~400e for the case of pairwise additive interactions
without retardation follows from the ansatz ;= AAg SO

These techniques provide both the energy and spatial
resolution required to probe the phenomena discussed in the
previous sections and to test our theoretical predictions. If it
will be possible to achieve a spatial resolution down to the
. ; . : scaleo of the diameter of the solvent particles, it will turn
that the bare dispersion force in our example W 200 is ¢ that at separations between the spheres which are com-

~_ 2 i
Eb.ér‘f(a.)a GZO:U/a " Thlerefore, in the ﬁnfl‘é‘?erﬁ the parable witho the actual effective interaction potential ex-
ridge-induced force is almost constanio(@a=100) the hibits an additional oscillatory contribution due to packing

direct, bare dispersion force decays from approximately ffects which d tiall th le-d86]. |
—40e/ o (which is of the same order of magnitude as thee ects which decays exponentially on the scale:gh6]. In

. . f , | h ¢ order to obtain these oscillations one would have to resort to
bridge-induced forceto approximately—6e/o, whereas for  yensity functional theories which are more sophisticated than
smaller separations it becomes the dominant force.

the one in Eq(2.5. This, in turn, would make it much more
difficult to obtain the bridgelike configuration, to map out the
B. Relevance for force microscopy and scattering complete phase diagram, and to obtain results for large
spheres. According to Sec. IV B, f&> o and at two-phase
%oexistenceA,uzo the bridging transition occurs at dis-

force microscopy. This can be done by suitably fixing ON€ancesa which are proportional tdR. In this case, due t&®

sphere in th? fluid and by.attachlng the ;econd one to the i o, the effective interaction potential will be practically un-
ofa f_orce microscope. This kind of atomic force MICIOSCOPEttacted by this oscillatory contribution for the vast portion
pollmdal pmb? te_chmqug was appI]ed successfully. for prob-g< a<ay, of the range of the effective interaction potential.
ing the effective interaction potential between a single col-
loidal particle and a planar surfagee, e.g., Ref§33-35,
and the review in Ref.36]) and its interaction with radiation
pressurd 37]; this setup can be adapted to a controlled tem- Whereas the kinds of experiments considered in Sec. Il B
perature environmerii38], facilitating studies of the reper- are focused on two individual spherical particles, in Sec. | we
cussions of temperature-induced phase transitions on the aliscussed that the effective interaction potential enters into
fective interaction potential. In the present context it isthe collective behavior of colloidal suspensions, such that the
important to note that this kind of force measurement washridging transition may trigger flocculation. If colloidal sus-
already also extended successfully to an analysis of the epensions would be governed by dispersion forces alone, most
fective interaction between pairs of sphef&6,39, main-  of them would flocculate even in the absence of the wetting-
taining the nm spatial resolution which had been achievedhduced forces discussed here, because the dispersion forces
for the case of a sphere near a planar wall. generate the so-called primary minimum in the effective in-

Alternatively, both spheres can be positioned by opticakeraction potential close to contact. Since this minimum is
tweezers, and the force law can be inferred by opticallymuch deeper thakgT the colloidal particles would simply
monitoring their dynamics after switching off the tweezers.stick together permanently. This effect, which is undesired
This technique, which avoids perturbations induced by thdor many applications, can be avoided by endowing the par-
tips of the force microscope to which the spheres are atticles with electrical charges, which adds a screened Cou-
tached, allows one to measure the functional form of thdomb repulsion between the charged particles. As a result,
effective interface potential with 60-nm spatial resolutionsuch charge-stabilized colloidal suspensions are character-
and 0.XgT energy sensitivity over a range ofuin and ized by effective interaction potentials in which a substantial
5kgT, respectively{40], or with subkgT energy and 15-nm energy barrier separates the aforementioned primary mini-
spatial resolutior41,42. mum from a second, much more shallow minimum at larger

If the material of the colloidal particles is chosen such thatdistances. Since this potential barrier is typically large com-
it can be magnetized by external fields, the so-called chainpared withkgT, the phase behavior of the colloidal particles
ing technique can be used as still another alternative to studg practically independent of the primary minimum formed
repulsive parts of the corresponding effective interaction poby the dispersion forces, and determined by the shape of the
tential with nm resolutiof43]. The external fields lead to the potentialoutsidethe barrier. As demonstrated in Figs. 5 and
formation of chainlike structures in which the particles ar-7, the range of the wetting-induced forces is about B,56

C. Relevance for charge stabilized colloidal suspensions
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good agreement with,,~2.32(R+1,) [see Eqs(4.2) and -0.05 -
(4.3)]. On the other hand, the positiqand heighk of the (@)| . Unbridged s,
aforementioned energy barrier depends sensitively on the @ -006 L e Lol o]
size of the total charge on the spheres, the amount of salt in “ia g
the solvent, and the dispersion forces and can be varied over E 2007 }
a wide range. With a high salt concentration the barrier po- g bridged
sition can be as small as a few tens of nm. Thus under such ®,
circumstances the wetting-induced interaction potentials & 0.08 1 Awe=0
would be relevant even for colloidal particles whose radii are 01:5 ,,,,,,, Awe = 0.001
only a few tens of nm. -0.09 1 —-= Ale=0.005
—— Awe=0.01
D. Relevance for stericly stabilized colloidal suspensions -0.1 + + s +
0 0.2 0.4 0.6

There is another class of colloidal suspensions for which
the wetting-induced forces can be of practical importance.
By coating the colloidal particles with polymers and by
matching the refractive indices of the colloidal particles and ()] unbridged 2

.

the bulk fluid (in our case study the vapor phase or, more = 0 %
realistically in the present context, tierich liquid phase of 5

a binary liquid mixture acting as the solverthe colloidal P

particles behave effectively like hard sphe(sse, e.g., Refs. Y -0.01 bridaed

[47] and[48]). Through this index matching the sum of the ©, 9

bare interaction potentiab(D;R) and the effective interac- & o021 y Awe =0
tion potentialQs4, which would arise if the spheres were o'}“ ’ " A— Awe = 0.001
immersed in the homogeneous and unperturbed bulk solvent, --- Awe =0.005
vanishes. Within our modél is given by the expression in 0.03 } —— Ape =0.01
Eq. (2.2, with p, replaced bypy, which is the density of + + +

the bulk phase. Since the index matching works for the bulk 0 0.2 0.4 06
phase, it does not work for the wetting phase. As a conse- a/R

guence the wetting-induced forces appear against a back- o )
ground effective potential of hard spheres. Therefore, for this FIG. 8. Same asin Fig. 5 but Wltﬁtot,imZ?S_ng (& and
class of colloidal suspensions the wetting phenomena dis?eim=2otim— 2Ly (b). We again choosd™* =1.2, R=20o,

cussed here are expected to have a pronounced effect on théﬂd the interaction parameters as in the previous figures. The dots

phase behavior. Within our model, for index-matched suslndicate the end points of metastable branches. The total interaction

nsions theotal effective interaction potential is given p_otent_ial for index-matched _spheres and bl_JIk fl_uid is ag_gpul-
pensions theotal effective interaction potential is given by sive since the temperature is below the thin-thick transition tem-

Qiotim(D;R) = Q(D;R) = (@(D;R) + Q¢ D;R)) peratureT,; the adjacent spheres “dislike” the presence of addi-
tional liquid in their vicinity, and therefore it is energetically
=QgD;R)—0¢((D;R), (5.4 advantageous to separate them as much as pos&iplg, for the
solutions without bridge is smaller thafl. However, for the
and in analogy td)g and (g ;,; we define bridged solutionsQ¢ i, and Q¢, as well as the corresponding

) wetting-induced forces, are of almost the same size, respectively.
QE,im(D;R):Qtot,im(D;R)_ZQim(R)a (55)

with Q¢ im(D—;R) =0 for the unbridged solutions. Figure the spheres “prefer” the adsorption of a second fluid phase
8 displaysQ;.; iy and Qg iy as function ofa=D —2R for which is thermodynamically close to the bulk fluid phase.
the same sysiem as inYFigs. 5 and (¥, is about 30% Accordingly, a single sphgre immersed in_ the fluid is covered
smaller thanQg for the unbridged solution and also ap- Py & homogeneous wetting layer of this second phase of
proaches its asymptote(ﬁlg) from above. As beforésee the thicknessl . These_ thin wetting layers covering the spher_es
discussion of Fig. 7 aboyethe resulting total effective in- lead to an effective wetting-induced mteractloq potential
teraction between spheres in an index-matched bulk fluid fof!s(D) between the spheres. We have systematically deter-
the state with liquid bridge is still attractive, and of the same™Mined the dependence & on the distanc® between the
order of magnitude as the bare dispersion interaction besPheres in terms of the morphologyz) of the wetting film

tween the spheres, i.e., in the absence of the solvent. enclosing the spherg&gs.(2.13—(2.21)]. We find that the
shape of the effective interaction potentfak(D) depends,

inter alia, on the effective interaction of two spheres im-
mersed in the homogeneowettingphaseg Eg. (2.21)]. This

We have obtained the following main results. contribution, which is independent ¢if(z), is not incorpo-

(1) Based on microscopic interaction potentials andrated in previous phenomenological models for this system
within a simple version of density functional theolggqs. [22,23.
(2.5—-(2.9] we have calculated the grand canonical potential (2) The equilibrium interfacial profiles of the wetting lay-
of a system of two spheres immersed in a bulk fluid phasers are determined numerically by minimizing the free en-
(Fig. 1). The microscopic interactions are chosen such thaergy functionalQQd h(z)] in Egs. (2.13—(2.21). We have

VI. SUMMARY
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calculated the rich structure of these equilibrium profileseffective potential give rise to pronounced hysteresis effects
(Fig. 9 for spheres of radiR=200 (Fig. 2 andR=500  (Fig. 5.

(Fig. 3), where o denotes the diameter of the solvent par- (4) In the case that a bridge of the wetting phase connects
ticles. As function of distanc®, temperaturél, and under- the spheredi.e., D<Dy,) there is an attractive wetting-
saturationA u the system undergoes a first-order “bridging induced interactior(Fig. 5 that pulls the spheres together.
transition” between the two configurations shown in Fig. 1. Within a wide range of separatioas=D — 2R of the spheri-

For a fixed distanc® we have mapped out the phase dia-cal surfaces this force is of the same order of magnitude as
gram of bridging transitions in th&-Ax plane (Fig. 4). It the bare dispersion interaction potentil [Eq. (5.1)] be-

turns out that the bridging transition differs from and to atween the spheres. This bare interaction of two sphieas

large extent is independent of the thin-thick transition of the'€SPonding to the case that they are separated by vacuum

wetting layer on each single sphere which is a remnant of th82S 10 be added to the effective potentij to yield the total
prewetting transition on the corresponding flat substrate!Nteraction potentiall,,; between the spheres which is at-
Thus one has to distinguish between the prewetting line for 42ctive at large distancg&gs.(5.1), (5.3, and Fig. 7.
first-order wetting transition on a planar substrate, the thin- (5 The wetting-induced force between spherical particles
thick transition line for wetting on a single sphere, and the!S €xperimentally accessiblgirectly through suitable force
bridging transition line for two sphere@ig. 4). At two-  Mmicroscopy or mdwectly through scattering tec_hmq(@ep.
phase coexistenatu =0 and forR> ¢, the bridging transi- V B). Moreover, in Sec. V_D we argue that_§h|s for_ce influ-
tion is determined by the equality of the surface areas of th€"CeS the phase behavior stericly stabilized, index-
interfaces in the bridged and the unbridged configurationgnatched colloidal suspensions. The total effective interaction
leading to a universal rati®, (A u=0)/(R+]4)~2.32 for potentlgl for such a case is shown_ln Fig. 8; it |§_repulswe at
the critical distanc®,,(A = 0) of the bridging transition at 2r9€ distances. The phase behaviochdrgestabilized col-
coexistence (Fig. 6 and Sec. IVR Off coexistence, loidal suspension&Sec. V Q is only affected by the wetting-

D (A u.R) is described by a universal scaling functidu. induced interact_ion _potential if the_ screening length of the
(4%()].;1, ) y g idrg Coulomb repulsion in the solvent is smaller thag=D,,

(3) At large distances and depending on the temperaturg 2R~0-3R. Depending on the size of the charges, the salt
oncentration of the solvent, and the underlying dispersion

relative to the thin-thick transition temperature on a single® o X ;
sphere the wetting-induced effective interaction potential cafo"c€S: this criterion may be fulfilled even for colloidal par-
be either attractive or repulsive; in both cases it decayliCles whose radii are only a few tens of nm.

~D© for large D. The bridging transition leads to a strong
break in slope of the effective interaction potential @t
=Dy,. This is the fingerprint of a cooperative phenomenon We gratefully acknowledge financial support by the Ger-
among the fluid particles whose degrees of freedom havean Science Foundation within the special research initiative
been integrated ousee Sec.)l Metastable branches of the Wetting and Structure Formation at Interfaces

APPENDIX: CONTRIBUTIONS TO THE FREE ENERGY
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Our choice of interaction potentialé(r) [Eq. (2.1)] and ¢4(r) [Eq. (2.4)] leads to the following expressions for the
contributions to the free enerdys (with the thermodynamic limit already carried gut

Qei[h(Z)]=2Ap<p.f:dZ(g+(Z)+g_(Z))— fode(h(Z)Jrf_(Z))), (A1)

with

R h%z) (z D\? Ri
g+(z)=2W002?1—W002(L2)+(—t—) ——1+1)
g

h’(z) [z D\? R,

arcta P +|—Fx— +—
o o 20 o

\/hz(z) z D\2 R

—arcta +|—F—] ——
o2 o 20 o

X

: (A2)
whereR;=R+d; and
fo(2) wug(l 1 1 ‘R 1 N 1 )
(2=—|\35 -
- 4 \7 (kt+R)7 (kI_R)7 (ki+R)8 (ki_R)B
( ! ! +R ! + ! ) (A3)
[— u — s
TR k=R (ke +R)? (ke—R)?
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with k. = h*(z) + (z=D/2)*. The contribution()4 is given by
= = 1 [qy®+y*(29°+p?)+3pqy? +p*
ng[h(z)]:_woa.?»(Ap)Zj dzf dZ’(—4 ay y ( q 2p ) 4p ay p _
o Joo ! (p?+2y2q+y?)%?
1 [ay5 +y%(29°+p®+3pqy’ +p*
A 2 2 4302 P/ (A4)
Yi (pe+2yiq+yl)
where the abbreviationg. , p, andq are defined by
yi=02+(zx2')? (A5)
p=h?z)—h*(z"), (A6)
and
q=h%z)+h%z). (A7)

The double integral in EA4) demonstrates the nonlocal functional dependenc@,gfon h(z).
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