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Controlling anomalous stresses in soft field-responsive systems
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We report a phenomenon occurring in field-responsive suspensions: shear-induced anomalous stresses.
Competition between a rotating field and a shear flow originates a multiplicity of anomalous stress behaviors
in suspensions of bound dimers constituted by induced dipoles. The great variety of stress regimes includes
nonmonotonic behaviors, multiresonances, negative viscosity effect, and blockades. The reversibility of the
transitions between the different regimes and the self-similarity of the stresses make this phenomenon control-
lable and therefore applicable to modify macroscopic properties of soft condensed matter phases.

PACS number~s!: 47.50.1d, 83.80.Gv, 75.50.Mm
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I. INTRODUCTION

Field-responsive systems constitute a class of soft c
densed matter systems undergoing significant respo
leading to important macroscopic changes upon applica
of an external field@1–3#. This characteristic has been us
in many applications and may become useful in the imp
mentation of different devices@4#. Electrorheological and
magnetorheological fluids, ferrofluids and magnetic holes
typical examples of field-responsive systems that have b
subject of many recent investigations@5–9#.

These systems consist essentially in two phases, one
dispersion ofsmartactive units, whereas the other is a liqui
or more generally a soft phase, practically inactive to
action of the field. The mechanical response of such unit
the applied field depends on their nature. If the particles b
permanent dipoles, they induce stresses in the liquid ph
during their reorientation process even in the single-part
domain. When the dipoles are induced, their dipolar m
ments are always collinear with the field. Therefore in t
case the only way to induce mechanical responses is thro
the formation of assemblies of particles, which occurs
higher concentrations, when dipolar interactions start to p
a significant role. The elementary assembled unit exhibit
mechanical response is a bound pair of induced dipo
~dimer!.

Our purpose in this paper is to show that stresses indu
by these field-responsive elementary units, the boun
dimers, exhibit a multiplicity of regimes emerging from th
nonlinear nature of the dynamics, not observed in other fie
responsive phases analyzed up to now. The stresses
anomalous as they do not necessarily vary monotono
with the characteristic parameters, and reversible as their
pearance is not subjected to intrinsic structural change
the system. This peculiar property has an important con
quence: it can be used to control the induction of stresse
the solvent phase.

We have organized the paper in the following way.
Sec. II, we introduce the model describing the dynamics
the system. Section III is devoted to analyzing the stres
generated by the particles, whereas in Sec. IV we discuss
rheology of the suspension. Finally, the last section is
tended as a summary of our main results.
PRE 621063-651X/2000/62~4!/5313~5!/$15.00
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II. THE MODEL

To illustrate this phenomenon, we consider a tw
dimensional~2D! model in which the dynamics of the orien
tation w of the bounded dimer captures the two basic ing
dients present in experimental situations, namely a p
rotation caused by the applied field and a term breaking
symmetry of the dynamics that originates from the prese
of a shear flow:

ẇ52A~ t !sin@2$w2a~ t !%#2b sin2 w, ~1!

where the overdot denotes total time derivative. Here
have considered the general case in which the pure rotatio
modulated by the frequencywh by

A~ t !5wc@cos2~wht !1r 2 sin2~wht !#, ~2!

wherewc is a characteristic frequency andr denotes its de-
gree of polarization ranging fromr 51 corresponding to cir-
cular polarization tor 50 holding for linear polarization;
a(t) is a time-dependent phase andb is the shear rate.

Physical realizations of this model are in general the
dynamics of a bounded pair of spherical induced dipoles
the presence of a shear flow with velocity profilebyx̂, and of
an external rotating field with frequencyvh and components
Hx cos(vht)x̂ andHy sin(vht)ŷ. The equation of motion of the
rotating dimer Eq.~1! then emerges from balancing out th
hydrodynamic torque

Thy526ph0~b sin2 w1ẇ ! ~3!

and the external field torque

TM526ph0A~ t !sin@2$a~ t !2w%# ~4!

arising from the energy of dipolar interaction

U~w!5
MV

2@123 cos2$a~ t !2w%#

d3
. ~5!

In the previous equations,h0 is the viscosity of the liquid
phase,a(t)5arctan@r tan(wht)# is the direction of the field,
and MV5Vxe f fH is the induced moment withxe f f the
5313 ©2000 The American Physical Society
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effective susceptibility andV is the volume of the spher
with diameterd. Within this context, the value of the cha
acteristic frequency can be identified withwc

5xe f f
2 Hx

2V2/2ph0d3, and r 5Hy /Hx . Our model is moti-
vated and extends the work of Skjeltorpet al. @10,11#, which
studies a magnetic rotor in the absence of the symme
breaking term, in the context of the nonlinear dynamics o
bounded pair of magnetic holes. For the particular casewc
5mHx/6ph0 and b50, Eq. ~1! also describes the 2D dy
namics of a ferrofluid particle with magnetic momentm in a
static magnetic field and a vorticity field2whẑ, in the ab-
sence of noise@12#.

The motion of the pair induces stresses in the whole s
tem emerging from the conversion of field torque into te
sions in the fluid. In this sense, this process can be viewe
a mechanism of transduction of field energy into stres
whose efficiency is determined by the dynamics. The
duced stress is simply the averaged density of hydrodyna
torque:

S56h0c^ẇ1b sin2 w& ~6!

where c represents the volume fraction of dimers. Noti
that, as we have employed Stokes law in Eqs.~3! and~6!, the
applicability of the general model described by Eq.~1! is
conditioned to the requirement of small angular Reyno
numbersR5ẇd2/n, wheren is the kinematic viscosity@13#.
Since the dimers are usually small, the requirement of sm
angular Reynolds numbers does not constitute a signifi
restriction of the validity of the model.

III. DYNAMICS AND STRESSES

A. Circular polarization

In order to elucidate the main features of this model,
have solved numerically Eq.~1!. In Fig. 1~a! we have de-
picted the stress as a function of the frequency of the fi
for different values of shear rate corresponding to the cas
circular polarization (r 51). Since the stress is an homog
neous functionS(lwc ,lb,lwh)5lS(wc ,b,wh), its behav-
ior can be analyzed in terms of the scaled quantitiesb8
5b/wc , wh85wh /wc , andS8(wh8 ,b8)5S/wc .

In the absence of shear flow (b850), the interplay be-
tween hydrodynamic and field effects originates two ba
dynamic regimes determined by the value ofuwh8u. When this
frequency is smaller than the thresholduwh8u51, the dimer
follows the field with a fixed phase-lag and the same ang
velocity, performing uniform oscillations. At frequencies
higher than the threshold value the system is no longer
to follow the field and undergoes periodic rotations w
stops and backward motions~jerky oscillations! @10#. These
two modes of motion are manifested in two different regim
of the stress in Fig. 1~a!. A linear regime, foruwh8u,1, in
which the scaled stress is just the frequency of the field
a monotonous decay regime foruwh8u.1, where the modulus
of the stress decreases due to jerky oscillations. During b
ward rotations field energy is wasted inducing ‘‘wrong si
tensions.’’ When they become as important as forward ro
tions, which occurs at high frequencies, the net transduc
y-
a

s-
-
as
s
-
ic

s

ll
nt

e

d,
of

c

r

le

s

d

k-

-
n

of energy, and consequently the induced stress, is practic
nonexistent.

The presence of a shear flow completely modifies the
namical response leading to the appearance of a richer
nomenology. The role played by the flow is manifold. O
one hand, it breaks the symmetry of the dynamics by fixin
direction of rotation that implies that the propertyS8(wh8)
52S8(2wh8), which holds in the absence of shear, is
longer valid. On the other hand, the regimes in which one
the two competing rotational mechanisms, related to the fi
and to the flow, dominates are intrinsically different. Final
the presence of the new time scaleb is responsible for the
appearance of newsynchronizationmechanisms.

For b8,1, the strength of the field dominates and t
behavior of the stress is similar to that of the caseb850 but
shifted in frequency by an amountb8/2 as one can notice in
Fig. 1~a!. In Fig. 1~b!, we have represented some snapsh
of the dynamical modes of rotation corresponding to the d
ferent regimes in the stress. Upon increasingwh8 , we can
generate the sequence of modes: jerky~first two snapshots!-
uniform-jerky-localized oscillations. We have found a d
namic transition, fromjerky to localized oscillations,at a
characteristic positive frequency, which depends onb8, with
its subsequent macroscopic consequences in the st
Moreover, competition between flow and field involves t
breaking of the symmetry of the stress and leads to the
crease of the stress peak at positive frequencies.

FIG. 1. ~a! Scaled stress as a function of the frequency of
field for some representative values ofb8 for the case of circular
polarization. Below we include polar plots ofw vs time ~radially!
representing the dynamical regimes for different values ofwh8 and
for values of the scaled shear rate~b! b850.5, ~c! b858.0.
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In the opposite case, whenb8.1, the effects of the flow
dominate and in this situation, even at frequencies nea
zero, the rotation imposed by the field is very different fro
the one dictated by the shear. As we can see in Fig. 1~a!, the
positive peak has definitively disappeared and the beha
of the stress is characterized by the development of sm
multiresonancesfollowed by linear increases and decreas
of the stress with slopes21, 22 . . . . Theorigin of this
behavior is the synchronization of the field and the she
exciting mode locks of the pair with frequencies ratioS8:wh8
of 1:1 or 2:1, etc. It is important to highlight that, for eve
value of the shear rate, stress curves overlap at high
moderate frequencies.

As an illustrative example, in Fig. 1~c! we have depicted
some snapshots of the dynamics forb858 corresponding to
the different regimes of the stress obtaining a sequenc
modes: jerky-uniform-jerky~third and fourth snapshots! lo-
calized oscillations, upon increasingwh8 .

It is worth pointing out that the frequency of the negati
stress minimum, where transition between linear and je
oscillations regime occurs, follows a power law in terms
the shear rate:wmin8 ;2(b811)0.45, as it is shown in Fig. 2.

B. Elliptical polarization

Even more interesting is the case of elliptical polarizatio
In Fig. 3~a!, we have depicted the stress against freque
for r 50.5 and different values of the shear rate. In the
sence of shear, the dynamics basically exhibits three dif
ent modes as we increaseuwh8u: ~i! a phase-lockedmode,
where the system performs modulated@by the termA(t)]
uniform rotations with average frequencywh8 ; ~ii ! a modu-
lated ‘‘jerky’’ oscillations mode above a critical frequenc
~iii ! and localized oscillations, with null average velocity
above another characteristic frequency. These modes ar
sponsible for three different behaviors in the stress obse

FIG. 2. Scaling law for the frequency corresponding to the ne
tive stress minimum for different values of the shear rate, in
case of circular polarization.
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in Fig. 2~a!: a linear regime nearuwh8u50, a decay in the
modulus due to jerky oscillations, and a nonstress zone w
the net rotation vanishes, respectively.

The introduction of the flow changes these regimes s
nificantly. For very low values ofb8, the modes of rotation
are slightly modified, as shown in Fig. 3~b!; the curve is
simply shifted byb8/2 in frequencies; and the scaled stre
when localization appears is no longer zero but saturate
approximatelyb8, positive even forwh8,0.

At a critical value of the shear rate, the positive stre
maximum disappears as shown in Fig. 3~a! for b850.5.
Above this value of the shear rate,multiresonancesdevelop
near wh8;0. The critical frequency denoting the transitio
from uniform to jerky oscillations, corresponding to the p
sition of the minimum of the stress, is shifted following
power law with an exponent near 0.5. Additionally, jerk
oscillation mode for negative frequencies persists in a wi
range, which causes in turn persistence of the negative s
region at moderate/high frequencies. The dynamic transi
from jerky to localized oscillations at negative frequencies
the signature of a change in the sign of the stress.

IV. RHEOLOGY

When represented as a function of the shear rate,
stress exhibits a wide variety of different anomalous beh
iors. This feature contrasts with the monotonous behav
observed in systems inert to the applied field@2#. The exis-

-
e

FIG. 3. ~a! Scaled stress as a function of the frequency of
field for some representative values ofb8 for the case ofr 50.5.
Below we include polar plots ofw vs time ~radially! representing
the dynamical regimes for different values ofwh8 and for values of
the scaled shear rate~b! b850.2 and~c! b858.0.
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tence of such a rich phenomenology is manifested in Fig
and 5. Their most salient feature is that upon fixing a pro
value of the frequency of the field, we can monitor and p
mote drastic changes in the mechanical response of the
tem.

FIG. 4. Scaled stressS8 as a function of the shear rateb8 for
some values of the frequency of the fieldwh8 as well positive
~against the rotation induced by the flow! as negative~in the same
direction as the rotation of the flow! for the case of circular polar
ization.

FIG. 5. Scaled stressS8 as a function of the shear rateb8 for
some values of the frequency of the fieldwh8 as well positive
~against the rotation induced by the flow! as negative~in the same
direction as the rotation of the flow! corresponding tor 50.5.
4
r
-
ys-

For some determined values of the shear rate the indu
stress has a steep increase. Consequently, the system ex
a multiresonant response, as we can see forwh850.5 in Fig.
4. These resonances originate from the synchronization
the field with the hydrodynamic response of the syste
which enhances the induction of tensions.

For a wide range of values of the frequency and a w
interval of values of the shear rate, the response of the
tem to the variations of the shear rate is inhibited~no-
responseor ‘‘blockade’’ regime, corresponding to the fla
curves in Fig. 4!.

There also exists a regime where the transducted fi
energy improves the rotation of the pair in the shear, lead
to a reduction of the apparent viscosity of the fluid. Th
phenomenon@12–15# has been referred to as thenegative
viscosity effect.

Finally, there appears monotonousshear thickening,
shear thinningregimes or combinations of both as is man
fested in Fig. 4.

It is worth pointing out that the stress curves are qu
self-similar, as Fig. 6 manifests. Therefore, we can tune
regime we are interested in by properly modifying one of t
parameters of the problem. Moreover, the existence of
scaling invariance ensures its accessibility in all the range
values.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have shown the possibility of generat
stresses of very different natures in assemblies of pairs
induced dipoles. The implementation of a model that mim
the dynamics of the field-responding unit leads to the app
ance of a rich variety of nonlinear stress regimes involv
multiresonances, shear thickening and thinning, negative
cosity or blockades.

FIG. 6. Scaled stress for some values of the shear rate,
function of the scaled frequencywh8Ab08/b8. We have represented
the caseb08532, where the self-similarity of the curves becom
manifested.
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This multiplicity of intrinsically different behaviors to
gether with the reversible nature of the transition mec
nisms can be utilized to control the induction of stresses
the inactive phase. A broad field of applications of this ph
nomenon can then be open. The importance of the contro
the stress lies in the fact that stress itself may induce sig
cant modifications in soft condensed matter phases. To m
tion just a few examples, stresses may induce structural t
sitions in surfactant solutions@16# or gelation@17#; they can
also modify the orientation of surfactant phases, liquid cr
tals @18# or polymers@19#. Moreover, alterations in the dis
tribution of stresses may lead to important changes in
rheological properties of the system@14#.

In the cases we have analyzed, possible noise sou
have not been considered. Whereas absence of noise co
tutes a good approximation for large particles, as magn
holes@10#, smaller particles, as in the case of a ferrofluid, a
ds
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fi-
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e

es
sti-
ic
e

affected by Brownian torques. In the first case, the model
have proposed through Eq.~1! is enough to describe th
dynamics of the suspended phase. For the ferrofluid, h
ever, the model must and can be easily generalized to inc
noise sources.

Our findings may open new perspectives for research
these systems offering some insight into the mesosco
mechanisms controlling macroscopic nonlinear behaviors
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