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Casimir dispersion forces and orientational pairwise additivity
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A path-integral formulation is used to study the fluctuation-induced interactions between manifolds of
arbitrary shape at large separations. It is shown that the form of the interactions crucially depends on the choice
of the boundary condition. In particular, whether or not the Casimir interaction is pairwise additive is shown to
depend on whether the “metallic” boundary condition corresponds to a “grounded” or an “isolated”
manifold.

PACS numbses): 82.70.Dd, 05.70.Jk, 05.70.Np

I. INTRODUCTION AND SUMMARY The same picture can help us answer the second question.
Many-body interactions can be expressed as the sum of
External objects that are immersed in a fluctuating meMmany-body interactions of the multipoles of different bodies
dium, and modify the fluctuations in their vicinity, experi- In the medium. When extended bodies are at close separa-
ence induced interactions with one anotfier5]. These in- tions, and all the multipoles have comparable contributions,

teractions are most often independent of the structurgll@ny-Pody interactions of nontrivial forms res{if-9]. On

details, and are in turn highly sensitive to the geometry of th he other hand, for bodies at large separations, the leading-

. . o : rder contribution comes from the sum of two-body interac-
%bejgfjfnand their mutual arrangements while immersed in thgOns of the lowest nonvanishing multipol0].

The st d d fth int " the sh In this paper, we study the issue of orientational pairwise
€ strong dependence or these interactions on e s al3‘?.‘iditivity [10,11], which is to determine whether the orien-
of the objects raises the issue pairwise additivity Is it

; ! ; ) ) tational dependence of the interactions could be obtained
possible to express the fluctuation—induced interaction béyom the summation of a pair potential. A path-integral for-

tween two extended bodies as the sum of a pair potential, Qfy|ation is used to study the fluctuation-induced interactions
the interaction between several bodies as the sum of tWayetween manifolds of arbitrary shape at large separations, in
body interactions? the context of a multipole expansion. It is shown that the
It is well known that a pairwise summation of the van derform of the interaction crucially depends on whether the
Waals interaction gives the correct power law for the Ca-manifolds aregroundedor isolatedin an electrostatic anal-
simir energy[3]. Let us take a pair potential of the form ogy. In the grounded case, the manifolds are connected to a
—A/r", with n=6 for the thermal case and=7 for the charge reservoirto maintain a constarjotential and thus
guantum casf2], andA being a constant to be determined. If the leading fluctuations armgmonopolar Isolated manifolds,
one tries to fix the coefficient by summing the pair potentialhowever, are constrained to have fixed overall charges, and
over two bodies and equating the result to the expression fdtan only undergdaipolar fluctuations. The leading interac-
the Casimir interaction between the bodies, one finds out thdton between grounded manifolds is found to be of the form
a different coefficient is needed for every geometry. [(monopole-(monopole]*, and is independent of their
To understand this, one should note that the van deghapes and orientations. The _Ieadlnzg shape d(_apenc_Jent term
Waals interaction is due to dipolar fluctuations. When twotomes from the[ (monopole-(dipole)]” term, which gives
extended bodies are at a close separation, one can show tii§€ t0 orientational dependencies that are pairwise additive.
the fluctuations of all the multipoles in fact contribute com- | "€ interaction between isolated manifolds, however, is
parably to the Casimir energy, and thus summation of théjom'natm.j by the{(d}pqle)—(dlpc.)lle)] term to the leading
contribution due to the dipolar fluctuations cannot by itselforder’ which isnot pairwise add|t|ye.
account for the interactiof6]. When the bodies are at large The re_st of the paper IS organlzed as follows. In Sec. I,
separationglarger than their typical siz¢sthe contribution the pgth-mtegral _formulat|on IS devglop_ed and general_ex-
due to higher multipoles is in fact systematically weaker pressions are derived for the fluctuation-induced interactions

However, there is still a discrepancy between the sum of éor d|ﬁgrent types of poundary cond|t|9_r13. In Sec. I, the
(van der Waals pair potential, and the contribution of the interactions are examined for the specific examples of sym-

dipolar fluctuations to the Casimir energy. In the spirit of ametric objects such as spheres, and also highly asymmetric

(second ordegrperturbation theory, the correct way of calcu- objects $UCh as rods and dlsks_,_where_the above fea_tures_can
R . - ebe manifestly understood. Critical fluids are examined in

sum of the dipole-dipole interactions over the two bodies Sec. IV, as a special case, and a conclusion follows in Sec.

and then square it and take the average. This is clearly i}{'
contrast to the pairwise summation of the van der Waals
interaction, which corresponds to taking the square of the
local dipolar fluctuations and averaging, and then summing Consider ad-dimensional medium, in which a field is
over the two bodies. undergoing thermal fluctuations, amdimmersed external

Il. PATH-INTEGRAL FORMULATION
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bodies (manifoldg denoted byM,(a=1,...,n), which The fluctuation-induced interactions between the conduc-

modify the fluctuations. Let us assume that the fluctuationgors can now be inferred from the above partition function.

are scale-freémassless and thus can be described by the However, it is important to specify the boundary conditions
Hamiltonian for the conductors. One possibility is that the conductors are
grounded, that is to say they are maintained at a constant

K 4 ) fixed potential(Dirichlet boundary conditionby being in
HL¢1= Ef d™x(V¢)“. (1) contact with a large reservoir of charges; a so-called
“ground.” In this case, the free energy of the system is

The field could represent a component of the electromagnetiebtained as
field (e.g. the electric potentigin a dielectric medium or

vacuum[3], the electrostatic potential in charged fluids at Fg=—kgTInZ[4,=0]. 5)
very low salt concentrationf5,12,13, an order-parameter
field for a critical binary mixture or a magnetic syst¢f], The other possibility is that the conductors are made iso-

a massless Goldstone mode arising from a continuous synfated, and maintain constant amounts of net charges, which

metry breaking 7], or an elastic deformation field for fluc- we assume to be zero. In this case, the potential field at the

tuating membranes and surfadé$,15,18. conductors can take any value to help maintain the neutral-
In an electrostatic terminology, which we take up in whatity, and thus the free energy is obtained as

follows for simplicity, one can view each manifold agan-

ductorthat requires a constant value for the potential field in +oo

the whole volume that it encloses. A restricted partition func- Fis=—kgT In( f H do, 2] ¢a]> . (6)

tion, which requires a value ap,, for the potential field on e

the ath manifold, can then be written as ) ]
Note that an isolated conductor has a fixagerall charge,

n which should be contrasted with the case of a Neumann

Z[¢a]=f Do) [I 6{dly — poye 2. (20 boundary condition where the local surface charge-density

a=1 “ d,¢ is fixed.

] ) ) To further proceed, we focus on the situation in which the
Following Ref.[7], the functional delta functions can next be anifolds are far from each other, namely, they are at sepa-
represented by introducing the Lagrange multiplier fieldsyations much larger than their typical sizes. In this case, we
pa(X) as can perform a multipole expansion for the charge-density
distribution. For example, the Coulomb interaction between
the ath and theBth conductors can be written ag € 3)

. K
Z[¢al= f Do 11 fMaDPa(X)eXP{_E f dx(V ¢)?

Po(X)pp(X’)
Sa(d—2)[x—X'+R 4|92

— d dy
i3 J dpra<x>[¢><x>—¢a]] Mg J dxd’x

n 1 _ QaQﬁ _ QBPa'ﬁaﬁ_QaPﬁ'éaﬁ
ZZOXC:!_;_[l MaDpa(X)ex%—R Sd(d—Z)Rg;Z SdR?ylzgl
P, Ps—dP,-R,sPs R,
x> | dixd®x’ po(x)G(x—X)p4(X') +( £ —F L B) o 7)
a,B SdRaﬁ
—i2 %f ddXPa(X)}, (3)  in which R,z is the distance between the two conductors,
a and the multipoles are defined as
in which
Q.= | d%0,0=F,K)leo, ®
G(x—x)=(=V?), = - 4
P Sy(d=2)x—x|* ) 10
Pa,i:f d XXiPa(X)Zi—WPa(kﬂk:o, 9
I

with  Sy=27%94T'(d/2) (the surface area of the
d-dimensional spheje Z, is the free partition function, and
fMaDpa(x) implies a functional integration only in the re- with

gion enclosed bW . [In other words, the Lagrange multi-

plier field p,(X) is nonzero only Within_the volume atl , _.] B (k) = f dixp,(x)elk*, (10)
Note that one should view thg,(x) fields as fluctuating

charge-density fields, and E8) as the partition function of a

set of interacting Coulomb plasmas, in the electrostatic con- We also need to make a similar multipole expansion for
text [15]. the self energy terms at each manifold
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h = f ity Pe0PX) T j I1 dQ.dp,. - exp( -y ¢aQa)
o Su(d—2)[x—x'[972 @ «
d 1. . 1 5
= f (ZT)d Fpa(k)pa(—k). (11) XGX[{ - R Ea: [’)/aQa—i_ ’)/a,ij Pa,ipa,j+ te ]
1 QaQB

We can introduce the multipoles, using the Taylor expansion

of the charge density in Fourier space 2K a7p

Sy(d—2)R% ;2

 Rapi(QpPai— QuPpi)

~ ~ 1 dp,(k -
Po(K)=pa(0)+ = pally) ikj+- - SaRGs"
[ S
5 —dR,z iR )P4 iPs
= QP ikt (12) 4 L B d”’") LA e
’ SdRaB

The above expansion can be formally viewed as an exparfote that we have neglected a Jacobian in changing the mea-
sion in powers ofkL,, whereL, is a typical size of the g 16 of integration. However, since the transformation from
manifold. The expansion is thus convergent only for suffi-ihe charge-density distribution to the multipole description is

ciently small values ofk, corresponding to length scales jinear, one can show that the Jacobian is just an uninteresting
larger than the size of the manifolds. Since the self energy,nstant.

integral in Eq.(11) involves contributions from higher wave Finally, using Eqs(5) and (16), the interaction free en-

vectors, a multipole expansion for the self energy will beergy for grounded manifolds can be obtained as
divergent. However, the expansion in Ed_2) indicates that

all the information concerning the first few multipoles of the KT yo iyt

charge distribution is already contained in the lowWwehavior Fo=— iz “Z—EM

of the functionp (k). Since we are only interested in the 4S5 a#p [ (d—2)°Ryp

dependence of the partition function Eg) on the distances (ylyslio Lo bR g

R,z all we need to know about the self energy is its depen- + Ya Ygii " Yaii ¥ )NapiTap. +O(1/R¥).

dence on the first few multipoles, which is in fact well be- Ri([;’*l)

haved. 1
Let us denote the domain of convergence for the expan- (17)

si(_)n_ in Eqdaz) ir;]k spacedbyDa._Th(;sbdonr]]ain contains ﬂ;eh The first term in Eq(17) is a squared monopole-monopole
origin, and its shape Is determined by the geometry of t Snteraction, and is independent of the relative orientations of
conductor. Loosely speaking, its size in each direction is s&he conductors in space. The second term, on the other hand
by the inverse of the size of the conductor in that directiony < tha form of a squared monopole—dipo’Ie interaction. and ’

t'\rl:'jw dwe can reztrlct tlhktl?r:egral ;nk}h? se]!f enet[]gy OTYJO goes depend on the orientations through an effective dipole-
IS domain, and negiect the contribution from the outside o ipole interaction, which is pairwise additive.

D, , because all the dependence on the first few multipoles is Similarly, for isolated manifolds, Eq$6) and (16) yield
included in the domairD,. We thus have the interaction as

d% 1. - kgT 'y;:ilk'}’;:]!-l A
= S — F.=—— B PT(Si—dR iR 4
haa IDQ(Zﬂ)d k2pa(k)pa( k)+ is 48(21 C;ﬁ Ri% ( i ap,i aﬂv])
= yaQi+ Ya,ij Pa,i Pa,j +ee, (13) X (5k| - dARa'B'kARaBJ) + O(l/R2d+2). (18)
in which Note that the leading term in Eq18) is a squared dipole-
dipole interaction, and thus it is not orientationally pairwise
additive.
d% 1
’)/azf PPN Fv (14)
D, (27) lll. APPLICATION TO SPECIFIC GEOMETRIES

The multipole expansion allowed us to calculate the gen-
d9 kikj eral forms of the fluctuation-induced interactions between
Ya,ij = j K2 (15 manifolds of arbitrary shape and with arbitrary orientations
Po(2m) with respect to one another, for the two cases of isolated and
grounded boundary conditions. All the specific information
and so forth. about the shapes and the orientations of the manifolds are
Putting all the pieces together, tRg,;-dependent part of encoded in they tensors defined above. This information is
the partition function can be written as in fact of three kinds(i) the overall magnitude of the tensors
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that are set by the typical sizes of the manifolds) the L d d
orientational dependencies that make up the tensorial struc- F{Q‘L — kBTl_Zdz[al. az_d(al' ﬁlz)(az. |i12)]21 (22)
ture, and are dictated by the structure of the symmetry axes R

or “the principal axes” of the manifolds, andii) overall
numerical prefactors of order unity. In this section, we try to
use symmetry arguments to determine jhiensors for some
simple geometries within the numerical prefactors, without _

actually specifying the exact shape of the integration domain C. Two disks

D. The final piece of information, which is the numerical  The y tensors for a disk of radiusand thickness can be
prefactor, appears to be very sensitive to the exact geometgimilarly calculated within numerical prefactors using sym-
of the manifold(and thus to that oD), and can in general be metry. The zeroth rank tensor can be calculatedygs

for the isolated case, which has a squared dipolar form and is
not pairwise additive.

calculated using the techniques developed in Ri]. ~ [5dk, [ g dk, kf /(K2 +k?)~1/L9"2, where thez-axis
is normal to the disk, and denotes the remaining directions
A. Two spheres in the subspace of the disk. The second rank tenggy is

The vy tensors for a sphere of radiliscan be easily esti- dlagonall with only two independent = components:

mated using symmetryy~ [3 k4~ 1dk/k?~1/L9"2 and Yoz~ I 2dk [ dk KA (K + ki) ~1/(aL®"?),  and
Ys,ij ™ 6ij o"k4 tdk~ g /LY. Using Eqs(17) and(18), the  y, |, ~ [¥adk, [t dk, k/(K2+k?)~11L% If we denote
interaction between a sphere of radiusand another sphere  the unit vector perpendicular to the disk by the inverse

of radiusL , that is at a distanc® reads second ranky tensor that appears in the expression for the
d-2 d-2 interaction can be written agyi~L%&;—nin)), in the
gsph_ _j 7+ 2 19 limit of small thickness.
ar B 2(d—2) 1 ( ) R ; .
R Using Egs(17) and(18), the orientation dependent part of

the interaction between a disk of radiugand normal vector

for the grounded case, and n,, and another one with radils, and normal vecton, that
is a distancer apart, reads
FPhe Kk TLCliLg 20 d-1 d-1
is 8T —za (20) T
gr B R2(d-1)
for the isolated case, with no orientational dependence due to L L
symmetry. X L= (MR (1= (- Rip?]
Lo Ly
B. Two rods (23

The calculation of they tensors for a rod of length and ¢, the grounded case, which is pairwise additive, and
thicknessa is more tricky. Using the cylindrical symmetry,

one obtainszy, ~ [g-dk, S 52dk, k%~ /(k2+k?)~1/L972 for _ LdLd

d<3, and~ 1/(Lad%"3) for d>3, where the axis is parallel Fdsk —kgT

to the director of the cylinder, and denotes the remaining

directions that are perpendicular to it. The second rank tensor

Yrij IS l(}ILiagonlf;la! Withd 02nlg/ tV\210 ir;depenfjient components:

Yez~Jo Ak S5 dk KT “ky/(k;+kT)~ 1LY for d<3, and X (Ny- Rys) (Ng-No) 4+ d2(Ny - Ryp)2(Ny- Ry0)2],

~1/(L3%2) for d>3, and y, , , ~ [ ¥ dk,fYadk, K9/ (K2 (P2 ReH{My-Np) + 6(My - Reg (M- Re)"]

+kf)~1/(Lad*1). If the unit vectord denotes the director

of the rod, the inverse second ramgktensor that appears in for the isolated case, which has a squared dipolar form and is

the expression for the interaction can be written )a_§1]f not pairwise additive.

~L%d; for d<3, in the limit of small thickness. Note that

in this limit, the inversey tensors are vanishing fat>3, IV. CRITICAL FLUIDS

and thus rods do not interact in these high dimensions.
Using Egs.(17) and (18), the orientation dependent part

of the interaction between two rods of lengthsandL,, and

directorsd; andd,, which are a distanc® apart, readsd

[d2—d—2+(n;-n,)2+(2d—d?)

RZd

X(Ny-Ryp)?+(2d—d?)(ny- Ryp2—2d(ny- Ryy)

(24)

As mentioned above, interactions could be induced be-
tween objects that modify thermal fluctuations of an order-
parameter field for a critical binary mixture or a magnetic
system[14]. In this case, two kinds of boundary conditions

<3) are usually consideredi) the ordinary boundary condition
Ld-1 d-17 L that suppresses_the order param__eter at the boundary, z_ind thus
prod _ _j 7Lt "2 _1(a Ryp)2+ _2(a Ry)? does not break its symmetry, afid) the symmetry breaking
ar B 2(d-1) |L 1 1 L 2 1 ) . . L.
R 2 1 boundary condition, which sets a nonvanishing value for the

(21 order parameter at the boundary. Note that the ordinary
boundary condition is the same as the grounded boundary
for the grounded case, which is pairwise additive, and condition in the electrostatic terminology, and that it is dif-



5246 RAMIN GOLESTANIAN PRE 62

ficult to imagine an analog of the isolated boundary condi-netic terminology, while the one for the ordinary case is

tion in these systemd7]. given by the four-point correlation functiofthe energy-
The fluctuations in a critical fluid are characterized by theenergy correlation[19]. Guided by this, one can think of an

universality class of the system. For the case when the fluiéffective Gaussian Hamiltonian of the form

can be described by a Gaussian Hamiltonian as given in Eq.

(1), all of the above results for the grounded manifolds hold

for the case of the ordinary boundary condition. The interac- Hl d]= Ef

tion between manifolds with symmetry-breaking boundary

conditions, where the value of the order parameter is set to . ) . .
® on theath manifold, is calculated as which yields a correct form for the two-point function, and

calculate the fluctuation-induced interactions using the above
Foo=—ksTINZ[p,=D,], (250  methodg7]. However, although it yields a correct result for

the symmetry-breaking cas@lmost by construction it
where Z[ ¢,] is given by Eq.(16). One obtaing 18] gives a corresponding form for the ordinary case as
1/R?©@=2%7) that is not correct. The reason is that the above
+O(1/R24-4) effective Gaussian Hamiltonian does not give a correct four-
: point correlation function. However, it can be constructed to

(26)  do so by usingg” instead ofq®~” in Eq. (27).

d

d
(Z:)dqz‘”lrﬁ(mlz, (2

KO, Dgy, v,

FGauss. _ kgT
d-2
Su(d—=2)R,p

sb 2 )

It is important to note that this interaction is independent of
the orientations of the manifolds, and that the leading-order
orientation dependent term for the symmetry-breaking The analysis that is presented here is aimed at emphasiz-
boundary condition is the same as the case of ordinaring the crucial role of the type of boundary conditions on
boundary condition, and is given as in Eq7). This inter-  fluctuation-induced interactions. Unlike the case of extended
action is orientationally pairwise additive. objects at close separations, where different types of bound-
For a nontrivial universality class, one should make use otry conditions all lead to the same form of interaction, we
more complicated Hamiltonians with nonlinear terms. It isfound that for objects at large separations, the type of bound-
then possible to calculate the Casimir energy expressionsry conditions determine the very form of the interactions,
using field-theoretical techniqugg]. The interaction be- and, interestingly, whether or not they are pairwise additive.
tween two spheres in an arbitrary critical system has in fact We finally note that in addition to the classic case of van
been calculated exactly in Refl9] using conformal- der Waals interaction between conductors in vacuum, the
invariance methods. The interaction for the case ofgrounded and isolated boundary conditions have also found
symmetry-breaking boundary conditio@ both sphergds  applications in the case of fluctuation-induced interactions in
obtained as RY 2*7 [20], while for the case of ordinary elastic media, where they lead to interesting effects
boundary conditions it is found asR7“~ ") wheren and  [10,15,16.
v are critical exponents of the systdi9]. One can easily
check that for the case of the Gaussian universality class,
where =0 and v=1/2, they coincide with the results of
Egs.(26) and(17). I am grateful to M. Kardar for invaluable discussions and
It is interesting to note that the power law for the comments. This research was supported in part by the Na-
symmetry-breaking case is given by the two-point correlational Science Foundation under Grant Nos. PHY94-07194
tion function of the field(the spin-spin correlation in mag- and DMR-98-05833.

V. CONCLUSION
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