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Casimir dispersion forces and orientational pairwise additivity
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A path-integral formulation is used to study the fluctuation-induced interactions between manifolds of
arbitrary shape at large separations. It is shown that the form of the interactions crucially depends on the choice
of the boundary condition. In particular, whether or not the Casimir interaction is pairwise additive is shown to
depend on whether the ‘‘metallic’’ boundary condition corresponds to a ‘‘grounded’’ or an ‘‘isolated’’
manifold.

PACS number~s!: 82.70.Dd, 05.70.Jk, 05.70.Np
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I. INTRODUCTION AND SUMMARY

External objects that are immersed in a fluctuating m
dium, and modify the fluctuations in their vicinity, exper
ence induced interactions with one another@1–5#. These in-
teractions are most often independent of the struct
details, and are in turn highly sensitive to the geometry of
objects and their mutual arrangements while immersed in
medium.

The strong dependence of these interactions on the s
of the objects raises the issue ofpairwise additivity: Is it
possible to express the fluctuation–induced interaction
tween two extended bodies as the sum of a pair potentia
the interaction between several bodies as the sum of t
body interactions?

It is well known that a pairwise summation of the van d
Waals interaction gives the correct power law for the C
simir energy@3#. Let us take a pair potential of the form
2A/r n, with n56 for the thermal case andn57 for the
quantum case@2#, andA being a constant to be determined.
one tries to fix the coefficient by summing the pair poten
over two bodies and equating the result to the expression
the Casimir interaction between the bodies, one finds out
a different coefficient is needed for every geometry.

To understand this, one should note that the van
Waals interaction is due to dipolar fluctuations. When t
extended bodies are at a close separation, one can show
the fluctuations of all the multipoles in fact contribute com
parably to the Casimir energy, and thus summation of
contribution due to the dipolar fluctuations cannot by its
account for the interaction@6#. When the bodies are at larg
separations~larger than their typical sizes!, the contribution
due to higher multipoles is in fact systematically weak
However, there is still a discrepancy between the sum o
~van der Waals! pair potential, and the contribution of th
dipolar fluctuations to the Casimir energy. In the spirit o
~second order! perturbation theory, the correct way of calc
lating the dipolar Casimir energy is to consider the pairw
sum of the dipole-dipole interactions over the two bodi
and then square it and take the average. This is clearl
contrast to the pairwise summation of the van der Wa
interaction, which corresponds to taking the square of
local dipolar fluctuations and averaging, and then summ
over the two bodies.
PRE 621063-651X/2000/62~4!/5242~6!/$15.00
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The same picture can help us answer the second ques
Many-body interactions can be expressed as the sum
many-body interactions of the multipoles of different bodi
in the medium. When extended bodies are at close sep
tions, and all the multipoles have comparable contributio
many-body interactions of nontrivial forms result@7–9#. On
the other hand, for bodies at large separations, the lead
order contribution comes from the sum of two-body intera
tions of the lowest nonvanishing multipole@10#.

In this paper, we study the issue of orientational pairw
additivity @10,11#, which is to determine whether the orien
tational dependence of the interactions could be obtai
from the summation of a pair potential. A path-integral fo
mulation is used to study the fluctuation-induced interactio
between manifolds of arbitrary shape at large separation
the context of a multipole expansion. It is shown that t
form of the interaction crucially depends on whether t
manifolds aregroundedor isolated in an electrostatic anal
ogy. In the grounded case, the manifolds are connected
charge reservoirto maintain a constantpotential, and thus
the leading fluctuations aremonopolar. Isolated manifolds,
however, are constrained to have fixed overall charges,
can only undergodipolar fluctuations. The leading interac
tion between grounded manifolds is found to be of the fo
@(monopole!-~monopole!#2, and is independent of thei
shapes and orientations. The leading shape dependent
comes from the@(monopole!-~dipole!#2 term, which gives
rise to orientational dependencies that are pairwise addit
The interaction between isolated manifolds, however,
dominated by the@(dipole!-~dipole!#2 term to the leading
order, which isnot pairwise additive.

The rest of the paper is organized as follows. In Sec.
the path-integral formulation is developed and general
pressions are derived for the fluctuation-induced interacti
for different types of boundary conditions. In Sec. III, th
interactions are examined for the specific examples of s
metric objects such as spheres, and also highly asymm
objects such as rods and disks, where the above feature
be manifestly understood. Critical fluids are examined
Sec. IV, as a special case, and a conclusion follows in S
V.

II. PATH-INTEGRAL FORMULATION

Consider ad-dimensional medium, in which a fieldf is
undergoing thermal fluctuations, andn immersed externa
5242 ©2000 The American Physical Society
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PRE 62 5243CASIMIR DISPERSION FORCES AND ORIENTATIONAL . . .
bodies ~manifolds! denoted byMa (a51, . . . ,n), which
modify the fluctuations. Let us assume that the fluctuati
are scale-free~massless!, and thus can be described by th
Hamiltonian

H@f#5
K

2E ddx~“f!2. ~1!

The field could represent a component of the electromagn
field ~e.g. the electric potential! in a dielectric medium or
vacuum @3#, the electrostatic potential in charged fluids
very low salt concentrations@5,12,13#, an order-paramete
field for a critical binary mixture or a magnetic system@14#,
a massless Goldstone mode arising from a continuous s
metry breaking@7#, or an elastic deformation field for fluc
tuating membranes and surfaces@10,15,16#.

In an electrostatic terminology, which we take up in wh
follows for simplicity, one can view each manifold as acon-
ductor that requires a constant value for the potential field
the whole volume that it encloses. A restricted partition fun
tion, which requires a value offa for the potential field on
the ath manifold, can then be written as

Z@fa#5E Df~x! )
a51

n

d$fuMa
2fa%e2H[f] . ~2!

Following Ref.@7#, the functional delta functions can next b
represented by introducing the Lagrange multiplier fie
ra(x) as

Z@fa#5E Df~x! )
a51

n E
Ma

Dra~x!expH 2
K

2E ddx~“f!2

1 i(
a

E ddxra~x!@f~x!2fa#J
5Z03 )

a51

n E
Ma

Dra~x!expH 2
1

2K

3(
a,b

E ddxddx8ra~x!G~x2x8!rb~x8!

2 i(
a

faE ddxra~x!J , ~3!

in which

G~x2x8!5~2¹2!x,x8
21

5
1

Sd~d22!ux2x8ud22
, ~4!

with Sd52pd/2/G(d/2) ~the surface area of th
d-dimensional sphere!, Z0 is the free partition function, and
*Ma

Dra(x) implies a functional integration only in the re

gion enclosed byMa . @In other words, the Lagrange mult
plier field ra(x) is nonzero only within the volume ofMa .#
Note that one should view thera(x) fields as fluctuating
charge-density fields, and Eq.~3! as the partition function of a
set of interacting Coulomb plasmas, in the electrostatic c
text @15#.
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The fluctuation-induced interactions between the cond
tors can now be inferred from the above partition functio
However, it is important to specify the boundary conditio
for the conductors. One possibility is that the conductors
grounded, that is to say they are maintained at a cons
fixed potential~Dirichlet boundary condition! by being in
contact with a large reservoir of charges; a so-cal
‘‘ground.’’ In this case, the free energy of the system
obtained as

Fgr52kBT ln Z@fa50#. ~5!

The other possibility is that the conductors are made i
lated, and maintain constant amounts of net charges, w
we assume to be zero. In this case, the potential field at
conductors can take any value to help maintain the neu
ity, and thus the free energy is obtained as

F is52kBT lnS E
2`

1`

)
a

dfaZ@fa# D . ~6!

Note that an isolated conductor has a fixedoverall charge,
which should be contrasted with the case of a Neum
boundary condition where the local surface charge-den
]nf is fixed.

To further proceed, we focus on the situation in which t
manifolds are far from each other, namely, they are at se
rations much larger than their typical sizes. In this case,
can perform a multipole expansion for the charge-den
distribution. For example, the Coulomb interaction betwe
the ath and thebth conductors can be written as (aÞb)

hab5E ddxddx8
ra~x!rb~x8!

Sd~d22!ux2x81Rabud22

5
QaQb

Sd~d22!Rab
d22

2S QbPa•R̂ab2QaPb•R̂ab

SdRab
d21 D

1S Pa•Pb2dPa•R̂abPb•R̂ab

SdRab
d D 1 . . . , ~7!

in which Rab is the distance between the two conducto
and the multipoles are defined as

Qa5E ddxra~x!5 r̃a~k!uk50 , ~8!

Pa,i5E ddxxira~x!5
1

i

]

]ki
r̃a~k!uk50 , ~9!

with

r̃a~k!5E ddxra~x!eik•x. ~10!

We also need to make a similar multipole expansion
the self energy terms at each manifold
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5244 PRE 62RAMIN GOLESTANIAN
haa5E ddxddx8
ra~x!ra~x8!

Sd~d22!ux2x8ud22

5E ddk

~2p!d

1

k2r̃a~k!r̃a~2k!. ~11!

We can introduce the multipoles, using the Taylor expans
of the charge density in Fourier space

r̃a~k!5 r̃a~0!1
1

i

]r̃a~k!

]ki
U

k50

ik i1•••

5Qa1Pa,i ik i1•••. ~12!

The above expansion can be formally viewed as an exp
sion in powers ofkLa , whereLa is a typical size of the
manifold. The expansion is thus convergent only for su
ciently small values ofk, corresponding to length scale
larger than the size of the manifolds. Since the self ene
integral in Eq.~11! involves contributions from higher wav
vectors, a multipole expansion for the self energy will
divergent. However, the expansion in Eq.~12! indicates that
all the information concerning the first few multipoles of th
charge distribution is already contained in the lowk behavior
of the function r̃a(k). Since we are only interested in th
dependence of the partition function Eq.~3! on the distances
Rab , all we need to know about the self energy is its dep
dence on the first few multipoles, which is in fact well b
haved.

Let us denote the domain of convergence for the exp
sion in Eq.~12! in k space byDa . This domain contains the
origin, and its shape is determined by the geometry of
conductor. Loosely speaking, its size in each direction is
by the inverse of the size of the conductor in that directi
Now we can restrict thek integral in the self energy only to
this domain, and neglect the contribution from the outside
Da , because all the dependence on the first few multipole
included in the domainDa . We thus have

haa5E
D a

ddk

~2p!d

1

k2r̃a~k!r̃a~2k!1•••

5gaQa
21ga,i j Pa,i Pa, j1•••, ~13!

in which

ga5E
D a

ddk

~2p!d

1

k2 , ~14!

ga,i j 5E
D a

ddk

~2p!d

kikj

k2 , ~15!

and so forth.
Putting all the pieces together, theRab-dependent part o

the partition function can be written as
n

n-
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Z@fa#5E )
a

dQadPa••• expS 2 i(
a

faQaD
3expH 2

1

2K (
a

@gaQa
21ga,i j Pa,i Pa, j1•••#

2
1

2K (
aÞb

F QaQb

Sd~d22!Rab
d22

2
R̂ab,i~QbPa,i2QaPb,i !

SdRab
d21

1
~d i j 2dR̂ab,i R̂ab, j !Pa,i Pb, j

SdRab
d

1•••G J . ~16!

Note that we have neglected a Jacobian in changing the m
sure of integration. However, since the transformation fr
the charge-density distribution to the multipole description
linear, one can show that the Jacobian is just an uninteres
constant.

Finally, using Eqs.~5! and ~16!, the interaction free en-
ergy for grounded manifolds can be obtained as

Fgr52
kBT

4Sd
2 (

aÞb
F ga

21gb
21

~d22!2Rab
2(d22)

1
~ga

21gb,i j
21 1ga,i j

21 gb
21!R̂ab,i R̂ab, j

Rab
2(d21) G1O~1/R2d!.

~17!

The first term in Eq.~17! is a squared monopole-monopo
interaction, and is independent of the relative orientations
the conductors in space. The second term, on the other h
has the form of a squared monopole-dipole interaction,
does depend on the orientations through an effective dip
dipole interaction, which is pairwise additive.

Similarly, for isolated manifolds, Eqs.~6! and ~16! yield
the interaction as

F is52
kBT

4Sd
2 (

aÞb

ga,ik
21 gb, j l

21

Rab
2d

~d i j 2dR̂ab,i R̂ab, j !

3~dkl2dR̂ab,kR̂ab,l !1O~1/R2d12!. ~18!

Note that the leading term in Eq.~18! is a squared dipole-
dipole interaction, and thus it is not orientationally pairwi
additive.

III. APPLICATION TO SPECIFIC GEOMETRIES

The multipole expansion allowed us to calculate the g
eral forms of the fluctuation-induced interactions betwe
manifolds of arbitrary shape and with arbitrary orientatio
with respect to one another, for the two cases of isolated
grounded boundary conditions. All the specific informati
about the shapes and the orientations of the manifolds
encoded in theg tensors defined above. This information
in fact of three kinds:~i! the overall magnitude of the tenso
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that are set by the typical sizes of the manifolds,~ii ! the
orientational dependencies that make up the tensorial s
ture, and are dictated by the structure of the symmetry a
or ‘‘the principal axes’’ of the manifolds, and~iii ! overall
numerical prefactors of order unity. In this section, we try
use symmetry arguments to determine theg tensors for some
simple geometries within the numerical prefactors, witho
actually specifying the exact shape of the integration dom
D. The final piece of information, which is the numeric
prefactor, appears to be very sensitive to the exact geom
of the manifold~and thus to that ofD), and can in general be
calculated using the techniques developed in Ref.@10#.

A. Two spheres

The g tensors for a sphere of radiusL can be easily esti-
mated using symmetry:gs;*0

1/Lkd21dk/k2;1/Ld22 and
gs,i j ;d i j *0

1/Lkd21dk;d i j /Ld. Using Eqs.~17! and~18!, the
interaction between a sphere of radiusL1 and another spher
of radiusL2 that is at a distanceR reads

Fgr
sph;2kBT

L1
d22L2

d22

R2(d22)
, ~19!

for the grounded case, and

F is
sph;2kBT

L1
dL2

d

R2d
, ~20!

for the isolated case, with no orientational dependence du
symmetry.

B. Two rods

The calculation of theg tensors for a rod of lengthL and
thicknessa is more tricky. Using the cylindrical symmetry
one obtains:g r;*0

1/Ldkz*0
1/adk'k'

d22/(kz
21k'

2 );1/Ld22 for
d<3, and;1/(Lad23) for d.3, where thez axis is parallel
to the director of the cylinder, and' denotes the remaining
directions that are perpendicular to it. The second rank ten
g r ,i j is diagonal with only two independent componen
g r ,zz;*0

1/Ldkz*0
1/adk'k'

d22kz
2/(kz

21k'
2 );1/Ld for d<3, and

;1/(L3ad23) for d.3, and g r ,'';*0
1/Ldkz*0

1/adk'k'
d /(kz

2

1k'
2 );1/(Lad21). If the unit vectord̂ denotes the directo

of the rod, the inverse second rankg tensor that appears i
the expression for the interaction can be written asg r ,i j

21

;Ldd̂i d̂ j for d<3, in the limit of small thickness. Note tha
in this limit, the inverseg tensors are vanishing ford.3,
and thus rods do not interact in these high dimensions.

Using Eqs.~17! and ~18!, the orientation dependent pa
of the interaction between two rods of lengthsL1 andL2, and
directorsd̂1 and d̂2, which are a distanceR apart, reads (d
<3)

Fgr
rod;2kBT

L1
d21L2

d21

R2(d21) FL1

L2
~ d̂1•R̂12!

21
L2

L1
~ d̂2•R̂12!

2G ,
~21!

for the grounded case, which is pairwise additive, and
c-
es

t
in

try

to

or
:

F is
rod;2kBT

L1
dL2

d

R2d
@ d̂1•d̂22d~ d̂1•R̂12!~ d̂2•R̂12!#

2, ~22!

for the isolated case, which has a squared dipolar form an
not pairwise additive.

C. Two disks

Theg tensors for a disk of radiusL and thicknessa can be
similarly calculated within numerical prefactors using sym
metry. The zeroth rank tensor can be calculated asgd

;*0
1/adkz*0

1/Ldk'k'
d22/(kz

21k'
2 );1/Ld22, where thez-axis

is normal to the disk, and' denotes the remaining direction
in the subspace of the disk. The second rank tensorgd,i j is
diagonal with only two independent componen

gd,zz;*0
1/adkz*0

1/Ldk'k'
d22kz

2/(kz
21k'

2 );1/(aLd21), and

gd,'';*0
1/adkz*0

1/Ldk'k'
d /(kz

21k'
2 );1/Ld. If we denote

the unit vector perpendicular to the disk byn̂, the inverse
second rankg tensor that appears in the expression for
interaction can be written asgd,i j

21 ;Ld(d i j 2n̂i n̂ j ), in the
limit of small thickness.

Using Eqs.~17! and~18!, the orientation dependent part o
the interaction between a disk of radiusL1 and normal vector
n̂1, and another one with radiusL2 and normal vectorn̂2 that
is a distanceR apart, reads

Fgr
disk;2kBT

L1
d21L2

d21

R2(d21)

3H L1

L2
@12~ n̂1•R̂12!

2#1
L2

L1
@12~ n̂2•R̂12!

2#J ,

~23!

for the grounded case, which is pairwise additive, and

F is
disk;2kBT

L1
dL2

d

R2d
@d22d221~ n̂1•n̂2!21~2d2d2!

3~ n̂1•R̂12!
21~2d2d2!~ n̂2•R̂12!

222d~ n̂1•R̂12!

3~ n̂2•R̂12!~ n̂1•n̂2!1d2~ n̂1•R̂12!
2~ n̂2•R̂12!

2#,

~24!

for the isolated case, which has a squared dipolar form an
not pairwise additive.

IV. CRITICAL FLUIDS

As mentioned above, interactions could be induced
tween objects that modify thermal fluctuations of an ord
parameter field for a critical binary mixture or a magne
system@14#. In this case, two kinds of boundary condition
are usually considered:~i! the ordinary boundary condition
that suppresses the order parameter at the boundary, and
does not break its symmetry, and~ii ! the symmetry breaking
boundary condition, which sets a nonvanishing value for
order parameter at the boundary. Note that the ordin
boundary condition is the same as the grounded bound
condition in the electrostatic terminology, and that it is d



d

he
u
E

ol
ac
r
t

o
de
in
a

o
is

io

fa

o

as
f

e
la
-

is

n

d
ove
r

as
ve
ur-
to

siz-
on
ed
nd-
e

nd-
s,

ve.
an
the
und
in

cts

nd
Na-
94
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ficult to imagine an analog of the isolated boundary con
tion in these systems@17#.

The fluctuations in a critical fluid are characterized by t
universality class of the system. For the case when the fl
can be described by a Gaussian Hamiltonian as given in
~1!, all of the above results for the grounded manifolds h
for the case of the ordinary boundary condition. The inter
tion between manifolds with symmetry-breaking bounda
conditions, where the value of the order parameter is se
Fa on theath manifold, is calculated as

Fsb52kBT ln Z@fa5Fa#, ~25!

whereZ@fa# is given by Eq.~16!. One obtains@18#

Fsb
Gauss52

kBT

2 (
aÞb

FKFaFbga
21gb

21

Sd~d22!Rab
d22 G1O~1/R2d24!.

~26!

It is important to note that this interaction is independent
the orientations of the manifolds, and that the leading-or
orientation dependent term for the symmetry-break
boundary condition is the same as the case of ordin
boundary condition, and is given as in Eq.~17!. This inter-
action is orientationally pairwise additive.

For a nontrivial universality class, one should make use
more complicated Hamiltonians with nonlinear terms. It
then possible to calculate the Casimir energy express
using field-theoretical techniques@4#. The interaction be-
tween two spheres in an arbitrary critical system has in
been calculated exactly in Ref.@19# using conformal-
invariance methods. The interaction for the case
symmetry-breaking boundary conditions~on both spheres! is
obtained as 1/Rd221h @20#, while for the case of ordinary
boundary conditions it is found as 1/R2(d21/n), whereh and
n are critical exponents of the system@19#. One can easily
check that for the case of the Gaussian universality cl
where h50 and n51/2, they coincide with the results o
Eqs.~26! and ~17!.

It is interesting to note that the power law for th
symmetry-breaking case is given by the two-point corre
tion function of the field~the spin-spin correlation in mag
.

i-

id
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y
to

f
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g
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f

ns

ct

f

s,

-

netic terminology!, while the one for the ordinary case
given by the four-point correlation function~the energy-
energy correlation! @19#. Guided by this, one can think of a
effective Gaussian Hamiltonian of the form

Hcf@f#5
K

2E ddq

~2p!d
q22huf~q!u2, ~27!

which yields a correct form for the two-point function, an
calculate the fluctuation-induced interactions using the ab
methods@7#. However, although it yields a correct result fo
the symmetry-breaking case~almost by construction!, it
gives a corresponding form for the ordinary case
1/R2(d221h) that is not correct. The reason is that the abo
effective Gaussian Hamiltonian does not give a correct fo
point correlation function. However, it can be constructed
do so by usingq1/n instead ofq22h in Eq. ~27!.

V. CONCLUSION

The analysis that is presented here is aimed at empha
ing the crucial role of the type of boundary conditions
fluctuation-induced interactions. Unlike the case of extend
objects at close separations, where different types of bou
ary conditions all lead to the same form of interaction, w
found that for objects at large separations, the type of bou
ary conditions determine the very form of the interaction
and, interestingly, whether or not they are pairwise additi

We finally note that in addition to the classic case of v
der Waals interaction between conductors in vacuum,
grounded and isolated boundary conditions have also fo
applications in the case of fluctuation-induced interactions
elastic media, where they lead to interesting effe
@10,15,16#.
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