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For hard ellipsoids of revolution we calculate the phase diagram for the idealized glass transition. Our
equations cover the glass physics in the full phase space, for all packing fractions and all aspexy.reiitis
increasing aspect ratio we find the idealized glass transition to become primarily driven by orientational
degrees of freedom. For needlelike or platelike systems the transition is strongly influenced by a precursor of
a nematic instability. We obtain three types of glass transition line. The first ¢Eﬁ%)(corresponds to the
conventional glass transition for spherical particles which is driven by the cage effect. At the second one
(¢£B')), which occurs for rather nonspherical particles, a glass phase is formed that consists of domains.
Within each domain there is a nematic order where the center of mass motion is quasiergodic, whereas the
interdomain orientations build an orientational glass. The third glass transition&ﬁ\é) (occurs for nearly
spherical ellipsoids where the orientational degrees of freedom with odd parity, e.g., 180° flips, freeze inde-
pendently from the positions.

PACS numbgs): 64.70.Pf, 61.20.Gy, 61.30.Cz, 61.25.Em

[. INTRODUCTION aspect ratios where prenematic order becomes crucial. The
choice of the model system has also been motivated by the
The dynamics of a molecular system that is supercooleduccessful application of the ideal mode-coupling theory
toward the glass transition shows a variety of phenomen@CT) for simple liquids[1], particularly to neutral colloidal
related to the nontrivial interplay between orientational andsuspensions. MCT gives a closed set of equations for the
translational degrees of freedom caused, e.g., by steric hinrtermediate scattering functid(q,t). Comparison between
drance. In thermodynamic equilibrium molecular systems alexperimental[2] and MCT results[1,3] has shown good
ready show, compared to simple liquids, a variety of differ-agreement for colloidal systems which usually are modeled
ent physical behavior. At low enough densitieer high by hard spheresFurther tests of the MCT for other systems
enough temperatureshey form an isotropic liquid. On in- can be found in, e.g., Refg4—6]. MCT in its original form
creasing the density they can undergo a transition into a crysiescribes an idealized glass transition which is indicated by
tal or several different liquid crystalline phasgike, e.g., a  breaking of ergodicity at a critical density, (or critical
nematic phase A crucial part of the interaction that causes temperaturd ;). The corresponding nonergodicity parameter
these phenomena is given by the shape of the molecule$(q)=Ilim;_..S(q,t)/S(q,0) becomes nonzero gt (or T,).
Therefore one may also expect different characteristic feaRecently, the mode coupling equations have been extended
tures for the glass transition in such systems. to molecular systems. The dynamics of liquids of rigid mol-
A model system that allows one to study the translation-€cules composed &fl atoms can be described by either site-
orientation interplay is a system bfhard ellipsoids of revo-  site correlatorsS, ; (a,8=1,2, ... M) or molecular corre-
lution in a box of volumeV. The fluid of ellipsoids is char- lation functions S, mn/(d,t), where for the latter one
acterized by two parameters: the aspect raXig=b/a  decomposes the degrees of freedom into the center of mass
relatingb anda, the major and minor axes of the ellipsoids, and orientational componentsee, e.g.[7,8]). The density
and the packing fractiowp, which is related to the number p(x,Q,t) is a function of the center of mass coordinatend
densityp=N/V by ¢=1mXqp/6. the orientation()=(®, 6, x), which is specified by the three
In this work we start from a theory of liquids. We dem- Euler angles. Expanding(x,(},t) with respect to a product
onstrate that aingle set of equations allows us to describe basis of plane waves?* and generalized spherical harmon-
the glassy behavior for almost spherical particles up to largécs D'mn(Q) one arrives at the tensorial densjiy,,(q,t). |
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runs over all positive integers including zero amdand n
take integer values betweenl andl. Then the molecular
correlators are defined as follows:
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1. XS, 1(q1,m, 1S, 1 (02, Mz, 1) (4)
Slmn,l’m/n’(qlt): N<p|mn(qit)pl’m’n’(qlo»- (1)

The indicesa,a’ € {T,R} refer to either translational or ori-

The extension of MCT to molecular systems has been do
for the molecular representation for a single dumbbell in
simple, isotropic liquid[9], for molecular liquids of linear
moleculeg10], and for arbitrarily shaped molecules by use
of nonlinear fluctuating hydrodynamicll] and by the
Mori-Zwanzig projection formalisnj12]. A MCT approach

ation functions for translationala(=T) and rotational &
=R) currents multiplied byq and yI(lI+1), respectively.
The microscopic frequency matrix is denoted 8y,(q,m)

and is determined by the static molecular correlators. In the

absence of memory effectm(‘*“' =0) the equations are just

rfntational currentd\N“(q,m,t) are the current-density corre-

using a site-site description has recently been worked oud set of coupled harmonic oscillators with frictiar,,. for

[13]. Because a hard ellipsoid corresponds to a rigid bodyibrational (¢«=T) and rotational &=R) oscillations. For
with infinitely many constituents, it is the molecular repre- example, the translational mode witk|"=0 is the propa-
sentation that is the only appropriate one. Since we considegating phonon mode and the modes wlithl'>0 that ex-

ellipsoidsof revolutionthe third Euler angley becomes re-
dundant. This means that we have to cons®igg;m:o(0;t)
only. Using theq frame [8], i.e., one chooseg=(0,00)

hibit a frequency gap aj=0 arelocalizedoscillators.

For m*# #0 nonlinearities occur. Their physical origin
is the memory effect. The corresponding memory kernel is a

=qo whereq=|q|, these correlators become real and diago-correlation function of fluctuating forces. Since fluctuating

nal inmandm’ [10]:

SImO,I’m’O(CIvt):5m,m’SII’(q’m’t)- 2

forces can decay intopair of density excitations, this kernel

is approximated as a sum of all possibiénear products of
density correlation functions. Such a nonlinear feedback
mechanism can cause an ideal glass transition with nontrivial
dynamics. The glass transition for E48) and (4) is inves-

The head-tail symmetry of the ellipsoids implies that thesetigated in the following part of the paper. The explicit ex-

correlators vanish fot+1' odd. For givenX, the critical
packing fractiong.(Xy) can be determined by calculating
the (unnormalized nonergodicity parameterd;/(q,m)

=lim_.. Sy (q,m;t).

II. MOLECULAR MODE-COUPLING EQUATIONS

Using the densitiep;,(q,t) and longitudinal translational
currentsj ,Tm(q,t) and rotational currentﬁm(q,t) as the slow
variable set for the Mori-Zwanzig projection operator tech-

nigue, the molecular MCT equations have been derived an

can be found in Refs[10] and[12]. The time dependent
molecular MCT equations can be represented as follows:

J
Es(q!m’t):NR(q!m!t)dl— NT(q!m!t):

d
SiN“(amt) = —Q(q,m)S(a,m,1)
- 2 Vaa’(qvm)Na,(qamat)

t !
—Qiam> fom“’“ (q.m,t=t)

XN (g, m,t)dt’ 3

and

pressions for the verticag*®' for arbitraryq can be found in

Ref.[10] and for theq frame in Ref[12]. The verticesv«®’
depend only on the static correlat@g (q,m) and the direct
correlation functionc;;/(q,m), which are related to each
other by the Ornstein-Zernike equation. We have determined
¢;+(g,m) within the Percus-Yevick approximation.

It has been shown that the liquid phase of hard ellipsoids
is well described by these approximatiofs4]. Although
Percus-Yevick theory fails to describe crystallization it
yields a nematic instability14] that is in reasonable agree-
ment with Monte Carlo simulation§l5] even if Percus-
gevick theory still underestimates the tendency toward ori-
entational order. This nematic instability will play an
important role in the following. For the solution of the
Percus-Yevick(PY) equations we have chosen a cuthff
=4 forl andl’, whereas the MCT equations were truncated
atl.,=2. We are confident that even such a small number of
molecular correlators enables us to capture the correct phys-
ics of the transition.

IIl. SOLUTION OF THE MOLECULAR MCT
FOR HARD ELLIPSOIDS

The numerical solution of Eq$3) and(4) for t— oo yields
the nonergodicity parameters;,(q,m)=F(q,m). In the
limit of t— the following set of nonlinear equations for
F(q,m) has to be solved in an iterative way:

> af(a)g® (@) F(a,m)~11**'s Y(q,m)F(q,m)

'
aa

+F(q,m)—S(q,m)=0, 5
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FIG. 1. Phase diagram for the ideal glass transition. The hori-
zontal axis showsX, scaled with K3—1)/(X3+1). The typeB

glass transition lines2(Xo) and 2 (X,) (see textare depicted as

thick solid and dashed lines, respectively. The thin solid line is the

¢(CA)(XO) glass transition line. The nematic instability occurs at - =
is already close to the nematic instability.

bnenl Xo) and is shown as thin dashed-dotted lines. The inset show!
the situation arounX,=2.5 where the;b?(xo) glass transition line
merges into thep? (X,) transition line. Fog=2.5 the $2 (x)
transition is the physical onéhick dashed ling whereas forx,
<2.4 itis an unphysical solutiotthin dashed ling
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FIG. 2. The static structure fact&; (q,m) is plotted together
with the nonergodicity parametd¥;,(q,m) for X,=1.3 and ¢
=0.549(directly above the nonergodicity transitjorta) shows the
center of mass correlatbr=1"=m=0 whereagh) shows the qua-

drupolar correlatot=1"=2m=0.
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FIG. 3. A similar plot as Fig. 2 is shown but fot,=2.3 and
=0.617(again directly above the nonergodicity transijiowhich
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F(g,m)=lim —zm®<'(q,m,z) = lim m®<'(q,m,t)

z—0 t—oo
we denote the long time limit of the memory kernel. From a
solution of these equations we obtain the phase diagram for
ideal glass transitions that is shown in Fig. 1. This figure also
contains two dashed-dotted linds,..(X) indicating the
location of the nematic instability as it arises in thermody-
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FIG. 4. At the glass transition the correlation length for parallel
orientation obtained from the half width at half maximum of the
peak of S,,(q,0) is plotted as a function of the aspect ratio. For
Xo=<2.4 the glass transition is of tyf@whereas foX,=2.5 it is of

type B’ (see text
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namic equilibrium from PY theory14]. These two lines are
in agreement with density functional thedrd6] and Monte
Carlo simulationg15]. In addition there ar¢hreeglass tran-
sition lines each foliXy<1 andXy>1. First of all we will
discuss the critical lines{®)(X,) (thick solid ling) at which

a Maxwell construction. The{®)(X,) glass transition line is
well bracketed between these two densities. This indicates
that the mode-coupling equations describe a glass transition
in the metastable region of a supercooled liquid. The physi-
cal origin of the glass transition depends strongly on the

both translational and orientational degrees of freedoni for location of ¢{®)(X,). For aspect ratio¥, close to 1 the
and!’ even undergo a discontinuous ergodic to nonergodi¢ransition is dominated by the center of mass correlator

transition(also called the typ®&-transitior). The existence of
»P(X,) has been established for 03%,<2.5. In the re-

gion where thep®)(X,) glass transition occurs the equilib-

So0(d,0). o o .
To illustrate this point we have plotted in Fig. 2 the static
center of mass correlator and the “quadrupolar” correlator

rium system shows crystallization. Since this is a first orderS;2(d,0) and their corresponding nonergodicity parameters
phase transition the onset of crystallization gives two densifor X,=1.3. This was done directly above the critical pack-

ties (e.g., from Monte Carlo simulatiorj45]) resulting from

ing fraction ¢.=0.549. The first peak afya=0q~6.6a"1
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F,.(g,m) at g=0 and with a width of ordeg. We have
shown this in Fig. &), where we have plotte8,(q,0) at

the (8" transition forX,=2.5. This is plotted together with
the static correlatoiS,,(q,0) and the normalized function
f5,(0,0)=F,5(0,0)/S,5(q,0). In Fig. §b) we have plotted
the same quantities fdr=1"=0; the center of mass cor-
relator. f4(g,0) does not exceed 0.15 although the orienta-
tions are frozen. This means that the system is “quasier-
godic” in the sense that for length scales ¢ the ellipsoids
show a(nematig orientational order and the center of mass
behaves quasiergodically, decaying to a very small value.
For length scale$> &, however, the orientations as well as
the positions have nondecaying, long-time correlations and
are frozen. The easiest way to think of such a system is due
to the formation of liquid crystallinénematig domains with
FIG. 6. The formation of thes®") glass transition is illustrated. a size of the order of. This is visualized in Fig. 6. Figure 4
Within each domain of diameter the system shows liquid crystal- shows that the domains can be quite large. Xg 2.5 (the
line order whereas far>¢ there are randomly frozen orientational aspect ratio where the ty@@- transition occurs first and
correlations. where therefore the typB* transition with the smallest do-
main size shows ypwe obtain from our calculation a do-
of Sy(01,0) dominates the transition; this is the manifestationmain size withé~30. Within the domains the center of mass
of the cage effect. Stronger deviations of the ellipsoids froniS quasiergodic, i.e., liquidlike, whereas the orientations are
spherical symmetry, however, alter this behavior. This isffozen with a nematic order. In our idealized MCT an ellip-
demonstrated in Fig. 3, where we have plotted the same cof0id cannot move from one domain to the other.
relators as in Fig. 2 but for an aspect ratioXef= 2.3. Now In connection with this it is also interesting to mention
the peak atq~0 of the quadrupolar correlata®),(q,0)  that two types of typ& transition were also found for the
(which is for g=0 the Kerr constant for nonpolar fluids center of mass correlator ofsimpleliquid of hard spheres

dominates the breaking of ergodicity. The half widtly (at with an attractive interaction g_iven by eitheri the Baxter
half maximum of this peak defines a correlation lenggh ~Model[18] or a Yukawa potentia[19]. The existence of

—2m/Aq. In Fig. 4 we have plotted at the glass transition these two solutions fo_)(_0> 2.1_reflects the competition be-
tween the frozen positional disorder due to the cage effect

and the tendency to form a nematic phase. SiRféq,m)

o : . < A<X < 2. ion i -
Within the glassy phase, i.e., fgr> ¢{®)(X,), a continu- Fu(q,m) for 2.1<X,<2.5, the second solution is un

ous(also called typed) glass transition occurs at the critical Physical [20]. However, for X,=2.5 and ‘{’(CB '(Xo)=d

lines ¢ (X,) (thin solid lines in Fig. 1 at which the self = %ner{Xo) We find only one solution, which has all the
part of the correlators withandl’ odd freezes. This typa-  features ofF,;,(q,m) described above. We stress that the
transition can only occur if the corresponding vertéxs  existence of the critical Iine¢§B,)(Xo) depends on our
large enough. For this to happen the aspect ratio shoulghoice of slow variables, which include the nematic order
clearly be different from 1. The reader should note that fourparameter, and therefore accounts for the occurrence of the
pointg(opep c.ircles in Fig. )lwgre deter.mined exactly and weakly first order nematic transition. Sinaﬁsz’)(XO) is

the thin solid lines are schematic, showing i (Xo) has  ather close tod,en{Xo) quasicritical fluctuations appear,

to increase ifX, is changed toward 1, in order to keep the yhich also slow down the entropy fluctuations. We do not
vertices large enough. The physical interpretation is that ahink that these will qualitatively change the phase diagram.
¢V (Xo) the 180° jumps of the ellipsoids become frozen.on the other hand, the concept of a glass transition induced
This resembles the formation of orientational glasses. Ongy the vicinity of a second order phase transition has already
possible candidate for such a transition might be plastic crysheen introduced by a MCT approa¢®l] in order to de-

tals like the carborangd 7] although presently only typB-  scribe the experimentally observed central peak phenomenon

line (either® or ") as a function of the aspect ratig
for prolate ellipsoids.

transitions are known. close to a ferroelectric instability.
Probably the most interesting result is the third critical
line ") (X,) (dashed lingwhich is shown schematically in IV. CONCLUSION
Fig. 1 for Xo>2.0 (prolate ellipsoids and X,<0.5 (oblate In conclusion, we have shown that hard ellipsoids exhibit

ellipsoids. In this region the glass transition Iim?s are closey rather intriguing phase diagram obtained from the idealized
to the nematic instability line. The existence®f ’(X,) is  mode-coupling theory for molecular systems, where the ori-
based on our following observations. On increasihdor  entational degrees of freedom and their coupling to transla-
2.1<Xp<2.5 we find a glass transition aﬂ,‘:B)(XO) where all  tional ones are incorporated. In particular, we predict a glass
Fy/(q,m) become nonzero. On increasigigfurther we find  transition for X,>2 that is driven by a precursor of a
in addition a second solutioR,,(q,m) for ¢= ¢>(CB)(X0)- nematic phase. EI’Iipsoids show two tyBeglass transition
This solution has the feature th&t,,(q,m) is essentially lines (¢{> and ). One,4{”), is dominated by the cage
zero with the exception of a well pronounced peak foreffect whereas the other ong(®” | is caused by an orienta-
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