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Decay rates of internal waves in a fluid near the liquid-vapor critical point
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We study the damping of internal waves in a viscous fluid near the liquid-vapor critical point. Such a fluid
becomes strongly stratified by gravity due to its large compressibility. Using the variable-density incompress-
ible Navier-Stokes equations, we model an infinite fluid layer with rigid horizontal boundaries and periodic
side boundary conditions. We present operator-theoretic results that predict the existence of internal-wave
modes with arbitrarily small damping rates. We also solve the eigenvalue problem numerically using a com-
pound matrix shooting method and a second method based on a matched-asymptotic perturbation expansion for
small viscosity. At temperatures far above the critical point, the damping of the internal waves is substantially
influenced by both boundary layer and volumetric effects. The boundary layer effect is caused by horizontal
shearing layers near the two fixed horizontal boundaries. As the temperature approaches the critical tempera-
ture, an additional internal shearing layer develops as the density stratification curve steepens on approach to
the two-phase regime. Numerical calculations show that for some of the internal-wave modes this causes a
dramatic increase in the damping rate that dominates the boundary layer effects.

PACS numbe(s): 47.55.Hd, 68.35.Rh, 02.60.Lj, 47.1]].

[. INTRODUCTION since these should dominate the long-time behavior. Surpris-
ingly, here we find that there exists an infinite humber of
Close to the liquid-vapor critical point, the physical char- nonoscillatory internal-wave modes with arbitrarily small
acteristics of a fluid change rapidly. For example, the comdamping rates. A similar result has long been known for
pressibility diverges to infinity. By consequence, density be-surface waves in a constant-density fluid neglecting surface
comes strongly stratified by gravity, even in the one-phaséension[8]; however, surface tension tends to strongly damp
regime. Thus near-critical fluids are able to support internafn@se modegsee[9], Eq. (18)]. For an analytical treatment
gravity waves. of the case of an exponential density profi®rresponding
Internal waves are common to a variety of large-scald© an ideal fluid with constant kinematic viscosity and the
physical phenomena, including the fluid motion in a |ake,Bgussmesq approximation in a two-dimensional closed con-
ocean, planetary atmosphere, or stellar intefibg]. Be-  tainer, se¢10]. _
cause of the singularities that occur at the critical point, how- We also numer_lc_:ally compute decay rates of oscillatory
ever, internal waves in near-critical fluids can be observed ifnodes for near-critical xenon with parameters roughly cor-
the laboratory in very small volumes of fluid. In recent ex- 'ésponding to the cell geometry in the experiments of Berg
periments at the National Institute for Standards and Tech€t al- At temperatures well above critical, a substantial frac-
nology (NIST), Berget al.[3] studied internal gravity waves tion of wave damping is due to a boundary layer effect,
in near-critical xenon contained in a small cell with im- caused by viscous d|SS|pat|on in horizontal shearing layers
mersed apparatus configured as a viscometer. Using an if€ar the two fixed boundaries. As the temperature ap-
viscid incompressible fluid model, they calculated the fre-Proaches critical, an additional horizontal shearing layer de-
quencies of the internal-wave motion and compared theséebps at t_he center of the fluid layer as the density strat_lfl—
with their experimental results. Later, Anderson and McFad<&ation profile steepens on approach to the two-phase regime.
den [4] introduced a diffuse interface model of the near-For some of the mtern_al—wave modes th!s causes a dramatic
critical fluid to study the two-phase regime. Boukgs] has ~ increase in the damping rate that dominates the boundary
also observed internal waves in near-critical xenon in a celffayer effects.
designed for fluctuation measurements on the space shuttle
[6.7]. . . . . . Il. THE MODEL EQUATION
These experimentalists report observing damping of inter-
nal waves that is not explained by fluid models used to date. We begin the analysis by modeling an infinite layer of
Here we aim to study wave damping by including the vis-fluid, confined between rigid horizontal boundaries zat
cous effects neglected [8,4] and looking for normal modes ==L, using the variable-density incompressible Navier-
in a layer of stably stratified fluid with rigid boundaries Stokes equations. Viscosity is modeled in two ways, first by
above and below. taking the shear viscosity as a constant, and second by
In such a damped system, one hopes to identify the slowdsing the viscosity model of11] at zero frequency with
est decaying modes with a given horizontal wave numbecorrelation length given by the restricted cubic mofdEt].
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+0 mK ' ' with four boundary conditionsw(—L)=w(L)=Dw(—L)
1180} 1 =Dw(L)=0, whereD=d/dz, a(z)=Dp(2)/p(z), andk?
=k2+ kf,. We assumé&=0. This is a nonlinear eigenvalue
11401 problem; one should find so that Eq.(1) has a nontrivial
£ solution satisfying the four boundary conditions indicated.
£ From the solution of this problem one determines that the
24100} +100 mK full velocity u=(U,V,W) and density perturbatiofp have
§ the following normal mode form:
10601 Lo ik ik
u=e'kxrikyy=nt k—;Dw(z),k—;Dw(z),w(z) . 2
1020

5 0 5
z (mm) _ aikyx+ik y,MW(Z)DP(Z)
Sp=¢€ y EE— (3)

FIG. 1. Density stratification of near-critical xenon as a function

of depth in a cell of length 19 mm using the restricted cubic density | e replace the assumption of constant shear viscosity
profile calculated at various temperatures above the critical temyith the more physical viscosity model 1] at zero fre-
perature. quency we have the viscosity as a function of correlation
length. For a fixed temperature, the correlation length is a
We impose periodic boundary conditions in the horizontalfunction of the density, which in turn is a function of height.
directions. Therefore if we use the restricted cubic model for correlation
At first, the idea of modeling a near-critical fluid as in- length[12], then the viscosity in equilibrium is a function of
compressible seems like a paradox, since it is exactly thaeight. Instead of Eq(1) we have the nonlinear eigenvalue
high compressibility of the fluid near the critical point that is problem
responsible for density stratification. However, a satisfactory

justification of the use of the incompressibility assumption D?u(2) 2D u(z)

for this problem can pe given by an asymptotic expansion for p(2) (D*+k%)w(2)+ p(2) (D?~k%)Dw(2)

low-speed, near-critical flow as performed by Denny and -

Pego[13]. By choosing to keep the combination of pressure mZ) 55, 2 2

and density as thermodynamic variables rather than the com- * H(D ~K)W(@)+A D+ «(2)D-KIW(2)

bination of density and temperature in the low-Mach-number )

approximation, one can arrive at the variable-density Navier- " a(z)gk W(z)=0 (4)

Stokes mode]14]. This consists of the standard incompress- N '

ible Navier-Stokes equations with gravity, and a nonconstant

density that is convected with the flow. with four boundary conditionsw(—L)=w(L)=Dw(—L)
In equilibrium, the density profile(z) is continuously =Dw(L)=0.

vertically stratified at temperatures above the critical tem-

peratureT.. A graph of the density stratification in near- I1l. NONOSCILLATORY MODES

critical xenon in Earth’s gravity is shown in Fig. 1. We use .

the restricted cubi¢15,17 and van der Waals equations of We have employed operator-theoretic methods to estab-
state(as in[4]) to model the density stratification found near liSh some fundamental properties of the damping rates deter-
the critical point. We linearize the equations around an equiMined by Eq(1) for a general stably stratified density profile
librium state and look for normal modes. Thus, the verticalP(2), one that satisfieBp(z)<0. By adapting the abstract
velocity is required to have the formW(x,y,zt) approach used in the analysis of the dampmg of free-surface
=itk =My (7) where—i\ represents the complex fre- water waves by Askeroet al. [8] and using the Keldysh

quency. The horizontal velocities, pressure, and density pefOMpleteness theore(aee[ 16]), we prove[17]

turbations have similar expressions, but may be eliminated to _1heorem 1. The eigenvalues of Eq. (1) form a countably
generate a single fourth-order ordinary differential equatiorjnfinite set contained in the half plane Re 0. At most a

for the vertical velocity profilen(z). finite number are nonreal. There exist both an infinite num-

For near-critical xenon the shear viscosity¢) diverges ber of real eigenvalue_s _cqnverging to zero and an infinite
as the liquid-vapor critical point is approached &% number converging to infinity, and there is no other accumu-
where¢ is the correlation length. Because this divergence idation point. _
weak, modeling viscosity as a constant is a reasonable first 1S result indicates that there are nonoscillatory wave

approximation. In this case of constant viscosity one obtain§0des with arbitrarily small damping rates in any periodi-
cally confined stably stratified viscous fluid layer. This is

surprising since naively one expects a purely discrete spec-
trum like that of a parabolic equation in a bounded domain.
Instead it turns out thax =0 is an accumulation point for
) eigenvalues. Thus one cannot expect a uniform exponential
N a(z)gk W(z)=0 1 rate of decay to equilibrium in the dynamic problem. A simi-

A ' lar theorem is proved if10] for the exponentially stratified

i

(D?—k?)?wW(z) + N(D?+ a(z)D —k?)w(z)
p(z)
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case with the Boussinesq approximation in an arbitrary twoBy contrast, the damping of internal waves in stratified fluids
dimensional domain. is not subject to the effects of surface tension, and modes
For a physical explanation for this behavior, suppose thatvith arbitrarily slow damping rates should be of physical
the kinematic viscosity= u/p is constant an@&<0 is con-  significance.
stant, which corresponds to the case of an exponentially
stratified fluid. Then Eq(4) has constant coefficients and IV. OSCILLATORY MODES
may be written
In this section we concentrate on computing the decay
N?(D?+aD —k*)w+ agk®w+\v(a?(D?+k?) rates for the damped oscillatory internal-wave modes. By
3 1.2 2 o2 variational methods we can prove the following theoretical
T2a(D*=k"D) +(D = k) T)w bounds concerning the Iocatign of the eigenvaI?Jes for oscil-
=0. (5) latory modes in the complex plarf&7].
Theorem 2. All nonreal eigenvalues of Efj) are in the
We ignore the boundary conditions and reintroduce generdialf ring where R& >0 and

time dependence, writing/(z,t) =w(t)e"? and considen

large. The resulting equation, w( 2 lAL2+Kk?) 2gmax,|p’(2)|
) i 2 max p(2) <|\|= 2 . (8)
(n?92— agk?®)w(t) + vn*aw(t)=~0, (6) H
corresponds to an overdamped oscillator with decay rateshere are therefore no oscillatory modes if the viscosity is
given by large enough, satisfying
vn? for + ,
4gma z)yma z
)\_v_r12+ v2n4+ angN e . \/ g zxzpi ) 2 Xz|5 ( )|. )
=5 " 2 2 ag for — ke(arel4L=+k?)
vn

. A. Numerical methods
Fornlarge, the+ case gives the fast decay one expects from

parabolic dissipation, but the case gives very slow decay. ~ We employ two different numerical methods to solve the

In the absence of viscosity these modes correspond to slodvelocity equation(1) for the eigenvalues and eigenfunc-

oscillations of the thin fluid layers between consecutivetlOns.

points where vertical velocity vanishes. The introduction of ) )

viscosity highly overdamps these waves and separates them 1. Asymptotic expansion

into fast- and slow-decaying nonoscillatory modes. The first method utilizes matched-asymptotic perturbation
For a more precise description, we can take account of thexpansions for small viscosity with two boundary layers at

boundary conditions, using the method of matchedz=+L (in the constant-viscosity caséVith small viscosity

asymptotic expansiongl8] to determine an expression for the fluid is essentially inviscid away from the boundaries,

the arbitrarily small eigenvalues. We begin with E§l and  and the effects of the nonzero viscosity will be felt only in a

with the boundary conditions that=Dw=0 atz=*L. In  small region near each boundary. For the inner expansion in

this perturbation problem we have two inner boundary layershe boundary layer neaz=—L we apply the stretching

at z=*L where we introduce stretched variablés= (L transformationé= (z+ L)/\/ﬁ and nearz=L we usen=(L

+2)/\Y* and in the outer region we use the scaled variable_ 2)/\/z. Matching the inner boundary layer expansions to

g=z/I\Y, ‘Carrying out the expansion and matching proce+he outer expansion determines in a standard fashion bound-

dure we find ary conditions for terms in the outer expansion.

We suppress the details of the matching procedure and

-4
A~ —agk?y ! M) , 7 describe the results in terms of the outer expansion. We write
4L w(2)=(2)\p(—L)/p(z) and expand the eigenvalue and

. . . . eigenfunction as follows:
where n is an integer corresponding to the vertical wave

number. Asn approaches infinity, the eigenvalues approach

zero with the sama ™ * dependence as found above for slow-

decaying modes when the boundary conditions are ignored.
Arbitrarily small damping rates in the presence of viscos- = o+ i+ i+ O (). (11)

ity were predicted for water waves with a free surface and no

surface tensiof8]. In that case they arise in the limit of large Then at ordeO(1) thez-velocity equatior(1) reduces to the

horizontal wave numbetk(—), which is different from the Sturm-Liouville problem

case of stratified fluids considered here. If one includes the

effects of surface tension, however, free-surface damping D?yo(2) +a(2) Yo(2) — Te(2) ho(2) =0 (12

rates are no longer arbitrarily small, and in fact the results of

Martel and Knobloch[ [9], Eqg. (18)] indicate that high- with the boundary conditiongo(—L)=(L)=0. Herer

frequency waves are always damped quite strongly unless —gk?/\3. This problem has an infinite number of solu-

the water is very deefon the order of hundreds of metgrs tions, indexed by an integertaking values 1,2,3 ... Itis

N=No+ Vphy+ uh o+ O(u®?), (10
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solved numerically using a double precision version of they;(—L), ¢4(L), D¢4(—L), andD¢4(L). The integrals in

Sturm-Liouville solversLEIGN [19] to find y(z) and 7
(hence),) for givenn.
At order O(\/) we find that

, 2\,
D21(2)+4(D¥(2) = 7a(2)| ha(D= S Wol2) .

. (13
Ja(~L)= = 5Duo(~L), and ya(L)=5Dyo(L),

where 8= —iyAgp(—L) and 6= —iyAgp(L). We multiply
Eq. (13 by ¢4(z) and integrate with respect &from —L to

L. Since sLEIGN provides the information to algebraically
calculateD ¢o(—L) andD iy(L) we can calculate.; from
the following equation:

_Vp(L)[Dyo(L)*+Vp(—L)[Dgho( —L)]?
A= - — :
2i T( \/)\0)

To achieve a smootly; we used the two-point boundary
value problem solvepBvsupr[20] to recalculatef, now that
we have a value foin,. We chose to normalizes, by
It a(2)yi(2)dz=—1.

To solve for\, we must numerically calculate¢;. We
usedbBvSUP to calculateys,. Sinceys; is nonunique, we can
write 1 = ¢ — Ny whereN is an arbitrary complex number.
We chooseN such thatf" | a(2) ¥o(2) ¥1(2)dz=0. We find
that\, is given by

(14

L )\i

+ —_—
2o

L

_ "o o 2
A= 57 D ioib, +W[D#’/0(Z)]

-L

1 (L
+2—f [[Dlﬂo(z)]z—lﬂo(Z)Dlﬂo(Z)[a(Z)JrZT]
T)-L

(2)) ] 2*(2)
+y(2)| P+ a(z)T+ “T) C:)(—Z)dz, (15
where the boundary values ¢f, are:
a(—L) 1
lﬂz(_l-):(_ > ¢1(_L)+D¢1(_L))(L_E>
1 (—L)BL?
= 5Dw(~L) —a(—L)L-i—%
3a(—L) a(—L)L N\
_eﬁL( B 2 +2—7\0” (10
a(L) 1) 1
(L) = > ‘ﬁl(_L)_Dl/fl(_L)) L+5)+5D¢0(L)
2
X —a(L)L—@— ok

(3a(L) a(L)L xl)
a8 T2 T2,

. (17)

We do not need to calculaig, since\, requires only the
values ofi»,(—L) and (L), which are given in terms of

the\, calculation were solved using the ordinary differential
equation (ODE) solver LSODA. More details are given in
[21].

2. Compound matrix shooting method

The second method solves the full linearized Elg.nu-
merically with an unconventional shooting method, shooting
twice from the lower boundary simultaneously. We write
equation(1) as a system of four first-degree equatiih®
=Ad, whered=(w,Dw,D?w,D3w)". We then take two
“shot” solutions y=(w,Dw,D?w,D3w)T and ¢
=(w,Dw,D?w,D3w)T with the lower boundary conditions
x(—L)=(0,0,1,0) andZ(—L)=(0,0,0,1), evaluate at the
upper boundary, and form the Wronskian

W(\)=w(L)DwW(L)—w(L)DW(L). (18

A complex numbei is an eigenvalue exactly whaW(\)
=0.

We are able to avoid a problem of numerical dependence
by computing with only the wedge product of the two shots
in the numerical code. This method, which we call the com-
pound matrix shootingCMS) method was described by Ng
and Reid[22] as a method to reduce a fourth-order ODE
problem to a single initial value probletwhich is a bound-
ary value problem in our cagdt was then shown by Gerst-
ing [23] to greatly increase the speed of computation.

We used thex calculated from the asymptotic method as
a seed value and computétl(\) for A varying along a
contour about the seed. The winding number of the image
about zero counts the number of zeros/finside the con-
tour. If the winding number is one, indicating that there is a
single eigenvalue inside the contour, then we calculate
approximately using a formula from de Bruij@4]:

1 [DW(»)
_2_’77i r W(Z)

zdz (19

Next we use the secant method to converge tothat sat-
isfiesW(N\)=0. In our computations using a fluid cell size
matching the experimental cdlB] and the physical param-
eters of near-critical xenon, the matixwas very stiff and
required additional scalingR1].

B. Numerical results

For the numerical calculations, we impose horizontal pe-
riodic boundary conditions corresponding to the dimensions
of the fluid container size used by Beeg al. for their nu-
merical and physical experiments on near-critical xenon.
Thus we look for solutions with period in the x direction
and b in the y direction and takea=7.6 mm, b=38 mm,
L=9.50 mm. The horizontal wave numbers must have the
form k,=m,w/a andk,=m,7/b wherem, ,m, are integers.

We use the restricted cubiRC) and van der Waals
(vdW) equations of statéas in[4]) for xenon to provide two
different descriptions for the near-critical density stratifica-
tion. Xenon has critical temperaturé.=289.720 K and
critical densityp.=1110.0 kg/m. We assign the constant
shear viscosity a typical value from the viscosity model of
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FIG. 3. Comparison of calculated decay rates vs temperature for
e the RC density profiléa) (1,1,2) and(b) (1,1,2 modes. The dashed
(©) neg 0= 3 n=1 line represents the asymptotic method calculation with constant vis-
-1 cosity. The solid line represents the CMS method calculation with
10 I n=2 constant viscosity. The dash-dotted line represents the CMS method
@ ’ with variable viscosity.
v [
= A o
= (1.6 jA‘ 5 stricted cubic model density profile computed with the CMS
T A f 2 method with constant viscosity. As shown in Fig. 2 each
« ‘A‘A? A determines a curve of eigenvalues parametrized kby
(11,494 (1,13 4 A
A ‘ =\ kX+ ky.
A (.1 In the interests of brevity, we present further numerical
A‘ results for the(1,1,) and (1,1,2 modes only since the
1072 112 & , damped oscillatory modes with nonzero horizontal wave
10° moy (1 10 number described in Theorem 2 exhibit different behavior
m() (1/s) whethern is odd or even. Figure 2 shows that the-1,2

modes are the slowest decaying modes for the damped oscil-

FIG. 2. Comparison of the decay rates vs oscillation frequencyatory modes withm,=1 and m,=1. At temperatures far

at (@ T=T,+100 mK, (b) T=T,+10mK, and (c) T=T,
+1 mK for modes starting at (144 wheren=1,2, ... ,6using the

aboveT, then=1 is the slowest decaying mode, while very
nearT. then=2 mode becomes the slowest decaying mode.

RC density profile and CMS method with constant viscosity. TheThiS same behavior is shown for the=3.4 andn=5.6

m,=1 modes are represented by triangles, te=2 modes by
circles, and themy,=3 modes by squares. Within eaal, mode

family the parametem, increases as Im( increases.

modes in Fig. 2.

Figure 3 shows the decay rates Rp(in s* for the
(1,1, and(1,1,2 modes, plotted versus temperature above
critical, for the restricted cubic model density profile, com-
puted with the three-term asymptotic method, the CMS

[11] at zero frequencyp=3.2x10 ° kg m/s.
Our asymptotic analysis indicates that, in the small-method with constant viscosity, and the CMS method with
viscosity limit, each eigenvalug corresponds to a triplet of variable viscosity determined from the model[@f]. Figure
integers (n,,my,n). Figure 2 shows the decay rates versus4 shows the same for the van der Waals—derived density
the oscillation frequency at two fixed temperatures for theprofile. The three-term asymptotic expansion provides a
modes km,<3, 1lsmy<11, and kn<6 for the re- good approximation at higher temperatures when the density



522 K. F. GURSKI AND R. L. PEGO PRE 62

0.01 25

3 £ B
0.02t % @) 1 T 0 / T 2.4 /\
[an ang

(M) (1/s)

[}

0.012r

0'098 1 :5 2

f 1
Iog?ﬂ?[(T—Tc)/mK]

FIG. 4. Comparison of calculated decay rates vs temperature for
the vdW-derived density profiléa) (1,1,2 and (b) (1,1,2 modes.
The dashed line represents the asymptotic method calculation with F!G. 5. Comparison of the real part of the eigenfunction for the
constant viscosity. The solid line represents the CMS method calRC density profilea) (1,1, and(b) (1,1,2 modes.
culation with constant viscosity. The dash-dotted line represents the
CMS method with variable viscosity.
We plot results for the(1,1,) and (1,1,2 modes for
the restricted cubic method profile and the van der Waals—
profile is less steefat much less computational cost than thederived density profile aff=T.+1mK. For the (1,1,1)
other methods but deviates substantially very close to themode a corner forms in the wave function @s-T..
critical temperature. _ _ Because of the representation of the horizontal velocity in
We see that the damping rate grows substantially as thgq (2) in terms ofDw, this indicates that a strong shearing
temperature approaches the critical temperatur(()a. For theyer develops near the incipient singularity in the density
gs%n]i tgjoii’bitc?ISdelplcs:irt?/a;?o:‘iear\:\fi)trr?x':rr?eat\?gia(sﬁg ﬁi;gg;irt‘;gradient. This provides a mechanism to explain the dramatic
enhancement in the decay rate for ttigl,) modes asT

model as the temperature drops from+20 mK to T, .
+0.3 mK. This corresponds to a decrease in the decay tim?TC' Unlike the(1,1,]) mode, we see that the wave func

A1 from 219 s afT,+20 MK to 34 s aff,+0.3 mK. The tion for the(l,l_,Z) mode _does not develop a corner. S_o we
damping rate for thé1,1,2 mode experiences a significant see a smaller increase in the decay rateTasT, for this
drop aroundT=T,+20 mK, but returns to approximately Mode:
the same value as at=T.+ 100 mK.
In Figs. 5 and 6 we compare the real part of the eigen-
function w(z) calculated from the asymptotic method with
the real part of the eigenfunction calculated from the CMS Wave damping in slightly viscous fluids is frequently
method with constant viscosity. We normalized these eigendominated by boundary layer effects. To study this issue for
functions so that internal waves in a critical fluid, we write =\g+i\, and
obtain an integral expression for the damping ragefrom
the energy dissipation identity. From this expression the
a(2)|Wasy(2)|?dz. (20)  main sources of dissipation can be identified.
- From the linearized Navier-Stokes equation with constant
viscosity and linearized continuity equation, for a single-
This normalization determinesvcys and wpg, uniquely  mode solution the dissipation of the kinetic energy of the
within a complex phase factor, which was then estimated. system is given by

C. Mechanism of enhanced damping

L L
J' a’(Z)|WCMS(Z)|2dZ:J'
—L
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FIG. 6. Comparison of the real part of the eigenfunction vs.
height for the vdW-derived density profi(e) (1,1,1) and(b) (1,1,2
modes.

d
a(Ek):_Z)\R(Ek)

—)\Re*“RtJ plu(r)|?dr

N
=e*2*R‘f — | Vu(r) z—ﬁ w(z)|?gDp | dr.
(21)
Therefore we can writd g as
[ ulvucar
AR= (22

[ olunzar— [ -2hacz) Pgppor

In order to illustrate the main contributions to the damping

rate from the boundary layer and the fluid volume, we per-

form a partial integration of the numerator in E§2) from
the bottomz= — L to an arbitrary levek=z, and refer to the
resulting function ofz as)\R(E).

In Fig. 7 we plot\g(Z) vs z for the restricted cubic den-
sity profile (1,1,1) and(1,1,2 modes. The results plotted for
temperaturel .+ 100 mK indicate that far above the critical
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FIG. 7. Partially integrated dissipation rate as a function of
height for RC density profil¢a) (1,1,1) and(b) (1,1,2 modes. The
solid line represents the dissipation rateTat T.+1 mK and the
dashed line al =T;+ 100 mK.

Near the critical temperatur@vithin 1 mK) the dissipation
rate for the(1,1,2) mode is dominated by contributions from
the shearing layer close to the center. Ttiel,2 mode
shows less dominance by volumetric effects over boundary
layer effects near the critical temperature. This is consistent
with the evidence from Fig. 5 that in this case no strong
shearing layer develops close to the center.

V. CONCLUSIONS

Any stably stratified fluid modeled by the incompressible,
constant-viscosity Navier-Stokes equations with a suffi-
ciently smooth density profile will admit nonoscillatory lin-
ear modes with arbitrarily small damping rates in a periodi-
cally confined fluid layer. These modes correspond
physically to strongly overdamped slow oscillations of thin
fluid layers between consecutive points where vertical veloc-
ity vanishes.

The damping of oscillatory internal-wave modes in near-
critical xenon is substantially influenced by both boundary
layer and volumetric effects at temperatures well above the
critical temperature. Horizontal shearing layers at the top and
bottom create the boundary layer dissipation. As the tem-
perature of the fluid approaches the critical temperature, the
density stratification steepens on the approach to the two-

temperature the dissipation rate is substantially influenced bghase regime. During this transition an additional shearing

both boundary layer and volumetric effects for both modes

layer can form at the incipient interface between liquid and
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vapor, leading to a large magnification in the damping raterections, we cannot make any statements about any potential
This occurs for modes having eigenfunctions that pealeffects of side boundaries.

where the density gradient is maximized. Internal-wave

modes having eigenfunctions without peaks do not develop a
strong central shearing layer. Consequently these wave
modes do not exhibit a large increase in the damping rate as This work was partially supported by the National Sci-

the temperature approaches critical. Since in this study wence Foundation under Grant No. DMS-97-04924 and
have used periodic boundary conditions in the horizontal diSCREMS Grant No. DMS-96-28467.
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