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Decay rates of internal waves in a fluid near the liquid-vapor critical point
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We study the damping of internal waves in a viscous fluid near the liquid-vapor critical point. Such a fluid
becomes strongly stratified by gravity due to its large compressibility. Using the variable-density incompress-
ible Navier-Stokes equations, we model an infinite fluid layer with rigid horizontal boundaries and periodic
side boundary conditions. We present operator-theoretic results that predict the existence of internal-wave
modes with arbitrarily small damping rates. We also solve the eigenvalue problem numerically using a com-
pound matrix shooting method and a second method based on a matched-asymptotic perturbation expansion for
small viscosity. At temperatures far above the critical point, the damping of the internal waves is substantially
influenced by both boundary layer and volumetric effects. The boundary layer effect is caused by horizontal
shearing layers near the two fixed horizontal boundaries. As the temperature approaches the critical tempera-
ture, an additional internal shearing layer develops as the density stratification curve steepens on approach to
the two-phase regime. Numerical calculations show that for some of the internal-wave modes this causes a
dramatic increase in the damping rate that dominates the boundary layer effects.

PACS number~s!: 47.55.Hd, 68.35.Rh, 02.60.Lj, 47.11.1j
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I. INTRODUCTION

Close to the liquid-vapor critical point, the physical cha
acteristics of a fluid change rapidly. For example, the co
pressibility diverges to infinity. By consequence, density
comes strongly stratified by gravity, even in the one-ph
regime. Thus near-critical fluids are able to support inter
gravity waves.

Internal waves are common to a variety of large-sc
physical phenomena, including the fluid motion in a lak
ocean, planetary atmosphere, or stellar interior@1,2#. Be-
cause of the singularities that occur at the critical point, ho
ever, internal waves in near-critical fluids can be observe
the laboratory in very small volumes of fluid. In recent e
periments at the National Institute for Standards and Te
nology ~NIST!, Berget al. @3# studied internal gravity wave
in near-critical xenon contained in a small cell with im
mersed apparatus configured as a viscometer. Using a
viscid incompressible fluid model, they calculated the f
quencies of the internal-wave motion and compared th
with their experimental results. Later, Anderson and McF
den @4# introduced a diffuse interface model of the nea
critical fluid to study the two-phase regime. Boukari@5# has
also observed internal waves in near-critical xenon in a
designed for fluctuation measurements on the space sh
@6,7#.

These experimentalists report observing damping of in
nal waves that is not explained by fluid models used to d
Here we aim to study wave damping by including the v
cous effects neglected in@3,4# and looking for normal modes
in a layer of stably stratified fluid with rigid boundarie
above and below.

In such a damped system, one hopes to identify the sl
est decaying modes with a given horizontal wave num
PRE 621063-651X/2000/62~1!/517~8!/$15.00
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since these should dominate the long-time behavior. Surp
ingly, here we find that there exists an infinite number
nonoscillatory internal-wave modes with arbitrarily sma
damping rates. A similar result has long been known
surface waves in a constant-density fluid neglecting surf
tension@8#; however, surface tension tends to strongly da
these modes@see@9#, Eq. ~18!#. For an analytical treatmen
of the case of an exponential density profile~corresponding
to an ideal fluid! with constant kinematic viscosity and th
Boussinesq approximation in a two-dimensional closed c
tainer, see@10#.

We also numerically compute decay rates of oscillato
modes for near-critical xenon with parameters roughly c
responding to the cell geometry in the experiments of B
et al. At temperatures well above critical, a substantial fra
tion of wave damping is due to a boundary layer effe
caused by viscous dissipation in horizontal shearing lay
near the two fixed boundaries. As the temperature
proaches critical, an additional horizontal shearing layer
velops at the center of the fluid layer as the density stra
cation profile steepens on approach to the two-phase reg
For some of the internal-wave modes this causes a dram
increase in the damping rate that dominates the bound
layer effects.

II. THE MODEL EQUATION

We begin the analysis by modeling an infinite layer
fluid, confined between rigid horizontal boundaries atz
56L, using the variable-density incompressible Navie
Stokes equations. Viscosity is modeled in two ways, first
taking the shear viscositym as a constant, and second b
using the viscosity model of@11# at zero frequency with
correlation length given by the restricted cubic model@12#.
517 ©2000 The American Physical Society
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518 PRE 62K. F. GURSKI AND R. L. PEGO
We impose periodic boundary conditions in the horizon
directions.

At first, the idea of modeling a near-critical fluid as in
compressible seems like a paradox, since it is exactly
high compressibility of the fluid near the critical point that
responsible for density stratification. However, a satisfact
justification of the use of the incompressibility assumpti
for this problem can be given by an asymptotic expansion
low-speed, near-critical flow as performed by Denny a
Pego@13#. By choosing to keep the combination of pressu
and density as thermodynamic variables rather than the c
bination of density and temperature in the low-Mach-num
approximation, one can arrive at the variable-density Nav
Stokes model@14#. This consists of the standard incompres
ible Navier-Stokes equations with gravity, and a noncons
density that is convected with the flow.

In equilibrium, the density profiler(z) is continuously
vertically stratified at temperatures above the critical te
peratureTc . A graph of the density stratification in nea
critical xenon in Earth’s gravity is shown in Fig. 1. We u
the restricted cubic@15,12# and van der Waals equations
state~as in@4#! to model the density stratification found ne
the critical point. We linearize the equations around an eq
librium state and look for normal modes. Thus, the verti
velocity is required to have the formW(x,y,z,t)
5ei (kxx1kyy)2ltw(z) where2 il represents the complex fre
quency. The horizontal velocities, pressure, and density
turbations have similar expressions, but may be eliminate
generate a single fourth-order ordinary differential equat
for the vertical velocity profilew(z).

For near-critical xenon the shear viscositym(j) diverges
as the liquid-vapor critical point is approached asj0.069,
wherej is the correlation length. Because this divergence
weak, modeling viscosity as a constant is a reasonable
approximation. In this case of constant viscosity one obta

m

r~z!
~D22k2!2w~z!1l„D21a~z!D2k2

…w~z!

1
a~z!gk2

l
w~z!50, ~1!

FIG. 1. Density stratification of near-critical xenon as a functi
of depth in a cell of length 19 mm using the restricted cubic den
profile calculated at various temperatures above the critical t
perature.
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with four boundary conditions,w(2L)5w(L)5Dw(2L)
5Dw(L)50, whereD5]/]z, a(z)5Dr(z)/r(z), and k2

5kx
21ky

2 . We assumekÞ0. This is a nonlinear eigenvalu
problem; one should findl so that Eq.~1! has a nontrivial
solution satisfying the four boundary conditions indicated

From the solution of this problem one determines that
full velocity u5(U,V,W) and density perturbationdr have
the following normal mode form:

u5eikxx1 ikyy2ltS ikx

k2
Dw~z!,

iky

k2
Dw~z!,w~z!D , ~2!

dr5eikxx1 ikyy2lt
w~z!Dr~z!

l
. ~3!

If we replace the assumption of constant shear visco
with the more physical viscosity model of@11# at zero fre-
quency we have the viscosity as a function of correlat
length. For a fixed temperature, the correlation length i
function of the density, which in turn is a function of heigh
Therefore if we use the restricted cubic model for correlat
length@12#, then the viscosity in equilibrium is a function o
height. Instead of Eq.~1! we have the nonlinear eigenvalu
problem

D2m~z!

r~z!
~D21k2!w~z!1

2Dm~z!

r~z!
~D22k2!Dw~z!

1
m~z!

r~z!
~D22k2!2w~z!1l„D21a~z!D2k2

…w~z!

1
a~z!gk2

l
w~z!50, ~4!

with four boundary conditions,w(2L)5w(L)5Dw(2L)
5Dw(L)50.

III. NONOSCILLATORY MODES

We have employed operator-theoretic methods to es
lish some fundamental properties of the damping rates de
mined by Eq.~1! for a general stably stratified density profi
r(z), one that satisfiesDr(z),0. By adapting the abstrac
approach used in the analysis of the damping of free-sur
water waves by Askerovet al. @8# and using the Keldysh
completeness theorem~see@16#!, we prove@17#

Theorem 1. The eigenvalues of Eq. (1) form a counta
infinite set contained in the half plane Rel.0. At most a
finite number are nonreal. There exist both an infinite nu
ber of real eigenvalues converging to zero and an infin
number converging to infinity, and there is no other accum
lation point.

This result indicates that there are nonoscillatory wa
modes with arbitrarily small damping rates in any perio
cally confined stably stratified viscous fluid layer. This
surprising since naively one expects a purely discrete sp
trum like that of a parabolic equation in a bounded doma
Instead it turns out thatl50 is an accumulation point fo
eigenvalues. Thus one cannot expect a uniform expone
rate of decay to equilibrium in the dynamic problem. A sim
lar theorem is proved in@10# for the exponentially stratified
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PRE 62 519DECAY RATES OF INTERNAL WAVES IN A FLUID . . .
case with the Boussinesq approximation in an arbitrary tw
dimensional domain.

For a physical explanation for this behavior, suppose t
the kinematic viscosityn5m/r is constant anda,0 is con-
stant, which corresponds to the case of an exponent
stratified fluid. Then Eq.~4! has constant coefficients an
may be written

l2~D21aD2k2!w1agk2w1ln„a2~D21k2!

12a~D32k2D !1~D22k2!2
…w

50. ~5!

We ignore the boundary conditions and reintroduce gen
time dependence, writingw(z,t)5ŵ(t)einz and considern
large. The resulting equation,

~n2] t
22agk2!ŵ~ t !1nn4] tŵ~ t !'0, ~6!

corresponds to an overdamped oscillator with decay r
given by

l5
nn2

2
6An2n4

4
1

agk2

n2
'H nn2 for 1

2agk2

nn4
for 2.

For n large, the1 case gives the fast decay one expects fr
parabolic dissipation, but the2 case gives very slow decay
In the absence of viscosity these modes correspond to
oscillations of the thin fluid layers between consecut
points where vertical velocity vanishes. The introduction
viscosity highly overdamps these waves and separates
into fast- and slow-decaying nonoscillatory modes.

For a more precise description, we can take account of
boundary conditions, using the method of matche
asymptotic expansions@18# to determine an expression fo
the arbitrarily small eigenvalues. We begin with Eq.~5! and
with the boundary conditions thatw5Dw50 at z56L. In
this perturbation problem we have two inner boundary lay
at z56L where we introduce stretched variablesz65(L
6z)/l1/4, and in the outer region we use the scaled varia
j5z/l1/4. Carrying out the expansion and matching proc
dure we find

l'2agk2n21S ~2n11!p

4L D 24

, ~7!

where n is an integer corresponding to the vertical wa
number. Asn approaches infinity, the eigenvalues approa
zero with the samen24 dependence as found above for slo
decaying modes when the boundary conditions are igno

Arbitrarily small damping rates in the presence of visco
ity were predicted for water waves with a free surface and
surface tension@8#. In that case they arise in the limit of larg
horizontal wave number (k→`), which is different from the
case of stratified fluids considered here. If one includes
effects of surface tension, however, free-surface damp
rates are no longer arbitrarily small, and in fact the results
Martel and Knobloch@ @9#, Eq. ~18!# indicate that high-
frequency waves are always damped quite strongly un
the water is very deep~on the order of hundreds of meters!.
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By contrast, the damping of internal waves in stratified flu
is not subject to the effects of surface tension, and mo
with arbitrarily slow damping rates should be of physic
significance.

IV. OSCILLATORY MODES

In this section we concentrate on computing the de
rates for the damped oscillatory internal-wave modes.
variational methods we can prove the following theoreti
bounds concerning the location of the eigenvalues for os
latory modes in the complex plane@17#.

Theorem 2. All nonreal eigenvalues of Eq.~1! are in the
half ring where Rel.0 and

m~p2/4L21k2!

2 maxz r~z!
<ulu<

2gmaxzur8~z!u

mk2
. ~8!

There are therefore no oscillatory modes if the viscosity
large enough, satisfying

m>A4gmaxz r~z!maxzur8~z!u

k2~p2/4L21k2!
. ~9!

A. Numerical methods

We employ two different numerical methods to solve t
z-velocity equation~1! for the eigenvalues and eigenfun
tions.

1. Asymptotic expansion

The first method utilizes matched-asymptotic perturbat
expansions for small viscosity with two boundary layers
z56L ~in the constant-viscosity case!. With small viscosity
the fluid is essentially inviscid away from the boundarie
and the effects of the nonzero viscosity will be felt only in
small region near each boundary. For the inner expansio
the boundary layer nearz52L we apply the stretching
transformationj5(z1L)/Am and nearz5L we useh5(L
2z)/Am. Matching the inner boundary layer expansions
the outer expansion determines in a standard fashion bo
ary conditions for terms in the outer expansion.

We suppress the details of the matching procedure
describe the results in terms of the outer expansion. We w
w(z)5c(z)Ar(2L)/r(z) and expand the eigenvalue an
eigenfunction as follows:

l5l01Aml11ml21O~m3/2!, ~10!

c5c01Amc11mc21O~m3/2!. ~11!

Then at orderO(1) thez-velocity equation~1! reduces to the
Sturm-Liouville problem

D2c0~z!1q~z!c0~z!2ta~z!c0~z!50 ~12!

with the boundary conditionsc0(2L)5c0(L)50. Heret
52gk2/l0

2. This problem has an infinite number of solu
tions, indexed by an integern taking values 1,2,3, . . . . It is
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520 PRE 62K. F. GURSKI AND R. L. PEGO
solved numerically using a double precision version of
Sturm-Liouville solver SLEIGN @19# to find c0(z) and t
~hencel0) for given n.

At order O(Am) we find that

D2c1~z!1q~z!c1~z!5ta~z!S c1~z!2
2l1

l0
c0~z! D ,

~13!

c1~2L !52
1

b
Dc0~2L !, and c1~L !5

1

d
Dc0~L !,

whereb52 iAl0r(2L) andd52 iAl0r(L). We multiply
Eq. ~13! by c1(z) and integrate with respect toz from 2L to
L. Since SLEIGN provides the information to algebraicall
calculateDc0(2L) andDc0(L) we can calculatel1 from
the following equation:

l15
Ar~L !@Dc0~L !#21Ar~2L !@Dc0~2L !#2

2i t~Al0!21
. ~14!

To achieve a smoothc0 we used the two-point boundar
value problem solverDBVSUP @20# to recalculatec0 now that
we have a value forl0. We chose to normalizec0 by
*2L

L a(z)c0
2(z)dz521.

To solve forl2 we must numerically calculatec1. We
usedDBVSUP to calculatec1. Sincec1 is nonunique, we can
write c15f2Nc0 whereN is an arbitrary complex number
We chooseN such that*2L

L a(z)c0(z)c1(z)dz50. We find
that l2 is given by

l25
2l0

2t
Dc0c2U

2L

L

1
3l1

2

2l0
1

a

2tr~z!
@Dc0~z!#2U

2L

L

1
1

2tE2L

L F @Dc0~z!#22c0~z!Dc0~z!@a~z!12t#

1c0
2~z!S t21a~z!t1

a2~z!

4 D G a2~z!

r~z!
dz, ~15!

where the boundary values ofc2 are:

c2~2L !5S 2
a~2L !

2
c1~2L !1Dc1~2L ! D S L2

1

b D
2

1

b
Dc0~2L !F2a~2L !L1

a~2L !bL2

2

2ebLS 3a~2L !

4b
2

a~2L !L

2
1

l1

2l0
D G , ~16!

c2~L !5S a~L !

2
c1~2L !2Dc1~2L ! D S L1

1

d D1
1

d
Dc0~L !

3F2a~L !L2
a~L !dL2

2
2e2dL

3S 3a~L !

4b
1

a~L !L

2
2

l1

2l0
D G . ~17!

We do not need to calculatec2 sincel2 requires only the
values ofc2(2L) and c2(L), which are given in terms o
ec1(2L), c1(L), Dc1(2L), andDc1(L). The integrals in
thel2 calculation were solved using the ordinary different
equation ~ODE! solver LSODA. More details are given in
@21#.

2. Compound matrix shooting method

The second method solves the full linearized Eq.~1! nu-
merically with an unconventional shooting method, shoot
twice from the lower boundary simultaneously. We wri
equation~1! as a system of four first-degree equationsDF
5AF, whereF5(w,Dw,D2w,D3w)T. We then take two
‘‘shot’’ solutions x5(w̃,Dw̃,D2w̃,D3w̃)T and z

5(ŵ,Dŵ,D2ŵ,D3ŵ)T with the lower boundary conditions
x(2L)5(0,0,1,0)T andz(2L)5(0,0,0,1)T, evaluate at the
upper boundary, and form the Wronskian

W~l!5w̃~L !Dŵ~L !2ŵ~L !Dw̃~L !. ~18!

A complex numberl is an eigenvalue exactly whenW(l)
50.

We are able to avoid a problem of numerical depende
by computing with only the wedge product of the two sho
in the numerical code. This method, which we call the co
pound matrix shooting~CMS! method was described by N
and Reid@22# as a method to reduce a fourth-order OD
problem to a single initial value problem~which is a bound-
ary value problem in our case!. It was then shown by Gerst
ing @23# to greatly increase the speed of computation.

We used thel calculated from the asymptotic method
a seed value and computedW(l) for l varying along a
contour about the seed. The winding number of the ima
about zero counts the number of zeros ofW inside the con-
tour. If the winding number is one, indicating that there is
single eigenvalue inside the contour, then we calculatel
approximately using a formula from de Bruijn@24#:

l5
1

2p i EG

DW~z!

W~z!
zdz. ~19!

Next we use the secant method to converge to al that sat-
isfies W(l)50. In our computations using a fluid cell siz
matching the experimental cell@3# and the physical param
eters of near-critical xenon, the matrixA was very stiff and
required additional scaling@21#.

B. Numerical results

For the numerical calculations, we impose horizontal p
riodic boundary conditions corresponding to the dimensio
of the fluid container size used by Berget al. for their nu-
merical and physical experiments on near-critical xen
Thus we look for solutions with perioda in the x direction
and b in the y direction and takea57.6 mm, b538 mm,
L59.50 mm. The horizontal wave numbers must have
form kx5mxp/a andky5myp/b wheremx ,my are integers.

We use the restricted cubic~RC! and van der Waals
~vdW! equations of state~as in@4#! for xenon to provide two
different descriptions for the near-critical density stratific
tion. Xenon has critical temperatureTc5289.720 K and
critical densityrc51110.0 kg/m3. We assign the constan
shear viscosity a typical value from the viscosity model
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@11# at zero frequency,m53.231025 kg m/s.
Our asymptotic analysis indicates that, in the sma

viscosity limit, each eigenvaluel corresponds to a triplet o
integers (mx ,my ,n). Figure 2 shows the decay rates vers
the oscillation frequency at two fixed temperatures for
modes 1<mx<3, 1<my<11, and 1<n<6 for the re-

FIG. 2. Comparison of the decay rates vs oscillation freque
at ~a! T5Tc1100 mK, ~b! T5Tc110 mK, and ~c! T5Tc

11 mK for modes starting at (1,1,n) wheren51,2, . . . ,6using the
RC density profile and CMS method with constant viscosity. T
mx51 modes are represented by triangles, themx52 modes by
circles, and themx53 modes by squares. Within eachmx mode
family the parametermy increases as Im(l) increases.
-

s
e

stricted cubic model density profile computed with the CM
method with constant viscosity. As shown in Fig. 2 eachn
determines a curve of eigenvalues parametrized byk
5Akx

21ky
2.

In the interests of brevity, we present further numeric
results for the~1,1,1! and ~1,1,2! modes only since the
damped oscillatory modes with nonzero horizontal wa
number described in Theorem 2 exhibit different behav
whethern is odd or even. Figure 2 shows that then51,2
modes are the slowest decaying modes for the damped o
latory modes withmx51 and my51. At temperatures far
aboveTc then51 is the slowest decaying mode, while ve
nearTc then52 mode becomes the slowest decaying mo
This same behavior is shown for then53,4 andn55,6
modes in Fig. 2.

Figure 3 shows the decay rates Re(l) in s21 for the
~1,1,1! and ~1,1,2! modes, plotted versus temperature abo
critical, for the restricted cubic model density profile, com
puted with the three-term asymptotic method, the CM
method with constant viscosity, and the CMS method w
variable viscosity determined from the model of@11#. Figure
4 shows the same for the van der Waals–derived den
profile. The three-term asymptotic expansion provides
good approximation at higher temperatures when the den

y

e

FIG. 3. Comparison of calculated decay rates vs temperature
the RC density profile~a! ~1,1,1! and~b! ~1,1,2! modes. The dashed
line represents the asymptotic method calculation with constant
cosity. The solid line represents the CMS method calculation w
constant viscosity. The dash-dotted line represents the CMS me
with variable viscosity.
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522 PRE 62K. F. GURSKI AND R. L. PEGO
profile is less steep~at much less computational cost than t
other methods!, but deviates substantially very close to t
critical temperature.

We see that the damping rate grows substantially as
temperature approaches the critical temperature. For
~1,1,1! mode, this increase is approximately 600% for t
restricted cubic density profile with the variable-viscos
model as the temperature drops fromTc120 mK to Tc
10.3 mK. This corresponds to a decrease in the decay
l21 from 219 s atTc120 mK to 34 s atTc10.3 mK. The
damping rate for the~1,1,2! mode experiences a significa
drop aroundT5Tc120 mK, but returns to approximatel
the same value as atT5Tc1100 mK.

In Figs. 5 and 6 we compare the real part of the eig
function w(z) calculated from the asymptotic method wi
the real part of the eigenfunction calculated from the CM
method with constant viscosity. We normalized these eig
functions so that

E
2L

L

a~z!uwCMS~z!u2dz5E
2L

L

a~z!uwAsy~z!u2dz. ~20!

This normalization determineswCMS and wAsy uniquely
within a complex phase factor, which was then estimated

FIG. 4. Comparison of calculated decay rates vs temperature
the vdW-derived density profile~a! ~1,1,1! and ~b! ~1,1,2! modes.
The dashed line represents the asymptotic method calculation
constant viscosity. The solid line represents the CMS method
culation with constant viscosity. The dash-dotted line represents
CMS method with variable viscosity.
e
he

e

-

n-

We plot results for the~1,1,1! and ~1,1,2! modes for
the restricted cubic method profile and the van der Waa
derived density profile atT5Tc11mK. For the ~1,1,1!
mode a corner forms in the wave function asT→Tc .
Because of the representation of the horizontal velocity
Eq. ~2! in terms ofDw, this indicates that a strong shearin
layer develops near the incipient singularity in the dens
gradient. This provides a mechanism to explain the dram
enhancement in the decay rate for the~1,1,1! modes asT
→Tc . Unlike the ~1,1,1! mode, we see that the wave fun
tion for the ~1,1,2! mode does not develop a corner. So w
see a smaller increase in the decay rate asT→Tc for this
mode.

C. Mechanism of enhanced damping

Wave damping in slightly viscous fluids is frequent
dominated by boundary layer effects. To study this issue
internal waves in a critical fluid, we writel5lR1 il I and
obtain an integral expression for the damping ratelR from
the energy dissipation identity. From this expression
main sources of dissipation can be identified.

From the linearized Navier-Stokes equation with const
viscosity and linearized continuity equation, for a sing
mode solution the dissipation of the kinetic energy of t
system is given by

or

ith
l-

he

FIG. 5. Comparison of the real part of the eigenfunction for t
RC density profile~a! ~1,1,1! and ~b! ~1,1,2! modes.
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d

dt
~Ek!522lR~Ek!

52lRe22lRtE ruu~r !u2dr

5e22lRtE S 2mU¹u~r !U22
lR

ulu2Uw~z!U2gDr D dr .

~21!

Therefore we can writelR as

lR5

E mu¹u~r !u2dr

E ruu~r !u2dr2E ulu22uw~z!u2gDrdr
. ~22!

In order to illustrate the main contributions to the dampi
rate from the boundary layer and the fluid volume, we p
form a partial integration of the numerator in Eq.~22! from
the bottomz52L to an arbitrary levelz5 ẑ, and refer to the
resulting function ofẑ aslR( ẑ).

In Fig. 7 we plotlR( ẑ) vs ẑ for the restricted cubic den
sity profile ~1,1,1! and~1,1,2! modes. The results plotted fo
temperatureTc1100 mK indicate that far above the critica
temperature the dissipation rate is substantially influenced
both boundary layer and volumetric effects for both mod

FIG. 6. Comparison of the real part of the eigenfunction
height for the vdW-derived density profile~a! ~1,1,1! and~b! ~1,1,2!
modes.
-

y
.

Near the critical temperature~within 1 mK) the dissipation
rate for the~1,1,1! mode is dominated by contributions from
the shearing layer close to the center. The~1,1,2! mode
shows less dominance by volumetric effects over bound
layer effects near the critical temperature. This is consis
with the evidence from Fig. 5 that in this case no stro
shearing layer develops close to the center.

V. CONCLUSIONS

Any stably stratified fluid modeled by the incompressib
constant-viscosity Navier-Stokes equations with a su
ciently smooth density profile will admit nonoscillatory lin
ear modes with arbitrarily small damping rates in a perio
cally confined fluid layer. These modes correspo
physically to strongly overdamped slow oscillations of th
fluid layers between consecutive points where vertical vel
ity vanishes.

The damping of oscillatory internal-wave modes in ne
critical xenon is substantially influenced by both bounda
layer and volumetric effects at temperatures well above
critical temperature. Horizontal shearing layers at the top
bottom create the boundary layer dissipation. As the te
perature of the fluid approaches the critical temperature,
density stratification steepens on the approach to the t
phase regime. During this transition an additional shear
layer can form at the incipient interface between liquid a

. FIG. 7. Partially integrated dissipation rate as a function
height for RC density profile~a! ~1,1,1! and~b! ~1,1,2! modes. The
solid line represents the dissipation rate atT5Tc11 mK and the
dashed line atT5Tc1100 mK.
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vapor, leading to a large magnification in the damping ra
This occurs for modes having eigenfunctions that pe
where the density gradient is maximized. Internal-wa
modes having eigenfunctions without peaks do not develo
strong central shearing layer. Consequently these w
modes do not exhibit a large increase in the damping rat
the temperature approaches critical. Since in this study
have used periodic boundary conditions in the horizontal
,

m

ri
c-
B:

R

l.

th

v.
.
k
e
a

ve
as
e

i-

rections, we cannot make any statements about any pote
effects of side boundaries.
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