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Thermal lattice Boltzmann simulation for multispecies fluid equilibration
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The equilibration rate for multispecies fluids is examined using thermal lattice Boltzmann simulations.
Two-dimensional free-decay simulations are performed for effects of velocity shear layer turbulence on sharp
temperature profiles. In particular, parameters are so chosen that the lighter species is turbulent while the
heavier species is laminar—and so its vorticity layers would simply decay and diffuse in time. With species
coupling, however, there is velocity equilibration followed by the final relaxation to one large co- and one large
counter-rotating vortex. The temperature equilibration proceeds on a slower time scale and is in good agree-
ment with the theoretical order of magnitude estimate of Morse@Phys. Fluids6, 1420~1963!#.
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I. INTRODUCTION

The physics of the relaxation processes for multispec
fluids/gases has long been of interest@1–8#. A recent interest
in multispecies relaxation has been spurred on by the nee
develop schemes that can cope with the wide range of c
sionalities encountered in the outer regions of a tokamak@8#
~the so-called ‘‘scrape-off layer’’!. Under certain conditions
it has been argued@9# that there can be three time scales
interest in the relaxation of a multispecies system to a fi
thermodynamic equilibrium state. On the fastest time sca
the relaxation of the lighter species to a thermal distribut
centered around the mean velocity of the heavier spec
The next time scale has the heavier species relaxing
thermal distribution on a time scale greater by a factor of
square root of the mass ratio. The longest time scale is
on which the light species and heavier species temperat
equilibrate. Of particular interest is an order-of-magnitu
estimate of the ratio of the time for the species tempera
difference to become negligible to the time for the spec
mean velocity difference to become negligible. Under so
simplifying assumptions, and for spatially homogeneous s
tems, this ratio scales as@1#

tDu

tDn
'

1

2 S n1m11n2m2

n11n2
D S m11m2

m1m2
D>1, ~1!

wherens ,ms are the density and mass of thesth species and
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irrespective of whether one is considering Maxwell, ha
sphere, or Coulomb interactions. Ifm1Þm2 , then tDT

.tDn .
Here, we shall examine the relaxation of a two-fluid tw

dimensional~2D! turbulent system in which each speci
initially has a double velocity shear layer—with one spec
shear layer being perpendicular to that of the other. T
initially, species 1 has vorticity dependence only in thex
direction,v1(x), while fluid 2 hasv25v2(y) only. More-
over, initially, each species is assumed to have a sharp
perature profile—withu15u1(x) andu25u2(y) only.

In the highly collisional regime of interest here, a tw
species nonlinear fluid description is valid. To achieve
quantitative solution to the relaxation problem one must
sort to numerical techniques. In the conventional~direct! ap-
proach to solving the coupled macroscopic conserva
equations of mass, momentum, and energy for each spe
one would have to accurately resolve the nonlinear conv
tive derivatives. This Riemann problem is computationa
quite expensive and readily consumes over 30% of the
time. Here, instead of applying the conventional approa
we shall introduce a kinetic lattice method, which, becau
of the higher phase dimensionality, will obviate the Riema
problem entirely. In particular, we shall consider a therm
lattice Boltzmann model@9–17# ~TLBM !. TLBMs are very
appealing since they are~a! computationally more efficien
than conventional Navier-Stokes solvers and are~b! ideal for
parallel processors. The first hurdle that the TLBM mu
overcome is the extra computational expense incurred
increasing the phase space dimensionality, which fo
collision-dominated regime seems to be an inverse statis
mechanical description. However, this embedding into
higher dimensional phase space has potential advantage
can be exploited. In particular, in the fluid limit, the exa
n,
507 ©2000 The American Physical Society
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508 PRE 62VAHALA, WAH, VAHALA, CARTER, AND PAVLO
form of the collision operator is not critical. Hence one c
introduce, for example, the linear Bhatnagar-Gross-Kro
@18# ~BGK! operator instead of the complicated full nonli
ear Boltzmann operator@1–4#. The beauty of the BGK col-
lision operator is that it is amenable to efficient numer
without sacrificing any of the essential continuum phys
@1–5#. TLBM is intimately tied to the kinetic phase spac
velocity lattice on which it will be solved. In particular
TLBM is a maximally discretized molecular dynamics sin
one attempts to minimize the number of discrete molecu
speeds needed to recover the correct fluid equations.
TLBM algorithm proceeds in three basic steps:~a! free-
stream the distribution function to different lattice sites a
cording to the lattice velocity vectors;~b! recompute macro-
scopic quantities at each nodal site; and~c! perform BGK
collisional relaxation at each node. Thus the TLBM results
a very simple, efficient, and ideally parallel algorithm sin
step~a! is a simple shift~advection! operator, while steps~b!
and ~c! require information that is purely local at that nod
Having extolled the strengths of the TLBM one would
amiss not to point out its well-known inherent weakness
that of numerical instability@10–13#. Let it suffice that work
is still in progress in combating this Achilles’ heel and som
preliminary results will be reported elsewhere@19#. Mean-
while we deem it prudent to restrict ourselves to examin
2D turbulence—even though 3D models@12,15,16# are
available, they are substantially more expensive comp
tionally ~while not increasing the numerical stability re
gimes!.

In Sec. II the two-fluid nonlinear equations are presen
as well as the two-species linear BGK kinetic equatio
which will, under standard Chapman-Enskog expansions
duce to the given macroscopic system. In Sec. III the equ
bration of different species velocities and temperatures
final velocity relaxation is examined for 2D turbulent doub
shear layers, while we make some final comments in Sec

II. MULTIFLUID SYSTEM

Consider the two-fluid system described by the followi
conservation equations of mass, momentum, and energy

]

]t
~msns!1

]

]xa
~msnsns,a!50, ~2!

]

]t
~msnsns,a!1

]

]xb
~msnsns,bns,a!

52
])s,ab

]xb
2

msns

ts,s8
~ns,a2nss8,a!, ~3!

]

]t
~3nsus1msnsvs

2!1
]

]xa
~ns,a@3nsus1msnsvs

2# !

52
]

]xa
~2qs,a12ns,bPs,ab!2

1

tss8
@3ns~us2uss8!

1msns~vs
22vss8

2
!#. ~4!
k
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ms , ns , vs , us are the mass, density, velocity and tempe
ture of thesth species. Thesth species stress tensorPs is
defined by

Ps,ab5nsusdab2msS F]ns,a

]xb
1

]ns,b

]xa
G2

2

3
¹•vsdabD

1msns

ts

tss8
F H uss82us

ms
2

~vss82vs!
2

s J dab

1~nss8,a2ns,a!~nss8,b2ns,b!G , ~5!

while thesth species heat flux vector

qs,a52ks

]us

]xa
1

5

2
ns

ts

tss8
~us2uss8!~ns,a2nss8,a!

2
1

2
msns~vs2vss8!

2~ns,a2nss8,a!. ~6!

ts and tss8 are thesth species and cross-species relaxat
rates, whilems andks are thesth species viscosity and con
ductivity coefficients. The effects of cross-species inter
tions on the momentum and energy equations are appare
the right-hand sides of~3! and ~4!. The convention of sum-
ming over repeated~Greek! subscripts is employed here. Fo
simplicity, we do not incorporate effects of sources/sinks
the sth particle mass conservation equations.

A. Kinetic description of a multifluid system

The conservation equations~3!–~6! can readily be derived
from a simplified two-species kinetic description@2#. In par-
ticular, these macroscopic moment equations are readily
rived by a straightforward Chapman-Enskog expansion@3#
on thesth species linearized BGR@10# for the distribution
function f s(x,j,t)

] f s

]t
1

]

]xa
~ja f s!52

f s2gs

ts
2

f s2gss8
tss8

. ~7!

The sth species relaxation distribution function~for 2D
flows! is

gs5ns

ms

2pus
expF2

ms~j2vs!
2

2us
G , ~8!

while the cross-species relaxation distribution function is

gss85ns

ms

2puss8
expF2

ms~j2vss8!

2uss8
G . ~9!

The cross-species parametersvss8 and uss8 as well as the
cross-species relaxation parameterstss8 satisfy certain physi-
cal constraints based on the relaxation physics. Here, we
low Greene@5# and impose the typical plasma species rela
ation rates

msnsts8s5ms8ns8tss8 . ~10!

Of course, other cross-species relaxation rates could
evoked, provided they do not violate the physics: T
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heavier species should not relax on the fastest time scale
both species, irrespective of their mass, should be equ
affected by their mutual collisions. Moreover, the cros
species collisions are chosen to conserve species densiti
well as momentum and energy. In particular, for collision
momentum conservation,

05E dj msjF2
f s2gs

ts
2

f s2gss8
tss8

G1E djms8j

3F2
f s82gs8

ts8
2

f s82gs8s

ts8s
G

5
msns

tss8
~vss82vs!1

ms8ns8
ts8s

~vs8s2vs8!.

Assuming the cross-species relaxation rates satisfy Eq.~10!,
the collisional momentum conservation then requires

vss82vs1vs8s2vs850. ~11!

Similarly, the collisional energy conservation@under the
cross-species relaxation rate Eq.~10!# requires

S us8s2us8
ms8

D1
1

3
~vs8s

2
2vs8

2
!1S uss82us

ms
D1

1

3
~vss8

2
2vs

2!50.

~12!

The macroscopic variablesns , vs , us are defined by the
standard moments

ns5E dj f s ; nsvs5E dj f sj; 2nsus5E dj f sj
22nsvs

2.

~13!

For 2D flows, Eqs.~11! and ~12! place three constraints o
the six parametersvss8 , vs8s , uss8 , us8s introduced in the
cross-species relaxation distribution function, Eq.~9!.

Further constraints on these parameters are obtained w
we require that the equilibration rates for the species velo
and temperature

]

]t
~vs2vs8! and

]

]t
~us2us8!

have the same functional form in the BGK formalism as w
the full nonlinear Boltzmann collisional integrals. These co
straints are quite complicated and the interested rea
should consult the details in Morse@1# and Greene@5#. Suf-
fice it to say, and as Green@3# has pointed out, that thes
constraints do not determine the six parametersvss8 , vs8s ,
uss8 , us8s uniquely because of a redundancy. This redu
dancy allows the introduction of a free parameter@3# b with

vss85
vs1vs8

2
2

b~vs2vs8!

2
,

vs8s5
vs1vs8

2
1

b~vs2vs8!

2
,

nd
lly
-
, as
l

en
ty

-
er

-

uss85
ms8us1msus8

ms1ms8
2b

ms~us2us8!

ms1ms8

1
~12b2!

6

msms8
ms1ms8

~vs2vs8!
2

1
~11b!2

12

ms82ms

ms1ms8
ms~vs2vs8!

2,

us8s5
ms8us1msus8

ms1ms8
1b

ms~us2us8!

ms1ms8

1
~12b2!

6

msms8
ms1ms8

~vs2vs8!
2

2
~11b!2

12

ms82ms

ms1ms8
ms8~vs2vs8!

2. ~14!

For the problem we are considering, the self-species co
sional relaxation is taken to be that for hard spheres@1,2#

ts'
1

ns
S ms

us
D 1/2

, ~15!

and the cross-species collisional relaxation@1,2#

tss85
11b

ass8

nsms

ms1ms8
@ts ~16!

with b.21 arbitrary, andass8

ass85as8s'
msms8

~ms1ms8!
2 nsns8S bs

ms
1

us8
ms8

D 1/2

. ~17!

The 2D transport coefficients in Eqs.~5! and ~6! are
readily determined using standard Chapman-Enskog te
niques on Eq.~7!: the sth species viscosityms5tsnsus and
the heat conductivityks52tsnsus .

B. TLBM for a two-species system

On discretizing the phase space velocityj, the continuum
distribution functionf s(x,j,t) will be denoted byNspi(x,t):

f s~x,j,t !→Nspi~x,t !, ~18!

where the subscripti denotes the lattice links to that particu
lar spatial nodex and p denotes the different lattice speed
required in order to recover the given macroscopic equati
~2!–~6!. The range of values these subscripts take is tot
dependent on the particular velocity lattice chosen as we
the level of moment closures besides the rest particlep
50.
Some 2D lattices Isothermal model Thermal model

Square lattice i 51,...,4,p51,& i 51,...,4,p51,&,2
Hexagonal lattice i 51,...,6,p51 i 51,...,6,p51,2
Octagonal lattice i 51,...,8,p51 i 51,...,8,p51,2

In essence, this table gives the total phase space velo
information that is needed at each spatial node in the TLB
in order to recover the full fluid conservation equations
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510 PRE 62VAHALA, WAH, VAHALA, CARTER, AND PAVLO
interest. Thus for energy closure on a hexagonal grid,
requires only 13 real numbers ofj information at each spa
tial node.

The TLBM, in its simplest form, is first order in time an
second order in space discretization of the continuum B
equations~7!:

N1pi
~x1cpi ,t11!2N1pi~x,t !

52
1

t1
@N1pi~x,t !2N1pi

eq ~x,t !#

2
1

t12
@N1pi~x,t !2N12pi

eq ~x,t !#, ~19!

N2pi~x1cpi ,t11!2N2pi~x,t !

52
1

t2
@N2pi~x,t !2N2pi

eq ~x,t !#

2
1

t21
@N2pi~x,t !2N21pi

eq ~x,t !#. ~20!

Equations~19! and ~20! are written in TLBM units ofdt
51 anddx51. cpi is the kinetic velocity lattice vector, with
cpi5pci , anduci u51. Before specifying the relaxation distr
butions Neq in detail, we note that from Chapman-Ensko
theory thatNspi

eq , Nss8pi
eq can only be functions of the macro

scopic variablesns ,vs ,us andns8 ,vs8 ,us8 , where

ns5(
pi

Nspi , nsvs5(
pi

Nspicpi ,

2nsus5(
pi

Nspicpi
2 2nsvs

2. ~21!

At each lattice sitex, the TLBM algorithm to propagate
Nspi from time t→t11 is ~a! free-stream the distribution
Nspi(x)→Nspi(x1cpi); ~b! recalculate the macroscopic var
ablesns ,vs ,us using Eq.~21! and update all theNeq; ~c!
perform collisional relaxation at each lattice node:

Nspi~x!2
1

ts
@Nspi~x!2Nspi

eq ~x!#2
1

tss8
@Nspi~x!

2Nss8pi
eq

~x!#⇒Nspi~x! at time t11.

One immediately notes that~a! is a simple shift operation
numerically, while~b! and ~c! require only local data at the
spatial node sitex. Thus the algorithm is ideal for multipar
allel processing elements and more details on the mes
passing interface parallelization can be found in Ref.@9#.
Moreover, the shift operation in~a! implies that we are run-
ning at a kinetic Courant-Fredricks-Levy number CFL51.
This implies no numerical dissipation or diffusion is intr
duced. It is precisely these properties of the TLBM that ma
it so attractive as an alternative to the normal computatio
fluid dynamic approach. From the discrete Chapman-Ens
procedure@20#, it has been shown that the transport coe
cients are augmented by a1

2 factor:

ms5~ts2
1
2 !nsus , ks52~ts2

1
2 !nsus .
e

K

ge

e
al
g

-

However, the numerical stability of the TLBM rests o
the specification of the relaxed distribution functionsNeq.
Typically, theseNeq are taken to have the form

Nspi
eq 5Asp~usp!1Bsp~us!cpi•vs1Csp~us!$cpi•vs%

2

1Dsp~us!vs
21Esp~us!$cpi•vs%vs

2

1Fsp~us!$cpi•vs%
31¯ ~22!

and a similar form for the cross-speciesNss8 pi
eq where one

now replaces ns ,vs ,us by the cross-species variable
nss8 ,vss8 ,uss8 as defined in Eq.~17!. One truncates thes
Taylor expansions invs ,us depending on the moment leve
closure invoked. The following~infinite! set of discrete mo-
ments

(
pi

Nspi
eq 5ns , (

pi
Nspi

eq cpi5nsvs ,

(
pi

Nspi
eq cpiacpib5nsusdab1nsns,anb,s ,

(
pi

Nspi
eq cpiacpibcpig5nsus@ns,adbg¯#1nsns,ans,bns,g ,

(
pi

Nspi
eq cpiacpibcpi

2 54nsus
2dab1nsusvs

2dab16nsusns,ans,b

1nsns,ans,bvs
2 ~23!

are those satisfied~in the continuum limit! by the Maxwell-
ian gs ; and similarly for the cross-speciesNss8pi

eq and the
continuum limit cross-species Maxwelliangss8 defined in
Eq. ~9!.

Now the only way the macroscopic species velocityvs
can arise on the right-hand side of Eq.~23! is if it so appears
in the expansion form ofNspi

eq in Eq. ~22!. Thus, for example,
if we invoked moment closure at the third moment, then
Taylor expansion ofNspi

eq must include all appropriate com
binations ofvs up to terms ofO(vs

3), as is done in the ex-
plicit expansion of Eq.~22!. On the other hand, if one pushe
for closure at the fourth moment, one would need to inclu
terms ofO(vs

4) in Eq. ~22!. In this paper, we invoke closur
at the third moment and defer further comments on this
the Conclusion section.

On substituting Eq.~22! into ~23! one must evaluate the
lattice geometry-dependent basis moments of the form

Ta...z
~n! 5(

p
Tp,a...z

~n! 5(
p

(
i

cpia¯cpiz ~24!

for thenth moment. Equation~24! consists ofncpi products.
For closure at the third moment, one must evaluateT(n) up to
the sixth basis moment tensor,n56. Thus, having chosen
closure at the third moment, discrete lattice effects will n
pervade the final macroscopic conservation equations if
the basis tensor momentsT(n), for n up to 6, are isotropic.
Now

Tp,abgd
~4! 5cpYabgd1fp~dabdgd1¯ !, ~25!
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Tp,abgd«z
~6! 5CpYabgd«z1Lp~dabYgd«z1¯ !

1Fp~dabTgd«z
~4! 1...!, ~26!

whereYabgd¯ is the higher dimension Kronecker tensor a
is anisotropic. Only the 2D Kronecker tensordab is isotro-
pic. The parameterscp ,fp ,... aredependent on the particu
larly chosen lattice geometry.

For a square lattice,cpÞ0. Thus evenTp,abgd
(4) is aniso-

tropic for anyp. Thus to enforce bothTabgd
(4) andTabgd«z

(6) one
must choosep sufficiently large as well as an imposition o

FIG. 1. The initial vorticity layers,v1 and v2 , for the two
interacting fluid species. The upper plot is for fluid 1 withv1

5v1(y): solid lines are for positive vorticity while dashed lines a
for negative vorticity. The lower plot is the vorticity layersv2

5v2(x) for the more massive and denser fluid 2 (m2510m1 , n2

53n1). Initial species velocity profiles were chosen so th
max(m1n1uv1u)'max(m2n2uv2u), which results inv1'30v2 , i.e., on
a normalized 64364 mesh~with the simulations themselves bein
performed on a 2563256 spatial grid!, fluid 1 has a negative vor
ticity layer v1525.631022 for 20,y,23 and a positive vorticity
layerv156.331022 for 41,y,44. Similarly, for fluid 2, the vor-
ticity layers are v252.431023 for 20,x,23 and v2522.4
31023 for 41,x,44.
constraints on the distribution function expansion coe
cientsAsp ,... in Eq.~22!. For the TLBM parameter range o
interest to us, we have found the square lattice to be
tremely numerically unstable@9#.

Now the hexagonal lattice has a higher symmetry, a
this is reflected in the fact that nowcp50. ThusTp,abgd

(4) is
automatically isotropic whileTp,abgd«z

(6) is anisotropic at each
speedp. Unfortunately@10#, for the hexagonal lattice, on
cannot form composite lattices that will enforce the isotro
of (

p
Tp,abgd«z

(6) . For the square lattice, however, one c

achieve isotropy of(
p

Tp,abgd«z
(6) for p sufficiently large

@10#—but we have found this representation to be extrem
numerically unstable. Thus, the simulations reported h
have been performed on the hexagonal lattice, with the
efficients Asp ,... being those determined by Alexande
Chen, and Sterling@9#. While this will introduce some
higher-order~macroscopic! nonlinearities into the momen
tum and energy equations@10#, these should play a negli
gible role in our present free-decay simulations since
flow Mach number is quite low. We are currently working o
the octagonal lattice representation, in which the isotropy

t

FIG. 2. The vorticity layers after 1000 TLBM time stepst
51 K). The vorticity layers retain their identities, but fluid 1~upper
plot! already shows the formation internal vortices. The vortic
strengths are fluid 1~upper plot!, 23.631022,v1,3.531022;
fluid 2 ~lower plot!, 22.231023,v2,2.231023.
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(pTp,abgd«z
(6) can be enforced and thereby eliminate the s

rious higher-order nonlinearities. Moreover, based on the
ear octagonal stability analyses@15# we expect this represen
tation to be quite numerically stable. These results will
reported on in the near future.

FIG. 3. ~a! The vorticity contours att52 K. The fluid 1~upper
plot! layers have given way to individual vorticies, while the mo
massive fluid 2 still retains its vorticity layers, but now shows t
influence of the coupling to fluid 1. The vorticity strengths are flu
1 ~upper plot!, 22.031022,v1,2.131022; fluid 2 ~lower plot!,
22.231023,v2,2.231023. ~b! The correspondingt52 K to-
tal ~density weighted! vorticity v tot(x)5@n1(x)m1v1(x)
1n2(x)m2v2(x)#/@n1(x)m11n2(x)m2#.
-
-

e

It should now be apparent as to what some of the di
culties are facing the TLBM: The discrete distributio
functions, Eq.~22!, must be non-Maxwellian in order to re
move discrete velocity lattice effects. With the loss of anH
theorem, one is faced with numerical instabilities.

III. 2D TWO-SPECIES DOUBLE VELOCITY SHEAR
TURBULENCE

We consider the free-decay of a two-species systemm2
510m1 ,n253n1) in which there are horizontal velocity
shear layers in fluid 1 interacting with weak vertical she
layers in fluid 2. Initially, the mean velocity of fluid 1 is
chosen to be an order of magnitude greater than the m
velocity in fluid 2, with fluid 1 having an initial Reynolds
number Re520 000, a factor of over 25 greater than that
fluid 2. Thus the lighter fluid 1 is turbulent while the heavi
fluid 2 is laminar. In fact, if the species were uncoupled, t
fluid 2 vortex layers would undergo viscous decay and d
fusion because of its low Reynolds number. The simulatio
were performed on a 2563256 spatial grid, with periodic
boundary conditions and witht1150.5056,t1259438, t12
50.507, andt225278 668. The plots are shown on a re
caled 64364 mesh.

FIG. 4. The vorticity contours att54 K. The merging of like-
signed vorticies is beginning to occur for fluid 1~upper curve!. The
vorticity strengths are fluid 1~upper plot!, 27.131023,v1,6.8
31023; fluid 2 ~lower plot!, 22.131023,v2,1.931023.
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The initial vorticity contour plots for fluid 1~upper plot!
and fluid 2~lower plot! are shown in Fig. 1 after the appl
cation of a 1% perturbation to the velocity fields. Positi
and negative vorticities will be represented throughout
solid and dashed curves. It should be noted that the in
vorticity ranges for the two fluids are quite disparate:

Fluid 1:25.631022,v1,6.331022,

Fluid 2:22.431023,v2,2.431023.

By 1 K time steps~with a fluid 1 eddy turnover time being
'400 TLBM time steps, based on the initial velocity ma
nitude! the vorticity layers in the lighter fluid 1 have becom
unstable with co- and counter-rotating vortices formi
within their respective vortex layers. The vorticity layers
fluid 2 do not yet exhibit any internal structures, while t
coupling between fluid 1 and fluid 2 results in an imprinti
of the major fluid 1 localized vorticies in fluid 2—see Fig.
These internal vortex structures in fluid 1 now become
dominant feature instead of the initial vortex layer itself
t52 K, Fig. 3~a!. For fluid 2, dominant due to its initially

FIG. 5. The vorticity contours att57 K. There is now strong
influence of one species on the other for both fluids 1 and 2.
geometry of the merging vortices in fluid 1 tends to rotate them i
the direction of the initial vertical layers of fluid 2. These layers a
still quite evident in fluid 2. The vorticity strengths are fluid
~upper plot!, 21.9(23),v1,1.7(23); fluid 2 ~lower plot!,
21.6(23),v2,1.6(23).
y
al

e

low Reynolds number, the vertical vortex layer structures
still dominant. However, due to the fluid-fluid coupling, vo
tex structures have now formed. In particular, the constr
tive interference between the positive vortex layer of fluid
and that of fluid 2 results in an imbedded co-rotating vor
at (x,y)5(21,42) and an imbedded counter-rotating vort
at ~42, 21!, relative to the axes labeling in Fig. 1. Thes
imbedded vortices are over 50% stronger than the imprin
co- and counter-rotating vortices at~31, 43! and ~31, 22!,
respectively In Fig. 3~b!, the total~density weighted! vortic-
ity surface is plotted att52 K.

By t54 K ~Fig. 4!, the fluid 1 individual vortices are
beginning to merge with spatial locations no longer det
mined by the initial horizontal layers. The vortex structu
for fluid 2 is similar to that att51 K. In Fig. 5, att57 K,
the vortex structures in fluid 1 and fluid 2 are becomi
similar. In particular, fluid 1 now exhibits marked effects
the vertical vortex layers of fluid 2 while its vortex-mergin
structures rotate more and more towards the vertical.
fluid 2 vortex pattern, however, continues to be domina
by two large vortices situated within the vertical layers—a
these two vortices~one co- and the other counter-rotatin!
have the same spatial location as fort54 K to within 5%.

The vortex structures in fluids 1 and 2 have become q

e
o

FIG. 6. The vorticity contours att59 K. Equilibration of nearly
all vortex structures in fluid 1 and fluid 2 has now occurred. T
vorticity strengths have equilibrated, with fluid 1~upper plot!,
21.431023,v1,1.431023; fluid 2 ~lower plot!, 21.431023

,v2,1.431023.
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mode locked to each other, even in magnitudes, byt59 K,
Fig. 6. At t530 K, Fig. 7, the initial vortex layer structure
are no longer evident, and global vortex structures are do
nant, with the spatial locations of these dominant vortic
being not more than 12% from their positions att54 K. One
moves quite close to the final relaxed state of one co-rota
and one counter-rotating vortex byt5109 K, Fig. 8.

The temperature surfaces relax even slower than the
tex surfaces, as expected from simple kinetic theory ar
ments@1#. Initially, one has peaked temperature profiles
each species, parallel to their species initial vortex lay
i.e.,u15u1(y), while u5u2(x). There is little change in the
peak temperature profiles byt51 K, Fig. 9. The temperature
profiles for fluid 1 and fluid 2 are still very different from
each other att59 K ~Fig. 10! in contrast to the fluid vortici-
ties that have already equilibrated with each other, Fig
However, byt530 K ~Fig. 11! there is global equilibrium
and much of the local temperature profile features h
equilibrated. Total temperature equilibration for the two sp
cies has been achieved byt560 K ~Fig. 12!—but it is diffi-
cult to quantitatively correlate the vorticity surfaces to t
corresponding temperature surfaces. Qualitatively, howe
one can usually find peaks in the temperature profiles at
corresponding vorticity minima, and vice versa.

FIG. 7. The vorticity contours att530 K. The system is evolv-
ing slowly towards the final relaxed state. The initial vortex laye
have been replaced by individual vortices whose strengths are fl
1 and 2,24.531024,v1,2,4.531024.
i-
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IV. CONCLUSIONS

We have considered the equilibration and relaxation o
2D turbulent binary system using the TLBM, an extreme
efficient and highly parallel and vector algorithm. As di
cussed by Morse@1#, for a spatially homogeneous system
the velocity equilibration time for the two species is given

]

]t
~vs2vs8!52ass8S 1

nsms
1

1

ns8ms8
D ms1ms8

2
~vs2vs8!,

~27!

while the temperature equilibration time for the two spec
is given by

]

]t
~us2us8!52ass8F ~us2us8!S 1

ns
1

1

ns8
D

1
~vs2vs8!

2

3 S ms

ns8
2

ms8
ns

D G ~28!

under the approximation 5(vs2vs8)
2,(us /ms)

1(us8 /ms8). ass8 is given by Eq.~16!. Thus, to leading
order, the velocity equilibration time is

ds

FIG. 8. The vorticity contours att5109 K. The system is close
to the final relaxation states of one large vortex~solid curve! with
v.0 and one large vortex~dashed curve! with v,0. Vortex
strengths are fluids 1 and 2,24.531024,v1,2,4.531024.
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1

tDn
5ass8S 1

nsms
1

1

ns8ms8
D ms1ms8

2
,

while the temperature equilibration time is

1

tDu
5ass8S 1

ns
1

1

ns8
D .

One thus has the order of magnitude estimate@1#

tDu

tDn
'

1

2 S n1m11n2m2

n11n2
D S m11m2

m1m2
D

for the relative equilibration times for the disappearance
temperature differences between the two species comp
to that for the mean velocity differences. This estimate
independent of spatial dimension since Morse was consi
ing pure collisional relaxation in a spatially homogeneo
system. For the parameters considered here (m2510m1 , n2
53n1 , and initially n1530n2) this order-of-magnitude esti
matetDT'4tDn agrees well with the TLBM spatially inho
mogeneous simulation result oftDT'3.3tDn , cf, Figs. 6 and
12. The reason that the role of spatial dimension is s
pressed in our simulation is that the heavier fluid 2, if u
coupled from the turbulent fluid 1, is laminar, with the tem
perature profile undergoing simple linear decay a
diffusion. However, on increasing the Reynolds number
fluid 2 ~e.g., increasingn2) so that its flow becomes turbulen
~in the sense that its temperature profile undergoes sig
cant nonlinear modifications!, then the equilibration ratio for

FIG. 9. The temperature profilesu1,2 at t51 K for fluid 1 ~upper
plot! and fluid 2~lower plot!. Initially, there are sharp peaks wit
u5u1(x) andu25u2(y).
f
red
s
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s
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-
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f
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the coupled system no longer follows the Morse predict
and spatial dimensionality becomes important.

A reason for our continued interest in the TLBM is i
possible role in studying the scrape-off-layer in a tokam
In this region, there are time varying spatial domains
which the neutral particle collisionality ranges from high
collisional ~fluid! to the kinetic~Monte Carlo! regime. While
attempts are being made to couple plasma-fluid code
Monte Carlo codes, this coupling is necessarily numerica
stiff due to the disparate length and time scales involved
the these schemes. On the other hand, a coupling of
TLBM with Monte Carlo codes should be more straightfo
ward since both schemes are kinetic. It is also possible
suggested by some~Ref. @21#!, that one may be even able t
utilize the TLBM algorithm even in the weakly collisiona
Monte Carlo regime. Then the TLBM algorithm would itse
cover the whole collisionality regime-albeit with appropr
ately modified collision operators.

The major hurdle facing the extensive use the TLBM is
numerical instability when wide parameter regimes are c
sidered. Considerable research is underway to obviate
but the root of the problem is clear: If one introduces discr
phase space velocity lattices, one is forced to consider re
ation distribution functions that must be non-Maxwellia
The number of constraints needed to be enforced onNeq is
reduced as one moves to higher isotropy lattice. In particu

FIG. 10. The temperature profiles att59 K, a time at which
there is almost total equilibration of the vorticity surfaces for fluid
and 2: v1(x,y;t510 K)'v2(x,y;t510 K), see Fig. 6. There is
some similarity in the temperature profiles; The spatial locatio
whereu1(x,y)2u0.0 for fluid 1 are basically the same as tho
whereu2(x,y)2u0.0 for fluid 2, Hereu0 is the base temperature
The temperature magnitudes are, however, significantly diffe
and are biased by the initial profiles.
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the hexagonal lattice is more stable than the square la
@13# while the octagonal lattice~with its inherentTp,abgdez

(6)

isotropy! is more stable than the hexagonal@15#. However,
since the octagonal lattice is no longer space filling the s
tial grid is necessarily uncoupled from the velocity lattic
This uncoupling requires an extra step to be incorpora
into the TLBM algorithm—an interpolation procedure th
couples the free-streaming with the nodes of the chosen
tial grid @13#. Even if one employed lower symmetry spac

FIG. 11. The temperature profiles att530 K. Temperature
equilibration between the two species is almost complete.
s.

ys
ce

a-
.
d

a-
-

filling lattices, it would still be necessary to introduce inte
polation if nonuniform spatial grids are employed~e.g., for
wall-bounded flows!. We are currently looking into employ
ing temperature-dependent velocity lattices, and will pres
these results elsewhere.
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