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Shear-induced melting of smectic-A liquid crystals
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A numerical and analytical analysis of shear-induced melting in smectic-A liquid crystals is presented. Based
on a Landau expansion of the complex smectic order parameter, equations governing the phase and amplitude
of the local density modulation are found. Numerically solving these equations indicates that for a range of
parameter values a first-order transition, from a shear-stressed to a more relaxed state, is periodically encoun-
tered as the total shear is increased. Suitable approximations allow the analytic determination of certain
characteristics of this first-order transition.

PACS number~s!: 61.30.Cz, 61.30.Gd
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I. INTRODUCTION

The liquid crystalline smectic-A phase exhibits order in
termediate between that of a solid and a liquid@1#. Its defin-
ing quality is the existence of one-dimensional positio
ordering in the form of a periodic molecular density functi
forming a layered structure. In equilibrium, the unco
strained liquid crystal layers are uniformly separated b
distance 2p/q, whereq is the preferred wave number of th
density fluctuations. However, out of equilibrium, or in th
presence of boundary conditions that disturb the prefe
equilibrium configuration, the layer structure can be sign
cantly different. In this paper, we discuss, quantitatively, o
situation in which this layer structure may be distorted.

We consider a smectic-A liquid crystal sample initially in
the so-called bookshelf geometry, in which the nematic
rector is aligned in the same uniformx̂ direction on each
surface of the cell, which lie in thexy plane ~Fig. 1!. The
consequence of thesehomogeneousboundary conditions is
that the smectic layers form a bookshelflike structure, in
yz plane. However, this bookshelf configuration may be d
turbed by a sufficiently strong perturbation.

Such a perturbation may be induced simply by chang
the sample temperature, thus changing the preferred the
dynamic layer spacing. The bookshelf structure deforms
a V-like layer configuration, known as the chevron structu
@2#. The chevron structure has been much studied, bec
its behavior plays a crucial role in surface stabilized fer
electric liquid crystal cells that are of great commercial
terest due to their considerable potential for exploitation
display devices.

Phenomenological theories of chevron structures typic
assume that there exists a surface memory effect that anc
the layers at the cell surfaces while the natural layer spa
changes in the bulk of the cell. The mismatch between
layer thickness at the surface and within the cell is belie
to induce the chevron structure. However, the precise mi
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scopic physics behind chevron formation remains poorly
derstood.

In an effort to explain the surface interaction, Cagnon a
Durand@3# performed an experiment in which they sheare
cell filled with a smectic-A liquid crystal, moving one wall
laterally with respect to the other. Accurately measuring
very small transmitted stress, they found periodic disco
nuities superimposed on a monotonic, background str
They interpreted these discontinuities as slipping of the l
ers with respect to the walls. These results were explaine
the bookshelf geometry first tilting as it follows the motio
of the walls, and then slipping as the original bookshelf g
ometry, with lower free energy, reforms. In this way Cagn
and Durand were able to estimate the energy associated
the surface-memory-induced layer anchoring at the walls

This paper aims to examine the general question of
interplay between the energetically favorable bookshelf
ometry and an applied shear stress that distorts it. Elston

FIG. 1. Cell configuration: Smectic-A material is sandwiched
between glass plates atz5 l andz50 where the director is aligned
homogeneously. The shear force applied to the upper glass
induces layer distortion.
5064 ©2000 The American Physical Society
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PRE 62 5065SHEAR-INDUCED MELTING OF SMECTIC-A LIQUID . . .
Towler @4# have previously shown, using an idealized mod
that the presence of a large interwall shear can lead
significant reduction in the smectic order parameter in
middle of the cell, and sufficiently large shear can, un
some circumstances, destabilize the deformed bookshel
ometry. In this paper, we aim to extend this work to give
coherent picture of the whole phenomenon. In so doing,
find a complex structure of stable, metastable, and unst
states and describe the associated transitions between t

In Sec. II we will give a physical overview of the com
plete problem, and provide the reader with a summary of
results. In Sec. III we present the model in detail and int
duce the principal approximations subsequently used. A
merical study of the solutions of the governing equations
given in Sec. IV, the important aspects of which we consi
in more detail using a number of analytical techniques
Sec. V. Finally, in Sec. VI, we summarize and discuss p
sible future extensions of these results.

II. PHYSICAL UNDERSTANDING

In this section we give a brief overview of the physi
involved in the model we consider. The most important
sumption we will make in this paper is to suppose that
layer anchoring is infinite. Thus, when the initial booksh
geometry is perturbed the layers are forced, at least initia
to follow the moving surfaces~Fig. 1!. We remark that the
assumption of infinite rather than finite anchoring is not
sential, although some of the most striking results in t
paper depend on having relatively strong surface smectic
choring.

The smectic order parameter is a two-component ob
@5#, usually denoted by a complex number

C5reiF, ~1!

wherer is the degree of order, usually thought of as be
equivalent to the amplitude of the smectic density wave,
F is its phase. The nature of the order parameter sugg
that there is considerable similarity between the statist
mechanics of smectics andn52 spin systems described b
the classical XY model@6–8#. Indeed, it was the analog

FIG. 2. ~a!, ~b! Energetically equivalent tilted layers fort
5p (mod 2p). As the shear is increased pastp, the two stable
configurations are a metastable, supersheared state~c! and a reverse
tilt state ~d!. A first-order transition between thesetopologically
distinct states involves breaking up or melting the layer structu
l,
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between superconductors and smectic liquid crystals that
led de Gennes to use this order parameter. However, un
in classical XY models, the low temperature phase is
constant, but a layered phase with wave numberq in the
direction parallel to that of the nematic directorn̂.

In considering this system, it will be useful to measure t
degree of stress by the amount of relative lateral displa
ment xdispl of the walls ~Fig. 1!. This may be more conve
niently marked by the degree of layer mismatchXdispl
5xdispl/dlayer, the relative lateral displacement of one wa
with respect to the other in units of the smectic layer thic
nessdlayer. The quantityt52pXdispl is the equivalent quan
tity in radians; it is the change in phase between points
would lie opposite to each other in the bookshelf geome

The natural length scale in this system is the smectic c
relation lengthj. This is the length scale on which chang
in the bulk smectic order may be expected to occur. We w
find different behavior depending on whether the ratio of
cell thickness to this correlation lengthl /j is much greater
than or much less than unity, with a sharp crossover betw
the two regimes. For us, thin films are those for whichl /j
<1.

It is useful to consider what we expect to happen wh
one cell surface is sheared with respect to the other.
extremely small shears2 1

2 <Xdispl<
1
2 , or equivalently2p

<t<p, the layers will bend in order to connect between t
surfaces. Consequently, there will be an increase in the
vature free energy. However, in order to minimize this c
vature free energy the smectic liquid crystal may reduce
order parameter in the bulk of the system which, due to
symmetry of the system, will reach a minimum in the cen
of the cell.

Let us now consider what happens when the phase m

.

FIG. 3. For thin cells, as shear increases,~a! the layers start to
melt at the center so that, at complete mismatch, the phase d
ence of1p and2p are indistinguishable,~b! At larger shear,~c!,
the layers reform with reverse tilt.
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match is exactlyp. The smectic layers at the cell surfac
will be completely mismatched, i.e., exactly out of phase
There are now two energetically equal layer configuratio
The layer at one surface is positioned exactly between
layers at the opposite surface and may join to either one.
crucial question is whether these states are physically
tinct.

If they are different~Fig. 2!, then as the phase mismatc
is increased throughp the sheared state becomes a me
stable state, and the previously stable free-energy branc
extended into a metastable region@Fig. 2~b!#. We shall refer
to this state as supershear. The globally stable state is
that which involves an effective phase difference across
sample between2p and 0@Fig. 2~c!# i.e., layers with reverse
tilt. The topologicallydistinct, metastable, supersheared st
has a phase differenceutu.p. Reaching the stable state fro
the metastable state involves breaking up or melting the la
structure within the sample and reforming the layers in s
a way that phase difference is reduced. Transfer between
two branches of the curve in this case necessarily involve
first-order phase transition.

By contrast, we can imagine that at complete misma
the phase difference of1p and 2p are indistinguishable
~see Fig. 3!. If this is the case, symmetry necessarily d
mands that the system melt in the center of the cell@Fig.
3~b!#. Only if the layers melt in the middle of the cell will i
be possible for there to be a unique ground state with c
plete mismatch. In this case, the phase is undefined in
center of the cell, and if the phase is undefined, then
degree of order must be zero. At larger shear, reverse
layers reform with a phase difference across the sample
tween2p and 0@Fig. 3~c!#.

We will subsequently discover that the second, melti
scenario occurs for thin cells, for then the energy associa
with tilting a layer is relatively large. By melting atutu5p
and then reforming forutu.p, the large layer tilt is avoided
By contrast for thick cells, tilting is preferred. Eventually, fo
larger shears, the metastable state reaches a spinodal lin
destabilizes. We shall find, unsurprisingly, that for suf
ciently thick films, the critical shear is proportional to th
thickness, and that in nondimensional units is of the orde
unity.

Between these two re´gimes is a critical cell thickness o
l 5 l c where the behavior att5p changes. At the critica
thicknessl c equilibrium melting at complete mismatch n
longer occurs. An important part of the analysis will cons
of an examination of the stability of the equilibrium melte
state att5p. Such a state always occurs, but whereas it
stable state for thin films, for thick films it is unstabl
Analysis of the critical point will give rise to critical expo
nents associated with the onset of supershear.

For very thick filmsl /j@1, there will be many metastabl
supersheared states for a givent. The loss of stability of the
highest energy supersheared state moves the system t
next state down in energy. Because the supersheared s
are topologically distinct, the natural language with which
classify them is also topological. It will turn out that a sol
tion of the governing equations forC can be classified in
terms of its trajectory in the complex plane. Such a traject
possesses a winding number, or more technically a Mo
Index, which counts the number of times the trajectory orb
s.
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the origin. The loss of stability of the supersheared st
involves the mutual annihilation of stable and unstable sta
with the same Morse Index and consequently the trajec
decays to a new state with its Morse Index decreased by

In this section, we have seen how shearing a smectA
liquid crystal in a bookshelf configuration can lead to a co
plex physical phenomena. In the next section, we shall
velop a mathematical formalism to describe the physi
ideas presented here.

III. MODEL AND BASIC THEORY

A. Landau-de Gennes Theory

We will use the energy expression used previously
Kralj and one of the present authors@9#.

F5E dr FAuCu21
B

2
uCu41z iu~ n̂•“2 iq !Cu2

1z'u~ n̂3“ !Cu21 1
2 K11~“•n̂!2

1 1
2 K33†n̂3~“3n̂!‡2G . ~2!

The reader should be aware that this form of the free ene
is different from that used in de Gennes and Prost~p. 510!
@1#. The difference occurs in the form of the gradient term
In the present case, the gradient terms are formed usin
mass tensor that is diagonal in a frame of reference fi
with respect to the cell~a laboratory frame of reference!
while the de Gennes gradient terms are derived from a m
tensor that is diagonal with respect to a frame of refere
defined by the director~an internal frame of reference!.

For small deformations the two formulations are equiv
lent. For large deformations there will be differences, wh
will be the focus of further research. We note, however, o
intuitive advantage of this formulation. When the layers a
reduced in thickness, on purely geometric grounds we m
expect a director tilt that compensates for this in just suc
way that the wave number in a direction parallel to the
rector remains constant. In Eq.~2! the z i term favors a di-
rector tilt that compensates for layer reduction in thickness
just this way.

In undistorted equilibrium, the smectic order paramete
determined by the first two terms of the above energy. Mi
mization of these terms leads to the bulk smectic order
rameter modulus,rc5(2A/B)1/2. Stability of the smectic
phase requires, as in all theories of this type, thatA,0 and
B.0. In Eq.~2! thez i term is associated with changes in th
smectic density wave and, as we shall indicate later in
section, in the present situation the cell surfaces induc
preferential bulk layer density wave number in thex direc-
tion of the valueq. In Eq. ~2!, thez' term is normally asso-
ciated with departures of the director from the smectic la
normal. The last two terms represent the elastic energy
distortions to the nematiclike directorn̂ within the smectic
layer.

The system is infinite in thex̂ andŷ directions, and placed
in a cell with flat walls atz50 andz5 l ~Fig. 1!. We choose
boundary conditions that give a homogeneous alignment

n̂~z50!5n̂~z5 l !5 x̂, ~3a!
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C~z50!5rce
iqx, ~3b!

C~z5 l !5rce
i ~qx1t!. ~3c!

These boundary conditions fix the smectic order para
eter such that the phaseF is strongly anchored at the surfac
and the modulusr remains at the bulk equilibrium value
Such strong anchoring conditions exert great influence on
structure of the smectic layers and weaker conditions suc
the introduction of asurface energy, will lead to a different
form of stress relaxation within the bulk of the cell.

We shall suppose that, for zero shear, the system is
mogeneous in thex̂ direction and changes inC are wholly
induced by the sheared layering at the boundary. We s
larly suppose the system to be completely homogeneou
the ŷ direction. It will be useful to parameterize the ord
parameter as follows:

C~x,z!5r~z!eiF~x,z!5r~z!ei @qx1f~z!#5c~z!eiqx, ~4!

wherec(z)5r(z)eif(z). This parameterization separates o
the explicit x-dependent layer behavior, given byF0(x)
5qx, from the shear-induced variation across the cell, giv
by f(z). TheC boundary conditions@~3b!,~3c!# can now be
rewritten as

c~z50!5rc , ~5a!

c~z5L !5rce
i t. ~5b!

Thus the phasef(z) ranges from 0 tot across the cell,
though of course layer slippage may allow the phase to v
between 0 andt62np wheren is an integer.

The free energy may now be written as a functional
r(z) and f(z) rather thanC(r ). The nematiclike director
which lies in thexz plane, may be written asn̂5(cosu,0,
2sinu), so thatn̂ is tilted with respect to thex direction by
an angleu. For simplicity, we use a one constant approxim
tion for the nematic elastic constants:K115K335K. We then
obtain the following result:

F5E
0

l

dzFar21
b

2
r41

K

2 S du

dzD
2

1z i H F S dr

dzD
2

1r2S df

dzD 2G
3sin2 u1r2q2~12cosu!212r2q

df

dz
sinu~12cosu!J

1z'H F S dr

dzD
2

1r2S df

dzD 2Gcos2 u

1r2q2 sin2 u12r2q
df

dz
sinu cosuJ G . ~6!

In this paper, we will assume that changes to the la
density wave are energetically unfavorable compared
other forms of distortion within the liquid crystal. In othe
words we assume thatz i is very large compared to all othe
energy coefficients. It can then be shown~see the Appendix!
that, except for very small amounts of shear when the m
lecular tilt angle follows the layer tilt angle and remains p
allel to the layer normal, we may assume thatu50. There-
fore, although tilted layers tend to rotate the director in or
-
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that it remain normal to them for small tilt angles, this te
dency is suppressed by the fact that the layers would t
have the wrong thickness along thex direction. For larger
layer tilt angles the compression energy term dominates
forces the director angle to be approximately zero (u'0)
throughout the sample. Although this approximation lim
the validity of our analysis, we will later show that the im
portant processes in this system occur at relatively la
shear values, at which our equations are valid.

Substituting this result into Eq.~6! yields the following
form of the free energy, which will subsequently be used
this paper:

F5E
0

l

dzFar21
b

2
r41z'H S dr

dzD
2

1r2S df

dzD 2J G . ~7!

B. Scaling

As previously discussed, the fundamental length scale
this problem is the relaxation length for smectic order flu
tuations

j5S z'

uau D
1/2

, ~8!

which is the length scale on which changes in the bulk sm
tic order may be expected to occur. The free-energy fu
tional ~7! can be nondimensionalized using the followin
scalings:

c̃5
c

rc
, ~9a!

r 5
r

rc
, ~9b!

z̃5
z

l
, ~9c!

d5
l

j
, ~9d!

F̃5
b

2ld2 F. ~9e!

It is mathematically more convenient to scale distance w
respect to system size, and absorb the thickness into
equations rather than the boundary conditions. Dropping
tildes from the resulting expressions yields the followi
renormalized functional:

F5E
0

1

dzF1

4
~r 221!21

1

2d2 ~r 821r 2f82!G , ~10!

where we have added a constant term in order to simplify
form of the smectic potential and derivatives with respect
z are denoted by primes. To this functional we append
boundary conditions

r ~0!51, f~0!50, ~11a!
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FIG. 4. Numerical solutions
for d50.1. ~a! Energy F versus
sheart. ~b! The density modula-
tion amplituder (z). ~c! The den-
sity modulation phasef(z) ~in ra-
dians!. ~d! The trajectoriesc(z) in
the complex plane.
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r ~1!51, f~1!5t. ~11b!

We may remark that this energy functional~10! resembles
the Lagrangian functional for motion of a particle of ma
1/d2 in a frictionless bowl with potential minimum at radiu
r 50 and maximum around the rim atr 51. The particle
moves from a starting point on the rim atf50 and a finish-
ing point again on the rim atf5t. There is in fact an iso-
morphism between the particle trajectories and the minim
ersc(z). High mass particles will tend to fall into the bow
easily, consistent with melting of the smectic in a thin c
(d@1), whereas low mass particles will travel near the ri
consistent with layer tilt in a thick cell (d!1). This analogy
will be particularly apparent when we consider the trajec
ries of f(z) in the complex plane.

The relevant Euler-Lagrange equations are now

r 91d2r ~12r 2!1rf8250, ~12a!

~r 2f8!850. ~12b!
-

l
,

-

In the dynamical analogy, these equations correspond
spectively to conservation of energy and angular moment
solutions of which may be expressed in terms of ellip
functions.

There are now two control parameters, namely the non
mensional thicknessd and the sheart. The significance ofd
can be examined in the free energy~10!. Whend is small, the
(12r 2)2 term can be ignored and changes in the sme
amplituder are not, relatively speaking, energetically expe
sive. Thus smectic melting can occur in the center of
sample. By contrast, for larged the reverse is true,r is con-
strained to be close to 1 and the system now prefers cha
in f, i.e., layer tilting.

We have so far emphasized the behavior of the sme
amplituder (z) and phasef(z). However, we shall some
times find it convenient to consider the real and imagin
parts of the smectic order parameter

c5R11 iR2 . ~13!

This is particularly true at complete mismatcht56p when
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d is small, for which, as we shall see explicitly in Sec.
c(z)5R1(z) and melting of the smectic layers occurs at t
center of the cell.

In the succeeding sections we investigate the behavio
the model described by the free energy~10! with associated
boundary conditions. These studies are both numerical, u
the continuation packageAUTO97 @10,11#, and, at critical
points in the phase diagram, analytical.

IV. NUMERICAL STUDIES

Initially, the system is solved for allt and ford50.1 and
d510.0. From these solutions it is then possible to u
AUTO97 to obtain the behavior for all values ofd.

For all values ofd the lowest energy solution isr (z)51
and f(z)50, which occurs at shear values oft
50,2p,4p,... . Between these shear values the behavio
very different for different values ofd. The solutions ford
50.1 andd510.0 are shown in Fig. 4 and Fig. 5–7, respe
tively.

For d50.1, Fig. 4 shows the free energy versus shear,
r (z) andf(z) solutions and the trajectories ofc in the com-
plex plane. Initially, as shear increases the phase is es
tially linear across the cell while the order parameterr de-
creases in the center of the cell. For shear values approac
t5p, the phase change across the cell concentrates in
center. The associated large value ofdf/dz inducesmelting
of the smectic layers characterized by the reduction of
order parameterr (z) at this point. Att5p the phase,f and
the derivative ofr (z) are discontinuous andr (z50.5)50.
The energy is a maximum. Fort.p this process is essen
tially reversed as the system relaxes to the energy minim
at t52p. As noted previously, the discontinuous jump
phase does not result in a discontinuous jump in the com
order parameterc. This can be seen in the trajectories in F
4~d!. The discontinuous jump inf ~and the gradient ofr! at
t5p is not present in theR1 andR2 solutions.

For d510.0 the behavior has changed significantly~Figs.
5–7!. Figure 5 shows that for shear values 0.458,t
,5.825 there are three solutions, two stable and one
stable. The stable solutions occur along branches 1 an
while the unstable one occurs along branch 3. The sta
branches are local minima of the free energy~7! while the
unstable branch is a local maximum. At twolimit points the
unstable solution and one of the stable solutions meet
annihilate each other so that in the regions 0.0,t,0.458
and 5.825,t,2p there exists only one solution.

As discussed in the previous section, at the pointt5p the
two stable branches have the same energy whereas
0.458,t,p branch 1 is the global minimum and forp
,t,5.825 branch 2 is the global minimum. If the cell
sufficiently defect free it is therefore possible tosupershear
the layers as the system follows branch 1 pastt5p. The
system will stay in the local energy minimum on branch
even though it is at a higher energy than branch 2. Up
increasingt further, branch 1 is annihilated by the unstab
branch 3 and the system is forced to relax to a lowreverse
shear state on branch 2.

Figures 6 and 7 show ther (z) andf(z) solutions and the
trajectories at various points on branches 1–3. In all th
figures, solutions on branches 1 and 2 are characterize
of
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almost linear shear across the cell with a small amoun
melting inr (z) while solutions on branch 3 are characteriz
by concentrated shear in the middle of the cell and a la
amount of melting inr (z).

For shear values greater thant52p, Fig. 5 is repeated
periodically. Thus for a linearly sheared cell the shear str
would periodically increase and decrease as the system
odically followed branch 1 then fell to a relaxed state
branch 2.

We may examine the behavior of the system for values
d other than 0.1 and 10.0 by investigating how the two lim
points vary asd is changed~Fig. 8!. From Fig. 8~a! we see
that asd decreases from 10.0 the two limit points conver
and annihilate each other at the critical valued5dc53.50.
For d,dc , the behavior is essentially the same as that
d50.1 described above. Ford.dc , the behavior is similar
to that of d510.0, however asd increases the two limit
points diverge~linearly! and eventually move out of the re
gion 0,t,2p. Figure 9 shows such a situation ford
512.0. It is clear that in the region 5.732,t,6.834 there
are now three stable solution branches and two unstable
lution branches since the branches from the adjoining reg
(2p,t,4p) are now overlapping with the branches fro
the initial region (0,t,2p). For larged, branches from
other regions will overlap and there will exist more and mo
stable and unstable solutions. Figure 8~b! shows the crossing
of the limit point loci. For all points in a diamond-shape
region the number of stable and unstable solutions is fix
Figure 8~b! can therefore be thought of as a phase diagram
the system crosses one of the limit point loci the number
possible solutions changes and a transition from one sta
another~i.e., from the metastable stressed state mentio
above to a relaxed state! may occur. While there will be only
one global energy minimizer at each point (t,d) in Fig. 8~b!

FIG. 5. EnergyF versus sheart for d510.0. The solid lines
denote the stable, solution branches 1 and 2 and the dashed
denotes the unstable, solution branch 3. For shear values bet
the limit points~where a stable branch meets the unstable branch! at
t50.458 andt55.825 there exist three solutions, two stable a
one unstable.
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FIG. 6. r (z) and f(z) ~in ra-
dians! solutions and thec(z) tra-
jectories for d510.0 and shear
values~a! t51, ~b! t52, and~c!
t53. In each plot the solid,
dashed-dotted and dashed line d
note the stable solutions on branc
1 and 2 and the unstable solutio
on branch 3~of Fig. 5!, respec-
tively.
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there may be many metastable solutions that are loc
stable.

Over much of the temperature range of the smectiA
phase, the smectic correlation lengthj is of the order of the
size of a few molecules, typically 10 nm. An experimen
cell dimension in the range 1–10mm yields values for the
nondimensional cell widthd;100– 1000. This is large, an
so we expect many metastable solutions.

For d5100, the energy vs shear plot is shown in Fig. 1
where only the stable solutions are shown for simplicity.
this parameter value, the limit point of branch 1 occurs a
shear oft556.69, and for each shear valuet there are in-
deed many stable solutions.

Although characteristic values ofd are large, we note tha
j is expected to increase dramatically close to a continu
nematic-smectic-A phase transition. In this region,d will
thus decrease, and some of the interesting structure ne
d'dc may be easier to observe.

V. ANALYTIC STUDIES

We are able to investigate certain regions of interest a
lytically. First, when the parameterd is small ~as in Fig. 4!,
ly

l

,
t
a

s

to

a-

the system is relatively simple and the governing equati
may be analytically solved. Second, from the numerical
sults we see that the region close tot5p is very important
and we are able to investigate this point in detail to det
mine the value ofd for which the behavior changes from th
similar to d50.1 to that ofd510.0. Finally, the loci of the
limit points may be investigated with the use of another a
proximate from of the governing equations.

A. The thin film limit

For very small values ofd it is possible to simplify the
system by considering only the highest order terms of
energy~7!. Mathematically, this involves usingd as a per-
turbation parameter and substituting the solution expans

r ~z!5r 0~z!1dr1~z!1d2r 2~z!1¯ , ~14a!

f~z!5f0~z!1df1~z!1d2f2~z!1¯ ~14b!

into Eq. ~12!. The leading order equations are

05
d2

dz2 r 0~z!2r 0~z!S d

dz
f0~z! D 2

, ~15a!
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FIG. 7. r (z) and f(z) ~in ra-
dians! solutions and thec(z) tra-
jectories for d510.0 and shear
values~a! t54, ~b! t55, and~c!
t55.825~the limit point!. In each
plot the solid, dashed-dotted an
dashed line denote the stable sol
tions on branch 1 and 2 and th
unstable solution on branch 3~of
Fig. 5!, respectively. At the limit
point the solutions from branche
1 and 3 coincide.
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dz S r 0~z!2
d

dz
f0~z! D . ~15b!

The solution to Eq.~15! subject to the boundary condition
~11! may be found by standard analytic techniques. The
der parameter amplituder (z) is found to be

r 0~z!5F4z2 sin2S t

2D24z sin2S t

2D11G1/2

, ~16!

while the phase solutionf(z) is

f0~z!5
t

2
2arctanF ~122z!tanS t

2D G . ~17!

The corresponding highest order free-energy term is

F5
2

d2 sin2S t

2D . ~18!

Figure 11 shows the free energy vs shear, Eq.~18! for d
50.1, ther (z) and f(z) solutions, Eqs.~16! and ~17!, and
the trajectories ast varies. There is clearly very good agre
ment between this approximate analytic solution and the
r-

u-

merical solution ford50.1 of the previous section~Fig. 4!.
In fact, we have found that the approximate solutions fou
above are still extremely close to the exact numerical so
tions for values as large asd51.

As we have seen in the last section, the conditiond!1
corresponds tol !j. Thus, except very close to the nemati
smectic-A phase transition, this corresponds to experimen
cells of dimension;10 nm or less, which may not be repro
ducible experimentally.

B. Complete layer mismatch: the critical point

We have seen qualitatively in Sec. II that complete lay
mismatch, when the layers on opposite faces of the cell
exactly misaligned and thust5p, is of great qualitative
importance in this system. This physical insight is echoed
the numerical studies in the last section. We now investig
the critical point att5p, d5dc in more detail.

For thin filmsd,dc and the relevant solution att5p is a
stable melted solution. By contrast, ford.dc this solution is
unstable. The stability change is caused by the formation
two limit points at d5dc . In order to analyze the loss o
stability of the melted solution, it is useful to abandon t
amplitude-phase variables and replace them by the real
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imaginary partsR1 andR2 of c introduced in Eq.~13!.
In these variables, the free energy~7! can be rewritten as

F5E
0

1

dzF1

4
~@R1

21R2
2#221!21

1

2d2 ~R18
21R28

2!G .
~19!

A good approximation to the melt solution att5p is
R15cos(pz), R250. To investigate its stability we will per
turb this solution by a small amount, thus

R1~z!5cos~pz!1O~h2!, ~20a!

FIG. 8. The loci of the limit points in thet-d plane.~a! The
limit points formed atd53.50,t5p diverge asd increases.~b! The
system symmetry implies that limit points are formed at the po
d53.50,t56p,63p,65p,... and asd increases the limit points
diverge and eventuallycross over. The labeli s / i u denotes the num-
ber of stable and unstable solutions~i s andi u , respectively! in each
region.

FIG. 9. EnergyF versus sheart for d512.0. For shear values in
the region 5.74,t,6.83 there now exist five solutions, three stab
and two unstable.
R2~z!5h sin~pz!1O~h3!, ~20b!

whereh!1. The energy of the system can now be calcula
in terms of the perturbation parameterh,

F~d,t5p,h!5F01h2S p2

4d22
3

16D1
3

32
h4, ~21!

whereF0 is the energy of theh50 state.
This is a Landau expansion corresponding to a continu

transition from theh50 state ford,dc to thehÞ0 state for
d.dc , where

dc5
2p

)
'3.63. ~22!

This value for the critical value ofd is remarkably close to
the numerical value ofdc'3.50. Figure 12~a! showsF(d,t
5p,h) for various different values ofd. For d close todc ,
the coefficient ofh2, which governs the stability of theh
50 state, may be approximated as 3/8(12d/dc), which is of
the classic Landau form for such a transition.

For d.dc , there are two equilibria, with positive an
negative signs ofh, which correspond to the solutions fo
t5p on branches 1 and 2 in Fig. 5. These solutions br
the symmetry of the free energy, in such a way that ther
now a physical difference between a phase mismatch of1p
and2p. In Fig. 12~b!, we show the phase trajectories of th
solution ford,dc andd.dc . For d,dc , the phase trajec-
tory goes through the origin, and thus the smectic layer
melts at the center of the sample. Although there is a ph
change ofp on traversing the cell, the two statesf50,p are
in fact equivalent and the transition between them occur
the point wherer50 and thusf is not defined. By contrast
for d.dc , there are two energetically equivalent trajectori
with opposite layer tilts. In the convention we adopt,1p
corresponds to layers that lean to the right, and2p to layers
that lean to the left.

s FIG. 10. EnergyF versus sheart for d5100.0, only the stable
solutions are shown. There are now many stable solutions for e
shear value.
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FIG. 11. Analytic solutions for
d!1. ~a! The energy versus shea
plot, ~b! r (z) and ~c! f(z) ~in ra-
dians! solutions and~d! the c(z)
trajectories are in very good
agreement with the numerically
obtained solutions in Fig. 4.
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It is, however, important to note that ford@dc , a uni-
formly leaning layer would have the solutionf'pz. By
contrast, for d&dc the solution found above isf
'tan21@h tan(pz)#, where h!1 and the trajectories pas
close to the origin@Fig. 12~b!#. The majority of the phase
change then occurs at the center of the cell with the slop
the phase angle being approximatelyf85p/h @see Fig.
12~b!#.

C. Complete layer mismatch: close to the critical point

We have seen in the last section that fort5p and d
.dc , there are two energetically equivalent stable states
responding to left-tilting and right-tilting layers and an u
stable melted state. Thus if we examineF(d.dc ,t5p
1d), there will be an exchange of stability between the t
stable states, or equivalently a first-order phase transition
d passes through zero.

This situation can be modeled using similar analysis
the last section. The free energy corresponding to Eq.~21! is
equivalent to a Landau model of an Ising system in zero fi
with order parameterh. The inclusion of a small change i
shear,d, is then analogous to adding an external field term
which the field is proportional tod. While the2h solution is
of

r-

as

o

d

n

favored byd positive, the1h solution remains metastable
For sufficiently larged it eventually loses stability at the
critical valued5dc(d), beyond which layer slippage take
place. The equivalent occurs in the1h case ford negative.

Clearly asd→dc ,dc→0. Thus, as expected, the spinod
line approachest5p at d5dc . What interests us here is th
dependence ofdc on d.

We use a modified form of the ansatz~20!:

R1~z!5cos~pz!, ~23a!

R2~z!5h sin~pz!2
d

2
. ~23b!

Note that we retain in this ansatz only terms to orderd. The
phase mismatch here isp1d, but in order to simplify the
mathematics, we have altered the boundary conditions
that f(0)52d/2 andf(1)5d/21p. Since the physics is
independent of the value off~0! and only depends on th
mismatch this does not change the system.

The free energy~19! can now be computed, which t
O(d) is
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FIG. 12. ~a! Energy att5p as a function of the perturbation parameterh asd varies.~b! c(z) trajectories of the stable solutions. Fo
d,dc , the stable solution occurs forh50 so that the trajectory lies along theR1 axis betweenR150 andR15p. For d.dc , hÞ0 and
the two solutions lying in the energy minima correspond to trajectories passing through the pointR150, R256h in the complex plane. The
positive and negativeh solutions are represented by solid and dashed-dotted lines, respectively.
cal

ot

ions,
F~d,d,h!5F01
3

16S dc
2

d221Dh21
3

32
h41

2

3p
dh.

~24!

The spinodal line occurs for values ofd at which a maximum
and a minimum coalesce. The condition for this is that

]F

]h
5

]2F

]h2 50. ~25!

We thus obtain the following equations fordc(d):

FIG. 13. Analytic solutions for the energy versus shear pl
near tot5p for various values ofd. As in the numerical solutions
for d5dc , two limit points are formed att5p and diverge asd
increases.
05
2

3p
d1

3

8
h31

3

8 S dc
2

d221Dh, ~26a!

05
9

8
h21

3

8 S dc
2

d221D . ~26b!

Solving these equations yields the position of the criti
spinodal line:

s
FIG. 14. The locus of the cusp points asd andt vary. The solid

and dashed lines line represent the analytic and numerical solut
respectively.
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tc~d!5p6dc~d!5p6d0S dc
2

d221D 3/2

, ~27!

with d05)p/8'0.680.
Figure 13 shows the energy versust plot for various val-

ues ofd. We can clearly see how, asd passesdc the stable
solution att5p becomes unstable and two limit points for
and then move apart. To compare this behavior to the
merical results, Fig. 14 shows the locus of the two cusp
the t-d plane for both numerics and analysis. We find go
agreement whenudu!1, i.e.,t'p while the expansion~23!
is valid. Thus this analysis is only valid for a limited rang
of d.

FIG. 15. The difference in energy between branch 1 and bra
2 ~see Fig. 5! for the shear value at the limit point,DF, versusd.

FIG. 16. The analytic locus of the limit point asd and t vary
found by following the approximate analytic solution at the lim
point. The solid and dashed lines line represent the analytic
numerical solutions, respectively.
u-
in
d

As shear increases and the system reaches the limit p
~e.g., see Fig. 5! it will fall from the high energy state~on
branch 1! to the relaxed low energy state~on branch 2!. The
change in energy as this metastable state disappears an
system relaxes can be calculated from the solutions of
~26! with Eq. ~27! substituted into the free energy Eq.~24!.
This difference in energyDF is ~see Fig. 15!

DF5
9

32S 12
dc

2

d2D 2

5
9

32S d

d0
D 4/3

. ~28!

Therefore the energy jump from the metastable she
stressed state to the relaxed state asymptotes to the v
DF59/32 as seen in Fig. 15.

Although we have successfully investigated the behav
aroundt5p, finding analytic values for the critical param
eterdc, the location of the limit points and the difference
energy between the metastable stressed state and the re
state at the point where the former loses stability, we wo
like to be able to locate, analytically, the limit points fo
large values ofd in order to model the more realistic value
(d'100– 1000) mentioned in the previous section.

D. Limit point solution

In order to investigate the limit point further fromd
'dc , we will use an approximate form of the solution at th
limit point. This solution is of the form

r ~z!512e sin~pz!, ~29!

with e!1. We need not consider thef(z) solution since
manipulation of the second governing equation~12b! enables
us to write the free energy~7! purely in terms ofr (z).

F5E
0

1

dzF 1

2d2 S S d

dz
r ~z! D 2

1
t2

4*0
1 1

r ~z!2 dzD
2S 1

2
r ~z!22

1

4
r ~z!4D G . ~30!

When Eq.~29! is used, the free energy can be expanded
powers ofe

F5
1

4
g22

g2

p
e1Fg2S 4

p22
3

8D1
p2

8d2 1
1

4Ge2

1Fg2

p S 5

3
2

16

p2D2
2

3pGe31O~e4!, ~31!

whereg5t/d. The two solutions ofdF/de50 correspond
to the minimum and maximum of the free energy cor
sponding to branches 2 and 3 of Fig. 5. The limit po
occurs when these two stationary points annihilate each o
leaving a point of inflection. We therefore find the limit poin
by solvingdF/de50 andd2F/de250 simultaneously, forg
ande. The solution, although analytically soluble, is length
except in the limitd→` when it reduces to

h

d
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g→gc5S 6p4216p2A3222p2

9p41128p222048 D 1/2

50.585. ~32!

The asymptotic value 1/gc5d/tc is the analytic solution for
the gradient of the limit point locus in Fig. 8~a!. Figure 16
shows both the numerical and analytic locus of the c
point asd andt5gd vary. The numerical asymptotic valu
of the gradient, 1.73, is in good agreement with the anal
value 1/gc51.71.

The intersection points of the limit point loci in Fig. 8~b!,
where the number of stable and unstable solutions exist
specific shear valuest successively increases, can be calc
lated from the asymptotic value ofg. Since the limit point
loci coincide whent52p,3p,4p,... , thecritical d values
are

dc,n5np/g, ~33!

wheren52,3,4 . . . . Using the numerically obtained valu
of gc , the first three critical points aredc,1510.87, dc,2
516.29, anddc,3521.73.

E. The dynamics of topological change

The theory that we present in this paper is quasistatic
cannot address the details of the dynamics of the breakd
of supershear. Nevertheless we shall find that our un
standing of the quasistatic theory is able to give at leas
qualitative picture of the dynamic process.

We begin this section by observing, from Eq.~31!, that
the limit point marking the collapse of supershear is a re
of the mutual annihilation of a local free-energy minimu
and the nearby maximum. Oncet reachestc , the system
relaxes to a new lower energy state. From a computatio
point of view, however, the problem is that this new fre
energy minimum is no longer described by Eq.~31!, for in
the dynamic relaxation process the ansatz~29! fails. The new
equilibrium structurec(z) possesses an effective shear
duced by 2p, and thus the value ofg to be used in Eq.~31!
is reduced by 2p/d. A dynamical reformulation of the prob
lem in terms of the order parameter componentsR1(z) and
R2(z) avoids computational problems, but at the expense
the physical meaning provided by the sheart.

We shall consider collapse of supershear in the largd
limit in which casetc@p.

For a specific shear value,t the f(z) trajectories in the
complex plane are classified by their winding number
Morse Indexj, which is the number of times the trajecto
orbits the origin and is related to the effective shear of
solution. A trajectory with winding numberj corresponds to
layers tilting by a distancexdispl, where ja,xdispl,( j
11)a through the cell.

Let us summarize the important features of these traje
ries. As they loop around the origin, they spiral inward ov
an anglej p, and then outward, in a symmetrical way. F
large j, the trajectory approaches the origin more closely
that the innermost loop is the smallest.

Qualitatively we can now see what will occur as the lim
point is reached. The trajectory with winding numberj will
become unstable and relax to that with winding numberj
21). This involves the innermost loop of the trajectory co
p
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lapsing, and the other loops readjusting themselves. The
portant steps in this dynamic process are illustrated in Fig
where we have concentrated on the innermost loop of
trajectory.

As the systemfalls from the limit point, the innermost
loop of the original trajectory encircling the origin of th
complex plane@Fig. 17~a!# starts to collapse@Fig. 17~b!# and
in particular the position closest to the origin,P, approaches
the origin. In Fig. 17~c! the trajectory actually passes throug
the origin as the loop disappears at a cusp and in Fig. 1~d!
the orbit now has winding number (j 21). The original tra-
jectory with winding numberj has now decayed to a new
stable trajectory with winding number (j 21).

Figure 18 shows this process in terms of the layer c
figurations. By symmetry,P corresponds to the exact cent
of the cellz5 1

2 . As P approaches the origin, the layer tilt a
the center of the cell increases@Fig. 18~b!#, until the layers
are parallel to the cell whenP coincides with the origin@Fig.
18~c!#. However, since the trajectory goes through the orig
the order parameter atz5 1

2 is zero, and the phase is und
fined. In fact, as can be seen by examining Fig. 18~c!, there is
a discontinuity in phase acrossz5 1

2 of exactlyp. Justbefore
the orbit goes through the origin, the phase change clos
the center of the cell is 2p. But justafter the orbit has gone
through the origin, the phase jump is zero. AsP passes
through the origin, the layers have separated and reattac
in the process losing a phase change of 2p.

The details of this description will depend on the dynam
cal structure of the equations governing smectic-A layer mo-
tion. A simple time-dependent version of equations that
lows only for dissipative behavior is the Ginzburg-Land

FIG. 17. The dynamic process as the system relaxes from
supersheared state at the limit point.~a! The innermost loop of the
original trajectory encircling the origin of the complex plane wi
winding numberj. ~b! The loop starts to collapse.~c! The trajectory
passes through the origin as the loop disappears at a cusp.~d! The
new stable orbit now has winding number (j 21).
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FIG. 18. The dynamic process in Fig. 17 in terms of the layer configurations.~a! The supersheared layer configuration.~b! The layer tilt
at the center of the cell increases until the layers are parallel to the cell at the center where melting occurs,~c!. ~d! The layers reform in a
relaxed state such that the layer denoted byL1 in ~a! now has a phase change between the cell surfaces reduced by 2p.
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equation. The dynamics of the 2p reduction in phase see
above has previously been studied in detail@12–15#. How-
ever, the full equations are inevitably more complicated a
include smectic-A hydrodynamics in the presence of lay
conservation. Whatever these details, they will not alter
stable qualitative dynamical features discussed here.

VI. DISCUSSION

In this paper, we have presented a detailed analysi
shear-induced melting in smectic-A liquid crystals. The cal-
culations reveal a complex phase diagram described by
two system control parameters, the nondimensionalized
width d and the imposed sheart.

We have found that there is a critical value of the thic
nessdc at which the cell behavior changes qualitatively. F
d<dc , the layers continuously melt and reform as the sh
increases throughnp for odd n. In this way, the effective
layer tilt is alwaysutu,p and when the layers melt they d
so when the smectic order parameter at the center of the
is zero. The free-energy minima occur when there is a p
sibility of layer matching in a perfect bookshelf structur
which occurs fort52np. The maxima occur fort5(2n
11)p, when the phase is discontinuous at the center of
cell and the layers on each side of the cell are exactly ou
phase.

For d.dc , however, the behavior is significantly diffe
ent. It is now possible to supershear the layers into a m
stable state withutu.p until a critical value of the shea
tc(d). For d→dc

1 , tc(d)→p, and with increasing thick-
ness, the critical shear value is linear with respect tod @i.e.,
tc(d)→gcd#. For large values ofd, there will, in general, be
a large number of metastable states, each associated w
different winding number corresponding to the number
layers crossed as one traverses the cell normal to its surfa
When the system reaches the critical shear value, the sy
relaxes into the next highest free-energy metastable stat
ducing the winding number by one and melting at the cen
of the cell as it relaxes.

Whether experiments actually exhibit this behavior d
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pends on a number of factors. First, we note our assump
of homogeneity through the plane of the cell. The existen
of many metastable states implies the possibility of trans
mation through a dislocation rather than by homogene
nucleation. In this case a new state with lower winding nu
ber is formed as a front, containing a dislocation line, mov
within the cell. This dislocation would then possess a B
gers vector that compensates for the extra winding numb

Second, we have assumed that the cell surface imp
strong anchoring such that the layer positions are fixed at
boundaries. As we observed in the Introduction, this assu
tion derives from the existence of the chevron structure t
is usually justified in terms of a surface memory effect.
practice there is no microscopic description of this proce
and detailed experimental evidence and description of
phenomenon is lacking. Introducing weaker surface anch
ing allows layer sliding to take place at the surface as wel
at the center of the cell.

The experiments of Cagnon and Durand@3# showed that
the response supersheared to a sheared smecticA in the
bookshelf geometry had two components. The major com
nent was a linear behavior superposed on which wa
smaller periodic response. Linear behavior is just wha
expected fort,tc ; the stored free energy is proportional
t2 just as in Hooke’s law, as can be seen in Figs. 9 and
In contrast, periodic behavior is what is expected fort
;tc , for now the system is reaching its critical value, rela
ing, increasing to its critical value, relaxing and so on. T
temptation is to suppose that the existence of defects div
the system into parts where~locally! t,tc , and other parts
wheret;tc . A superposition of these two qualitatively dif
ferent behaviors could describe the results of Cagnon
Durand. Whether this really is the case is an open quest
requiring both more experimental and theoretical investi
tion.

Finally, we observe that the root of the phenomenon
are investigating is a periodic response to a linear force,
the fundamental reason for this is that the underlying
namical variable in the problem is aphase. The periodic
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process involves changes in a topological variable with so
defect motion. In this sense the smecticA has many topo-
logical analogies. One such analogy is the classical Jos
son effect@16,17# in which an alternating current can be
produced by aconstantvoltage difference across a weak s
perconducting link. The current is associated with the mot
of magnetic flux quanta across the weak link. The fl
quanta are defects in the superconducting order param
which, like the smectic-A order parameter, is a two
component orXY-like spin field.
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APPENDIX: THE uÄ0 APPROXIMATION

We start with the free-energy equation~2!,

F5E dr H auCu21
b

2
uCu41z iu~ n̂•“2 iq !Cu2

1z'u~ n̂3“ !Cu21 1
2 K11~“•n̂!21 1

2 K33@ n̂3~“3n̂!#2J .

~A1!

FIG. 19. Configuration of the tilted layer with layer tiltd and
director angleu.

FIG. 20. Numerical and analytic solutions of the director tilt
a function of layer tilt,u~d!. Solid and dashed lines indicate stab
and unstable solutions, respectively.
e

h-

n

er,

e
d

Let us consider the case when the order parameter am
tude r remains close to its equilibrium valuerc5
(2a/b)1/2 and thus we are able to assumedr/dz'0 and
disregard any derivatives ofr. Using the nematic directorn
5(cosu,0,2sinu), the smectic order parameterC
5rce

i „qx1f(z)…, and relating the phase gradient with the lay
tilt angle thusdf/dz52qdu/dz52q tand, whereu is the
layer displacement andd is the layer tilt angle~see Fig. 19!,
the free energy becomes

F5E drH z iq2rc
2
„sinu tand1~cosu21!…2

1z'q2rc
2~sinu2cosu tand!2

1
1

2 S du

dzD
2

~K11cos2 u1K33sin2 u!J . ~A2!

By minimizing the first two terms, to find the bulk behav
ior of the response of the director tilt to tilting of the layer
we obtain the equation

FIG. 21. ~a! For d!d0 , there exists one solutionu'd. ~b! For
d.d0 , there exist three solutions, one unstablenu for which u
'd, and two stable solutionsns1 and ns2, for which u,d and u
.d, respectively.~c! For d@d0 , the stable solutionns1 asymptotes
to ~1,0,0!, i.e., u→0.
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05S 12
z'

z i
D @~ tan2 d21!sin~2u!12 tand cos~2u!#

12 sinu22 tand cosu, ~A3!

which gives the the director angleu as a function of the laye
tilt and the parameterz' /z i .

Figure 20 shows the numerical solutions of Eq.~A3! that
initiate from the bookshelf state~d50, u50!. From Fig. 20,
for which we have taken the parameter valuez' /z i51022,
we see that the initial behavior isu'tand ~or alternatively
u'q21df/dz!.

However, for a finite value ofz' /z i there exists a bifur-
cation of this solution at a critical value of layer tiltd0 . The
solution,u'tand, becomes unstable~nu in Fig. 20! and two
stable solutions are formed. For one of these stable solut
u continues to increase~ns2 in Fig. 20! while for the other
stable solutionu decreases asymptotically to zero~ns1 in Fig.
20!. An illustration of this behavior is given in Fig. 21. Th
physical interpretation of these two branches is that the
rector is now tilting with respect to the layer normal in ord
to better satisfy the compressibility condition.~There is in
fact a whole cone of such solutions just as in the smectiC
phase that correspond to molecules tilting in order to fit i
the compressed layers.!

It is now necessary to reintroduce the elastic term fr
the free energy~A2! in order to determine which of the tw
stable in-plane solutions is selected by the system at the c
cal point d5d0 . It is obvious from the form of the elasti
free energy@'(du/dz)2# that large distortions ofu are dis-
favored. Since we have fixedu50 on the boundaries, th
solution corresponding tou.d is of higher energy than the
solution whereu,d ~in fact the in-plane solution withu
,d will also be the minimum energy configuration with r
spect to all out-of-plane tilted solutions!. Thus the system
selects thens1 solution for d.d0 . The director angle now
decreases and asymptotes tou50.

Now, in order to investigate this behavior analytically,
us suppose thatz' /z i5e!1 andu!1, d!1. This last con-
dition ond is actually not necessary in order to find analy
solutions. However, without thed!1 condition, a cubic
polynomial must be solved rather than a quadratic and s
the behavior with or without this approximation is almo
identical, we prefer the simpler solution expressions bel
In this limit the first two terms of the free energy~A2! be-
come

z iq2rc
2F S ud2

u2

2 D 2

1e~u2d!2G;u2S d2
u

2D 2

1e~u2d!2.

~A4!

Note the physical interpretation of these terms: The firs
the compressibility term with minima atu50,2d and a maxi-
ns

i-

o

ti-

ce

.

s

mum atu5d whereas the second is the tilt energy term th
has a minimum at the smectic-A state,u5d. Minimizing
these terms, we obtain the solutions

u5d, ~A5!

u5d2Ad222e, ~A6!

u5d1Ad222e. ~A7!

These solutions are shown in Fig. 20 and marked withnu ,
ns1 , and ns2 , respectively. Ford,A2e the solution isu
5d. This solution becomes unstable atd5A2e when two
stable solutions are formed@solutions~A6! and~A7! above#.
We see good agreement between solution~A6! and the exact
numerical solution sinceu remains small for this solution.

From this analytic result we see that asd grows large the
director angle asymptotes to zero and in this limitu→e/d.
In this regime the free energy~A4! becomes

z iq2rc
2Fe21~ed222e2!1OXS e

d D 4CG . ~A8!

The second and third terms are the tilt energy terms while
first term is the compressibility term that is both smaller th
the leading order tilt energy term andconstant.

While it is clear that our assumption, that the free ene
may be written as

F5E
0

l

dzFar21
b

2
r41z'H S dr

dzD
2

1r2S df

dzD 2J G ,
~A9!

is not valid for small amounts of layer tilt (udf/
dzu<qA2z' /z i), it is however valid for larger layer tilts. It
is in this regime where the important aspects of our wo
occur, i.e., where there exists a region of supershear a
spinodal point at a critical shear value.

One other possible limitation on the validity of the fre
energy expression occurs at large shear values. In such
stances the phase gradient may become large, thus inva
ing a Landau-like expansion of the free energy. However
we assume that the system is sufficiently close to
nematic-smectic-A phase transition~wherer;0! the phase
gradient terms in the free energy@r2 df/dz,r2(df/dz)2#
remain small and the free-energy expansion is valid.
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