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A numerical and analytical analysis of shear-induced melting in smAdteuiid crystals is presented. Based
on a Landau expansion of the complex smectic order parameter, equations governing the phase and amplitude
of the local density modulation are found. Numerically solving these equations indicates that for a range of
parameter values a first-order transition, from a shear-stressed to a more relaxed state, is periodically encoun-
tered as the total shear is increased. Suitable approximations allow the analytic determination of certain
characteristics of this first-order transition.
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I. INTRODUCTION scopic physics behind chevron formation remains poorly un-
derstood.
The liquid crystalline smectié phase exhibits order in- In an effort to explain the surface interaction, Cagnon and

termediate between that of a solid and a ligtidl Its defin- ~ Durand[3] performed an experiment in which they sheared a
ing quality is the existence of one-dimensional positionalcell filled with a smecticA liquid crystal, moving one wall
ordering in the form of a periodic molecular density function laterally with respect to the other. Accurately measuring the
forming a layered structure. In equilibrium, the uncon-Very small transmitted stress, they found periodic disconti-
strained liquid crystal layers are uniformly separated by dUities superimposed on a monotonic, background stress.
distance 2r/q, whereq is the preferred wave number of the They _mterpreted these discontinuities as slipping of th_e lay-
density fluctuations. However, out of equilibrium, or in the €™ with respect to the walls. These results were explained as
presence of boundary conditions that disturb the preferrewe bookshelf geometry first tilting as it follows the motion

equilibrium configuration, the layer structure can be signifi-Of the walls, and then slipping as the original bookshelf ge-

cantly different. In this paper, we discuss, quantitativel Oneometry, with lower free energy, reforms. In this way Cagnon
antly ditt ; IS pape, - ) Y, O 1nd Durand were able to estimate the energy associated with
situation in which this layer structure may be distorted.

. 2o o : the surface-memory-induced layer anchoring at the walls.
We consider a smectig-liquid crystal sample initially in Y y J

_ X . This paper aims to examine the general question of the
the so-called bookshelf geometry, in which the nematic dijnerplay between the energetically favorable bookshelf ge-

rector is aligned in the same uniforf direction on each  ometry and an applied shear stress that distorts it. Elston and
surface of the cell, which lie in they plane (Fig. 1). The

consequence of thed®mogeneousoundary conditions is z
that the smectic layers form a bookshelflike structure, in the l
yz plane. However, this bookshelf configuration may be dis-# =1

turbed by a sufficiently strong perturbation. : : : :: -=|=

Such a perturbation may be induced simply by changing | | — — | —| — —
the sample temperature, thus changing the preferred thermc g g o ot g g o g
dynamic layer spacing. The bookshelf structure deforms into pom] g g et v o B o

a V-like layer configuration, known as the chevron structure = 0 | |
[2]. The chevron structure has been much studied, becaus

x

- . . . - Tdispl
its behavior plays a crucial role in surface stabilized ferro- .~ shear

electric liquid crystal cells that are of great commercial in-

| -
terest due to their considerable potential for exploitation in ! g/ g ::: | ]
display devices. A by g ST = ==
Phenomenological theories of chevron structures typically Dt | o | | e [ —
assume that there exists a surface memory effect that ancho E ===
the layers at the cell surfaces while the natural layer spacing Y Sy Sy Sy Sy buny Sy Sy ey
|

changes in the bulk of the cell. The mismatch between the ]
layer thickness at the surface and within the cell is believed
to induce the chevron structure. However, the precise micro- FiG. 1. Cell configuration: Smecti&-material is sandwiched
between glass plates a1 andz=0 where the director is aligned
homogeneously. The shear force applied to the upper glass plate
* Author to whom correspondence should be addressed. induces layer distortion.
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() (b) |

FIG. 2. (a), (b) Energetically equivalent tilted layers for
= (mod 27). As the shear is increased past the two stable
configurations are a metastable, supersheared(sjaed a reverse (©) [
tilt state (d). A first-order transition between thesepologically
distinct states involves breaking up or melting the layer structure.

Towler[4] have previously shown, using an idealized model,
that the presence of a large interwall shear can lead to a
significant reduction in the smectic order parameter in the {
middle of the cell, and sufficiently large shear can, under . .
some circumstances, destabilize the deformed bookshelf ge- FIG. 3. For thin cells, as shear 'ncrea@'the layers start to
; . : . melt at the center so that, at complete mismatch, the phase differ-
ometry. In this paper, we aim to extend this work to give a R
. . ence of+# and — 7 are indistinguishablglb) At larger shear(c),
coherent picture of the whole phenomenon. In so doing, w ; .
g e layers reform with reverse tilt.
find a complex structure of stable, metastable, and unstable
states and describe the associated transitions between thefetween superconductors and smectic liquid crystals that first
In Sec. Il we will give a physical overview of the com- |ed de Gennes to use this order parameter. However, unlike
plete problem, and provide the reader with a summary of ouin classical XY models, the low temperature phase is not
results. In Sec. Il we present the model in detail and intro-constant, but a layered phase with wave numdpen the
duce the principal approximations subsequently used. A nugirection parallel to that of the nematic directir
merical study of the solutions of the governing equations is  |n considering this system, it will be useful to measure the
given in Sec. IV, the important aspects of which we considegiegree of stress by the amount of relative lateral displace-
in more detail using a number of analytical techniques inmentx, of the walls (Fig. 1). This may be more conve-
Sec. V. Flnally, in Sec. VI, we summarize and discuss pOSnienﬂy marked by the degree of |ayer mismatmispl

sible future extensions of these results. = Xqispl! diayer, the relative lateral displacement of one wall
with respect to the other in units of the smectic layer thick-
Il. PHYSICAL UNDERSTANDING nessdjayer- The quantityr=2mXysp is the equivalent quan-

tity in radians; it is the change in phase between points that

invmv?ési;?ﬁgogg(vjil%C;ec?)nbsrilgcfaroyre;]r(\a/%mésﬁfi?eoﬁgﬁl;z would lie opposite to each other in the bookshelf geometry.
j P The natural length scale in this system is the smectic cor-

sumption we will make in this paper is to suppose that the _.. o .
layer anchoring is infinite. Thus, when the initial bookshelf relatlon lengthz. This is the length scale on which changes

geometry is perturbed the layers are forced, at least initiallyIn the bulk smectic order may be expected to occur. We will
o follow the moving surfacesFig. 1). We remark that the find different behavior depending on whether the ratio of the

. S . L cell thickness to this correlation lengthé is much greater

assumption of infinite rather than finite anchoring is not es-, ; .

. o . - than or much less than unity, with a sharp crossover between

sential, although some of the most striking results in this : A

: ) . _the two regimes. For us, thin films are those for whick

paper depend on having relatively strong surface smectic an-,
choring.

. . : It is useful to consider what we expect to happen when
The smectic order parameter is a two-component Objecct)ne cell surface is sheared with respect to the other. For
[5], usually denoted by a complex number P '

extremely small shears 3 <Xysp<3, Or equivalently—

v =pe'® (1) 7=, the layers will bend in order to connect between the

surfaces. Consequently, there will be an increase in the cur-

wherep is the degree of order, usually thought of as beingvature free energy. However, in order to minimize this cur-
equivalent to the amplitude of the smectic density wave, andature free energy the smectic liquid crystal may reduce its
® is its phase. The nature of the order parameter suggestsder parameter in the bulk of the system which, due to the
that there is considerable similarity between the statisticasymmetry of the system, will reach a minimum in the center
mechanics of smectics and=2 spin systems described by of the cell.
the classical XY mode[6-8]. Indeed, it was the analogy Let us now consider what happens when the phase mis-
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match is exactlyr. The smectic layers at the cell surfacesthe origin. The loss of stability of the supersheared state
will be completely mismatched.e., exactly out of phase. involves the mutual annihilation of stable and unstable states
There are now two energetically equal layer configurationswith the same Morse Index and consequently the trajectory
The layer at one surface is positioned exactly between twélecays to a new state with its Morse Index decreased by one.
layers at the opposite surface and may join to either one. The In this section, we have seen how shearing a sméctic-

crucial question is whether these states are physically didiquid crystal in a bookshelf configuration can lead to a com-

tinct. plex physical phenomena. In the next section, we shall de-

If they are different(Fig. 2), then as the phase mismatch yelop a mathematical formalism to describe the physical
is increased throughr the sheared state becomes a metaldeas presented here.
stable state, and the previously stable free-energy branch is
extended into a metastable regidfig. 2(b)]. We shall refer lll. MODEL AND BASIC THEORY
to this state as supershear. The globally stable state is now
that which involves an effective phase difference across the ) . )
sample between 7 and O[Fig. 2(c)] i.e., layers with reverse ~ We will use the energy expression used previously by
tilt. The topologicallydistinct, metastable, supersheared staté<ralj and one of the present authd|.
has a phase differen¢e| > 7. Reaching the stable state from
the metastable state involves breaking up or melting the layer F= f dr
structure within the sample and reforming the layers in such
a way that phase difference is reduced. Transfer between the
two branches of the curve in this case necessarily involves a
first-order phase transition.

By contrast, we can imagine that at complete mismatch + 3K AX (VXA
the phase difference of-7 and —7 are indistinguishable
(see Fig. 3 If this is the case, symmetry necessarily de-The reader should be aware that this form of the free energy
mands that the system melt in the center of the @ei). s different from that used in de Gennes and Pkpst510
3(b)]. Only if the layers melt in the middle of the cell will it [1]. The difference occurs in the form of the gradient terms.
be possible for there to be a unique ground state with comm the present case, the gradient terms are formed using a
plete mismatch. In this case, the phase is undefined in th@ass tensor that is diagonal in a frame of reference fixed
center of the cell, and if the phase is undefined, then the\”th respect to the cella |ab0ratory frame of reference
degree of order must be zero. At larger shear, reverse tiljjhile the de Gennes gradient terms are derived from a mass
layers reform with a phase difference across the sample bgensor that is diagonal with respect to a frame of reference
tween— and O[Fig. 3(c)]. defined by the directofan internal frame of referenge

We will subsequently discover that the second, melting, For small deformations the two formulations are equiva-
scenario occurs for thin cells, for then the energy associategnt. For large deformations there will be differences, which
with tilting a layer is relatively large. By melting dt|=m  will be the focus of further research. We note, however, one
and then reforming fof7| >, the large layer tilt is avoided. intuitive advantage of this formulation. When the layers are
By contrast for thick cells, tilting is preferred. Eventually, for reduced in thickness, on purely geometric grounds we might
larger shears, the metastable state reaches a spinodal line afghect a director tilt that compensates for this in just such a
destabilizes. We shall find, unsurprisingly, that for suffi-way that the wave number in a direction parallel to the di-
ciently thick films, the critical shear is proportional to the rector remains constant. In E() the £, term favors a di-
thickness, and that in nondimensional units is of the order ofector tilt that compensates for layer reduction in thickness in
unity. ) just this way.

Between these two gémes is a critical cell thickness of ~  |n undistorted equilibrium, the smectic order parameter is
|=I. where the behavior at=m changes. At the critical determined by the first two terms of the above energy. Mini-
thicknessl equilibrium melting at complete mismatch no mization of these terms leads to the bulk smectic order pa-
longer occurs. An important part of the analysis will consistrameter modulusp.=(—A/B)¥2. Stability of the smectic
of an examination of the stability of the equilibrium melted phase requires, as in all theories of this type, that0 and
state atr=m. Such a state always occurs, but whereas it is 8>0. In Eq.(2) the £, term is associated with changes in the
stable state for thin films, for thick films it is unstable. smectic density wave and, as we shall indicate later in this
Analysis of the critical point will give rise to critical expo- section, in the present situation the cell surfaces induce a
nents associated with the onset of supershear. preferential bulk layer density wave number in thelirec-

For very thick filmsl/§>1, there will be many metastable tion of the valueq. In Eq.(2), the ¢, term is normally asso-
supersheared states for a giverThe loss of stability of the  cjated with departures of the director from the smectic layer
highest energy supersheared state moves the system to thérmal. The last two terms represent the elastic energy of
next state down in energy. Because the supersheared statstortions to the nematiclike directdr within the smectic
are topologically distinct, the natural language with which tojayer,
classify them is also topological. It will turn out that a solu-  The system is infinite in th& andy directions, and placed
tion of the governing equations foF can be classified in iy a cell with flat walls az=0 andz=1 (Fig. 1). We choose

terms of its trajectory in the complex plane. Such a trajectoryoundary conditions that give a homogeneous alignment:
possesses a winding number, or more technically a Morse

Index, which counts the number of times the trajectory orbits A(z=0)=A(z=1)=X, (39

A. Landau-de Gennes Theory

B .
A2+ W[4+ 4 (- V —iq) W2

+ 4 [(AX V)W 2+ 3K 14V - 7)?

: @
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W(z=0)=pe'¥, (3b) that it remain normal to them for small tilt angles, this ten-
dency is suppressed by the fact that the layers would then
P(z=1)=pe (@7, (3¢ have the wrong thickness along tkedirection. For larger

layer tilt angles the compression energy term dominates and
These boundary conditions fix the smectic order paramforces the director angle to be approximately zeée=0Q)
eter such that the phadeis strongly anchored at the surface throughout the sample. Although this approximation limits
and the modulug remains at the bulk equilibrium value. the validity of our analysis, we will later show that the im-
Such strong anchoring conditions exert great influence on thgortant processes in this system occur at relatively large
structure of the smectic layers and weaker conditions such ashear values, at which our equations are valid.
the introduction of asurface energywill lead to a different Substituting this result into Eq6) yields the following
form of stress relaxation within the bulk of the cell. form of the free energy, which will subsequently be used in
We shall suppose that, for zero shear, the system is hahis paper:
mogeneous in th& direction and changes it are wholly
induced by the sheared layering at the boundary. We simi- : dp\? ,(de 2
larly suppose the system to be completely homogeneous in F= fodz dz tp dz -
the ¥ direction. It will be useful to parameterize the order
parameter as follows:
B. Scaling

b
ap®+5p*+

_ iD(x,2) _ i _ i _ _ _
W (x,2)=p(2)e!?*?=p(2)el P 4= y(2)e'%,  (4) As previously discussed, the fundamental length scale in

this problem is the relaxation length for smectic order fluc-

- i6(2) i izati ;
wherei)(2) = p(z)€'*'*. This parameterization separates out, .-

the explicit x-dependent layer behavior, given y(x)

=(x, from the shear-induced variation across the cell, given

by ¢(z). TheW boundary condition§(3b),(3c)] can now be &=
rewritten as

1/2

& , ®

Jal

which is the length scale on which changes in the bulk smec-

¥(2=0)=pe, (59 tic order may be expected to occur. The free-energy func-
ir tional (7) can be nondimensionalized using the followin
p(z=L)=pce". (5b) scaling(s? ’ ’
Thus the phasep(z) ranges from 0 tor across the cell, y
though of course layer slippage may allow the phase to vary v=— (93)
between 0 and+2n7 wheren is an integer. Pc

The free energy may now be written as a functional of

p(2) and ¢(z) rather than¥(r). The nematiclike director, = P (9b)
which lies in thexz plane, may be written aé=(co0sé6,0, pe’

—siné), so thath is tilted with respect to th& direction by

an angled. For simplicity, we use a one constant approxima- _z

tion for the nematic elastic constanks;;= K z3=K. We then =1 (90)

obtain the following result:

b K

I
I de\? dp\? do)\? d= - (9d)
— 2, - 4, |7 _ 2 77 - &
F—fodz ap +2p + 5 dZ) +§[ (dZ) +p (dZ) £
do ~ b
X sir? 6+ p2q3(1—cosh)?+2p%q 55 Sin6(1-coso) F=S2F (9¢)
dp\? ,[d¢\? 2 It is mathematically more convenient to scale distance with
4 dz tp dz cos ¢ respect to system size, and absorb the thickness into the

equations rather than the boundary conditions. Dropping the
5 tildes from the resulting expressions yields the following
' 6) renormalized functional:

d
+ p2qg? sir? 0+2p?q d—(: sin@ coso]

In this paper, we will assume that changes to the layer N
density wave are energetically unfavorable compared to f dz
other forms of distortion within the liquid crystal. In other

words we assume thd is very large compared to all other where we have added a constant term in order to simplify the
energy coefficients. It can then be shoee the Appendix  form of the smectic potential and derivatives with respect to

that, except for very small amounts of shear when the moz are denoted by primes. To this functional we append the
lecular tilt angle follows the layer tilt angle and remains par-houndary conditions

allel to the layer normal, we may assume ti#at0. There-
fore, although tilted layers tend to rotate the director in order r(0)=1, ¢(0)=0, (113

1 1
Z(r2—1)2+ Z—dz(r’2+r2¢’2) . (10
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FIG. 4. Numerical solutions
for d=0.1. (@) Energy F versus
shearr. (b) The density modula-
tion amplituder (z). (c) The den-
sity modulation phase(z) (in ra-
diang. (d) The trajectories/(z) in
the complex plane.

r(l)=1, ¢(1)=r. (11b In the dynamical analogy, these equations correspond re-
spectively to conservation of energy and angular momentum,
solutions of which may be expressed in terms of elliptic
We may remark that this energy functioria0) resembles  functions.
the Lagrangian functional for motion of a particle of mass There are now two control parameters, namely the nondi-
1/d? in a frictionless bowl with potential minimum at radius mensional thicknesd and the shear. The significance ofl
r=0 and maximum around the rim at=1. The particle can be examined in the free enerdy). Whend is small, the
moves from a starting point on the rim =0 and a finish- (1—r?)? term can be ignored and changes in the smectic
ing point again on the rim ap= 7. There is in fact an iso- amplituder are not, relatively speaking, energetically expen-
morphism between the particle trajectories and the minimizsive. Thus smectic melting can occur in the center of the
ers(z). High mass particles will tend to fall into the bowl sample. By contrast, for largithe reverse is true, is con-
easily, consistent with melting of the smectic in a thin cellstrained to be close to 1 and the system now prefers changes
(d>1), whereas low mass particles will travel near the rim,in ¢, i.e., layer tilting.
consistent with layer tilt in a thick celld<1). This analogy We have so far emphasized the behavior of the smectic
will be particularly apparent when we consider the trajecto-amplituder(z) and phasep(z). However, we shall some-
ries of ¢(z) in the complex plane.
The relevant Euler-Lagrange equations are now

times find it convenient to consider the real and imaginary
parts of the smectic order parameter

r"+d?r(1—r?)+r¢'?=0, (129 J=R;+iR,. (13
(r2¢')' =0. (12b  This is particularly true at complete mismatek = 7 when
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d is small, for which, as we shall see explicitly in Sec. V, F
#(z) =R4(2) and melting of the smectic layers occurs at the -0.1
center of the cell. \ /
In the succeeding sections we investigate the behavior of R AN 7
the model described by the free enefd® with associated \
boundary conditions. These studies are both numerical, using -0.14
the continuation packageuTto97 [10,11], and, at critical o6 ) branch 3

points in the phase diagram, analytical.
-0.18

branch 1
IV. NUMERICAL STUDIES

Initially, the system is solved for alt and ford=0.1 and 02
d=10.0. From these solutions it is then possible to use 022
AUTO97 to obtain the behavior for all values df

For all values ofd the lowest energy solution ifz)=1 -0.24 +- branch 2
and ¢(z)=0, which occurs at shear values of = T
=0,2m,4,... . Between these shear values the behavior is -0.260 T S

very different for different values of. The solutions ford
=0.1 andd=10.0 are shown in Fig. 4 and Fig. 5-7, respec-
tively. FIG. 5. EnergyF versus shear for d=10.0. The solid lines
Ford=0.1, Fig. 4 shows the free energy versus shear, théenote the stable, solution branches 1 and 2 and the dashed line
r(z) and ¢(z) solutions and the trajectories gfin the com- ~ denotes the unstable, solution branch 3. For shear values between
plex plane. Initially, as shear increases the phase is esseff€ limit points(where a stable branch meets the unstable biaatch
tially linear across the cell while the order paramatete- 7=0.458 andr=5.825 there exist three solutions, two stable and
creases in the center of the cell. For shear values approachifg€ Unstable.
7=, the phase change across the cell concentrates in the
center. The associated large valuedgf/dz inducesmelting  almost linear shear across the cell with a small amount of
of the smectic layers characterized by the reduction of thenelting inr(z) while solutions on branch 3 are characterized
order parameter(z) at this point. Atr= 7 the phase¢ and by concentrated shear in the middle of the cell and a large
the derivative ofr(z) are discontinuous and(z=0.5)=0. amount of melting irr (2).
The energy is a maximum. Far> this process is essen-  For shear values greater thars 27, Fig. 5 is repeated
tially reversed as the system relaxes to the energy minimurgeriodically. Thus for a linearly sheared cell the shear stress
at 7=2m. As noted previously, the discontinuous jump in yoyld periodically increase and decrease as the system peri-

phase does not result in a discontinuous jump in the complexgically followed branch 1 then fell to a relaxed state on
order parametey. This can be seen in the trajectories in Fig. jy.anch 2.

4(d). The discontinuous jump ig (and the gradient of) at

. : - We may examine the behavior of the system for values of
7= IS not present in th&,; andR, solutions.

o . o . d other than 0.1 and 10.0 by investigating how the two limit
For d=10.0 the behavior has changed significariBigs. points vary asd is changedFig. 8). From Fig. 8a) we see

5-7. Figure 5 shows that .for shear values 0.458 that asd decreases from 10.0 the two limit points converge
<5.825 there are three solutions, two stable and one un- o " a
d annihilate each other at the critical valle d.=3.50.

stable. The stable solutions occur along branches 1 and . .
while the unstable one occurs along branch 3. The stabl or d<d, the behavior Is essentially the same as that of
branches are local minima of the free enef@y while the =0.1 described above. Far>d,, the behavior is similar
unstable branch is a local maximum. At thimit pointsthe ~ © that of d=10.0, however asl increases the two limit
unstable solution and one of the stable solutions meet anints diverge(linearly) and eventually move out of the re-

annihilate each other so that in the regions<0:8<0.458 gion 0<7<2. Figure 9 shows such a situation faok
and 5.825 <27 there exists only one solution. =12.0. It is clear that in the region 5.782<6.834 there

As discussed in the previous section, at the poiatr the ~ are now three stable solution branches and two unstable so-
two stable branches have the same energy whereas féition branches since the branches from the adjoining region
0.458< 7<7 branch 1 is the global minimum and far (2m<7<4m) are now overlapping with the branches from
<7<5.825 branch 2 is the global minimum. If the cell is the initial region (6<7<2). For larged, branches from
sufficiently defect free it is therefore possiblegopershear other regions will overlap and there will exist more and more
the layers as the system follows branch 1 pastm. The  stable and unstable solutions. Figuk®)&hows the crossing
system will stay in the local energy minimum on branch 1of the limit point loci. For all points in a diamond-shaped
even though it is at a higher energy than branch 2. Upomegion the number of stable and unstable solutions is fixed.
increasingr further, branch 1 is annihilated by the unstable Figure &b) can therefore be thought of as a phase diagram. If
branch 3 and the system is forced to relax to a lewerse the system crosses one of the limit point loci the number of
shear state on branch 2. possible solutions changes and a transition from one state to

Figures 6 and 7 show thd€z) and ¢(z) solutions and the another(i.e., from the metastable stressed state mentioned
trajectories at various points on branches 1-3. In all thesabove to a relaxed statmay occur. While there will be only
figures, solutions on branches 1 and 2 are characterized mne global energy minimizer at each poiatd) in Fig. 8b)
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there may be many metastable solutions that are locallthe system is relatively simple and the governing equations
stable. may be analytically solved. Second, from the numerical re-
Over much of the temperature range of the smeAtic- sults we see that the region closerts 7 is very important
phase, the smectic correlation lengtiis of the order of the and we are able to investigate this point in detail to deter-
size of a few molecules, typically 10 nm. An experimentalmine the value ofl for which the behavior changes from that
cell dimension in the range 1-1@m yields values for the similar tod=0.1 to that ofd=10.0. Finally, the loci of the
nondimensional cell widtll~100—1000. This is large, and limit points may be investigated with the use of another ap-

SO we expect many metastable solutions. proximate from of the governing equations.
Ford= 100, the energy vs shear plot is shown in Fig. 10,
where only the stable solutions are shown for simplicity. At A. The thin film limit

this parameter value, the limit point of branch 1 occurs at a
shear ofr=56.69, and for each shear valuehere are in-
deed many stable solutions.

Although characteristic values dfare large, we note that
¢ is expected to increase dramatically close to a continuou

For very small values ofl it is possible to simplify the
system by considering only the highest order terms of the
energy (7). Mathematically, this involves usind as a per-
gurbation parameter and substituting the solution expansion

nematic-smectiex phase transition. In this regiord will F(2)=ro(2)+dry(z)+d?r(2)+ - (143
thus decrease, and some of the interesting structure near to '
d~d, may be easier to observe. &(2)= do(2) + dpy(2) + d2py(2) ++ -+ (14b)

V. ANALYTIC STUDIES into Eq. (12). The leading order equations are
d? d 2
Ozﬁro(z)_ro(z)<d_z¢o(z)> , (159

We are able to investigate certain regions of interest ana-
lytically. First, when the parameteris small(as in Fig. 4,
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point the solutions from branches
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d merical solution ford=0.1 of the previous sectiofFig. 4).
0= d_z( ro(Z)Zd—Z ¢o(2))- (15D In fact, we have found that the approximate solutions found
above are still extremely close to the exact numerical solu-
The solution to Eq(15) subject to the boundary conditions tions for values as large ab=1.
(11) may be found by standard analytic techniques. The or- As we have seen in the last section, the conditisal
der parameter amplitudgz) is found to be corresponds tb<£. Thus, except very close to the nematic-

" smecticA phase transition, this corresponds to experimental

a2 T o[ T cells of dimension~10 nm or less, which may not be repro-
ro(z)=|4z sm2( 5| 42 sir? 51+t (18 Gucible experimentally.
while the phase solutiog(z) is B. Complete layer mismatch: the critical point
T T We have seen qualitatively in Sec. Il that complete layer
$o(2)= 5 —arctan(1-2z)tan 5 | |. (170 mismatch, when the layers on opposite faces of the cell are

exactly misaligned and thus=, is of great qualitative

The corresponding highest order free-energy term is importance in this system. This physical insight is echoed in
the numerical studies in the last section. We now investigate
the critical point atr=, d=d; in more detalil.

For thin filmsd<d; and the relevant solution at= 7 is a
stable melted solution. By contrast, for-d, this solution is

Figure 11 shows the free energy vs shear, &8) for d unstable. The stability change is caused by the formation of
=0.1, ther(z) and ¢(z) solutions, Eqs(16) and (17), and  two limit points atd=d.. In order to analyze the loss of
the trajectories as varies. There is clearly very good agree- stability of the melted solution, it is useful to abandon the
ment between this approximate analytic solution and the nuamplitude-phase variables and replace them by the real and

2
F— FsinZ(%). (18)
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limit points formed atd=3.50, 7= 7 diverge agl increases(b) The
system symmetry implies that limit points are formed at the points  F|G. 10. EnergyF versus shear for d=100.0, only the stable

d=3.50,7=*x,=37,=57,... and agl increases the limit points  so|ytions are shown. There are now many stable solutions for each
diverge and eventuallgross over The labeli;/i,, denotes the num-  ghear value.

ber of stable and unstable solutioisandi,, respectivelyin each

regen Ry(2)=nsin(m2) +O( 7%, (200)
imaginary partsR; andR; of ¢ introduced in Eq(13). wherey<1. The energy of the system can now be calculated

In these variables, the free ener@y can be rewritten as  in terms of the perturbation parameter

111 1 2 3 3
— 2 292 2 12 12 ™
F= fo dz Z([R1+ R31°—1)“+ W(Rl +R5%)|. F(d,7=1,7)=Fy+ 5° 17 16 + 3_2774, (21)
(19
whereF is the energy of they=0 state.

A good approximation to the melt solution at= 1 is This is a Landau expansion corresponding to a continuous
R,=cos(r2), R,=0. To investigate its stability we will per- transition from then=0 state ford<<d, to the »+ 0 state for
turb this solution by a small amount, thus d>d., where

_ 2 2
Ri(z)=cog7z)+O(7°), (209 d.—=" ~3.63. (22)

V3

This value for the critical value ofl is remarkably close to
the numerical value ofl.~3.50. Figure 12a) showsF(d, r
=1r,7) for various different values odl. For d close tod,,
the coefficient of5?, which governs the stability of the
=0 state, may be approximated as 3/8(d/d.), which is of
the classic Landau form for such a transition.

For d>d., there are two equilibria, with positive and
negative signs ofy, which correspond to the solutions for
7= on branches 1 and 2 in Fig. 5. These solutions break
the symmetry of the free energy, in such a way that there is
now a physical difference between a phase mismatch of
and —. In Fig. 12b), we show the phase trajectories of the
solution ford<d. andd>d,. Ford<d,, the phase trajec-
tory goes through the origin, and thus the smectic layering
melts at the center of the sample. Although there is a phase
change ofr on traversing the cell, the two statés- 0,7 are
‘ ‘ ‘ ‘ in fact equivalent and the transition between them occurs at
2 0 2 4 6 8 the point whergp=0 and thuse is not defined. By contrast,
for d>d., there are two energetically equivalent trajectories,

FIG. 9. EnergyF versus shear for d=12.0. For shear values in With opposite layer tilts. In the convention we adoptsr
the region 5.74 7<6.83 there now exist five solutions, three stable corresponds to layers that lean to the right, andto layers
and two unstable. that lean to the left.
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(a) (b)
F r(z) r=0,2r
200 / N——
0.8
150 §
0.6
100
0.4
50
0.2
= FIG. 11. Analytic solutions for
0 1 2 3 4 5 6 0 o2 04 06 08 1 d<1. (a) The energy versus shear
T z plot, (b) r(z) and(c) ¢(2) (in ra-

diang solutions and(d) the (2)
trajectories are in very good
agreement with the numerically
obtained solutions in Fig. 4.

It is, however, important to note that fol>d., a uni- favored by positive, the+ » solution remains metastable.
formly leaning layer would have the solutioh~=zz. By  For sufficiently larges it eventually loses stability at the
contrast, for d=<d. the solution found above is¢ critical value 6= 6.(d), beyond which layer slippage takes
~tan {ntan(mz)], where »<1 and the trajectories pass place. The equivalent occurs in they case fors negative.
close to the originFig. 12b)]. The majority of the phase Clearly asd—d.,5.—0. Thus, as expected, the spinodal
change then occurs at the center of the cell with the slope dine approaches= 7 atd=d.. What interests us here is the
the phase angle being approximately = w/#n [see Fig. dependence of, on d.

12(b)]. We use a modified form of the ansd®0):
C. Complete layer mismatch: close to the critical point Ry(2)=cod72), (233

We have seen in the last section that for 7 and d
>d., there are two energetically equivalent stable states cor- )
responding to left-tilting and right-tilting layers and an un- Ra(2)=7sin(mz)— 5. (230
stable melted state. Thus if we examikgd>d.,7=m
+ 6), there will be an exchange of stability between the two
stable states, or equivalently a first-order phase transition, ddote that we retain in this ansatz only terms to orédefhe
S passes through zero. phase mismatch here 8+ &, but in order to simplify the

This situation can be modeled using similar analysis tomathematics, we have altered the boundary conditions so
the last section. The free energy corresponding to(EL).is  that ¢(0)=— /2 and ¢(1)= 6/2+ . Since the physics is
equivalent to a Landau model of an Ising system in zero fieldndependent of the value af(0) and only depends on the
with order parameter;. The inclusion of a small change in mismatch this does not change the system.
shear,s, is then analogous to adding an external field term in  The free energy(19) can now be computed, which to
which the field is proportional té. While the—# solutionis  O(6) is
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-0.2

FIG. 12. (a) Energy atr= 7 as a function of the perturbation parameigasd varies.(b) ¢(z) trajectories of the stable solutions. For
d<d., the stable solution occurs foy=0 so that the trajectory lies along tiRg axis betweerR;=0 andR,= . Ford>d., »#0 and
the two solutions lying in the energy minima correspond to trajectories passing through thBRpelitR,= =+ 7 in the complex plane. The
positive and negativey solutions are represented by solid and dashed-dotted lines, respectively.

F(d,s —F+3 g12+34+25 0—25+33+3d§1 26
(d,6,7)=Fot 75| 32 Nt 3o T30 =3.%Tg7 gl 7, (269
(24)
The spinodal line occurs for values &at which a maximum 9 , 3 dg
and a minimum coalesce. The condition for this is that O=gn*+glgz 1) (26b)
JF _PF )
on (777270' (25 Solving these equations yields the position of the critical
spinodal line:
We thus obtain the following equations fég(d):
d
F 5
4.5
4
35
306 3.08 3.1 3.2 3.14 3.16 318 3.2 322 3.24 ‘ ‘ . ‘ N
T 396 28 3 32 34 36 38

r
FIG. 13. Analytic solutions for the energy versus shear plots

near tor= mr for various values ofl. As in the numerical solutions FIG. 14. The locus of the cusp points@and = vary. The solid
for d=d., two limit points are formed at= 7 and diverge asl and dashed lines line represent the analytic and numerical solutions,
increases. respectively.
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AF As shear increases and the system reaches the limit point
! J— (e.g., see Fig. bit will fall from the high energy stat@n
025 branch 1 to the relaxed low energy staten branch 2 The

change in energy as this metastable state disappears and the
system relaxes can be calculated from the solutions of Eqg.
02 (26) with Eq. (27) substituted into the free energy EQ4).

This difference in energpF is (see Fig. 15

0.15 9 dg 2 9/ 5\43
AF—3—2 1—32 —3—2 6_0 . (28

! Therefore the energy jump from the metastable shear-

stressed state to the relaxed state asymptotes to the value

005 AF=09/32 as seen in Fig. 15.

Although we have successfully investigated the behavior

| around7r= 7, finding analytic values for the critical param-

eterd,, the location of the limit points and the difference in

energy between the metastable stressed state and the relaxed

state at the point where the former loses stability, we would
FIG. 15. The difference in energy between branch 1 and branchike to be able to locate, analytically, the limit points for

2 (see Fig. 5 for the shear value at the limit poim\F, versusd. large values ofl in order to model the more realistic values

(d=~100-1000) mentioned in the previous section.

(U] 10 15 20 25 30

d

d2 3/2
T(d)=7* 5 (d) =7+ 50( d_;_ 1) ) (27) D. Limit point solution
In order to investigate the limit point further frord
with 8o=v37/8~0.680. ~d., we will use an approximate form of the solution at the
Figure 13 shows the energy versuplot for various val-  limit point. This solution is of the form
ues ofd. We can clearly see how, aspassesl, the stable
solution atr= 7 becomes unstable and two limit points form r(z)=1-esin(nz), (29

and then move apart. To compare this behavior to the nu-

merical results, Fig. 14 shows the locus of the two cusps inith e<1. We need not consider th¢(z) solution since
the 7-d plane for both numerics and analysis. We find goodmanipulation of the second governing equatidb) enables
agreement whehs| <1, i.e., 7~ 7 while the expansiori23)  us to write the free energf7) purely in terms ofr (2).

is valid. Thus this analysis is only valid for a limited range

of d. B 1 1 ( d 2
F—fodz ﬁz d—zr(z) + )
g Yo
25 l l
I 2_
(Zr(z) 4r(z)“) ) (30)

When Eq.(29) is used, the free energy can be expanded in

powers ofe
1 ¥? 4 3\ 7 1
_ T2 2 > ~| .2
F=27 "¢ 7(772 8)+8d2+46
2
(5 16| 2], .
*Hg W—) 37| € O, 3D

where y=7/d. The two solutions ofiF/de=0 correspond
to the minimum and maximum of the free energy corre-
sponding to branches 2 and 3 of Fig. 5. The limit point
occurs when these two stationary points annihilate each other
FIG. 16. The analytic locus of the limit point asand ~ vary  €aving a point of inflection. We therefore find the limit point
found by following the approximate analytic solution at the limit by solvingdF/de=0 andd®F/de?=0 simultaneously, fory
point. The solid and dashed lines line represent the analytic andnde. The solution, although analytically soluble, is lengthy
numerical solutions, respectively. except in the limitd—< when it reduces to
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_[6m*—16m2\32- 277 1’2_0585 - /& /»—RA
Y= Y=\ 9riv1282—2048,| 058 (32

The asymptotic value 3=d/ 7. is the analytic solution for

the gradient of the limit point locus in Fig(®. Figure 16

shows both the numerical and analytic locus of the cusp &

point asd and 7= yd vary. The numerical asymptotic value

of the gradient, 1.73, is in good agreement with the analytic

value 1k.=1.71. \ S
The intersection points of the limit point loci in Fig(18, (@) — )

where the number of stable and unstable solutions exist fo

specific shear values successively increases, can be calcu-

Rl

&
/77\\

lated from the asymptotic value of. Since the limit point Ry R,
loci coincide whenr= 2,3 ,4,..., thecritical d values o
are ] /

den=nmly, (33 s _
wheren=2,34 ... . Using the numerically obtained value P B PAL Rl
of vy, the first three critical points ard;;=10.87,d;,
=16.29, andd, 3=21.73. S \

) . () ()
E. The dynamics of topological change

and FIG. 17. The dynamic process as the system relaxes from the

The theory that we present in this paper is quasistatic RN .
cannot addrgss the de?ails of the dynzrrﬁ)ics ofq[he breakdovxﬁ’r‘perSheared state at the limit poif@. The innermost loop of the
original trajectory encircling the origin of the complex plane with

of SuperShear' Neve_rthel.ess we S.ha” find th{it our unde(ﬂ/inding numbejj. (b) The loop starts to collapséc) The trajectory
staang of .the quasistatic theqry is able to give at least %asses through the origin as the loop disappears at a @)sphe
qualitative picture of the dynamic process.

We begin this section by observing, from E&1), that new stable orbit now has winding numbgr-(1).
the limit point marking the collapse of supershear is a resultapsing, and the other loops readjusting themselves. The im-
of the mutual annihilation of a local free-energy minimum portant steps in this dynamic process are illustrated in Fig. 17
and the nearby maximum. Oncereachesr;, the system where we have concentrated on the innermost loop of the
relaxes to a new lower energy state. From a computationatajectory.
point of view, however, the problem is that this new free- As the systenfalls from the limit point, the innermost
energy minimum is no longer described by Eg1), for in  |oop of the original trajectory encircling the origin of the
the dynamic relaxation process the anga@® fails. The new  complex plandFig. 17a)] starts to collapsgFig. 17b)] and
equilibrium structurey/(z) possesses an effective shear re-in particular the position closest to the origh, approaches
duced by 2r, and thus the value of to be used in Eq(31)  the origin. In Fig. 17c) the trajectory actually passes through
is reduced by 2r/d. A dynamical reformulation of the prob- the origin as the loop disappears at a cusp and in Figd)17
lem in terms of the order parameter compond®iéz) and  the orbit now has winding numbej+{1). The original tra-
R,(z) avoids computational problems, but at the expense ofectory with winding numbeij has now decayed to a new

the physical meaning provided by the shear stable trajectory with winding numbef{1).
We shall consider collapse of supershear in the latge  Figure 18 shows this process in terms of the layer con-
limit in which caser.> . figurations. By symmetryP corresponds to the exact center

For a specific shear value,the ¢(z) trajectories in the of the cellz=3. As P approaches the origin, the layer tilt at
complex plane are classified by their winding number orthe center of the cell increasfBig. 18b)], until the layers
Morse Indexj, which is the number of times the trajectory are parallel to the cell wheR coincides with the origifFig.
orbits the origin and is related to the effective shear of thel8(c)]. However, since the trajectory goes through the origin,
solution. A trajectory with winding numbgrcorresponds to  the order parameter at=3 is zero, and the phase is unde-
layers tilting by a distancexgisy, where ja<Xgisp<(]j fined. In fact, as can be seen by examining Figc).8here is
+1)a through the cell. a discontinuity in phase across 3 of exactly . Justbefore

Let us summarize the important features of these trajectathe orbit goes through the origin, the phase change close to
ries. As they loop around the origin, they spiral inward overthe center of the cell is2 But justafter the orbit has gone
an anglej, and then outward, in a symmetrical way. For through the origin, the phase jump is zero. Rspasses
largej, the trajectory approaches the origin more closely sahrough the origin, the layers have separated and reattached,

that the innermost loop is the smallest. in the process losing a phase change of 2
Quialitatively we can now see what will occur as the limit ~ The details of this description will depend on the dynami-
point is reached. The trajectory with winding numbewill cal structure of the equations governing smeétiayer mo-

become unstable and relax to that with winding numbjer ( tion. A simple time-dependent version of equations that al-
—1). This involves the innermost loop of the trajectory col- lows only for dissipative behavior is the Ginzburg-Landau



PRE 62 SHEAR-INDUCED MELTING OF SMECTICA LIQUID. .. 5077

e/// = e///J >
: / 2 g%// —

()

FIG. 18. The dynamic process in Fig. 17 in terms of the layer configuratian$he supersheared layer configurati@n). The layer tilt
at the center of the cell increases until the layers are parallel to the cell at the center where melting@cédysthe layers reform in a
relaxed state such that the layer denoted_byn (a) now has a phase change between the cell surfaces reduced by 2

equation. The dynamics of ther2reduction in phase seen pends on a humber of factors. First, we note our assumption
above has previously been studied in defa®—-15. How-  of homogeneity through the plane of the cell. The existence
ever, the full equations are inevitably more complicated ancf many metastable states implies the possibility of transfor-
include smecticA hydrodynamics in the presence of layer mation through a dislocation rather than by homogeneous
conservation. Whatever these details, they will not alter theyycleation. In this case a new state with lower winding num-

stable qualitative dynamical features discussed here. ber is formed as a front, containing a dislocation line, moves
within the cell. This dislocation would then possess a Bur-
V1. DISCUSSION gers vector that compensates for the extra winding number.

In this paper, we have presented a detailed analysis of S€cond, we have assumed that the cell surface imposes
shear-induced melting in smecticliquid crystals. The cal- StoNng anchoring such that the layer positions are fixed at the

culations reveal a complex phase diagram described by ﬂ.}_éoundapes. As we obse_rved in the Introduction, this assump-
two system control parameters, the nondimensionalized gaiPn derives from the existence of the chevron structure that
width d and the imposed shear is usually justified in terms of a surface memory effect. In
We have found that there is a critical value of the thick-practice there is no microscopic description of this process,
nessd, at which the cell behavior changes qualitatively. Forand detailed experimental evidence and description of the
d=<d., the layers continuously melt and reform as the sheaphenomenon is lacking. Introducing weaker surface anchor-
increases through= for odd n. In this way, the effective ing allows layer sliding to take place at the surface as well as
layer tilt is always| 7| <7 and when the layers melt they do at the center of the cell.
so when the smectic order parameter at the center of the cell The experiments of Cagnon and Durdi®] showed that
is zero. The free-energy minima occur when there is a posthe response supersheared to a sheared smécitic the
sibility of layer matching in a perfect bookshelf structure, bookshelf geometry had two components. The major compo-
which occurs forr=2ns. The maxima occur for=(2n nent was a linear behavior superposed on which was a
+ 1), when the phase is discontinuous at the center of themaller periodic response. Linear behavior is just what is
cell and the layers on each side of the cell are exactly out oéxpected forr< 7. ; the stored free energy is proportional to
phase. 72 just as in Hooke’s law, as can be seen in Figs. 9 and 10.
For d>d., however, the behavior is significantly differ- In contrast, periodic behavior is what is expected for
ent. It is now possible to supershear the layers into a meta~ 7., for now the system is reaching its critical value, relax-
stable state with7|> until a critical value of the shear ing, increasing to its critical value, relaxing and so on. The
7.(d). Ford—d_, 7.(d)—m, and with increasing thick- temptation is to suppose that the existence of defects divides
ness, the critical shear value is linear with respedl foe.,  the system into parts whefcally) 7<7., and other parts
7.(d)— y.d]. For large values ofl, there will, in general, be wherer~ 7. A superposition of these two qualitatively dif-
a large number of metastable states, each associated witiferent behaviors could describe the results of Cagnon and
different winding number corresponding to the number ofDurand. Whether this really is the case is an open question,
layers crossed as one traverses the cell normal to its surfaceggquiring both more experimental and theoretical investiga-
When the system reaches the critical shear value, the systefion.
relaxes into the next highest free-energy metastable state re- Finally, we observe that the root of the phenomenon we
ducing the winding number by one and melting at the centegare investigating is a periodic response to a linear force, and
of the cell as it relaxes. the fundamental reason for this is that the underlying dy-
Whether experiments actually exhibit this behavior de-namical variable in the problem is jphase The periodic
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FIG. 19. Configuration of the tilted layer with layer tift and
director anglef.

process involves changes in a topological variable with some
defect motion. In this sense the smeclichas many topo-
logical analogies. One such analogy is the classical Joseph-
son effect[16,17] in which an alternating current can be
produced by aonstantvoltage difference across a weak su-
perconducting link. The current is associated with the motion
of magnetic flux quanta across the weak link. The flux
guanta are defects in the superconducting order parameter,
which, like the smecti@d order parameter, is a two-
component oXY-like spin field.
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FIG. 21. (a) For 6< &, there exists one solutiof~ . (b) For
6> 6y, there exist three solutions, one unstah|efor which 6

APPENDIX: THE =0 APPROXIMATION

We start with the free-energy equatic®),

b
F=fdr[a|q,|z+§|q,|4+§"|(ﬁ.v_iq)q,|z

+ £ | (AX VYW |2+ 3K 11(V-A) 2+ FK s AX (VX A) 2.

(A1)

w

ngy (analytic)

N
n

ng, (numerical)

[N

ny, (analytic)

director angle, O (rads)
&
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R (analytic, numerical)
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FIG. 20. Numerical and analytic solutions of the director tilt as
a function of layer tilt,#(5). Solid and dashed lines indicate stable
and unstable solutions, respectively.

~ 8, and two stable solutionsg; and ng,, for which 6<§ and 6
> 8, respectively(c) For > §;, the stable solutiong; asymptotes
to (1,0,0, i.e., 6—0.

Let us consider the case when the order parameter ampli-
tude p remains close to its equilibrium valug.=
(—a/b)*? and thus we are able to assump/dz~0 and
disregard any derivatives @f Using the nematic directar
=(cos6,0,—sin#), the smectic order parameterd
=p.e' @4 and relating the phase gradient with the layer
tilt angle thusd¢/dz=—qdwdz=—qtand, whereu is the
layer displacement andlis the layer tilt anglgsee Fig. 19
the free energy becomes

F= f d r[ £19%p2(sinftans+ (cosh—1))?

+¢,9%p3(sin— cos tan)?

do
dz

1

4

2
+5 ) (K11€08 6+ Ka3Sir? 6) | . (A2)

By minimizing the first two terms, to find the bulk behav-
ior of the response of the director tilt to tilting of the layers,
we obtain the equation
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I _ mum atf= § whereas the second is the tilt energy term that
0=|1- ) [(tar? 6—1)sin(26) +2 tans cog 26) ] has a minimum at the smectic-state, §= 5. Minimizing
! these terms, we obtain the solutions
+2sinf—2 tand cosé, (A3)
which gives the the director angteas a function of the layer 6=, (A5)
tilt and the parametef, /¢ .
Figure 20 shows the numerical solutions of E43) that B o
initiate from the bookshelf statey=0, §=0). From Fig. 20, §=0-V&"~2e, (AB)
for which we have taken the parameter valye/ ;=10 2,
we see that the initial behavior B~tané (or alternatively 0= 5+ 67— 2e. (A7)

0~q ld¢/dz).
However, for a finite value of , /£, there exists a bifur-

cation of this solution at a critical value of layer t#. The . - .
solution, f~tans, becomes unstabl@, in Fig. 20 and two These solutions are shown in Fig. 20 and marked wijth

stable solutions are formed. For one of these stable solutior%l’ a?](_j Ns2 | r_espictlvely. Foro< glz—f the\/iOIUtr']O” IS¢
0 continues to increas@g, in Fig. 20 while for the other — g. This solution becomes unstable & y2e when two
stable solutiord decreases asymptotically to zér, in Fig. stable solutions are formddolutions(A6) and (A7) abovd.

20). An illustration of this behavior is given in Fig. 21. The W€ See good agreement between solui8) and the exact

physical interpretation of these two branches is that the ginumerical §olutlon sincé remains small for this solution.
From this analytic result we see that &grows large the

(A8)

rector is now tilting with respect to the layer normal in order . SO
to better satisfy the compressibility conditiofThere is in d|reqtor ar_lgle asymptotes to zero and in this liit / 6.
fact a whole cone of such solutions just as in the smegtic- In this regime the free energyA4) becomes
phase that correspond to molecules tilting in order to fit into
the compressed layeys. e\

It is now necessary to reintroduce the elastic term from L,9%p2 €+ (e8°—2€)+0 3) .
the free energyA2) in order to determine which of the two
stable in-plane solutions is selected by the system at the criti- . . .
cal point 6= §,. It is obvious from the form of the elastic ‘I_'he Secof‘d and third terms are the ult energy terms while the
free energy ~(d6/d2)?] that large distortions of are dis- first term is the compressmlllty term that is both smaller than
favored. Since we have fixed=0 on the boundaries, the the Iegdlr)g' order tilt energy term a"P‘*“Sta”I
solution corresponding t6> 8 is of higher energy than the While it is clear that our assumption, that the free energy
solution whereg< 5 (in fact the in-plane solution wittg M2 be written as
< 6 will also be the minimum energy configuration with re-
spect to all out-of-plane tilted solutionsThus the system [ dp\? do)\?
selects theng; solution for 6> 6&,. The director angle now F= deZ E) +P2(E) H

(A9)

b
ap®+5p*+

decreases and asymptotessts 0.

Now, in order to investigate this behavior analytically, let
us suppose that, /{;=e<1 and#<1, §<1. This last con-
dition on §'is actually not necessary in order to find analytic.

solutions. However, without theS<1 condition, a cubic s not valid fo_r _small amoun_ts of layer tilt |(_Q¢/
polynomial must be solved rather than a quadratic and sincd2=9v2¢./¢), itis however valid for larger layer tilts. It

the behavior with or without this approximation is almost IS in this regime where the important aspects of our work

identical, we prefer the simpler solution expressions below?CcUr: I-€., where there exists a region of supershear and a

In this limit the first two terms of the free energp2) be- spinodal point at a critic.:all sh_ear value. -
One other possible limitation on the validity of the free-

come . .
energy expression occurs at large shear values. In such in-
- 92\ 2 ) 5 0\?2 5 stances the phase gradient may become large, thus invalidat-
49°pc|| 06— 7| +e(0-0)7|~ 07 6— 5| +e(0-9)". ing a Landau-like expansion of the free energy. However, if

(A4) ~We assume that the system is sufficiently close to the
nematic-smectié phase transitioriwhere p~0) the phase
Note the physical interpretation of these terms: The first igradient terms in the free enerdy?d¢/dz,p?(d¢/dz)?]
the compressibility term with minima &= 0,26 and a maxi- remain small and the free-energy expansion is valid.
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