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Stability of equilibrium states for ferroelectric smectic-C* liquid crystals
in finite and infinite samples

D. A. Anderson and I. W. Stewart
Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, United Kingdom
(Received 9 November 1999; revised manuscript received 2 May) 2000

The aim of this article is to establish some theoretical linear and nonlinear stability results for a dynamic
equation that frequently appears in the sme€tiand ferroelectric smecti€* liquid crystal literature. We
consider finite planar samples confined between bounding plates as well as infinite samples. Many of the
results depend on extensions of work for a nonlinear diffusion equation. Critical maximum magnitudes of
applied static electric fields are determined, below which stability of a certain constant equilibrium state is
ensured.

PACS numbds): 61.30.Cz

I. INTRODUCTION that theL, norm of the solution decays to zero in time. For
completeness we introduce the comparison principle in Sec.
Many physical and biological processes are modeled wellll A. In Sec. Il B we review in detail Flores’ result on an

by nonlinear reaction-diffusion equations of the form infinite domain inx, before considering in Sec. IllC what
happens in a finite domain.
Ui=uy+f(u), xeD, t>0, 1.9 The results introduced in Sec. Il motivate the style of

. . o ) analysis that will be employed for the liquid crystal problems
where D is some domain, possibly infinite. Full nonlinear ;o investigate in Sec. IV. There we consider a sample of
problems are often analytically intractable and for this reasofgge|ectric smecti&* liquid crystal where a static electric
approximations to more complicated nonlinearitiesf(m)  fie|q is applied parallel to the smectic layers. We then apply
are frequently adopted, for example, by cubic nonlinearitiesy,e methods introduced in Sec. Il to obtain information on
Having made a cubic approximation and the relevant rescalyy giapjiity of the equilibrium state=/2 in Eq. (1.3).
ings, one often obtains Nagumo-like equations sucflés  Tapjes | and Il in Sec. IV show the stability regimes involv-

_ _ _ ing the electric field that are obtained using this method. We

U= Ut u(l-uj(u=a), xeD, 1>0, O<a< (11 2 obtain a sinusoidal nonlinearity if(u) which arises in the
' equation obtained by applying a perturbation, in both space
The model equation to be considered, which arises fron@nd time, to the equilibrium solution to the dynamic equation

smectic liquid crystal theory, is of the form derived from the nonlinear continuum theory. Finally, we
shall obtain suitable restrictions on the initial data of the
U= Uyt asin(2u)+b cogu), (1.3 perturbation for the linear and nonlinear stability of th&

state of a suitable dynamic equation discussed below, on
wherea and b are constant§see, among other§?2], for  both infinite and finite domains. Section V contains a discus-

example. The nonlinear terms in E¢(1.3) are related to  sjon of these results and relates the decay properties obtained
those of the double sine-Gordon equation and a Painlevg the characteristic times

analysis of this equation with any real constant anbl>0
has recently b_een made_ﬁﬁ]. Howeyer, it shou_ld b_e pointed Il. GOVERNING EQUATIONS
out that there is only a first order time derivative in Ef.3)
whereas the usual sine-Gordon type of equation generally Liquid crystals are anisotropic fluids consisting of elon-
has a second order time derivative. Flofékconsidered the gated molecules where the long molecular axes locally give
equation(1.2) on an infinite domain, and states that, by re-rise to a preferred common direction in space, which is usu-
stricting the initial profile, the time dependent nonlinear so-ally described by the unit vectar, called the director. Ferro-
lution must decay to zero, thereby showing that the zerelectric smectic=* liquid crystals are chiral layered struc-
equilibrium state is nonlinearly stable. The results frpfh  tures possessing a polarization where the directi tilted
are reviewed so that the techniques applied to cubic nonlinat an anglef to the layer normal. We shall assume here that
earities in Eq.(1.2) can be suitably extended to cover the the (temperature dependgnsmectic tilt angled is some
sinusoidal terms as they occur in EG.3). fixed constant, and hence the layers are assumed to be of
After deriving the relevant dynamic equations for a constant thickness. Having fixeql the director is now con-
sample of smecti€G* liquid crystal in Sec. Il we shall dis- strained to rotate around the surface of a fictitious cone. For
cuss results in Sec. Il that are used to obtain decay propethis reason the smectic tit is often called the cone angle.
ties for perturbations to Ed1.3) that will be used later. The Following the description by de Gennes and P{8%tthe
main tool used in proving these decay results is the comparrientation of the smectic layers is described by a unit layer
son principle[5—8|, which is used to obtaia priori bounds normala and a vectoc, which is the unit orthogonal projec-
on the solution. On obtaining these bounds we can then shotion of n onto the smectic planes. The direction of the vector
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c is described by the anglé which is measured, in the Z

positive sense, relative to theaxis as shown in Fig. {no-

tice thatc always lies parallel to the smectic planeserro-

electric liquid crystals also possess a spontaneous polariza-

tion P which is assumed locally normal to bothanda. / X
The application of an external field to a sample of ferro- E

electric liquid crystal is known to influence the orientation of

y y/

c /,

the directom, and hence of andc [9]. We shall now use the /
continuum theory of Leslie and co-workdrg0,11] to obtain / //// //////// /

the dynamic equation involvingb=¢(z,t) for a planar FIG. 1. The geometry of the problem under consideration. The

sample of smecti€* liquid crystal aligned as in Fig. 1, ) : )
when an external electric field is applied parallel to the smecg'r.eCtom makes an_angle with the layer norma_xawuth c bemg the.
. . - . unit orthogonal projection of onto the smectic planes, which lie
tic layers in thex direction.

. parallel to thexy plane. Thez axis coincides with the orientation of
It follows that since the layer normal and the vectoc the layer normal. The phase angle of the directar denoted bys.

are unit and orthogonal to each other they must satisfy th%he static electric fieldE is applied parallel to the layers in the

constraints direction andP, the spontaneous polarization induced by the elec-
tric field, is parallel tob=aXc.

a-a=c-c=1, a-c=0. (2.1

Since the system that we are considering has constant lay#1€ré/A and 7 are chiral elastic constants and the latter ex-
thickness with no dislocations, the layer normal must als@'€SSions are in Cartesian component form with repeated in-

satisfy[12] dices following the summation convention.
We must also incorporate a term in the energy integrand
V Xa=0. (2.2 due to the dielectricity of the smecte* phase. This extra

term is[[9], p. 134

For convenience we introduce the vectodefined by

Fele(::_%saso(n'E)zv 2.9

b=aXc, (2.3

whereeq is the permitivity of free space and, is the di-
electric anisotropy of the liquid crystal. A positive dielectric
anisotropy indicates that the director prefers to align parallel
to the applied field while a negative dielectric anisotropy
indicates that the director prefers to orient itself perpendicu-
The dynamic theory of Leslie, Stewart, and Nakagdaey lar to the field. Thg in.teraction of the -electric field and the
involves the construction of a bulk energy integrand involy-SPontaneous polarization of the smedit-phase further re-
ing thea andc directors. In thea,c formulation, the relevant Sults in an additional contribution to the energy integrand as

nonchiral contribution to the bulk energy [i$1]

since the polarizatio® is in the direction ofb. Further, the
directorn can be expressed in terms @fandc as

n=acosf+csiné. (2.4

Fpo=—P-E=—Pb-E. (2.9
2F pu=Ax(V-a)%+B(a- VXc)2+B,(V-0)?
pulk 72 : 2 ) Here we adopt the sign convention, as introduceld9h pp.
+B3(C- VX0)*+(2A11+ Aot Ax+Bg)(b- VX 380, 384, thatP>0 if the polarization is in thé direction.
—(2A,1+ 2A 1+ Bo)(V-a)(b- VX C) The total energy integrand can therefore be written as

—2B4(a- VXxc)(c-VXc)+2(C+Cy—Byy) F=Fpukt Fchirart Felect Fpol- (2.10
X(V-c)(b-VXc)—2Cy(V-a)(V-c), (2.5  Thus the total energy integral over a sample volWhis

where theA;, B;, andC; are elastic constants. A physical
interpretation of these constants and their related deforma- f=f Fdv. (2.1
tions is given by Carlsson, Stewart, and Leglie]. It is v
known that the elastic constams,, A,;, B1, B,, andBg
are strictly positive while bounds on the remaining four con-
stants can be derived in terms of these five basic constant8"
Details can be found if13] and[14].

The relevant dynamic equations in the absence of bulk flow
e[10]

a a —
Also, since this bulk energy integrand does not take into Hg+g'+hatuct VX =0 (212
account the chiral nature of a ferroelectric liquid crystal, we d
must introduce an additional bulk energy density, which ma)fm
be expressed, in thec formulation, a§15
xpressed, in the, ulation, ag15] IE+ g+ pwa+ yc=0, (2.13

FchiraI:%A(b'VXb+C'VXC)+ 7(c-VXc—b-VXb),
(2.6) with, in Cartesian component form,

=—3Abic ja;— b jc;, 2.7) o=—27sCi, 97=—2\sCi, (2.14
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where 75 and \ 5 are viscosity coefficient&\s>0 is known A=EZ?g,g,sir?(0), B=PE, (2.22
to be the rotational viscosity coefficient related to the move-

ment of the directorn around the fictitious cone The and the rescaled variables
Lagrange multipliers\, u, x, and g arise from the four con-

straints in Eqs(2.1) and (2.2). The vectorsII} andII§ in T= ¢ 2.23
Egs.(2.12 and(2.13 are defined by 2\5
and
) _( JF } JF (2.15 L
FI | oay | ;94 ' Z=—z. (2.24
| VB3
and . L .
Equation(2.2]) is similar to the form of the governing equa-
JE JF tion used by Maclennan, Clark, and Hands¢hy] and is
{Hf:}i:(a_] - (2.19 known to arise in the modeling of surface stabilized ferro-
Ciily 9 electric liquid crystal devices. H i i
quid crystal devices. However, [ii7], alignment is
. described in an equivalent way in terms afand P rather
Introducing the ansatz than a and c. The direction of the polarizatio® is then
a=(0,0,1), (2.17  described by a phase angle which is measured in the same
sense asp introduced above but with a phase shift of2
c=(cose, sing,0), (2.1  (see Fig. 1 We choose to work in terms @f defined in Fig.
1 since it sets the problem in a slightly more general setting
and and therefore allows comparisons to be drawn with other
work in Refs.[3,16—2] (see especially the Appendix [8]).
E=(E,0,0), (2.19 At this point it is instructive to highlight the role of the

. Lo o . electric potential in relation to the critical field magnitude
we obtain, eliminating the Lagrange multipliers in EQS.,nich will be calculated and discussed below, especilly
(2.12 and(2.13 in a similar fashion to that contained in the given by Eq.(4.13. Using the above definitions for the vec-
Appendix in[16], the governing equation for the phase angleyys in Egs.(2.3, (2.4), (2.17), (2.18, and (2.19, we can

¢, consider a sequence of qualitative plots for the combined
electric potentiali(¢) for Egs. (2.8 and(2.9) given by
1% 92 — __1 2 i :
2)\5—4)— B3—(2ZS +E2g 480 SIN?(6)sin ¢ cos¢+ PE cos¢ U($)=Fatect Fpo= ~ 38a80E” siP(§)coS ¢+ PEsing,
ot 0z (2.25
=0, (2.20 keepinge,, &g, 6, andP fixed. For convenience, introduce

the constant
which describes the realignment of the director. Thus, on

rescaling Eq(2.20, we obtain the dynamic equation E*— P (2.26
" ledeqsir(6)” '
b=y~ Asing cos¢— B cosd, (2.21) :
Elementary calculations reveal that there are either two or
where we have introduced the constants three real turning points fau( ), namely,
T 37
50 whenever|E|<E*
= 2.2
¢ T 3 ) -P ) h El> E* (2.27
515 arcsi EouoSi(0) whenever |E| :

The nature ofu(¢) is demonstrated in Fig. 2. There is only bistability. The relationship and consequence€dfin Eq.

one local minimum atp=3#/2 for E<E* while if E>E* (2.26) upon the stability of solutions to dynamic equations
there are two local minima atm/2 and arcsip—P/  such as Eq(2.20 are discussed in detail in Sec. IV below. It
Ee, goSi(6)], both giving equal values for the potential should also be noted that E@.20 may also be obtained by
u(¢): thus the system is expected to change from havingonsidering a balance of elastic and electric torques, in a
one possible stable state to having two possible states aimilar way to the analysis carried out by Schiller, Pelzl, and
equal potential, that is, foE>E* the system can exhibit Demus[20].
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' ' If, however,() is a bounded subset &, then we must also

' impose an extra condition which takes into consideration the
behavior of the solution at the boundary. Hence, we must
also determine if there exist constanisB («’+ B%#0)
such that

av— Bu = av— PBugy, Xed, t>0. (3.6

Thus, on a finite domain, & andy are super-and subsolu-
tions, respectively, satisfying conditidB.4) and the condi-
tion on the boundary3.6), then

Potential (Arbitrary units)

g [ TD=u(xt), xeQ, te[0T]. (3.7

2 . ] B. The cubic nonlinearity on an infinite domain

0 2 n 3n/2 on We shall now, as was discussed [, investigate the
Phase angle ¢ (Radians) stability of the zero equilibrium solution to a dynamic equa-
tion that has a cubic nonlinearity. We begin by considering
FIG. 2. Qualitative plots of the total electric potenti&l$) in  the simpler cubic nonlinearity case, before moving on to
Eq. (2.29 as a function of the phase angfe WhenE<E* the  consider a more complicated sinusoidal nonlinearity in Sec.
potential exhibits one local minimum gi=3w/2. However, ifE |y in order to obtain explicit decay properties that we shall
>E* given by Eq.(2.26) then the minimum a#= 37/2 becomes a use in Sec. IV.
maximum and two new minima appear atr/2 ~and The stability analysis that we consider here involves in-
arcsif —P/Es,eosinf(9)], which possess equal potential values, troducing a perturbationy(x) at timet=0 and examining
showing that the system can exhibit bistability. the ensuing time dependent behavior. We begin, &irby

IIl. COMPARISON PRINCIPLES AND PRELIMINARY considering the Nagumo equation on an infinite domain,

RESULTS ON CUBIC NONLINEARITIES U=Ug,+u(l—u)(u—a), xeD, t>0, 0<a<l,

In this section we state and review key results that are 3.9

exploited in the subsequent sections. U(x,0)= Ug(x) € HY 3.9
3 = 0 € I .

A. Comparison principles where, for our purposes is a constantuy(x) is a non-

The main tools we shall use involve Comparison prin-negative initial prOf”e, and‘ll is the usual Hilbert space of
ciples for partial differential equations. Hence for clarity of functions that, with their first derivatives, belong to the space
exposition and convenience we briefly summarize in thisof real square integrable functions,(R). By the Sobolev
section the comparison principle for both finite and infinite @mbedding theorem, this also implies thgte Cg(R), the
domains. We begin by considering the differential equationspace of continuous bounded functiofsee, for example,

[[22], pp. 95-97).
V= Ut g(v,x1), xel, t>0, (3. Local existence is guaranteed by standard Lipschitz argu-
) ) ments(see, for examplg[5], p. 46]); therefore there exists
where() can be either the whole, or a strict subsetRoaind u(x,t) on RX[0,T] for someT>0. The time dependent so-

g is assumed to be continuously differentiable. We summaytion y(x,t) is also therefore restricted to lie in the function
rize the basic results on the comparison princi(dee, for spaceH® for te[0,T].

example[[5], pp. 54-58). Let u.(x,t) be such a solution to E¢3.8) satisfying
A supersolutionis a functionv: Q X[0,T]— B, for some
bounded subsd® of R, such that Us(x,0)=cup(x), (3.10
VS Uyt (v, X,1). (3.2  wherec is some positive constant. It is possible to choose

. , ) . small enough so that
Similarly, a subsolutiony is a functiony: QX[0,T]—B,

and CcUp(X)=ap<a, xeR, (3.11
U1<vxF+9(v,X1). (3.3 where a, is any positive constant strictly less than We
o now wish to apply a comparison principle, to obtain lower
Now suppose that initially we have and upper bounds on the solutiap(x,t).
_ Let
v(X,00=v(x,0). (3.9
U(X,t):ao (313

If Q) is an infinite domain, for exampl€)=R, then we have
that the super- and subsolutions satisfy and

v(x,H)=v(xt), xe, te[0T]. (3.5 u(x,t) =ug(x,t). (3.13



PRE 62

Upon substituting Eqs3.12 and (3.13 into Eg. (3.8), we
obtain the inequalities

xeR, te[0,T],

(3.19

and

Usu,tu(l-u)(u—a), xeR, te[0,T].

(3.19

STABILITY OF EQUILIBRIUM STATES FOR . ..
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i a—2)(——kuc>Wz—jtuc(l—uc)(uc—a),
xeR, t>0, (3.29
and hence the solution to
U=U,,—kU, xeR, t>0,
U(x,0)=Cugy(x), (3.26

Thusu(x t) andu(x,t) are super- and subsolutions, respec- whereC=c, must be a supersolutlon by the definition in

tively. Note that equality actually holds in E(B.15. Since

Sec. Il A. Equation(3.26) can be reduced to the canonical

we are dealing with an infinite domain, all that remains is toheat equation by making the substitution

show that the super- and subsolutions satisfy the inequalities
in Eq. (3.11 for xeR at t=0, so that the corresponding

inequality (3.4) holds. Consideration of these initial states and so

reveals that, by the judicious choice of the constamt Eq.

(3.9,
(3.19

u(x,0)=agp=cug(x)=u(x,0).

Hence, it follows by the comparison principle in Sec. lll A

that

ag=u(x,t)=u(x,t)=uc(x,t), xeR, te[0,T].

(3.17

However, since(3.14 and (3.15 hold for any T>0, Eq.
(3.17 can be extended to hold globall}s], p. 59, that is,

Us(x,t)<ay, xeR, t>0. (3.18
If we now choose
u(x,t) =uu(x,t) (3.19
and
u(x,t)=0, (3.20

it is possible to bound the solutiom.(x,t) below, for all

(x,t)=U(x,t)ek, (3.27)
= Mxx

7(x,0)=U(Xx,0)=Cugy(x). (3.28

Equation(3.28 has the well known solution
px0=c [ Kocyoumdy, (329

where
et

K(x,t)—\/ﬁex 4_t (330}

is the usual fundamental solution to the heat equdt&s).

Thus we have
—kt _(X )
f p( Y ) (y)dy,

(3.3

which is a supersolution. Hence, choosingx,t) as a sub-
solution, we can bound our solution above byx,t), pro-
vided these super- and subsolutions have the correct behav-

U(x,t)=

time, by zero by a similar application of the comparisonior att=0.

principle. Thus we have obtained the bounds

O=<ui(x,t)<apg<a<l, xeR, te[0»), (3.2)

indicating that our solutiomi(x,t) must be non-negative.
More qualitative information omi (x,t) can be obtained

by employing the techniques of Florg4]. It follows that,

since our solutionu, is bounded above bgg,

(1-ug)(uc—a)s(1—ag)(ap—a), xeR, t>0,
(3.22
and thus the nonlinear term {i8.8) satisfies
Uc(1—ug)(u.—a)<—kug, (3.23
wherek is the positive constant
k=(1l—ag)(a—ay). (3.29

It follows from (3.23 that

On the boundarx e R, t=0, we have that

U (X,0) = Cup(X)=cUgp(X)=U(X,0), (3.32

and thus we can apply the comparison principle to obtain

U(x,t)=u.x,t), xeR, t>0,

that is, we can now bound our non-negative solution above
by a function that exhibits an exploitable time dependence,
namely,

e —(x— W)
Ux )= = _— f p( Uoly)dy
(3.33

Having obtained this upper bound on the soluti(,t),
we now consider the, norm ofu.(x,t). Since we have seen
from Eq. (3.2 thatu.(x,t) is non-negative, it then follows
that, if theL, norm of the solution decreases in time, the zero
state is nonlinearly stable to initial perturbations satisfying
Eqg. (3.11). ThelL, norm ofu.(x,t) is defined to be
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||uc(x,t)||Ez= jiug(x,t)dx, t>0, (3.34
and thus, on using3.33), we obtain
ol =e [~ uoopixndx, (339
where
soxn=c[” Koeyoumdy. 339
Hence(3.35 implies that
||uc<t)||ﬁz<e2“( f:uc<x,t)w<x,t)dx @3

We now state a standard result fr¢f@4], p. 52§ that we

shall require. Iff e L, andg e L, then we have that the con-

volution

h= J%f(x—y)g(y)dye Lo and [[hll.,<[gll,IflL,-
(3.39

Now consider the convolution

1 —(x=y)?
f_mmex% at )Cuo(y)dy- (3.39

By assumption we have th&tugy(x) is square integrable on

R and it is clear thaK(x,t) in Eq. (3.30 is integrable orR
for t>0. Thus, applying the result in E¢.38, we find that
the convolution in Eq(3.39 must be square integrable.
Knowing that the integral in(3.39 is an L, function,
which shows thati (x,t) #(x,t) is anL, function, now en-
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reveals that

j, P2(x,t)dx=Cug[f . (3.43

Thus, combining inequalitie§3.37), (3.40, and (3.43 we
have that

Jucx I, =Clucx D12 lug(x)[2 e =24,

which implies

(3.49

lux, Dl =Me™,

where

M= C||u0||L2<oc. (3.4H5
Thus, we see from inequaliti€8.44) and(3.45 that a solu-
tion corresponding to small initial data collapses, that is, the
zero state solution to Eq3.8), is nonlinearly stable to any
positive initial perturbations itd?! satisfying(3.11).

C. The cubic nonlinearity on a finite interval

Having considered data collapse for the Nagumo equation
(3.8) on an infinite domain, we now consider the possibility
of data collapse in a finite domal. In particular, we con-
sider a finite closed intervd) in x: this corresponds to the
usual “bookshelf geometry.”

A general stability result for equations of the form of Eq.
(1.1) can be found in[[25], p. 158. In [25] the stability
result depends upof(u) satisfying certain given properties.

If these restrictions are satisfied, this result guarantees the
existence of a finite constant such that if thenorm of the
initial profile of u is less than or equal to this constant, the
solution decays exponentially in the more restrictive space
Héﬂ Co. Moreover, a bound upon the decay time, which

ables us to apply the well known Cauchy-Schwartz inequalinvolves the first eigenvalue of the Laplacian, is obtained.

ity to the integral within the large parentheses in E137),
showing that

] 2 o] o]
U [uc(x,t)g{;(x,t)]dx> <f u%(x,t)dxfﬁ PA(x,t)dx

“ud?, | wexvax @40

Since we have tha{(x,t) is integrable andiy(x) is square
integrable, we have, on applying the result in E8.38 to
P(x,t), that

) ©

ug(x)dxﬁ K(x,t)dx,
(3.41

which, on noting(see, for exampld[23], p. 34]) that fort
>0 the fundamental solution satisfies

fx dzz(x,t)dxsczf

ﬁo K(x,t)dx=1, (3.42

This result can be used to show that, providing certain re-
strictions hold, the solution will always decay to zero. How-
ever, no information can be found on the maximum magni-
tude of the initial profile for which stability will hold. Also,
there is no relation between the relaxation time and the mag-
nitude of the initial profile. For this reason we choose to
analyze the finite case in a similar way to that considered in
the infinite case in order to obtain more detailed behavior of
the decay properties. As in the infinite case, we consider the
solutionu.(x,t) that satisfies Eq(3.10. Since we are inter-
ested here in the stability of the zero state, we also impose
the extra restriction thaty(x), and thusu.(x,t), vanishes on
the boundary.

Analogous to the infinite case we now choasemall
enough so that

xeD.

CUp(X)<ap<a, (3.46

We now wish to use the comparison principle on a finite
domain to obtain upper and lower bounds on the solution. It
follows from the comparison principle that, if the sub- and
supersolutions used in the infinite domain case are chosen
here to obtain upper and lower bounds on the solution
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uc(x,t), then these sub- and supersolutions must also satisfgnd

the required boundary conditiori8.6).
First, we consider

u(x,t)y=ag (3.4
and

(3.48

with, as before,u, being any solution ta(3.8) satisfying
Uc(x,0)=cuy(x) on D. On the boundary oD we have that

(3.49

u(x,t) =uc(x,1),

u=ay=0=u=u.x,t), xedD, t>0.

Hence it follows that, since we have already seen in the

infinite case that these choices ofandu are super- and
subsolutions, respectively, satisfying the requirements at
=0 for the comparison principle, we can now apply the fi-
nite version of the comparison principle to obtincorpo-
rating the additional conditions oD in Eq. (3.6)]

t>0. (3.50

We are able to extend this bound for all time sinceandu
are super- and subsolutions for &a# 0. We now consider the
choice of

Uc(x,t)y<ay, xeD,

U=uq(x,t) (3.5)
and
u=0. (3.52
On gD we have that
u=0=0=u. (3.53
Thus we have by the finite comparison principle
O0<u(x,t), xeD, t>0. (3.59
Combining(3.50 and(3.54), yields
O<u.(x,t)<ay, xeD, t>0. (3.55

Having bounded our solution above by, it again follows
that we can bound the nonlinearity in E®.8). Indeed, the
bound given in(3.23 holds and this leads us to conclude that
the solution to
U,=U,,—kU,

t>0 (3.56

XxeD,

is a supersolution. As in the infinite case, we again reduce

Eqg. (3.56 to the heat equation in terms af by using the
substitution(3.27). However, the solution to the heat equa-
tion on a finite domain is now given in terms of an infinite
series(see, for examplg[23], p. 43)). On making the sub-
stitution (3.27), Eq. (3.56 is reduced to the canonical heat
equation(3.28), where without loss of generality we assume
that xe[0,d], whered is the depth of the given sample.
Introducing the rescaled variables

X (3.57)

X
d

t
T= 2 (3.58
we have that
=2, A,exd—(nm)2T]sinnmX), (3.59
n=1
where
1
An=2f Cug(X)sin(nmX)dX, n=123....
0
(3.60

It therefore follows that, on combining Eq$3.27) and
nx

(3.59, we obtain
)sin( d
(3.6)

Since ug(x) and sinfmx/d) are bounded, we have that
each of theA,, are also bounded; in fact

(n)?t
d2

Uc(Xx,t)<exp —kt) 21 A, ex;{ -

—2Cay=A,=<2Cay, n=123.... (3.62

At t=0 the Fourier series satisfies

(n7rx)

J ) =cuUp(X)<cay, (3.63

u(x,00<> A, sin(
n=1
while for t>0, upon using the upper bound on thg given

in (3.62,

(3.69

By applying the usual ratio test we have that the infinite sum
on the right hand side dB.64) is convergent to a finite limit,
L(t) say. Thus, fort>t, wheret; is some fixed positive
constant, we have that

{n7}t
d2

uc(x,t)<2a,C exp{ —kt} 2 ex;{ -
n=1

Uc(X,t)<Mqexp —kt), t>ty, (3.6

whereM, is a uniform bound on the above sum that holds
for t=t,>0, namely,

Having bounded our function uniformly fae=t, by Eq.

(3.66 it follows, from continuity in t, that u.(x,t) is
bounded orj0t,], by some constaril,. Let
M=ma)(M1,|\/|2). (36D

Then, taking thel, norm of u.(x,t), we have

||uc(x,t)||ﬁzs fsz exp( — 2kt)dx=(Md)? exp( — 2kt),
0
(3.69
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which implies that A
_ O(Z)
uc(x,t)ll, <M exp(—kt), t=0, (3.69 ‘

T/ 24+W(Z,T)

where M=Md. Hence, since fron{3.55 u¢(x,t) is non-
negative, we have that on a finite intervabirsolutions with —1/2
small enough initial profiles collapse to zero. Therefore, as in 0=
the infinite domain case, the zero equilibrium solution is

nonlinearly stable to initial perturbations satisfyii(8.46). .
We notice here that the decay rate found fr@r69 is not 0 ‘
related to the sample depth. d
FIG. 3. Schematic of a possible perturbation on a finite domain
IV. STABILITY FOR FERROELECTRIC SMECTIC- C* [odi.
LIQUID CRYSTALS
Having reviewed and developed the analytic techniques in Wr=Wwzz+Acogw)sin(w)+Bsin(w), (4.4

Secs. IlIB and Il C to deduce whether or not solutions to
diffusion equations with cubic nonlinearities collapse to zero

and, if they do, what their decay rate is Iik_e, we now ConSideR/vhich governs the growth of the perturbatiar{Z,T). We
apply!ng these methods to amore comph(_:ated. case when tl%?lall consider two types of stability here. The first type of
d|ffu5|on equatlt_)n has a smu'smdal .nonlme'anty_ The Slnu'stability to be examined is linear stability. For linear stability
soidal nonlinearity to be considered is obtained from_qpply-We assume that the perturbatior(Z,T) is small and it is
Mherefore possible to linearize the nonlinearity in E414).
OWe then consider conditions for the solution of this linear-
ized equation to decay. Secondly, we will consider the sta-
Bliity of the solution to the fully nonlinear problexd.4) and
obtain restrictions on the strength of the applied static field
for stability to hold.

Since the cubic nonlinearity

W(Z,0)=wy(Z) e H?, 4.5

states of the dynamic equation derived in Sec. Il for ferr
electric smectice* liquid crystals. This sinusoidal nonlin-
earity must be considered separately from the cubic cases
Secs. llIB and Il C as it is not possible to reduce Ej21)

to the form of Eq.(3.8) via a substitution.

In this particular case where the static field is only being
considered applied parallel to the smectic layers, the tech-
nigues that we employ cannot be applied to the nonconstant q(u)=u(l—u)(u—a) (4.6)
equilibrium states. In such cases, the nonlinearity obtained in
the perturbation equation, which depends not only upon thé Secs. IlIB and Il C becomes negatively unbounded we
perturbation but also upon the equilibrium state, cannot satare required to assume, in order to obtain a negative lower
isfy the bounds that are required to enable the application dfound onf(u) as in[4], that the initial profileug(x) is non-
the comparison principles of Sec. lllA. We therefore con-negative. In the present problem, the nonlinearity on the right
sider only the stability of the constant equilibrium solution hand side of Eq(4.4) involving the perturbationw(Z,T)

72 to EqQ.(2.20. remains bounded for all values wf{Z,T). It is not possible,

As derived in Egs(2.21)—(2.24), the governing equation however, due to the behavior of the nonlinearity around

for a sample of smectiG* liquid crystal with an electric =0 on the right hand side of E@4.4), to obtain a uniform

field applied parallel to the layers is given by negative lower bound on the nonlinearity for betk<0 and
) w>0. We cannot therefore consider perturbatiamsthat
¢1=¢zz—Asing cos¢p—Bcose, ZeD, T>0, change sign. We shall discuss below the case wiheis
non-negative with the case faw<<O being similar. This

$(2,00=¢o(2), 4D work is analogous to a first eigenmode approximation.

whereD can be either finite or infinite. ) -

Before applying the methods introduced in Secs. Ill B and A. Linear stability
lIIC to obtain stability results for the above problem we  Assuming thaw(Z,T) is small and linearizing the non-
must first of all define what is meant by an equilibrium statejinearity in Eq. (4.4), we obtain the linearized perturbation
&(Z) being stable. We first introduce a perturbatiofz, T), problem
in both space and time, satisfying,7]

WT:WZZ+(A+ B)W, (47)

HZT)=H(2)+W(Z.T) (4.2 with A andB given by Eq.(2.22). By making the substitution
ggglgi?. 3. The equilibrium statéb(z) is then defined to be 2(Z,T)=exp —[A+BIT)W(Z,T), 49
HW(Z,T)||L2—>0 as T, 4.3 it is now possible to reduce E¢.7) to the heat equation

o A . = Mzz,
Thus on substituting Ed4.2) with ¢=7/2 into Eq.(4.1) we

obtain the nonlinear dynamic equation for namely, n(Z,0)=wy(Z). 4.9
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TABLE I. Ranges of stability foE>0 in the infinite case where only the balance of the ferroelectric and dielectric torques in

Ec is given by Eq.(4.13, e, is the dielectric anisotropy of the Eq.(2.20 then for¢$~ /2 we obtain the result in Eg4.13.
liquid crystal, andP is the spontaneous polarization.

Case (ii): Finite domain

. n P 7 On the finite intervaD Eq. (4.9) has the solution given by
a Egs.(3.59 and(3.60 (with x replaced byZ) and it therefore
+ method fails G<E<E, follows that
- E>E, E>0 "
[nwZ
w(Z,T)=exp[A+B]T) 2 A, sin T)
Case (i): Infinite domain n=1 d
We first consider the infinite domain problem. Equation —(nm)%T
(4.9 on the infinite domain has a solution similar @.31). xexp ———, (4.14
Thus d
fw 1 WhereD=[0,d_] andd is the rescaled depth of the sample,
w(Z,T)=exp[A+B]T i
( ) q[ ] ) _w\/m that is,
—(Z-y)? _:i (4.15
X ex;{ T wo(y)dy. (4.10 \/B—s

Applying the arguments introduced in the infinite cubic casewith d being the original sample depffsee Eq.(2.24)].
in Sec. IlIB it is now possible to bound our solutignf. ~ Thereforen/2 is asymptotically exponentially stable if
(3.44)], to obtain

(4.1
d2

2
T )T

|wil., <M exp([A+B]T), (4.1 exr{

whereM is a finite constant. We see from Ed.11) that the
growth of the perturbationv and hence the stability of the
solution ¢(Z,T) are dependent upon the sign of

decays with time. Hence we must consider the sign of

A+B-—

A+B=E(P+Eg,eosirt 0). (4.12

I’]’JT)Z
— . (4.17
d

Therefore it follows that for thep=7/2 state to be stable Thus, for the finite case, we have linear stability provided
A+ B must be negative. The positivity or negativity of the

right hand side of Eq(4.12), and therefore the stability of na
the 7/2 equilibrium state, are dependent upon the positivity A+ B_(t) <0, n=123.... (4.18
of E, P, ande,. A maximum critical magnitude of the ap- d

plied static fieldE; can be calculated by solving the qua-
dratic for E in Eq. (4.12. Doing so yields a critical field
strength parameter

Notice that, unlike the infinite case, it is possible in the finite
case to have linear stability for certain positive values of
(A+B). It follows from (4.18 that if

-P 2 2
E.=———. 4.1 iy T
€ ga8qSIMt 0 .13 A+B-— :) =E2s,eqSII? 0+EP—(:) <0
d d
The ranges oE, for the various signs that the parametgrs (4.19

P, ande, can take, for which linear stability is guaranteed
are shown in Tables | and [bbtained by using Eq4.12].  then inequality(4.18 will necessarily be satisfied and linear
The method therefore yields sufficient conditions on thestability will be guaranteed. Thus, on solvitg 19 in terms
strength of the applied static field for linear stability to hold. of E, we obtain the critical field strengths

It should be noted that, roughly speaking, if one considers

 —P=P\1—4e,s,sir 0m%/(Pd)?

Cc
TABLE Il. Ranges of stability foE<0 (E<O corresponds to E:= 2e,80SIMP 0 . (420
reversing the fieldin the infinite case wher&, is given by Eq.
(4.13; &, andP are as in Table I. whereE® is defined to be the critical field strength that is

less tharE¢ ; notice thatE$ andE® will change signs de-

P pending upon the original signs ef, andP. The regions of
€a + - E for which we have linear stability are given in Tables llI
+ E.<E<O0 method fails and IV. We note that, on taking the limit—cc in the finite
- E<O E<E, critical field strength parameter&® —E.: we obtain the

infinite critical field strength parameté4.13. It should also
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TABLE lil. Regions of E>0 for which we have stability for (4. 22 hold. We must obtain an intervak[ 0w, within
finite samples wherg? are given by Eq(4.20), £, is the dielectric  \yhjch the maximum magnitude of the perturbation must lie,
e.tnisotropy of the liquid crystal, an is the spontaneous polariza- ¢;,ch that (4.23 holds. Following the nonlinear stability
tion. analysis in the cubic case, we nowet(z,t) be the solution
to Egs.(4.4) and (4.5 such that

P
€a + - We(z,00=cwy(2), (4.24
+ thod fail E_<E<E . .. . .
method fats * where c is some positive constant. The nonlinearity to be
- E>E. E>E.

considered here is

be noted that the decay rate given(th16 is depth depen- f(w)=Asin(w)cogw) +B sin(w). (4.29

dent; the larger the depth, the longer the time required for thel.hus ifw,. . exists it is possible to choosesmall enough so

(rjiIL:(renCtsot;:g relax back from the perturbed state to the equmb—that for some numben™

CWo(Z) <W* <Wpay: (4.26
B. Nonlinear stability

We now consider the stability of the/2 solution of the hen we can apply the arguments introduced in Secs. 1B
fully nonlinear equation4.4). If, as before, we restrict the and IIC to show data collapse. However, if there does not
initial profile of the perturbationw(z) to be non-negative XSt an intervall such thatf(w) is negative then we are
and to lie in the function spadé’, we are able by means of unable to apply the above argument and cannot draw any
the relevant comparison principle to bouw@z,t) below by ~ conclusions about thi Stab;:'ty,()f thel2 state. o
zero. In order to apply the methods introduced in the cubic, W& NOW consider the behavior 6{w). First we note that
case in Secs. 1B and 11l C to show that the zero state wad (0)=0. Thus an immediate restriction dif#) is that its
nonlinearly stable to ther/2 state in Eq.(4.1), we are re- derivative, at zero, must decrease, that is, we require that
quired to obtain a supersolution on our perturbation on some

interval for T, for example[ 0,T'], satisfying F(0)=A+B<0. (4.27

This restriction is exactly that obtained in the linear stability
analysis above for the infinite case. The critical field
W(Z,0)=Cwy(2), (4.21) strengths(and regions of stabilityare therefore identical to
those obtained in Eq4.13 (see Tables | and )l We see,
wherek is a positive constant determined from the param{from Eq.(4.29), thatf(w) is equal to zero if and only if
eters of the problem an@ is a positive constant to be chosen

Wr=Wzz—kWw,

later. On obtaining a supersolution satisfying E4.21), it 0
follows from the definition of a supersolution given in Eq. B B
(3.2) that we then have the differential inequality w=9q arccog — |, |A<1 (4.28

Wr=Wzz—kw=wWzz+f(w), (4.22 .

which enables us to apply the comparison techniques introFhus if |[B/A|=1, f(w) has only two roots, namely, 0 antl
duced above and therefore show that the perturbation decaytowever if |[B/A|<1, f(w) has three roots, as displayed in
in time and thus ther/2 equilibrium state to Eq(4.1) is  Eq. (4.28. Hence, if A and B satisfy Eq.(4.27, we are
stable. To obtain a bound of the form of E4.22 we must  guaranteed the existence of an inteval O,w,,5) such that

first boundf(w) so that (4.23 holds. Thus for a perturbation with a given value of
Whax the maximum valué,,,, of k can be found by solving
f(w)<—kw, (4.23  the equality part in(4.23, which leads to
for a suitable constark>0. —F(Wra
We now consider the restrictions on the parameteasd kmax:W—max- (4.29

B given in Eq.(2.22 so that inequality(4.23 and hence

) ~ However, Eq.(4.29 is a transcendental equation and cannot
TABLE IV. Regions of E<0 (E<0 corresponds to reversing pe solved analytically. We are nonetheless guaranteed a so-
the field for which we have stability for finite samples wheE& lution to (4.29 if we chooSew,s,, small enough. The right
are given by Eq(4.20; &, andP are as in Table Ill. hand side of Eq(4.29 is an even function i, and we
therefore need only consider positive valueswgf,,. Hence

P there must exist a constak& k44, Which depends upon the
i * _ constantdA, B, andw,,,, such that the solution to E®.21)
+ E_<E<E, method fails is a supersolution. From the qualitative features of Fig. 4,
— E<E_ E<E_ Wnhax Can be lowered or raised, depending on the values of

andB.
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10 ——A<0 B<O0
---------- A<0 B=0
= 8k B>0
= B<O0
%6* B<0
2
&
241
Af
2_

FIG. 4. Qualitative plots of Eq4.29 showingk,,, for a given
maximum magnitudev,,, of the perturbatiorw(z,t) for the signs
of A andB displayed above.

Case (i): Infinite domain
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an) [{ (n'n')z

—exg —| —| T

d d
(4.39

and thus, using a similar argument to that used previously in
the finite cubic case in Sec. Il C, we can uniformly bound
each of theA, given by Eq.(3.60. Thus for stability we
require

©

we(T)<exp(—kT) E A, sin
n=1

nwr

d

K+ >0, (4.39

which, sincek is positive, is always the case. It therefore
follows that if A andB satisfy Eq.(4.27) then solutions cor-
responding to small enough initial data collapse to th2
state. Note here that, similar to the linear analysis, the restric-
tion (4.395 depends upon the rescaled degthf the sample.

It follows that the bounds on the relaxation time are depth
dependent, as can be seen frGh34).

As in the cubic case on the infinite domain, the solution to

Eq. (4.2]) is given by

efkT

o —(Z— 2
(4.30

w(Z,T)=

which satisfies
W(Z,0)=Cwgy(Z)=cwy(2),

providedC=c. It therefore follows, by applying the com-
parison principle for infinite domains, that

We(Z,T)<w,

(4.31

V. DISCUSSION

Restrictions for the decay of a non-negative perturbation
w(z,t) e H! initially applied to a constant equilibrium solu-
tion of the dynamic equationi2.21) (on both infinite and
finite domaing were considered. This dynamic equation gov-
erns the director reorientation within a sample of ferroelec-
tric smectic€ liquid crystal, where the static field is applied
parallel to the smectic planes. Theoretical critical field
strengthqrelated to the stability of perturbationsvhich de-
pend upon the physical parameters of the problem, were then
obtained. Having obtained these critical field strengths we
then, for certain values of these parameters, obtained ranges
of the applied static field for which, on both finite and infi-
nite domains, linear and nonlinear stability are guaranteed.
Upper bound estimates upon the relaxation time of the direc-

wherew is given in Eq.(4.30. Having obtained this bound it o1 \were also obtained for given initial maximum magnitudes

now follows, exactly as in the cubic case in Sec. Il B, that in

the infinite case thé., norm and thus the solution itself

decrease in time; therefore the2 state is nonlinearly stable

for initial perturbations ir_, satisfying the inequality4.23).
Case (ii): Finite domain

For the finite interval casé)=[0,d_], where we have re-
scaled using Eq€2.24) and(2.23, the solution to Eq(4.4)

is given by
{5
—|exg —| —=| T|,
d d
(4.32

where theA, are as given in Eq3.60 with w, playing the

role of uy. Assuming thaiw.(Z,T) vanishes ar=0, d for
t=0, we also have that

w(Z,T)=exp —kT) 21 A, sin

W(Z,0)=Cwgy(Z)=cwy(Z)=w(Z,0). (4.33

of the perturbation.

In Sec. 1l B we employed the comparison techniques in-
troduced in Sec. Ill A to establish, as considered by Flores
[4], the stability of certain solutions to a reaction-diffusion
equation involving a cubic nonlinearity on an infinite do-
main. This stability argument was then adapted in Sec. Il C
for application to solutions on a finite interval.

Finally, in Sec. IV a perturbation method was introduced
to consider the stability of ther/2 equilibrium state of the
dynamic equation(2.21), which governs the orientation of
the director when the static electric field is applied parallel to
the layers. The techniques used to prove stability for the
cubic reaction-diffusion equation in Secs. llIB and IlIC
were then applied to the linearized and fully nonlinear dy-
namic perturbation equation. However, unlike for the cubic
cases discussed in Sec. lll, qualitative information was ob-
tained on the parameters of the liquid crystal for which sta-
bility holds; critical field strengths and ranges of the static
electric field within which linear and nonlinear stability hold
were found. For the ranges of the parameters for which sta-
bility holds, upper bound estimates were obtained on the

Hence it follows, from the comparison principle on a finite characteristic time taken for the director to relax back to its

domain, that

unperturbed state. It is possible to obtain information on the
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TABLE V. Characteristic times, which are all positive, for the problems discussed in Sed.ctmpare
with Egs.(4.11), (4.16), (4.30, and(4.39]. \5 is the positive viscosity coefficient discussed in the t&x,
is a positive elastic constant, amtlis the original sample depth; the field dependent contributions are
provided byA+ B=E?Z¢ ¢, sir?(6)+PE andk, as introduced in Sec. IV, subject Bbsatisfying the stability
conditions in Tables 1-1V.

Linear Nonlinear
Finite domain Infinite domain Finite domain Infinite domain
B 20 2 e 2
"B (nm)?—(A+B)d? =" (A+B) kP4 By(nm)? =T

usual characteristic time for the various problems consid- unexpected as this elastic constant is absorbed, via rescaling,
ered. From Eqs(4.11) and (2.23) we find thatr for the to the spatial variabl& and thus it cannot enter the charac-
relaxation of the director in the infinite linear case is giventeristic times, as there is no boundary in the infinite case.
by 7.=—2\g/(A+B)=—2\5/[E%e,eosil’(A)+PE] (no-  This is certainly the case in other problems involving infinite
tice thatA+ B is necessarily negative in the infinite domain domains where solutions are considered in smectior
case: see Secs. Il and IV for more detpilSimilar results, smectic€* liquid crystals, where it is known from exact
which are displayed in Table V wheré is the original traveling wave solutions that the wave speed is independent
sample depth, can also be found by considering E446),  of the elastic constan{46,20.
(4.30, and (4.395. The subscripi in the finite cases indi- There are only a few known results for characteristic
cates the value of relating to thenth mode in the corre- times for ferroelectric smecti€ samples arranged as dis-
sponding series solution. The first eigenmode relates to theussed in the above problem. For example, Abdulhalim,
longest characteristic timéhis is easily seen by letting Moddel, and Clark[[26], p. 823 discuss a characteristic
become large in either of the two finite case characteristielastic time,
times in Table V. It therefore follows thatr; is the most
influential. Mg
Table V gives an indication of how long it takes for the TeT 2K’
director to relax back to the equilibriugh= 7/2 of Eq.(4.1):
the Iarger the value Of', the |0nger the time taken for the Wherend) is a typ|ca| smectic ViSCOSit}KS iS a smectic con-
director to equilibrate. Since, in the finite cases, it is the firsistant, andy is a typical wave number: in finite domaigsan
eigenmode that yields the largest characteristic time, it folsimply be considered as a “first” wave number= /L
lows thatTl is indicative of the time taken for the director to whereL is the Samp|e depth Numerical results are also given
relax. in [26]. In the finite domain cases in Table ¥, is of a
The characteristic times for the linear and the nonlineakimilar form except for theA+ B)d? andkd? contributions:
analysis are analogous to each other: although there is nfiese additional terms arise from the physical parameters of
depth dependence in the infinite CaSas is to be expectéd the Samp|e being smect®@-rather than smectié& The re-
the sample depth and the eigenvalues play a role in the finitgyits presented here are therefore consistent with those an-
cases. In both the linear and nonlinear analysismay be ticipated by Abdulhalimet al.[26].
obtained by taking the limil— < in each of the correspond- Also, when the smectic tilt anglé=0 (see Fig. 1 the
ing finite case characteristic times. A Simple calculation rE'Samp|e becomes Smecﬂctype, for which there are recent
veals that in both Caseéﬁnite and |nf|n|t€) T increases results by Sha|agin0V, Hazelwood, and S|ud]ﬂﬁ] for vari-
monotonically to the corresponding, as the sample depth  ous types of relaxation phenomena. These results, although
(or d) is increased. Thus the time taken for the director tofor smecticA, can be compared with both the finite domain
relax back to its equilibrium state from its perturbed state idinear and nonlinear cases outlined in Table V. Frd],

increased as the sample deptitor d) increases. Similarly, there is a typical characteristic timg given by a similar
on taking the limit close tal~0 in each of the finite case form to(5.1), namely,
characteristic times, we find that as the sample depth is de- )
creasedr approaches zero. Hence to minimize the time taken ;= 73k
for a perturbed sample to return to its unperturbed state the v 442K
original sample deptd should be made as small as possible.

It is not, however, only the sample depth that plays a rold. being the sample depthy; a viscosity, andK an elastic
in the magnitude of the characteristic times. In both the lin-constant: a typical value for, is around 102s [27]. (In
ear and nonlinear analysis it can be seen that the magnitudéquid crystals characteristic times are frequently propor-
of electric field dependent term#&\ ¢ B) andk [which is a  tional to the ratio of a viscosity divided by an elastic constant
function of (A+B)] also influence the characteristic time. If [9,28].) Clearly, the expression in E5.2) bears some re-
the electric field is close to zero &, given by Eq.(4.13,  semblance to the results fey in Table V, whered, B3, and
we see from Eq(4.12 that if (A+B) is small then the 2\s play the roles ot, K, and#;. The factor of 4 appearing
characteristic time becomes large. Note also that in the infiin the denominator of-, occurs because the authors[2Y]
nite case the elastic constéBy does not appear. This is not consider the second mode in their analysis when looking for

(5.9

(5.2
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the initialization of chevrons. When such terms a& ( that arise when a sample of smedBieer smecticE* liquid
+B)d? and kd? are ignored, for example, when the crystal has a static electric field applied at an angle to the
smecticC sample is close to smecti&{i.e., #~0) then the  Smectic layers.
results in[26,27] can also be utilized for a comparison with Equations similar to those discussed here occur elsewhere
the results presented here, bearing in mind that these authdi&6,20 and other additional sinusoidal terms may be in-
employ the analog of,. The characteristic times fat, in c_Iuded in the governing equation, similar to those that arise
Table V for ferroelectric smecti& samples ought to col- (in @ different contextin the results contained if26]. It
lapse to those for smecti&{with slightly different notation ~ Should also be mentioned that Stewart and Faulkast
when the smecti€ contributions are neglected. These re- have qbtamed .St"’}b'“.ty results for. nonconstant trav'el'mg
sults for ferroelectric smecti€-liquid crystals are therefore waves in nematic I_qu|d_ cr_ystals on infinite domaln_s arising
expected to be natural extensions to results for sméciic- from a cubic equat_|on S|m|_lar to E@.9. Work on this and .
special cases, the characteristic times being modified accorfi‘?laﬂad areas requires a different analysis and is currently in
ing to the forms indicated in Table V. progress by the authors.

It should also be possible to apply the methods used in ACKNOWLEDGMENT
Sec. IV to other dynamic equations that appear in liquid
crystal theory. In particular, it may be possible to obtain D.A.A. is grateful to The Carnegie Trust for the Univer-
information on the stability of some of the equilibrium statessities of Scotland for its financial support.
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