PHYSICAL REVIEW E VOLUME 62, NUMBER 4 OCTOBER 2000

Phase equilibria in an athermal solution of platelike particles
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A molecular frame lattice theory of athermal solutions of platelike particles is presented. Steric repulsion
between the particles is assumed to be the sole interaction present in the @lstathermal limit. The theory
is developed for flat rectangular parallelepipeds, and examined in detail for two opposite shape anisotropy
limits: rods and square boards. Numerical calculations show that in a pure system of either long rods or square
boards, a nematic phase is formed once the shape anisotropy exceeds some critical value: for rods the critical
aspect ratio<rCrit is 8.019, and for boardx;glrit is 3.742. For higher values of the ratio, a narrow concentration
region of coexistence for the nematic and isotropic phases, which separates the igtivomicncentration
from the nematighigh concentrationsolution, is found on dilution of each system.

PACS numbd(s): 64.70.Md, 61.30.Cz

[. INTRODUCTION onto the lattice representation is the projectjoof the mol-
ecule onto the plane perpendicular to the dire€®&r Thus,

In discussing the fundamental molecular properties of alternatively, the lattice can be associated with the reference
system forming a nematic phase, the importance of two opframe of the rodxyz lattice) and the rest of the system pro-
posite kinds of interactions, steric repulsion and specific atjected onto the plane perpendicular to the long axis of the
tractions, is usually emphasized and tredied4]. Among  given rod. The discretization imposed on the rod orientation
the variety of molecular theories of the nematic state stresssy the XYZlattice is thus removed. Orientational disorder of
ing the dominance of one or the other kind of forces, Florythe system is measured by the mean projection of the rods,
championed the steric point of view with the aid of a lattice called after Warner thsteric constraintp The critical value
method[5]. In his very first attempt to use the lattice to of the rod aspect ratir for the formation of a stable nematic
simplify the specification of spatial configurations, and tophase in a pure, athermal system of rodlike molecules is
evaluate the steric factor in the configuration partition func-predicted by Warner's method to be somewhat higher than
tion, the relevant partition function was factorized into thethat obtained with the Flory methdd0—12. However, be-
configuration or steric paé.,yy,, the orientational paiZ,,,  cause of it, Warner's latent entropy at the transition is
and a parZ;,; accounting for the exchange free energies ofsmaller than the one predicted from tK&'Z lattice, which
interaction between molecules of the systenZ  overestimates the latent entropy.
=Z.omLoZint [2]. Use of the cubic lattice associated with It has been demonstrated recently thatZ lattice meth-
the laboratory reference frantgYZlattice) of the sample is ods are also suitable for application to discotic molecules,
pivotal for the method. Each rodlike molecule becomes segef., e.g.,[13—15. For this purpose, a much more severe sim-
mented into a sequence of contiguous rodlike subsegmenfsification of the disk molecular shape is required, namely,
positioned in adjacent rows parallel to the nematic diretor the disk is approximated by a flat, rectangular parallelepiped,
In equilibrium, the statistics of subsegments in the rowsn order to fit the lattice. Wnek and Moscidki4,15, in their
should be the same and independent of each other. Sterxtension of the Flory model for rod®] to the case of
constraints for rods in three dimensions are thus transformediscotics, considered the formation of a uniaxial nematic
into a one dimensional problem of randomly distributed sol-phase by square parallelepipeds. For symmetry reasons, the
vent molecules with polydispersity in the length subseg-+epresentation of perfectly ordered discotics on X lat-
ments, where the polydispersity function is defined by thetice by square boards of aspect ratiand thickness equal to
equilibrium orientational distribution function of the rods. the lattice unit cell in this particular case is rather well jus-
However, the need to map molecules onto subsegments dified [14]. In the spirit of the Flory method, disorientation of
the lattice limits the number of orientations available to thethe disks was introduced into the system by two independent
rod to a discrete spectrum of orientations only. rotations of each boarbr, simply, disk about theX andY

The original lattice theory of Flory has been exploredlaboratory frame axes. This procedure transforms disks into
over the years to study different aspects of rodlike systemstairways, in which the stairway steps form trains of contigu-
[4-7]. A significant improvement to the lattice idea is due to ous segments located in neighboring elemen¥glices of
Warner[8,9]. Without losing the original advantages of plac- the lattice. For the same reasons as for rods, the situation in
ing a system of rods on the lattice, Warner proposed a clevasachXY slice is statistically identical at equilibrium, and the
alternative lattice approach that allowed him to remove disthree dimensional problem is transformed into the problem
cretization of the orientational states of a rod. He noted thabf accommodating different trains in a two dimensional sea
what determines the mapping of molecular configuration®f other trains and solvent molecules. The model allowed a

study of the system in the presence of solute-solvent interac-
tions [14,159 and a system of discotic molecules with
*Electronic address: ufmoscic@cyf-kr.edu.pl sidechaing 15]. The minimum critical) value of the disk
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anisotropy sufficient for formation of a stable nematic phase 2.z
calculated from the theory ig“™=3.015[14]. Despite rea-
sonable success, such a treatment of the hard disk system is
only approximate. Disk orientations in space are severely
discretized, particles are not allowed to rotate freely about
the symmetry axis, and the axis has a discrete spectrum of
orientations. Consequently, accounting for the solute-solute
attractive intermolecular interactions usually present in lig-
uid crystals is beyond the scope of the calculationgli].

In order to remove some limitations §£4] and address
thermotropic nematics, and, in particular, to extend our quest >
to the contemporary and very attractive problem of biaxial X
nematics, we have developed an approach for a system of
plate- or boardlikd 16] particles along Warner's idea of us-
ing the molecular frame latticeyz In particular, the use of
the xyzlattice accommodates the preservation of plate rigid-

ity and complete orientational freedom. It makes the modellcrame with respect to another; cf. the scheme in @gjand

ing of interactions of any kind, i.e., steric repulsion as well asF'g' 1, as a set of three Euler ang[@i]. The Euler angles

attractive forces between particles, feasible, natural, and eaéz)e chosen in such a way as to bring the initial frame into

to handle. The theory converges to proper results in the pe de:‘ri]:gie;cr(e)tz\;\gt)hn tggozr:?ll frarir;e(,)fst(r)]etf;r?itti;Tefr:rrs;Iangle
fect order limit of a pure system of both rods and square '

Z,0 j41

Q=(a,B,y)

FIG. 1. Orientation of the molecular reference frame of the test
plate{xyz with respect to the laboratory reference frafi&2.

boards(for simplicity, hereafter referred to as digksvhere a

the entropy per lattice site approaches zgt®,18. More- (XY Z —{xyZ,

over, in order to maintain the thermodynamic correctness of

the model, the ideal mixing term in the Gibbs free energy Q'

[19], arising from the presence of solute and solvent particles {XY z}ﬂ{xyi}, )
in the system, is naturally incorporated in the formalism. The

role of the plate biaxiality and of soft dispersion interactions ak

between plates will be addressed elsewhafs. {xyz —{xyZ}.

The paper is organized as follows. The aim of the next
section is to present a general outline of the lattice treatment The equilibrium orientation distribution ensures that
of steric interactions in an athermal solution of platelike par-
ticles, i.e., the only interaction accounted for is contact re- &G‘ :‘?(_kBT InZ)‘
pulsion, and the configurational partition function is evalu- o'?n9|eq dng
ated. Results of the calculations specialized to rods and to
disks are presented and discussed in the light of results avaibver all angles, where is the number of plates whose

=0 @)
leq

able in the literature in the final section of the paper. orientation isQ). Similarly, the equilibrium coexistence of
the isotropic(l) and anisotropi¢A) phases imposes the con-
Il. THEORY dition that the chemical .potent'ials.of the solventand spl—
_ _ ute u, (obtained as partial derivatives of the free engrigy
A. The anisotropic phase the two phases must be equal at equilibrium, i.e.,
The results of the lattice method in describing phase equi- | A
libria in rodlike system$5,6,8] are the substrate upon which M M i—sx 3)
much of our work on systems of disklik&4,15 and plate- kgT kgT eq’ o

like molecules is based. The theory presented here concerns

the phase transitions and phase equilibria in a system of In calculating the partition function, the present theory
identical platelike particles dispersed in a solvent. The ultifollows the general framework of earlier work from our
mate goal is to find the partition functian relevant to the group[14,15. What is significantly different is that in cal-
problem. OnceZ is known, and thus the Gibbs function of culating the steric factaZ.m, We introduce an auxiliary lat-
the ensembleG, one can study the equilibrium properties of tice not in the reference frame of the system, but in the
the system. To attain equilibrium of the anisotropic phase imolecular frame of the plate under consideratitime test

is required that the equilibrium orientational distribution of plate). To facilitate comparison between past and present lat-
plates minimizes the free energy. In order to handle the probtice work on discotic molecules, we try to use the same no-
lem we introduce three reference frames, the laboratory reftation as beforg8,14).

erence framgXY Z whoseZ axis is assumed to be parallel  The solute under consideration consistsngfmonodis-

to the direction of orientational order, and two molecularperse plates with principal aspect ratizgg and x,. We
reference frames. The firkyz, is associated with the test choose the unit cell of the molecular reference lattice to have
plate. The secondxyz}, is of a randomly selected plate, linear dimension of the plate thickness, so that a plate on the
the kth, say. Each molecular frame is defined in such a wayattice is represented by a rectangular parallelepiped of di-
that its z axis is along the plate normdél. We employ()' mensions; by X,. For simplicity and convenience, the sol-
=(a',B',y") to indicate the orientation of one reference vent molecules are assumed to be isodiametric, with diam-
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1 2 3 by row until completion of the task; cf.-69 in Fig. 2. The
b final result should depend neither on the choice of the anchor
X, N ;T : T cell, nor on the order in which the two edge cells are added,
b LLLn nor on the order in which interior cells are added.

Each of the elementary cells can be placed intaaslice
with its own distinct characteristic probability, say;, i
=1,...X1X,. Except for the anchor cell, all elementary
: : probabilitiess; are conditional ones, since the availability of
P ;o . a free site for a given cell depends not only on the number of
obstacles in the slice due foplates already present in the
system, but also on the presence of the previously placed
cells of the test plate. The expected number of locatigns

|IEN
len
o

z 8 9 accessible to the test plate will thus be the product of these
probabilities:
—> —>
v X1X2
j+1
——=m]l m. (5)
0 1=2

FIG. 2. Sequence of placing of test particle elementary cells on - ) o o
the lattice. The probability that a given site in they slice is free for the

anchor cell is simply given by the volume fraction of free
eter equal to the plate thickness. Hence, the solvent aspegites in the systerf,8,14:
ratio isxs=1. All particles of the ensemble are incapable of .
interpenetrating each othésteric constraint and no voids Trl:no_Jxl)(Z_ (6)
are allowed in the systefi22]. Therefore, the total number No
of lattice cells necessary to accommodate our system, i.e

the system volume in unit cell units, is For the remaining cells, the conditional probability of finding

a free space for a particular cell is given by the volume
(4) fraction of empty sites in a solution of the empty sites and of
the effective obstacles to the cell resulting fromjadlates of

In a standard initial step of the lattice method, we assuméhe system3|_,K{, the particular type and number of ob-
that] plates have already been assigned locations in the systaclesK(‘ being characteristic for each of the celzs14):
tem volume. To evaluate the configuration part of the parti-
tion function, Z,, We calculate the expected number of
locations v, accessible to an additionates (j+1)th
plate. The auxiliary reference lattice is associated Witg
in such a way that the andy axes are along the, andx, Note that Eq.(7) disregards the presence of previously
side edges of the test plate, respectively. placed cells of the + 1 plate; it has been argued in the past

We make the usual assumption that in equilibrium all lo-[8,14] that accounting for these cells has no effect on the
cations accessible to the test plate are statistically equivalerfinal form of Z ., within the approximations adopted in the
This translates in the lattice approach into stipulating that idattice method.
equilibrium all elementary slices of the lattice parallel to ~ Our task is then to evaluate the number of obstacles for
each other are statistically equivalent, i.e., we assume that ipach cell of the test plate. As argued for rodlike particles by
any given slice dispersion of the contributions from all platesFlory [5] and Warner{8], the number of obstacles can be
of the system and of the solvent molecules is random, beingxpressed via projections of the system particles onto a par-
uninfluenced by the configuration of neighboring slices. Furficular reference plane. In the Flory laboratory frame ap-
thermore, the thermodynamic properties of the systenProach, thisis a plane perpendicular to the nematic director,
should not depend on the order of filling the sample volumévhile in the Warner molecular frame approach it is a plane
with plates. transverse to the rod. Wnek and Mosci¢k#] have shown

In contrast to thegXYZ lattice in the Flory method, our that for the disk system in the former approach, the relevant
test molecule when inserted into the elementayyslice of ~ planes are two mutually orthogonal planes parallel to the
its own lattice is not segmented and remains intact. Thigiematic director. For the present theory it is sufficient to
alone constitutes a substantial simplification of our calculaknow the projections of a given plate of the system, say the
tions. kth, onto three planes of thé&yz lattice: two principal

We apply the following sequential algorithm for placing planespy, andpl,, and a plane perpendicular to the plate
elementary cells of thej - 1)th molecule on the lattice; cf. diagonal,gogz, in order to be able to evaluate the number of
Fig. 2. We begin by anchoring the plate by placing one of itsobstacles th&th plate can impose on the construction of the
corner cells_2 Second, we position two edge cells adjacenttest plate.
to the anchor cell_3 These are followed by the adjacent After placing the anchor cell, we add one by one two
interior cell 4and the next two edge cells Fhis establishes adjacent edge cells; cf. Fig. 2. Let the first of the two be
the construction boundary more or less perpendicular to thpositioned along th&, edge. From simple geometrical con-
plate diagonal. We advance the construction boundary rowiderations, one finds that any givkth plate of the system,

n0= ns+ X1X2nx .

_ No— JX1X
- . k-
No— jX1Xp+ 2h_1K]

)

i
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FIG. 3. Placing the interior cells: their radial vectors and the
plate diagonal vectofsee text for detai)s

due to its translational freedom along thexis, can obstruct
the placement of the cell in, ways, each of them statisti- FIG 4. Four _categories of the test plate cells in terms of their
cally weighted by the local Warner steric constrapff,(n,), ~ Statstical similarity.
where locality is emphasized by timg argument. The total
number of possible obstacles for théh plate is then the agonal,f=§; cf. Fig. 3. It is identical with the statistical
weighted sum of all contributions, mean for a square plate and slightly different from the latter
for rectangular plates.
KK :2 pk (ny) = K ) _ The cells of.the tgst. plate_ thus. divide i_nto four cqtegories
el n yzay yz! in terms of their statistical similaritysee Fig. 4. The single
member category, denoted in what follows by the subscript
i.e., it is equal to the projection of theh plate onto theyz &, constitutes the anchor cell. To the other two categories,
plane,piz. By identical arguments, the total number of ob- which are identified by subscripéd ande2, belong the edge
stacles for the edge cell along is the projection of thé&th  cells alongx; andx,, and there arex;—1) and &,—1) of
plate onto thexz p|ane,pl;zj each of them in the plate. The remaining;  1)(x,—1)
cells form yet another category, theterior cell category,
_S ok o which we denote by the subscrigt
Keo= < PxAMd =@z © This leads to a substantial simplification of H§):

Clearly, the results in Eq48) and (9) are independent of
each other, and thus independent of the order in which the
edge cells are located on the lattice. 0

Let us next consider the number of ways kb plate can
block an interior_4cell in Fig. 2. The blocking results from with 7;, i=a,el,e2,q, given, respectively, by Eq$6) and
the translational freedom of theh plate perpendicular to the (7), where the relevarhiik are estimated in Eq$8), (9), and
direction in which the interior cell is added, i.e., transverse tq(10).

v
j+1 X1—1 Xo—1 (x1—1)(xp—1)
=TMaTe ey T , (11

the cell radial vectofwith respect to the anchor cgll (see The number of obstacles for a cell of thecategory,
Fig. 3. By analogous arguments as for the previous twoz|_ KX, depends on the orientational distribution of the sys-
cells, the total number of obstacles is tem plates, so that an exact calculation of that number is
expected to be cumbersome and the final expression un-
Kk:Z pk (ng) =9 , (10) yvieldy. In the spirit of the lattice metho_q approxima_tion we
4 5 Taeren e introduce, therefore, a number of simplifications, which yield

an approximate number of obstacles that has a simple depen-

Wherep'aZ is the projection of theth plate onto the plane dence on the basic parameters of the system while at the
normal tor. same time keeping the error thus introduced in the evaluation

We proceed further by adding the next pair of edge cellspf the partition function to a minimum. In particular, we
thus completing the construction front litef. Fig. 2. The  benefit from the fact that each plate of the system in equilib-
addition of any adjacent row to the construction boundaryrium should on average contribute the same amount of ob-
proceeds along the same scheme: first the interior cells, thestacles to everxy slice of the system. In other words, our
the edge cells. From inspection of Fig. 2 it follows that thesystem is, in this treatment, thermodynamically equivalent to
number of obstacles to all edge cells is given by either Ega system of plates, each with the santmean orientational
(8) or Eq.(9). The number of obstacles to the interior cells order. At no expense to the completeness of the theory, we
will vary from cell to cell, since their radial vectors are not can use the mean values of the basic parameters of the sys-
collinear; cf. Fig. 3. However, as argued[itd], this varia- tem in what follows in place of summations over the system:
tion is not very broad. Each interior cell can then be assigned
some mean value with only a minor effect on the final result.
For simplicity and clearness we select the value to be equal E K_k:jE:jT (12
to K'; corresponding to the unit vectéralong the plate di- =T ' ;
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so that Eq(7) becomes simply librium orientation distribution function of the system plates,
WX1X2(Q’)=nQ, /n,. Second, the test plate is being inserted

= nOI_Jxlxz._ (13 into the system at random, and therefore the orientation of
No— X1 X2+ ] @i {XyZ must also be averaged over the orientation distribution
. ) o function of the { +1)th plate,w, . (2)=ngq/n,. Since the
wheregp;, i=el, e2, orq, is the plate mean projection onto 12

the relevant plane, averaged over the equilibrium orientat€St plate is inserted into the system in such a way that it does

tional distribution function of the system not change the equilibrium parameters, the functional forms

The projection area of a randomly selectet plate onto OF Wi, (02} andwiyx, (€2') are. the same. This dis'tinc.tio'n
the yZ and xz p|anes can be expreSSed with the aid of thebarely reﬂeCtS the Ol’del’ Of tak|ng the aVerage, Wh|Ch IS Im-

relevant Euler angleief. Eq. (1) and Appendix A as portant for the final result. Note also that the subscript
“X1X," on w refers to the important dimensions of the solute
pgl:pgzz X1Xo|cosa® sin B¥|+ x4 |sin X cosy® particle; for a square plate it will bex, and either ¥, x1, or
« N z for a rodlike solute; cf. Appendixes B and C.
+cosa cosB" siny¥| Thus, the mean projections of interest can be formally
+ X,|cosak cosBX cosyX—sinak sin yX| (14 ~ Written as
x5 |+ 3l |l | = k(0,07 7= | [ wo@mg@ioti.nndn da
(15
i=ele2,
PK,=p%,=x1%5|sina® sin B| + x,| cosak cosy*
—sinaX cosB sin y¥| +x,|sina* cospX cosy* aq:f flexz(Q)lexz(Q”)pg(Q'Q”)dQ 4’
+ cosaX siny| (16) (21)

wherefﬂwxlxz(ﬂ)d0= 1. Note that the need to use the mo-
(17) lecular frame ends at this point, since from now on all cal-

culations are performed in the laboratory coordinate frame.
and the projection onto the plane orthogonal to the diagonal Equations(21) are integrable in a straightforward way for

=X1Xa|p55" |+ X1 p3s™ [+ %ol p5i " |=05(Q,Q),

is the limiting cases of the isotropic state and of the perfectly
ordered state. In the isotropic phase, the distribution of plate
PE=p 8= XXo|cog @ — p)sin B+ xy| sin( a*— ¢p)cosy orientations is uniform over the whole solid angle, the distri-

bution function does not depend on the coordinate system,

k__ K oi k k__ . .
+cog a’~ ¢)cosp siny| + xz|cod a’~ ¢) and therefore the average projections are equal to each other:

X cosBX cosy*—sin(aX— ¢)sin¥| (18

9= (Xp+ X+ X1%)/2. (22)
=x1%alpTs ™ |+ xalpis™ |+ X2l i ™ [=05(Q,Q7), Note that the average projection in the isotropic phase is

(19 larger than the plate lid area, due to the finite plate thickness,
whose contribution is not negligible in that phase.

where’Q”I denotes an auxiliary set of angleQ"=(a’ In the perfect order cagéling problem[19]), all relevant
—¢.,8",7'), ¢ being the angle between the test plate diagyeference frames coincide, and the average projections be-
onal and itsel edge: come

X1 Pe1=Xp,

COS¢p= ——. 20
R 0

A few comments are necessary at this point. For highly _ 5 o
asymmetric molecules, i.e., wheq>1 andx,>1, small 9q=2X1X(X1+ X3
effects from a plate of small finite thicknegs-1) can be
neglected, and the last two terms in the right-hand sid
(RHS) of Egs.(14)—(19) can be approximated by a constant.
However, when eithex;=1 or x,=1, which corresponds to
a convergence of the plates to the rod limit, one of these tw I : : ERPRn .
RHS terms becomes comparable to the first RHS term and The (_aqumbnum onentau_on . d|str|but|_on func_t|on
cannot be neglected. Once the formalism for the general caé’éxlxz(m in Egs. (21) should minimize the Gibbs function.
is outlined, we will address both ||m|t|ng cases in Appen_ CIearIy,G depends on the distribution function in a CompleX
dixes B and C. manner, and the differentiation in E@®) involvesw,_, (2)

Calculation of the mean projection of the system platesdoth directly and indirectly through the average projections
onto the planesz yz andqz requires double averaging of p;, i=el, e2, andq. Auxiliary functional derivatives in-
Egs. (14)—(19). First, we have to averagb:«lk over the equi- volved in the differentiation are

Per=X1, (23

)71/2

dn the course of further development of the general treatment
some simplifying approximations are necessary. However, in
doing so we will make choices that ensure that both limiting
6esults in Eqs(22) and(23) are always recovered.
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g, . . Application of the usual methods of manipulatidg,,, into
nx&T:flexz(Q,)[Wi(QvQ/)‘l'Sgi(Q’vQ)]dQ’EQiu a more tractable form, e.g., Eq23) of Ref. [14], and
@ Stirling’s approximations for the factorials yields

é’aq _ ’ k ” k " r— Ng X{—1
nXW_IWXlXZ(Q )[WQ(QIQ )—’—zpq(‘(2 !Q)]dQ ZQq; |n(ZCOmb) n |n +n |n g(n +nxpel)
@ (24) No X1Xp—=@Pe1
9
where i=ele2, and the appearance qf Q",Q) and XIn 1—vx<1—x il)
9] K(Q",Q) results from taking partial derlvat|ves ovBrand 172
Q’ and then benefiting from the equivalence of the func- (xo—1 _
tional forms ofw, , (') andw, (). T XX Pe (st Ny e2)
The distribution minimizingG has the general form _
inl 1—o (1_ Pe2> (= D(x—1)
X XX X1Xo— @
Wy 5, (Q)= —f1 sm,Bexp( E b, Q,), i=ele24, 172 X2~ 94
(25) X (Ne Ny In 1—vx(1—%”. 28)
wheref,=[dadB dysinBexp(-3bQ;), and theb;’s are
given b; I AdysinfexpC-2hQ) ' To complete the steric contribution to the Gibbs function
of the system, we need the orientational part of the partition
(X1 —1)X X5 function, Z,,. It is customary for the lattice methods to use
P (e e (26814
7y 7y n
X{—vy tin1-v,| 1- Per||_q4 P2l —In(Zo) = E No| cwg— (29
X1Xo X1Xo nQ
(Xo—1)XpX1 where o is an arbitrary constant close to unity ang, is a
b92=m measure of the solid angle and is equal toiim terms of
2™ ez the relevant Euler angles.
7y P The Gibbs function of the anisotropic pha@® thus be-
X —v_1|l’] 1-v,|1— 2= e comes
X X X1X2 X1X2)'
(26) GA v R

= n +(1-v)In(1-v%)
Noke T  X1X»  XqX X X
(Xp—= 1) (%= 1)X31X; 0B 1 e

b,= — _
d (Xlxz_pq)z UQ (x3—1) 1- Pe1
* X1X2

— — XiXo 1 X Xo— @er
X:—v Yn|1- v(l—ﬁ) - ﬁ]
X X X1Xp X1Xp| ' il 1— A(l— Wel) (X2~ 1)
Ox X1X2 X1Xo~ P ep
wherev,=Xx;X,n,/ng is the (volume fraction of plates in o
the system. A P e2
The self-consistency of the model requires simultaneous x 1_U><< 1= X1X2)
fulfillment of Egs.(21), (24)—(26). This is not solvable ana- o
lytically, and has to be established numerically, indepen- <In 1—UA(1— Wez) (= D(x—1)
dently for each desired size of the solute particle. Two lim- X X1X> X1Xa— @ q
iting cases of the particle size are of particular interest for _
their relevance to the most frequently encountered situation « 1_UA< 1 q )
in real systems, which we will address later in the paper. X X1X5
Once the mean projections in equilibrium are known, one _ A
can calculate the configurational part of the partition func- xinl1=pAl 1= ﬁ) 5 Ux
tion, Z.omp Lcf. Eq. (1], X X1X5 X1X2
1 Ny 1 Ny X [belael'i' beZﬁeZ"‘ bqﬁq]r (30)
— = —i X1X2
Zeoms ny! j+1:[:1 AR j+1:[:1 (No=Jxax2) where the first two terms on the RHS are the expected ideal

mixing terms. Their presence is a direct consequence of ac-
counting for the plate interior cells by the present mddél
X (Ng= jX1Xp+pep) 27V Fig. 4). . L . .

The chemical potentials in the anisotropic phase take the
X (Ng=jX1Xo+jpq) ~a~ V27D, (270  form

X (Ng=jX1Xa+ [ per) a7V
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A —_—
uh A (X;—1) A Dol I1l. CALCULATIONS AND DISCUSSION
=In(1-vy)— ———In[1-v}| 1— . L
kgT X1Xo— P e1 X1Xo The self-consistency of Eq$21), (24)—(26) minimizes
— the free energy, thus ensuring the equilibrium of the system.
(XZ_ 1) A @ez 3 . s . )
— % T nj1-v81- However, the self-consistency condition is not solvable ana
X1X2 ™ Pe2 X1X2 lytically, and requires a numerical treatment. Because of the
(x1—1)(x,—1) 74 complexity of the formalism, convergence of the numerical
- XXfln l—vﬁ 1- o (31 procedure for the general case is a significant problem and
2™ Pq 172 exploring it in detail is beyond the scope of this pap20].
and Instead, we concentrate on two limiting cases, i.e., those of
(i) uniaxial disks and(ii) rods (see Appendixes B and C,
MQ a (x;—1) _ respectively. Such a selection is dictated not only by the fact
=In—-—Inf;+ — that the thermodynamic properties of the two systems have
kgT 1X2 X1X2 = Pe1

2X1X5
(X1Xo— @ e1)U

been extensively studied in the past
[1-4,6,8,10,11,14,17,23-B0so that predictions of our
model can be critically tested, but also because there is avail-
able an iterative algorithm, which is highly convergent for a

A Pe1 (Xo—1) _ somewhat similar but simpler self-consistency problem stud-
XInl 1oy 1- X1Xo T2 Xlxz—ﬁezpez ied by Herzfeld, Berger, and Wingaf81]. In a particularly
. critical test of this algorithm we verified that, when applied
% 2X1Xp 1l 1= A( 1— Pe2 o to the theory of Warnef8] for rods, it recovers Warner’s
(X1Xo— Pe2)V U T XX, results to within 0.2%.
As it turns out, the efficiency of the algorithm in finding
N (Xg=1)(xp—1) _ « 2X X% the equilibrium parameters depends strongly on the initial
X1X2— P g Ya (X1X2—5q)vf guess for the distribution functidi31]. This effect is clearly

1A 1- Yo
X X1X2

xIn +21. (32

B. The isotropic phase

visible, e.g., when searching for the threshoétdinimum)
aspect ratio sufficient for existence of a stable anisotropic
phase in the pure system=1); on increasing the particle
anisotropy the onset of the anisotropic phase at some thresh-
old aspect ratio should be marked by, first, the existence of a
nontrivial (anisotropig¢ distribution function and, second, the

A uniform density of the orientation distribution function coexistence of the anisotropic and isotropic phas@s,
ng /n, over the whole solid angle in the isotropic phase ob-=G'. In general, for any reasonable guess function, the equi-
viously cancels ouZ,,. For symmetry reasons all relevant librium orientational distribution in the anisotropic phase can
average projections are equal to each other and given by Efe found even for a particle anisotropy slightly below the

(22), and the Gibbs function becomes

threshold one. However, we found by a trial-and-error
method that the guess functions divide naturally into three

G' _ UL UL | o (XXe—1) categories, roughly speaking those of a small, medium, and
Noke T X1X» n X1X2 +H(1-vIn(1-v,) = X1 Xp— g large width at half maximuntFWHM). For functions with a
small FWHM, the minimum critical particle anisotropy for
| 5:( | Ex the formation of the anisotropic phase can be found, but the
X11=uy 1= X1Xp Il 1—v,{ 1- X1 %o, |’ phase is unstable sine&">G'. Only on increasing the as-
pect ratio further does the free energy of the anisotropic
(33 phase decrease and become, at some point, equal to that of

The chemical potentials in the isotropic phase are

the isotropic phase. Broadening the guess distribution above
some width marks the onset of the second category of func-
tions for which the same threshold particle anisotropy and

K (XX~ 1) P ralobal” Nt
= =In(1l-v) - ——t 1—U!<(1— ) ’ the same lowest“global”) free energy minimum, i.e., the
kgT X1X2— 9y X1X2/ | same stable results for, /n,, p;, andQ;, i=ele2,q, are
(34 always obtained. Characteristically, the threshold aspect ratio
| | ) . is the same for the former and latter categories of the trial
My Ux o (XXp—1)_ nl 1 |<1 Px ) functions. However, the algorithm cannot recover the aniso-
keT  XiX, Xlxz—@ x n» Ux X1X5/ | tropic phase parameters at the threshold aspect ratio if the
(35 trial function becomes too broad, which always leadSfo

#G!' (third category. From the practical point of view, we

This completes the basic theoretical considerations of theonsidered a class of trial functions adequate for our pur-

paper. We may now proceed to some illustrative calculaposes if the algorithm converged at the threshold anisotropy
tions, in particular, the uniaxial particle limit, i.e., uniaxial and the system parameters characteristic for the anisotropic-
disks on the one hand and rods on the other. This offers usotropic phase transition. Examples of such simple useful
the possibility of testing the correctness of the theory in theguess distribution functions applied in this work are given in
light of existing data from the literature. Appendix D.
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FIG. 5. Volume concentrations of phases in equilibriarp, as vo/vo

a function of the molecular volume, for (dashed linesrods and . . . N

(solid lineg square boards.andN denote the isotropic and nematic . FIG. 6. _The |sotrop|c-nemat|_c phase transitiontifangles rod-

phases, respectively. Critical concentratiar’s and v** set the like and (circles square bpardllke systems..Open symbols, RHS,

boundaries of the coexistence ranigeN. Molecular volume in volume_ concentratiotdensity change normalized to the mean con-

lattice units. centration of the systendv, /vy, and full symbols, LHS, the nem-
atic order paramete® as a function of the molecular volume nor-

Typically, we first examined the properties of the puremalized to the critical molecular volume, /vS™ (bottom) and the
1 H 1 *
systems ¢,=1). For each system on varyinga phase tran- nematic phase concentratiofi™ (top)

sition is found at some critical threshold valu&®, below . . .
) . . his numerical data serve us as a natural reference for testing
which particles are always disordered and above always or-

: crit_ werit.__ it our numerical results in the rodlike limit. A basic observa-
iered (nemat.|c). we C?Jfflactﬁ?(d X _3'7m4~2 andy tion is that in a pure system and in solution our nematic
;35'3249 for disks, ant"=x"=8.019 andpt"'=4.627 for  jnase anpears at somewhat lower threshold rod length and is

) o slightly more orientationally ordered than that of Warf&);
Next, the properties of each system on dilution are stud: crit _

ied . . het | e.g., compare oux, = 8.019 with his 8.9832, an§=0.85
led. For any given aspect ratio grea;er t We always s 0.8314, respectively. The phase diagrams are very much
found a biphasic range of concentrations where the isotropi

. _ S flike in shape and extent but clearly they do not overlap. Our
and nematic phases coexisted. The lofv and highv phase diagram is consistently below Warndgse Fig. 7,
concentration boundaries of the biphasic range were founfly it is shifted a little bit toward lower concentrations and
by solving the simultaneous equations for the chemical poagpect ratios. Such differences are expected. From inspection
tentials, Eq.(3), for a given aspect ratia and varying the  of poth theories it follows that the difference originates in the
composition of the mixture. There are two possible ways Ofapproximations adopted ifg] [see especially his Eq9)],
presenting the cglculated phase diagrams. A plot of the sol;q Eqs.(B2) and (C10), introduced when simplifying the
ute volume fraction vs particle volume {,vo) is more ad-  aypressions for the particle projections. For long rods, the
equate for lyotropic systems, while a plot of the volume frac'overwhelming contribution to the projections!‘ in Egs.

tion vs aspect ratiovy, ) is usually used when discussing (14)_(19) comes from the rod length, and the approximation
thermotropic systems. The choice is arbitrary but since the

present theory works better the larger the aspect (atig., 200 e e e e e e e
stiff, rodlike polymers, colloids we decided to use the i ' ' ' '
former (cf. Fig. 5). It should be noted that for every solute [ it
for any given particle voluméor aspect rati on traversing

the biphasic range, the equilibrium parameters of the nematic
phase remain constant and have the threslichimum) [ 13
values characteristic of the first occurrence of the stable nem- o 't '\“ (N)
atic phase. The only variable moving the system across the *© [y

biphasic range is the relative volume participation of the iso- [ \‘-\;"-.

tropic and nematic phases in the biphasic material. The pa- RN
rameters of particular importance are the equilibrium value sor \

of the nematic order paramet8e= P,(cos ), and the vol- [ ey g
ume fraction(or density jump dv at the transition. In Fig. 6 T e St
variation of both parameters along the boundaries is shown 0.0 0.2 0.4 0.6 0.8 1.0
as a function of the normalized molecular volumg/v§™ r

wherev=xxx or x, andvg"=xg"xxg" or x;", for disks FIG. 7. Rods in solution. Volume concentrations of phases in
and rods, respectively. equilibrium,v,=wv,, as a function of the molecular volurog after

Since this work develops Warner's idea of the molecularwarner[8] (dotted line$, and from the present studgtashed lines
frame lattice[8] to a quite general case of platelike particles, Molecular volume in lattice units.

150 |- i §




PRE 62 PHASE EQUILIBRIA IN AN ATHERMAL SOLUTION OF . .. 5019

leaves out the angular dependence of the minor contributionsomparing solutes of the same particle volume there is clear
from the rod width, replacing them with some constant fac-evidence that the isotropic phase in a solution of rod isomor-
tors, in a manner analogous to that of Warf&r Similarly,  phs is substantially less favored than in one of plate isomor-
in the boardlike particle limit, contributions from the plate phs at low concentration&f. Fig. 5. In other words, for a
lids dominate the projections and, within the approximationscertain concentration of mesogenic particles of fixed molecu-
applied, the finite plate thickness is accounted for as a smalar volume, the former can form a nematic phase, while the
angle-independent contribution only. Although there is someatter can still have an isotropic phase. This is reflected in the
freedom in assigning particular values to these factors, oulbwer value of the rod critical volume compared to that for
results and the results of Warn@] show that the choice of disks, Uf”tz 8.019< 14_003:Ug”t, higher ordering in the
these values has non-negligible consequences for the phagematic phase, and a relatively broader biphasic range for
behavior. There are two limiting cases of orientational orderrods than for diskgcf. Figs. 5 and B

perfect order and isotropic disorder, for which the distribu-  The results in Fig. 5 have profound consequences for a
tion function is known and the projections can be calculategdod-disk complex solvent. First, in solutions of mixtures of
exactly. The proper behavior of the approximations in theseods and disks of the same particle volume, separation of the
limits may then be used as a guide to select the correct conodlike component in the form of a calamitic nematic phase
stant factor. Warner’s choice of the constant for the rodlikeat low concentrations would prevent formation of, e.g., the
system is such that it ensures the appropriate behavior of thsiaxial phase in the system. In fact, such segregation is
approximation in the perfect order limf8]. We believe, known from other studies, and can be prevented by the pres-
however, that the approximations adopted should ensure thence of either any kind of disk-rod short-range bonding or
proper behavior of the projections not only in the perfectequilibrium prolate-oblate conformational shape fluctuations
order butalso in the isotropic disorder limit. For rodlike of the particled33—35. Secondly, if the monodisperse sol-
particles, comparison of our approximation in EG16) with  vent features a rod-disk conformational transformation with
that of Warner8] [cf. his Eq.(9)] shows that the difference concentration, the appearance of a conformational phase
is in the proportionality factor only. Notably, when we re- transition should be expected. Note finally that we may look
strict the normalization to the perfect order limit alone, weat our results from a more conventional point of view for
recover Warner's results. However, such a restriction underthermotropic liquid crystallinity, i.e., we may compare prop-
estimates the projection magnitude in the isotropic phase angtties of solutes of the same aspect ratio. One finds then that
thus it leads to an enhanced stabilization of the isotropi¢n the absence of attractive intermolecular forces square
phase(see Fig. J. On the other end, it somewhat underesti-boards(diskg form a stable anisotropic state at a signifi-
mates the orientational entropy of particles substantially discantly lower aspect ratio than do the rod isomorphs.

ordered in the nematic phase. o The properties of the nematic phase in the biphasic range,
As may be expected, in the square board limit tf_1ecr0ita|cuand atv’* in particular, vary significantly with both the
lated critical minimum value of the aspect ratiay molecular volume and concentratidof. Fig. 6). For the

=3.742, is higher than the value 3.015 obtained within thesame molecular volume, the volume concentration jump
classical laboratory frame approdd#]. The difference par- across the biphasic range is always greater for rods than for
allels the one found when comparing analogously numericadlisks, which is a consequence of the higher orientational
results of the laboratory framg2,11] and the molecular order of the nematic phase. The nematic-isotropic concentra-
frame[8] methods applied to rodlike particle systems. By thetion difference has an initial sharp increase only to flatten out
same arguments as Warner’s for rd@3, higher values of gradually on increasing the system dilution. The order pa-
x{" and lower values of reflect fewer restrictions in the rameter in the rodlike system drops monotonically on dilu-
orientational phase space of the solute particles, i.e., allowtion, at first rapidly in the early stages of dilution, to reach a
ance for continuous reorientation of particles, and a muclplateau of about 0.8 for a more diluted system. For the dis-
lower entropy penalty for disoriented particles in the nematicklike system on dilution, the order parameter first decreases
phase in the molecular frame approach. slightly to a minimum and then increases toward a plateau at
It has been suggested in the pf%4] that, when using about 0.76. Interestingly, this behavior is somewhat different
such a molecular parameter as the molecular volee from that of the laboratory frame method, where a mono-
there is a far-reaching symmetry between the,(,) phase tonic decrease at higher rates was obseret]. Finally,
diagrams calculated by lattice methods for disks and rodsiote a general decrease in the values of the nematic order
Also, a theory based on the second virial coeffici|@® and  parameterS and the density jump for disklike systems by
a computational work of Frenkel and Muldgg5] suggest a comparison with the results obtained from the laboratory lat-
symmetry in the phase diagrams of rods and disks. On théce method 14].
other hand, considerable asymmetry in the thermodynamic When discussing phase diagrams resulting from the
properties of fluids of prolate and oblate particles is observegresent theory, we should necessarily comment on the way
in some computer simulatio82]. The latter is in line with  we estimate the expected number of locatiofs, acces-
the findings of the present study that quantitative symmetrgible to the test plate, since it has important consequences for
between the ,,vo) phase diagrams of rod- and disklike the phase equilibrium properties. It is assumed that this num-
systems is not obviou&f. Fig. 5. Indeed, although there is ber can be expressed via the product of probabilities of find-
a visible congruency between the shapes of the biphasic réag a free site for each of the test disk constituent cells; cf.
gions of both systems, the phase diagram for rods is consi&qg. (5) and after. Due to statistical similarities between dif-
tently shifted toward the origin of the plane, i.e., to muchferent disk cells, we simplified the problem by assuming that
lower concentrations and smallery’s. Therefore, when this product can be evaluated by considering the placement
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of only a few types of cells: the anchéa), edge(el and mensions and, thus, quantitatively reliable extrapolation of
e2), and interior diagonalq) cells [cf. Eq. (4)]. This is in  these results to the nematic phase. We can only guess that
contrast to a suggestion by Di Marzio, Yang, and Glotzerthe diameter of a particular disk becomes larger in the less
who considered the tiling problem of square tiles and arguedense nematic mesophase while the width can, but does not
that sufficient room for a plate on the lattice should be en-have to, remain approximately constant. Under those circum-
sured once the edge cells, i.e,,el, ande2 in Fig. 3, are  stances, our critical shape anisotroffj'=3.742 situates us
placed[19]. In order to get more insight into this problem, closer to real systems than computer simulations and the
we performed auxiliary calculations with the diagonal termsyegyits of Wnek and MoscicKil4]. By analogy to rodlike
re_rr_10ved from the present tht_aory. With this prescription, thesystems[B], we may also expect that nonathermal contribu-
critical threshold atSpECt ratio in the pure system nearlyjons j.e. incorporation of attractive forces, will not affect
doubled to reachp;yario= 6.056. Consequently, the corre- the threshold shape anisotropy to the extent of moving it
sponding biphasic range shows up at much higheandv,  pelow the experimentally observed values.
values. However, the density jump across the biphasic range, The molecular frame method is a natural alternative to the
ovylvy, remained essentially unchanged by the removal ofnethod of Herzfeld, where on completion of construction of
the diagonal terms, but the nematic order parameter inthe reference lattice the lattice unit cell size is reduced to the
creased toward values characteristic of the rodlike system ifhfinitesimal limit [13]. Thus, the unification of phase equi-
Fig. 5. Clearly, elimination of the diagonal celly) from the jibrium theory for rodlike and disklike systems by means of
computation softens the steric constraints imposed on thgyttice models becomes as natural as that derived from com-
plate, which requires in turn a much higher shape anisotropyuter simulation§23,30,32,41,43—45or off-lattice theories
of particles in order to stabilize the ordered phase. This, howf26,46—49. In saying so, we are aware of the limitations of
ever, contradicts experimental observations, which suggesttge Flory lattice method, in particular its inability to produce
much lower aspect ratio in discotic systeni86—40. An  the translationally ordered phaébe smectic phase for rods
additional argument in favor of accounting for the interior and the columnar one for diskis the athermal limitpurely
cells comes from the fact that only in this way can one secur@om steric effects This is due to the fact that in the course
a thermodynamically correct description of the system, i.e.of discretization of the real solute particles, orientational
the presence of the entire ideal mixing entropy term of regusteric constraints in three dimensional space are converted
lar solutions,n, In(n,/ng)+nsIn(ns/ng), and the convergence into polydispersity of the resulting subsolute in aneds or
of the entropy per lattice site to zero on approaching thawo (plate3 dimensional isotropic solution. The assumed
perfect order limit in a pure system on an infinite lattice translational disorder manifests itself in the lack of correla-
[17,18. We believe, therefore, that the prescription of Ref.tions between neighboring rows of lattice cells parallel to the
[19] is more relevant for describing yet another interestingorientation axisrods), or slices of lattice cells perpendicular
system of “starlike” or “crosslike” particles(cf. [14]). to the axis(plates, thusa priori excluding translationally
Only limited comparison of the present numerical resultsordered phases from consideration. If needed, the correla-
with relevant experimental and computational data is postions can be introduced into the model by assuming the ex-
sible. Numerical equilibrium parameters of our model for theistence of more or less artificial density waves in rd\ﬂE
rodlike system do not differ substantially from those of smectic phase of roajg)r slices (the columnar phase of
Warner, who discussed his results in detail in light of exist-plateg.
ing experimental evidend®]. Since the differences between = The athermal theory presented here forms a substrate
his and our results are for now beyond experimental verifiypon which to build further work on nonathermal, amphi-
cation, we concentrate here on discussing results for disklikgopic [16] systems of plates, and biaxial systems of mono-
systems. In the athermal limit one parameter of particulagnd polydisperse particld€0]. The simple model of Wnek
interest is the critical shape anisotropy of molecules necesand Moscicki[14] allowed only the study of a solution of
sary for formation of the nematic phase. Phase equilibriajisklike particles in the presence of solute-solvent interac-
computer simulations for disklike particles interacting Viationsl A substantial advantage of the present theory is the
repulsive forces usually yield a very low minimum aspectease with which any kind of intermolecular interactions be-
ratio of x§"'~2.75-3.0[25,41]. These values seem to be tween all kinds of particles forming the solution can be in-
somewhat below the results obtained from limited experitroduced and studied. In a forthcoming paper we will report
mental x-ray data, which vary from about 328,39 to 6.1  on the consequences of introducing the solute-solute attrac-
[40] deduced from studies in the columnar and crystallinetive intermolecular interactions for the phase equilibrium
phases of thermotropic disklike molecules, and closmg“fb properties of the systefi20]. We will discuss features of the
values observed for micelles in lyotropic systefi3§,37. resulting characteristic “bottleneck” phase diagrafoof.,
However, this comparison has to be judged with care due te.g., Fig. 10 of Ref[14]) in terms of the strength of inter-
unavoidable problems with exact estimation of the moleculamolecular forces between all kinds of particles present in the
(oblate aspect ratio. Isolated molecules with fully stretchedsolution. In further work we are interested in mesophases
sidechains, and the same molecules packed into the pure syfiermed by colloids, supramolecules, and polymers in solu-
tem with sidechains taking different conformations, cannotion. Their aspect ratios in the rod- and disklike forms are of
be treated equivalently. Moreover, the columnar phases tthe order of those of conventional liquid crystalline sub-
which the available x-ray data refe40,42 are much more stanceg50]. Although more complicated in shape and sub-
dense than the nematic mesophase. Interpenetration of tect to more complex interactions, they can be studied within
sidechains between molecules belonging to adjacent columriee present model where ordering phenomena are primarily
prevents realistic determination of the overall molecular di-dictated by geometry, excluded volume, flexibility, and spe-



PRE 62 PHASE EQUILIBRIA IN AN ATHERMAL SOLUTION OF . .. 5021

cific inter- and intraparticle interactio88,51,53. Lyotro-  that bring the initial coordinate system into coincidence with
pic liquid crystalline systems will be of special interest in thethe final frame[cf. the scheme in Eq1)]. If by M(Q) we
future as they undergo phase transitions with simultaneouislentify the Euler matrix whose elements are calculated from
change of the supraparticle shape with temperature, concethe Euler angles, then a vector whose components in the
tration[53,54], or pressure. former are given by =[r,r,,rs] will be given in the latter
frame byr'=[r1,r5,r3] [21]:
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APPENDIX A: CALCULATION OF AVERAGE = My(Q)r;, i,j=123, (A2)
PROJECTIONS

In order to calculate the average projections let us first
consider the Euler angle@= («,8,7y) specifying rotations whereM;;({2) are elements of the rotation matrid (€2):

COSa coSB cosy—sSina siny  sina cosB cosy+cosa Siny —sinB cosy

M(Q)=M(a,B,y)=| —COSacosfsiny—sina cosy Ccosacosy—sinacosBsiny singsiny |, (A3)
cosa sinB sina sinB cosp
|
For the frames and rotations defined schematically in(Eq. 5051(9,9')2X1X2|P?é9’|,
we have

k ’ Q,0'
9e2(Q, Q") =X1Xo|p33" |, (B1)

ri:; M;; ()R, e2 1X2lpz3 |

PR, Q") =x1x5| p5Y|.
r=2 My(Q)R;, (A4)
. In order to preserve the limiting behavior in Eq22) and
(23), it is necessary to slightly adjust EB1):
ri=; M, Q9T
96(0,9)=x,

Xq ,
<X1_1+ X, P | +1

Whererik, ri, andR; are the unit vector components in the

{xyZ%, {xyZ, and{XYZ frames, respectively.

From Eqg.(A4) it follows that , X2 )
a 50,0 =x, (x2—1+x—l oY +1|, (B2
3
MEHOQH = M09 = X Min(Q)Mjm(Q)=pif ",
m=1 ‘ , 2X1X5
(A5)  pKQ,Q")=—F—
VXT+X5
which defines the interrelation between different sets of Eu- 2,02
VX7+ X X1+ X "
ler angles of interes), Q', andQX. [ 12 2l 1+ )1( . 21 =2||p%" |+ 11
112

APPENDIX B: SPECIAL CASE OF BOARDLIKE PLATES,

x,>1 AND x,51 It is easily verified that such a modification turns out to be a

minor approximation which does not alter the equilibrium

For highly asymmetric molecules,;>1 andx,>1, the parameters of the system in any significant way. Note that
projections of thekth plate[cf. Egs.(14)—(19)], reduce to the formalism of the isotropic phase remains unaltered by the
projections of the plate surface only: limit, so Eq.(22) holds.
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Uniaxial disks

The formalism simplifies even further if the plates aret
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where we introduced subscrigtin place ofx to distinguish

he solute particles. The basic quantities of the theory be-

squarex; =X,=x, i.e., disks. The orientational distribution ¢°M€

becomes uniaxial with respect to the discotic nematic direc-

tor, nllZ, depending solely on the Euler angse

Pe1=Pe=X"R+X=py,

g N, 9q=[X2=2x(V2—1)]R+V2x=pq, (B4)
Wy(d)=—=—=w , B3
ol 1) = Ng  Ng ol ) (B3) whereR is given by
o (7 (27
R:T’_ZJ f J V1—[cosBcosB’ +sinBsinB’ coga—a’)]?Wy(B)Wy (B )d(a—a’')dBdB’. (B5)
0oJo Jo
|
The orientational distribution function is now M_y: 2(x—1) " 2(px— X)X inl1— oM 1— Px
T e el L L R
singexp(—2ib;Q;) . 2 — 2
[ sinBexp —2;bQ;)dB +2(px=X) XZ_EQ C—pgoY  ¥Q
with XIn 1—vy(1—— +2(5Q—\/§x)]
2(x—1)x2 ' a1 oy vg
ﬁW[—vdlln_l—vd( _7)__“7 | #In—g=Inf,. (B10)
The isotropic phase chemical potentials are calculable in a
(x—1)2x2 B r %o 1 %0 straightforward way from Eq€34) and (35) by substituting
bQ:m[_Ud In-l_l}d(l_7>-_l+—2(, ) X=X1=Xo!
B7 I 2 —
Mg X—1 | Pd
kBT In(l Ud) 2 J;'d In 1 Ud<l 7>:|,
and theQ,’s are defined in Eqs(24) W|th the substitution (B1y
X=X1=Xp. Furthermore, p; (Q 0")=p; (Q Q) in the | | 5 .
uniaxial limit. For symmetry reasonQQ Qu[x?—2x(V2 Md nﬂ— —-1_, Inl1—o! 1_@ (B12)
—1)]/x?. The Gibbs function and chemical potentials in the keT X2 xz—ﬁ'dpd Vd x|

nematic phasé¢N) become

GN vgl Uy N N vg'
W_FInF—i_(l_vd)ln(l_Ud)_Flnfl
2(x—1
__(2——) Ud(l g;) |n 1 Ud<1 p_;)
X"—@x
x—1 2
(—2—)1 vyl 1— —Z In1-v| 1- g?
X _{JQ
vg
_ZF[DX(EX_XH'bQ(aQ_‘/QX)], (B8)
/*LS _ ( - ) N EX
kB |(1 vd) flen d( 7)
(x—1)? e
- Q|n yl—X—S , (B9)

APPENDIX C: SPECIAL CASE OF LONG RODS

The general theory developed in the present paper encom-
passes also another case of practical importance, i.e., a solu-
tion of long rods. This requires substitution of eithgr=1
or x,=1. Let us briefly review the implications of the limit
for the formalism. First we note that the molecular volume
becomes [instead of &;x,) for plateg, so the system vol-
ume isng=ng+xn, [cf. Egs.(4)—(7)], where the subscript
is introduced to distinguish the rod limit. Equati¢hl) re-
duces to

Viv1
No

-1

=X

(C1

T,

as the process of inserting the test rod into a system is one
dimensional and consists of putting in the anchor cell and the
remaining &—1) cells(the edge cells

Within the framework of the general theory, tReyz
frame is defined in such a way that the rod long axis points
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along either(1) thex or (2) they axis. In the former case the

number of obstacles from theh rod is solely given byo§zz
=9 & = X|cosa® sin B4 + x| cosa® cosg* sin ¥

+ sina® cosyX| + |cosak cosBX cosy*— sinaX sin |

(C2
=x(|cosa¥ sin 8|+ |cosa® cospX sin y*+ sinaX cosy¥|)
(C3
=x(p%3" | +1p5" N=p302,Q"); (c4)

sincex=x;>xX,=1, the last term on the RHS of E(C2)

can be neglected. After some adjustment to recover prop
behavior in the perfect order and disorder limits we have th

projection of thekth rod[cf. Eq. (B2)]:

’ !
o35 [+ 1p5™ |

5 +1, (C5

PEQ,Q)=(2x—1)

and with the use of Eq21) the system rod mean projection,

W_yz: (2x— 1)j j Wiq () Wiy (1)
o5 |+ 103" |

5 dQ dQ’+1.

(C6)

Analogously, in the second case=x,>x;=1, the rel-
evant quantity is thé&th rod projection onto th&z plane:
ok =p% =x|sinaX sin |+ x|sina* cosB* cosy¥

+ cosa® sin y*| + |cosa® cosy*—sinaX cosB sin¥|

(C7)
=x(|sina* sin B¥|+|sina* cosp* cosy*+ cosa® sin yX|)
(C8)
=x(lp%:" |+ 1p3i" =9k, Q"), (C9
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Refined molecular frame

Different functional forms of the rod equilibrium orienta-
tional distribution function and of the rod projection in cases
(1) and (2) are a manifestation of the problem of choice of
the appropriate molecular frame. In the case of rods these are
the long axes which are oreintationally ordered, and not the
axes normal to the rod as assumed in the general case. What-
ever the choice of the molecular frame, the mean equilibrium
projection of the system rods onto the plane perpendicular to
the long axis of the test rod, EqC2) and Eq.(C7) must be
guantitatively the same. In fact, it can be quite easily dem-
onstrated that under properly chosen single Euler angle rota-
tion the formalism developed for either case, i.e., the long

er

axis parallel tox, ory, or z, can be transformed into the

?ormalism developed for one of the other cases, and vice

versa.

Let {xyz} and{xyZ}, i=X,Y,Z, denote, respectively,
the test and thé&th rod frames in the case when the rod is
along thei axis of the molecular frame. For cases when the
rod points along eithefl) the x or (2) they axis, the sets of
Euler angles necessary to bring one frame into coincidence
with another can be schematically represented, by analogy to
Eq. (1), as

(m12,0,0
{xyz —— {xyz},

(12,0,0
{xyZ} —— {xyZ},
(C12

0k

{xyzd—{xyZd,

ok’

{xyz}—{xyZ}.

which after an adjustment similar to the previous case be- The required transformation of the rotation matriX ds.

comes

o5 |+ o3|

Pr(Q,Q)=(2x—1) 5 +1, (C10
giving the mean projection
Exz=(2x—1)f fwlx(ﬂ)wlx(ﬂl)
Q,Q’+ Q,0'
pas” [tleat 1o 0rv1, can

2

where the last term on the RHS of HL7) is set equal to a
constant. The quantities,;(Q2) andw,,(Q) are the orien-

Eq. (A5)]

M@= | 2 Mg (7/2,00Mm(05)

XM H(7/2,0,0. (C13

In this way not only does the full expression ﬁoijz [cf. Eq.
(C2)] transform intoga';z in Eq. (C7), but also the relevant
approximate forms, EqC3) into Eq.(C8) and Eq.(C4) into
Eq. (C9. Thus also the equilibriumw,,({)) becomes
W,1(Q) under transformation.

The same considerations affect transformations bringing

tation distribution functions characteristic for each casethe rod parallel to the axis of the molecular frame, i.e., the

Note that the functional dependences @mof w,,() and
Wy () are different from each other.

convenient molecular frame for the rodlike solute. The rel-
evant rotations are
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(0,— w/2,0)
Xyzg —— {xyz},
(0,— 7/2,0)

{xyZ} —— {xyz},

k (14
Q

{xyzd—{xyz},
ok

{xyzz} —{xyZ},

and the transformation of the rotation matrix is
Mdt<9k)=§ 2 Mgz (0,= m/2,0) M 0*)

XM,'(0,~ 7/2,0). (C15

Under the '[ransformation;q§Z for the rod in the direction of
the x axis become@)'jy for the rod along the axis, and the

formalism becomes compatible with the theory for rods of

Warner[8].
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N
Ms _ Ny (X_ 1)
kBT—In(l vr) X_@yln

1—UN(1—@)
(C21)

and

N N —

My Ur x—1 (ZX(@Xy_ 1 )
—=In—=Inf{+ —— ——p
kgT X ! X=Pxy [ UFI(X_ny) Y

2
xIn 1- X
X

1-oM +2(Pry— 1)]. (C22

In the isotropic phase the mean projection becomes
P =x+3, (C23

the 3 term being due to the finite thickness of the rod. The
relevant chemical potentials reduce to

Using a molecular frame chosen such that the rod is alongng

the z axis {xz;é} we get[cf., e.g., Eqs(C4) and(C5)]

' , 15" | +1p%" |
oh=x(lp® [ +1p% ™ N =(2x—1) =541

(C16)

Minimization of the relevant Gibbs function with respect to
the orientational order provides the equilibrium form for the

distribution function:

Ng
Wi, (Q)=W,(B)= =

r

3 sinB exp( — by, Qxy)
- deB Sil’lﬂ eXF{ - (bnyxy)]

_ SinB exp(— bnyxy)

) (C1?
fy
with
_ (X_l)X -1 W_xy ﬁxy
o v e 15 e )

(C18

where

Exy:J’ WlX(Q’)Wlx(Q)@ty(Q,Q')dQ dQ’

=(2x—1)R+1, (C19

with R defined in Eq(B5) and

CUeSY [+ 1e% D
Q=2(2x—1) | w(Q") 5 da’.

(C20

The chemical potentials in the nematic phase are

s —2(x—1)In Lo tin(l-v))  (C24
keT 2X Ur
,le UI UI
s _ _r 1 i
kaT 2(x=1)In| 1+ o (Xx+3)+In . (C2H

APPENDIX D: NUMERICAL PROCEDURE

Our numerical procedure was as follows. The efficiency
of the algorithm in finding the equilibrium parameters de-
pends strongly on the initial guess for the distribution func-
tion. Therefore, as the initial step, we searched for appropri-
ate trial functions. It was a quite simple task, since the
nematic phase is apolar, so that the distribution function has
the property thatv(8) =w(m— B). Thus, averaging over the
distribution, the integration can be limited to the rar@e
712} only, and the results then multiplied by 2. This substan-
tially reduces the iteration procedure and provides the possi-
bility of using any arbitrary function behaving reasonably in
the range as the initial guess. Good examples of such useful
trial distribution functions exploited in this work arg;/ng
=cos B (or 16.0-8.587) for disks, andng/n,=|cos g
+0.85coé B (or 16.83-10.08%) for rods. In turn, for the
theory of Warnel{8] satisfactory results are obtained with
ng/n,=|cos gl.

At the nth iteration step, for the instantaneous distribution
function, the average projectiofigq. (B4) for disks or Eq.
(C19 for rodg| are calculated in the manner of RéR1].
Next, the exponents in EqB7) [or Eq.(C18) for rods| are
calculated. This completes threh step. Results of thath
step are used next to calculate theH1)th step instanta-
neous distribution functiofEqg. (B6) with Eq. (24) for disks
or Eq.(C17 with Eq. (C20) for rods; cf. Ref[31]], and the
whole iteration loop is repeated.

At the heart of each iteration step one performs the inte-
gration of R with respect tada anddg’ [cf. Eq.(B5)]. This
integral is digitized with the aid of the trapezoidal quadrature
formula. Integration intervals are divided into subintervals of
lengthsAa=27/J, andAB=AB"'=ml2]g , the latter for
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(uniaxia) symmetry reasons, so that the integrated function L=
is calculated at discrete pointg,=mAa (m=0,...J,) =1 W
and B{=jAB' (j=0, ... Jg). Particular values od, and !
Jg are set to 1024 and 64, respectively; we found that twowhere
fold increase of thd,, value does not change the final results

to within the required accuracy of the calculations, and the [t
value ofJ; =64 is adopted aftei31]. Since the distribution L= m
functions in Egs(B6) and(C17) are independent af, it is

sufficient to calculate the integral overonly once, and store

the results in an auxiliary matrix, sawW(iAB,jAB’), where L . .
i g=i, j=1 (cf Ref.)E31]). WIABIAR) and the normalization factdjif| is defined as

(D1)

(D2)

After every iteration step convergence of the procedure is
examined in the manner suggested 3i]. In the nth itera-
tion step let the distribution function value for thth grid 7= (max )y, .. (D3)
point, B;, be f!'. Thenth step maximum single grid point
relative deviation, which is a measure of the iteration condt is assumed in our calculations that self-consistency is

vergence, or simply the “error,” is defined as achieved once,<1x107°.
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