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Phase equilibria in an athermal solution of platelike particles

Dagmara Sokolowska and Jozef K. Moscicki*
Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland

~Received 18 August 1999; revised manuscript received 11 February 2000!

A molecular frame lattice theory of athermal solutions of platelike particles is presented. Steric repulsion
between the particles is assumed to be the sole interaction present in the system~the athermal limit!. The theory
is developed for flat rectangular parallelepipeds, and examined in detail for two opposite shape anisotropy
limits: rods and square boards. Numerical calculations show that in a pure system of either long rods or square
boards, a nematic phase is formed once the shape anisotropy exceeds some critical value: for rods the critical
aspect ratioxr

crit is 8.019, and for boardsxd
crit is 3.742. For higher values of the ratio, a narrow concentration

region of coexistence for the nematic and isotropic phases, which separates the isotropic~low concentration!
from the nematic~high concentration! solution, is found on dilution of each system.

PACS number~s!: 64.70.Md, 61.30.Cz
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I. INTRODUCTION

In discussing the fundamental molecular properties o
system forming a nematic phase, the importance of two
posite kinds of interactions, steric repulsion and specific
tractions, is usually emphasized and treated@1–4#. Among
the variety of molecular theories of the nematic state stre
ing the dominance of one or the other kind of forces, Flo
championed the steric point of view with the aid of a latti
method @5#. In his very first attempt to use the lattice
simplify the specification of spatial configurations, and
evaluate the steric factor in the configuration partition fun
tion, the relevant partition function was factorized into t
configuration or steric partZcomb, the orientational partZor ,
and a partZint accounting for the exchange free energies
interaction between molecules of the system,Z
5ZcombZorZint @2#. Use of the cubic lattice associated wi
the laboratory reference frame~XYZ lattice! of the sample is
pivotal for the method. Each rodlike molecule becomes s
mented into a sequence of contiguous rodlike subsegm
positioned in adjacent rows parallel to the nematic directon̂.
In equilibrium, the statistics of subsegments in the ro
should be the same and independent of each other. S
constraints for rods in three dimensions are thus transfor
into a one dimensional problem of randomly distributed s
vent molecules with polydispersity in the length subse
ments, where the polydispersity function is defined by
equilibrium orientational distribution function of the rod
However, the need to map molecules onto subsegment
the lattice limits the number of orientations available to t
rod to a discrete spectrum of orientations only.

The original lattice theory of Flory has been explor
over the years to study different aspects of rodlike syste
@4–7#. A significant improvement to the lattice idea is due
Warner@8,9#. Without losing the original advantages of pla
ing a system of rods on the lattice, Warner proposed a cle
alternative lattice approach that allowed him to remove d
cretization of the orientational states of a rod. He noted t
what determines the mapping of molecular configuratio
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onto the lattice representation is the projectiony of the mol-
ecule onto the plane perpendicular to the director@2#. Thus,
alternatively, the lattice can be associated with the refere
frame of the rod~xyz lattice! and the rest of the system pro
jected onto the plane perpendicular to the long axis of
given rod. The discretization imposed on the rod orientat
by theXYZ lattice is thus removed. Orientational disorder
the system is measured by the mean projection of the r
called after Warner thesteric constraint p̄. The critical value
of the rod aspect ratiox for the formation of a stable nemati
phase in a pure, athermal system of rodlike molecules
predicted by Warner’s method to be somewhat higher t
that obtained with the Flory method@10–12#. However, be-
cause of it, Warner’s latent entropy at the transition
smaller than the one predicted from theXYZ lattice, which
overestimates the latent entropy.

It has been demonstrated recently thatXYZ lattice meth-
ods are also suitable for application to discotic molecul
cf., e.g.,@13–15#. For this purpose, a much more severe si
plification of the disk molecular shape is required, name
the disk is approximated by a flat, rectangular parallelepip
in order to fit the lattice. Wnek and Moscicki@14,15#, in their
extension of the Flory model for rods@2# to the case of
discotics, considered the formation of a uniaxial nema
phase by square parallelepipeds. For symmetry reasons
representation of perfectly ordered discotics on theXYZ lat-
tice by square boards of aspect ratiox and thickness equal to
the lattice unit cell in this particular case is rather well ju
tified @14#. In the spirit of the Flory method, disorientation o
the disks was introduced into the system by two independ
rotations of each board~or, simply, disk! about theX andY
laboratory frame axes. This procedure transforms disks
stairways, in which the stairway steps form trains of contig
ous segments located in neighboring elementaryXYslices of
the lattice. For the same reasons as for rods, the situatio
eachXY slice is statistically identical at equilibrium, and th
three dimensional problem is transformed into the probl
of accommodating different trains in a two dimensional s
of other trains and solvent molecules. The model allowe
study of the system in the presence of solute-solvent inte
tions @14,15# and a system of discotic molecules wi
sidechains@15#. The minimum ~critical! value of the disk
5011 ©2000 The American Physical Society
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5012 PRE 62DAGMARA SOKOLOWSKA AND JOZEF K. MOSCICKI
anisotropy sufficient for formation of a stable nematic pha
calculated from the theory isxcrit53.015 @14#. Despite rea-
sonable success, such a treatment of the hard disk syste
only approximate. Disk orientations in space are seve
discretized, particles are not allowed to rotate freely ab
the symmetry axis, and the axis has a discrete spectrum
orientations. Consequently, accounting for the solute-so
attractive intermolecular interactions usually present in
uid crystals is beyond the scope of the calculations in@14#.

In order to remove some limitations of@14# and address
thermotropic nematics, and, in particular, to extend our qu
to the contemporary and very attractive problem of biax
nematics, we have developed an approach for a system
plate- or boardlike@16# particles along Warner’s idea of us
ing the molecular frame latticexyz. In particular, the use o
the xyz lattice accommodates the preservation of plate rig
ity and complete orientational freedom. It makes the mod
ing of interactions of any kind, i.e., steric repulsion as well
attractive forces between particles, feasible, natural, and
to handle. The theory converges to proper results in the
fect order limit of a pure system of both rods and squ
boards~for simplicity, hereafter referred to as disks!, where
the entropy per lattice site approaches zero@17,18#. More-
over, in order to maintain the thermodynamic correctnes
the model, the ideal mixing term in the Gibbs free ener
@19#, arising from the presence of solute and solvent partic
in the system, is naturally incorporated in the formalism. T
role of the plate biaxiality and of soft dispersion interactio
between plates will be addressed elsewhere@20#.

The paper is organized as follows. The aim of the n
section is to present a general outline of the lattice treatm
of steric interactions in an athermal solution of platelike p
ticles, i.e., the only interaction accounted for is contact
pulsion, and the configurational partition function is eva
ated. Results of the calculations specialized to rods an
disks are presented and discussed in the light of results a
able in the literature in the final section of the paper.

II. THEORY

A. The anisotropic phase

The results of the lattice method in describing phase e
libria in rodlike systems@5,6,8# are the substrate upon whic
much of our work on systems of disklike@14,15# and plate-
like molecules is based. The theory presented here conc
the phase transitions and phase equilibria in a system
identical platelike particles dispersed in a solvent. The u
mate goal is to find the partition functionZ relevant to the
problem. OnceZ is known, and thus the Gibbs function o
the ensemble,G, one can study the equilibrium properties
the system. To attain equilibrium of the anisotropic phas
is required that the equilibrium orientational distribution
plates minimizes the free energy. In order to handle the pr
lem we introduce three reference frames, the laboratory
erence frame$XYZ% whoseZ axis is assumed to be parall
to the direction of orientational order, and two molecu
reference frames. The first$xyz%, is associated with the tes
plate. The second,$xyzk%, is of a randomly selected plate
the kth, say. Each molecular frame is defined in such a w
that its z axis is along the plate normaln̂. We employV i

[(a i ,b i ,g i) to indicate the orientation of one referen
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frame with respect to another; cf. the scheme in Eq.~1! and
Fig. 1, as a set of three Euler angles@21#. The Euler angles
are chosen in such a way as to bring the initial frame i
coincidence with the final frame, so that the first anglea i

defines a rotation about thez axis of the initial frame:

$XYZ%→
V

$xyz%,

$XYZ%→
V8

$xyzk%, ~1!

$xyz%→
Vk

$xyzk%.

The equilibrium orientation distribution ensures that

]G

]nV
U

eq

5
]~2kBT ln Z!

]nV
U

eq

50 ~2!

over all angles, wherenV is the number of plates whos
orientation isV. Similarly, the equilibrium coexistence o
the isotropic~I! and anisotropic~A! phases imposes the con
dition that the chemical potentials of the solventms and sol-
ute mx ~obtained as partial derivatives of the free energy! in
the two phases must be equal at equilibrium, i.e.,

m i
I

kBT
5

m i
A

kBT
U

eq

, i 5s,x. ~3!

In calculating the partition function, the present theo
follows the general framework of earlier work from ou
group @14,15#. What is significantly different is that in cal
culating the steric factorZcomb we introduce an auxiliary lat-
tice not in the reference frame of the system, but in
molecular frame of the plate under consideration~the test
plate!. To facilitate comparison between past and present
tice work on discotic molecules, we try to use the same
tation as before@8,14#.

The solute under consideration consists ofnx monodis-
perse plates with principal aspect ratiosx1 and x2 . We
choose the unit cell of the molecular reference lattice to h
linear dimension of the plate thickness, so that a plate on
lattice is represented by a rectangular parallelepiped of
mensionsx1 by x2 . For simplicity and convenience, the so
vent molecules are assumed to be isodiametric, with dia

FIG. 1. Orientation of the molecular reference frame of the t
plate $xyz% with respect to the laboratory reference frame$XYZ%.
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eter equal to the plate thickness. Hence, the solvent as
ratio is xs51. All particles of the ensemble are incapable
interpenetrating each other~steric constraint!, and no voids
are allowed in the system@22#. Therefore, the total numbe
of lattice cells necessary to accommodate our system,
the system volume in unit cell units, is

n05ns1x1x2nx . ~4!

In a standard initial step of the lattice method, we assu
that j plates have already been assigned locations in the
tem volume. To evaluate the configuration part of the pa
tion function, Zcomb, we calculate the expected number
locations n j 11 accessible to an additional~test! ( j 11)th
plate. The auxiliary reference lattice is associated with$xyz%
in such a way that thex andy axes are along thex1 andx2
side edges of the test plate, respectively.

We make the usual assumption that in equilibrium all
cations accessible to the test plate are statistically equiva
This translates in the lattice approach into stipulating tha
equilibrium all elementary slices of the lattice parallel
each other are statistically equivalent, i.e., we assume th
any given slice dispersion of the contributions from all pla
of the system and of the solvent molecules is random, be
uninfluenced by the configuration of neighboring slices. F
thermore, the thermodynamic properties of the syst
should not depend on the order of filling the sample volu
with plates.

In contrast to the$XYZ% lattice in the Flory method, ou
test molecule when inserted into the elementaryxy slice of
its own lattice is not segmented and remains intact. T
alone constitutes a substantial simplification of our calcu
tions.

We apply the following sequential algorithm for placin
elementary cells of the (j 11)th molecule on the lattice; cf
Fig. 2. We begin by anchoring the plate by placing one of
corner cells 2I . Second, we position two edge cells adjace
to the anchor cell 3I . These are followed by the adjace
interior cell 4I and the next two edge cells 5I . This establishes
the construction boundary more or less perpendicular to
plate diagonal. We advance the construction boundary

FIG. 2. Sequence of placing of test particle elementary cells
the lattice.
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by row until completion of the task; cf. 6I – 9I in Fig. 2. The
final result should depend neither on the choice of the anc
cell, nor on the order in which the two edge cells are add
nor on the order in which interior cells are added.

Each of the elementary cells can be placed into anxy slice
with its own distinct characteristic probability, sayp i , i
51, ...,x1x2 . Except for the anchor cell, all elementa
probabilitiesp i are conditional ones, since the availability
a free site for a given cell depends not only on the numbe
obstacles in the slice due toj plates already present in th
system, but also on the presence of the previously pla
cells of the test plate. The expected number of locationsn j 11
accessible to the test plate will thus be the product of th
probabilities:

n j 11

n0
5p1)

i 52

x1x2

p i . ~5!

The probability that a given site in thexy slice is free for the
anchor cell is simply given by the volume fraction of fre
sites in the system@2,8,14#:

p15
n02 jx1x2

n0
. ~6!

For the remaining cells, the conditional probability of findin
a free space for a particular cell is given by the volum
fraction of empty sites in a solution of the empty sites and
the effective obstacles to the cell resulting from allj plates of
the system,(k51

j Ki
k , the particular type and number of ob

staclesKi
k being characteristic for each of the cells@2,14#:

p i.
n02 jx1x2

n02 jx1x21(k51
j Ki

k . ~7!

Note that Eq. ~7! disregards the presence of previous
placed cells of thej 11 plate; it has been argued in the pa
@8,14# that accounting for these cells has no effect on
final form of Zcomb within the approximations adopted in th
lattice method.

Our task is then to evaluate the number of obstacles
each cell of the test plate. As argued for rodlike particles
Flory @5# and Warner@8#, the number of obstacles can b
expressed via projections of the system particles onto a
ticular reference plane. In the Flory laboratory frame a
proach, this is a plane perpendicular to the nematic direc
while in the Warner molecular frame approach it is a pla
transverse to the rod. Wnek and Moscicki@14# have shown
that for the disk system in the former approach, the relev
planes are two mutually orthogonal planes parallel to
nematic director. For the present theory it is sufficient
know the projections of a given plate of the system, say
kth, onto three planes of the$xyz% lattice: two principal
planes`xz

k and `yz
k , and a plane perpendicular to the pla

diagonal,̀ qz
k , in order to be able to evaluate the number

obstacles thekth plate can impose on the construction of t
test plate.

After placing the anchor cell, we add one by one tw
adjacent edge cells; cf. Fig. 2. Let the first of the two
positioned along thex1 edge. From simple geometrical con
siderations, one finds that any givenkth plate of the system

n
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due to its translational freedom along they axis, can obstruct
the placement of the cell inny ways, each of them statisti
cally weighted by the local Warner steric constraint,pyz

k (ny),
where locality is emphasized by theny argument. The tota
number of possible obstacles for thekth plate is then the
weighted sum of all contributions,

Ke1
k 5(

ny

pyz
k ~ny!5`yz

k , ~8!

i.e., it is equal to the projection of thekth plate onto theyz
plane,`yz

k . By identical arguments, the total number of o
stacles for the edge cell alongx2 is the projection of thekth
plate onto thexz plane,`xz

k :

Ke2
k 5(

nx

pxz
k ~nx!5`xz

k . ~9!

Clearly, the results in Eqs.~8! and ~9! are independent o
each other, and thus independent of the order in which
edge cells are located on the lattice.

Let us next consider the number of ways thekth plate can
block an interior 4cell in Fig. 2. The blocking results from
the translational freedom of thekth plate perpendicular to th
direction in which the interior cell is added, i.e., transverse
the cell radial vector~with respect to the anchor cell! r ~see
Fig. 3!. By analogous arguments as for the previous t
cells, the total number of obstacles is

Kq
k5(

nq

pqz
k ~nq!5`qz

k , ~10!

where`qz
k is the projection of thekth plate onto the plane

normal tor .
We proceed further by adding the next pair of edge ce

thus completing the construction front line~cf. Fig. 2!. The
addition of any adjacent row to the construction bound
proceeds along the same scheme: first the interior cells,
the edge cells. From inspection of Fig. 2 it follows that t
number of obstacles to all edge cells is given by either
~8! or Eq. ~9!. The number of obstacles to the interior ce
will vary from cell to cell, since their radial vectors are n
collinear; cf. Fig. 3. However, as argued in@14#, this varia-
tion is not very broad. Each interior cell can then be assig
some mean value with only a minor effect on the final res
For simplicity and clearness we select the value to be eq
to Kq

k corresponding to the unit vectorr̂ along the plate di-

FIG. 3. Placing the interior cells: their radial vectors and t
plate diagonal vector~see text for details!.
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agonal, r̂[q̂; cf. Fig. 3. It is identical with the statistica
mean for a square plate and slightly different from the lat
for rectangular plates.

The cells of the test plate thus divide into four categor
in terms of their statistical similarity~see Fig. 4!. The single
member category, denoted in what follows by the subsc
a, constitutes the anchor cell. To the other two categor
which are identified by subscriptse1 ande2, belong the edge
cells alongx1 andx2 , and there are (x121) and (x221) of
each of them in the plate. The remaining (x121)(x221)
cells form yet another category, theinterior cell category,
which we denote by the subscriptq.

This leads to a substantial simplification of Eq.~5!:

n j 11

n0
5pape1

x121
pe2

x221
pq

~x121!~x221! , ~11!

with p i , i[a,e1,e2,q, given, respectively, by Eqs.~6! and
~7!, where the relevantKi

k are estimated in Eqs.~8!, ~9!, and
~10!.

The number of obstacles for a cell of thei category,
(k51

j Ki
k , depends on the orientational distribution of the sy

tem plates, so that an exact calculation of that numbe
expected to be cumbersome and the final expression
wieldy. In the spirit of the lattice method approximation w
introduce, therefore, a number of simplifications, which yie
an approximate number of obstacles that has a simple de
dence on the basic parameters of the system while at
same time keeping the error thus introduced in the evalua
of the partition function to a minimum. In particular, w
benefit from the fact that each plate of the system in equi
rium should on average contribute the same amount of
stacles to everyxy slice of the system. In other words, ou
system is, in this treatment, thermodynamically equivalen
a system ofj plates, each with the same~mean! orientational
order. At no expense to the completeness of the theory,
can use the mean values of the basic parameters of the
tem in what follows in place of summations over the syste

(
k51

j

Ki
k5 j K̄ i5 j `̄ i , ~12!

FIG. 4. Four categories of the test plate cells in terms of th
statistical similarity.
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so that Eq.~7! becomes simply

p i.
n02 jx1x2

n02 jx1x21 j `̄ i
, ~13!

where`̄ i , i[e1, e2, or q, is the plate mean projection ont
the relevant plane, averaged over the equilibrium orien
tional distribution function of the system.

The projection area of a randomly selectedkth plate onto
the yz and xz planes can be expressed with the aid of
relevant Euler angles@cf. Eq. ~1! and Appendix A# as

`e1
k 5`yz

k 5x1x2ucosak sinbku1x1usinak cosgk

1cosak cosbk singku

1x2ucosak cosbk cosgk2sinak singku ~14!

5x1x2ur13
V,V8u1x1ur12

V,V8u1x2ur11
V,V8u[`e1

k ~V,V8!,
~15!

`e2
k [`xz

k 5x1x2usinak sinbku1x1ucosak cosgk

2sinak cosbk singku1x2usinak cosbk cosgk

1cosak singku ~16!

5x1x2ur23
V,V8u1x1ur22

V,V8u1x2ur21
V,V8u[`e2

k ~V,V8!,
~17!

and the projection onto the plane orthogonal to the diago
is

`q
k[`qz

k 5x1x2ucos~ak2f!sinbku1x1usin~ak2f!cosgk

1cos~ak2f!cosbk singku1x2ucos~ak2f!

3cosbk cosgk2sin~ak2f!singku ~18!

5x1x2ur13
V,V9u1x1ur12

V,V9u1x2ur11
V,V9u[`q

k~V,V9!,
~19!

where V9 denotes an auxiliary set of angles,V9[(a8
2f,b8,g8), f being the angle between the test plate dia
onal and itse1 edge:

cosf5
x1

Ax1
21x2

2
. ~20!

A few comments are necessary at this point. For hig
asymmetric molecules, i.e., whenx1@1 and x2@1, small
effects from a plate of small finite thickness~;1! can be
neglected, and the last two terms in the right-hand s
~RHS! of Eqs.~14!–~19! can be approximated by a constan
However, when eitherx1.1 or x2.1, which corresponds to
a convergence of the plates to the rod limit, one of these
RHS terms becomes comparable to the first RHS term
cannot be neglected. Once the formalism for the general
is outlined, we will address both limiting cases in Appe
dixes B and C.

Calculation of the mean projection of the system pla
onto the planesxz, yz, andqz requires double averaging o
Eqs.~14!–~19!. First, we have to averagèi

k over the equi-
-

e

al

-

y

e
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o
d
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-

s

librium orientation distribution function of the system plate
wx1x2

(V8)5nV8 /nx . Second, the test plate is being insert
into the system at random, and therefore the orientation
$xyz% must also be averaged over the orientation distribut
function of the (j 11)th plate,wx1x2

(V)5nV /nx . Since the
test plate is inserted into the system in such a way that it d
not change the equilibrium parameters, the functional for
of wx1x2

(V) and wx1x2
(V8) are the same. This distinctio

barely reflects the order of taking the average, which is
portant for the final result. Note also that the subscr
‘‘ x1x2’’ on w refers to the important dimensions of the solu
particle; for a square plate it will bexx, and either 1x, x1, or
z for a rodlike solute; cf. Appendixes B and C.

Thus, the mean projections of interest can be forma
written as

`̄ i5E E wx1x2
~V!wx1x2

~V8!` i
k~V,V8!dV dV8,

i 5e1,e2,

`̄q5E E wx1x2
~V!wx1x2

~V9!`q
k~V,V9!dV dV8,

~21!

where*Vwx1x2
(V)dV51. Note that the need to use the m

lecular frame ends at this point, since from now on all c
culations are performed in the laboratory coordinate fram

Equations~21! are integrable in a straightforward way fo
the limiting cases of the isotropic state and of the perfec
ordered state. In the isotropic phase, the distribution of p
orientations is uniform over the whole solid angle, the dis
bution function does not depend on the coordinate syst
and therefore the average projections are equal to each o

`̄x
I 5~x11x21x1x2!/2. ~22!

Note that the average projection in the isotropic phase
larger than the plate lid area, due to the finite plate thickne
whose contribution is not negligible in that phase.

In the perfect order case~tiling problem@19#!, all relevant
reference frames coincide, and the average projections
come

`̄e15x2 ,

`̄e25x1 , ~23!

`̄q52x1x2~x1
21x2

2!21/2.

In the course of further development of the general treatm
some simplifying approximations are necessary. However
doing so we will make choices that ensure that both limiti
results in Eqs.~22! and ~23! are always recovered.

The equilibrium orientation distribution function
wx1x2

(V) in Eqs. ~21! should minimize the Gibbs function
Clearly,G depends on the distribution function in a compl
manner, and the differentiation in Eq.~2! involveswx1x2

(V)
both directly and indirectly through the average projectio
`̄ i , i[e1, e2, and q. Auxiliary functional derivatives in-
volved in the differentiation are
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nx

]`̄ i

]nV
5E wx1x2

~V8!@` i
k~V,V8!1` i

k~V8,V!#dV8[Qi ,

nx

]`̄q

]nV
5E wx1x2

~V8!@`q
k~V,V9!1`q

k~V9,V!#dV8[Qq ,

~24!

where i 5e1,e2, and the appearance of̀ j
k(V8,V) and

` j
k(V9,V) results from taking partial derivatives overV and

V8 and then benefiting from the equivalence of the fun
tional forms ofwx1x2

(V8) andwx1x2
(V).

The distribution minimizingG has the general form

wx1x2
~V!5

nV

nx
5 f 1

21 sinb expS 2(
i

biQi D , i 5e1,e2,q,

~25!

where f 15*da db dg sinb exp(2SibiQi), and thebi ’s are
given by

be15
~x121!x1x2

~x1x22`̄e1!2

3H 2vx
21 lnF12vxS 12

`̄e1

x1x2
D G211

`̄e1

x1x2
J ,

be25
~x221!x2x1

~x1x22`̄e2!2

3H 2vx
21 lnF12vxS 12

`̄e2

x1x2
D G211

`̄e2

x1x2
J ,

~26!

bq5
~x121!~x221!x1x2

~x1x22`̄q!2

3H 2vx
21 lnF12vxS 12

`̄q

x1x2
D G211

`̄q

x1x2
J ,

where vx5x1x2nx /n0 is the ~volume! fraction of plates in
the system.

The self-consistency of the model requires simultane
fulfillment of Eqs.~21!, ~24!–~26!. This is not solvable ana
lytically, and has to be established numerically, indep
dently for each desired size of the solute particle. Two li
iting cases of the particle size are of particular interest
their relevance to the most frequently encountered situa
in real systems, which we will address later in the paper

Once the mean projections in equilibrium are known, o
can calculate the configurational part of the partition fun
tion, Zcomb @cf. Eq. ~11!#,

Zcomb5
1

nx!
)

j 1151

nx

n j 115
1

nx!
)

j 1151

nx

~n02 jx1x2!x1x2

3~n02 jx1x21 j `̄e1!2~x121!

3~n02 jx1x21 j `̄e2!2~x221!

3~n02 jx1x21 j `̄q!2~x121!~x221!. ~27!
-

s

-
-
r
n

e
-

Application of the usual methods of manipulatingZcomb into
a more tractable form, e.g., Eq.~23! of Ref. @14#, and
Stirling’s approximations for the factorials yields

2 ln~Zcomb!5nx ln
nx

n0
1ns ln

ns

n0
2

~x121!

x1x22`̄e1
~ns1nx`̄e1!

3 lnF12vxS 12
`̄e1

x1x2
D G

2
~x221!

x1x22`̄e2
~ns1nx`̄e2!

3 lnF12vxS 12
`̄e2

x1x2
D G2

~x121!~x221!

x1x22`̄q

3~ns1nx`̄q!lnF12vxS 12
`̄q

x1x2
D G . ~28!

To complete the steric contribution to the Gibbs functi
of the system, we need the orientational part of the partit
function, Zor . It is customary for the lattice methods to us
@2,6,8,14#

2 ln~Zor!52(
V

nVS svV

nx

nV
D , ~29!

wheres is an arbitrary constant close to unity andvV is a
measure of the solid angle and is equal to sinb, in terms of
the relevant Euler angles.

The Gibbs function of the anisotropic phase~A! thus be-
comes

GA

n0kBT
5

vx
A

x1x2
ln

vx
A

x1x2
1~12vx

A!ln~12vx
A!

2
vx

A

x1x2
ln f 12

~x121!

x1x22`̄e1
F12vx

AS 12
`̄e1

x1x2
D G

3 lnF12vx
AS 12

`̄e1

x1x2
D G2

~x221!

x1x22`̄e2

3F12vx
AS 12

`̄e2

x1x2
D G

3 lnF12vx
AS 12

`̄e2

x1x2
D G2

~x121!~x221!

x1x22`̄q

3F12vx
AS 12

`̄q

x1x2
D G

3 lnF12vx
AS 12

`̄q

x1x2
D G22

vx
A

x1x2

3@be1`̄e11be2`̄e21bq`̄q#, ~30!

where the first two terms on the RHS are the expected id
mixing terms. Their presence is a direct consequence of
counting for the plate interior cells by the present model~cf.
Fig. 4!.

The chemical potentials in the anisotropic phase take
form
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ms
A

kBT
5 ln~12vx

A!2
~x121!

x1x22`̄e1
lnF12vx

AS 12
`̄e1

x1x2
D G

2
~x221!

x1x22`̄e2
lnF12vx

AS 12
`̄e2

x1x2
D G

2
~x121!~x221!

x1x22`̄q
lnF12vx

AS 12
`̄q

x1x2
D G ~31!

and

mx
A

kBT
5 ln

vx
a

x1x2
2 ln f 11

~x121!

x1x22`̄e1
`̄e1

3H S 2x1x2

~x1x22`̄e1!vx
A21D

3 lnF12vx
AS 12

`̄e1

x1x2
D G12J 1

~x221!

x1x22`̄e2
`̄e2

3H S 2x1x2

~x1x22`̄e2!vx
A21D lnF12vx

AS 12
`̄e2

x1x2
D G12J

1
~x121!~x221!

x1x22`̄q
`̄q3H S 2x1x2

~x1x22`̄q!vx
A21D

3 lnF12vx
AS 12

`̄q

x1x2
D G12J . ~32!

B. The isotropic phase

A uniform density of the orientation distribution functio
nV /nx over the whole solid angle in the isotropic phase o
viously cancels outZor . For symmetry reasons all releva
average projections are equal to each other and given by
~22!, and the Gibbs function becomes

GI

n0kBT
5

vx
I

x1x2
ln

vx
I

x1x2
1~12vx

I !ln~12vx
I !2

~x1x221!

x1x22`̄x
I

3F12vx
I S 12

`̄x
I

x1x2
D G lnF12vx

I S 12
`̄x

I

x1x2
D G .

~33!

The chemical potentials in the isotropic phase are

ms
I

kBT
5 ln~12vx

I !2
~x1x221!

x1x22`̄x
I lnF12vx

I S 12
`̄x

I

x1x2
D G ,

~34!

mx
I

kBT
5 ln

vx
I

x1x2
2

~x1x221!

x1x22`̄x
I `̄x

I lnF12vx
I S 12

`̄x
I

x1x2
D G .

~35!

This completes the basic theoretical considerations of
paper. We may now proceed to some illustrative calcu
tions, in particular, the uniaxial particle limit, i.e., uniaxi
disks on the one hand and rods on the other. This offer
the possibility of testing the correctness of the theory in
light of existing data from the literature.
-

q.

e
-

us
e

III. CALCULATIONS AND DISCUSSION

The self-consistency of Eqs.~21!, ~24!–~26! minimizes
the free energy, thus ensuring the equilibrium of the syst
However, the self-consistency condition is not solvable a
lytically, and requires a numerical treatment. Because of
complexity of the formalism, convergence of the numeric
procedure for the general case is a significant problem
exploring it in detail is beyond the scope of this paper@20#.
Instead, we concentrate on two limiting cases, i.e., those
~i! uniaxial disks and~ii ! rods ~see Appendixes B and C
respectively!. Such a selection is dictated not only by the fa
that the thermodynamic properties of the two systems h
been extensively studied in the pa
@1–4,6,8,10,11,14,17,23–30#, so that predictions of our
model can be critically tested, but also because there is a
able an iterative algorithm, which is highly convergent for
somewhat similar but simpler self-consistency problem st
ied by Herzfeld, Berger, and Wingate@31#. In a particularly
critical test of this algorithm we verified that, when applie
to the theory of Warner@8# for rods, it recovers Warner’s
results to within 0.2%.

As it turns out, the efficiency of the algorithm in findin
the equilibrium parameters depends strongly on the ini
guess for the distribution function@31#. This effect is clearly
visible, e.g., when searching for the threshold~minimum!
aspect ratio sufficient for existence of a stable anisotro
phase in the pure system (vx51); on increasing the particle
anisotropy the onset of the anisotropic phase at some thr
old aspect ratio should be marked by, first, the existence
nontrivial ~anisotropic! distribution function and, second, th
coexistence of the anisotropic and isotropic phases,GA

5GI . In general, for any reasonable guess function, the e
librium orientational distribution in the anisotropic phase c
be found even for a particle anisotropy slightly below t
threshold one. However, we found by a trial-and-er
method that the guess functions divide naturally into th
categories, roughly speaking those of a small, medium,
large width at half maximum~FWHM!. For functions with a
small FWHM, the minimum critical particle anisotropy fo
the formation of the anisotropic phase can be found, but
phase is unstable sinceGA.GI . Only on increasing the as
pect ratio further does the free energy of the anisotro
phase decrease and become, at some point, equal to th
the isotropic phase. Broadening the guess distribution ab
some width marks the onset of the second category of fu
tions for which the same threshold particle anisotropy a
the same lowest~‘‘global’’ ! free energy minimum, i.e., the
same stable results fornV /nx , `̄ i , andQi , i[e1,e2,q, are
always obtained. Characteristically, the threshold aspect r
is the same for the former and latter categories of the t
functions. However, the algorithm cannot recover the ani
tropic phase parameters at the threshold aspect ratio if
trial function becomes too broad, which always leads toGA

ÞGI ~third category!. From the practical point of view, we
considered a class of trial functions adequate for our p
poses if the algorithm converged at the threshold anisotr
and the system parameters characteristic for the anisotro
isotropic phase transition. Examples of such simple use
guess distribution functions applied in this work are given
Appendix D.
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Typically, we first examined the properties of the pu
systems (vx51). For each system on varyingx a phase tran-
sition is found at some critical threshold valuexcrit, below
which particles are always disordered and above always
dered ~nematic!. We calculatedxd

crit[xcrit.3.742 and`̄d
crit

.8.249 for disks, andxr
crit[xcrit.8.019 and̀̄ r

crit.4.627 for
rods.

Next, the properties of each system on dilution are st
ied. For any given aspect ratio greater thanxcrit we always
found a biphasic range of concentrations where the isotro
and nematic phases coexisted. The lowvx* and highvx**
concentration boundaries of the biphasic range were fo
by solving the simultaneous equations for the chemical
tentials, Eq.~3!, for a given aspect ratiox and varying the
composition of the mixture. There are two possible ways
presenting the calculated phase diagrams. A plot of the
ute volume fraction vs particle volume (vx ,v0) is more ad-
equate for lyotropic systems, while a plot of the volume fra
tion vs aspect ratio (vx ,x) is usually used when discussin
thermotropic systems. The choice is arbitrary but since
present theory works better the larger the aspect ratio~e.g.,
stiff, rodlike polymers, colloids!, we decided to use the
former ~cf. Fig. 5!. It should be noted that for every solu
for any given particle volume~or aspect ratio!, on traversing
the biphasic range, the equilibrium parameters of the nem
phase remain constant and have the threshold~minimum!
values characteristic of the first occurrence of the stable n
atic phase. The only variable moving the system across
biphasic range is the relative volume participation of the i
tropic and nematic phases in the biphasic material. The
rameters of particular importance are the equilibrium va
of the nematic order parameterS5P2(cos2 b), and the vol-
ume fraction~or density! jump dvx at the transition. In Fig. 6
variation of both parameters along the boundaries is sh
as a function of the normalized molecular volumev0 /v0

crit

wherev05x3x or x, andv0
crit5xd

crit3xd
crit or xr

crit , for disks
and rods, respectively.

Since this work develops Warner’s idea of the molecu
frame lattice@8# to a quite general case of platelike particle

FIG. 5. Volume concentrations of phases in equilibrium,vx , as
a function of the molecular volumev0 for ~dashed lines! rods and
~solid lines! square boards.I andN denote the isotropic and nemat
phases, respectively. Critical concentrationsv* and v** set the
boundaries of the coexistence rangeI 1N. Molecular volume in
lattice units.
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his numerical data serve us as a natural reference for tes
our numerical results in the rodlike limit. A basic observ
tion is that in a pure system and in solution our nema
phase appears at somewhat lower threshold rod length a
slightly more orientationally ordered than that of Warner@8#,
e.g., compare ourxr

crit58.019 with his 8.9832, andS50.85
vs 0.8314, respectively. The phase diagrams are very m
alike in shape and extent but clearly they do not overlap. O
phase diagram is consistently below Warner’s~see Fig. 7!,
i.e., it is shifted a little bit toward lower concentrations an
aspect ratios. Such differences are expected. From inspe
of both theories it follows that the difference originates in t
approximations adopted in@8# @see especially his Eq.~9!#,
and Eqs.~B2! and ~C10!, introduced when simplifying the
expressions for the particle projections. For long rods,
overwhelming contribution to the projections̀i

k in Eqs.
~14!–~19! comes from the rod length, and the approximati

FIG. 6. The isotropic-nematic phase transition in~triangles! rod-
like and ~circles! square boardlike systems. Open symbols, RH
volume concentration~density! change normalized to the mean co
centration of the system,dvx / v̄x , and full symbols, LHS, the nem
atic order parameterS as a function of the molecular volume no
malized to the critical molecular volumev0 /v0

crit ~bottom! and the
nematic phase concentrationv** ~top!.

FIG. 7. Rods in solution. Volume concentrations of phases
equilibrium,vx[v r , as a function of the molecular volumev0 after
Warner@8# ~dotted lines!, and from the present study~dashed lines!.
Molecular volume in lattice units.
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leaves out the angular dependence of the minor contribut
from the rod width, replacing them with some constant fa
tors, in a manner analogous to that of Warner@8#. Similarly,
in the boardlike particle limit, contributions from the pla
lids dominate the projections and, within the approximatio
applied, the finite plate thickness is accounted for as a sm
angle-independent contribution only. Although there is so
freedom in assigning particular values to these factors,
results and the results of Warner@8# show that the choice o
these values has non-negligible consequences for the p
behavior. There are two limiting cases of orientational ord
perfect order and isotropic disorder, for which the distrib
tion function is known and the projections can be calcula
exactly. The proper behavior of the approximations in th
limits may then be used as a guide to select the correct
stant factor. Warner’s choice of the constant for the rodl
system is such that it ensures the appropriate behavior o
approximation in the perfect order limit@8#. We believe,
however, that the approximations adopted should ensure
proper behavior of the projections not only in the perfe
order but also in the isotropic disorder limit. For rodlike
particles, comparison of our approximation in Eq.~C16! with
that of Warner@8# @cf. his Eq.~9!# shows that the difference
is in the proportionality factor only. Notably, when we r
strict the normalization to the perfect order limit alone, w
recover Warner’s results. However, such a restriction und
estimates the projection magnitude in the isotropic phase
thus it leads to an enhanced stabilization of the isotro
phase~see Fig. 7!. On the other end, it somewhat underes
mates the orientational entropy of particles substantially
ordered in the nematic phase.

As may be expected, in the square board limit the cal
lated critical minimum value of the aspect ratio,xd

crit

53.742, is higher than the value 3.015 obtained within
classical laboratory frame approach@14#. The difference par-
allels the one found when comparing analogously numer
results of the laboratory frame@2,11# and the molecular
frame@8# methods applied to rodlike particle systems. By t
same arguments as Warner’s for rods@8#, higher values of
xd

crit and lower values ofS reflect fewer restrictions in the
orientational phase space of the solute particles, i.e., all
ance for continuous reorientation of particles, and a m
lower entropy penalty for disoriented particles in the nema
phase in the molecular frame approach.

It has been suggested in the past@14# that, when using
such a molecular parameter as the molecular volumev0 ,
there is a far-reaching symmetry between the (vx ,v0) phase
diagrams calculated by lattice methods for disks and ro
Also, a theory based on the second virial coefficient@29# and
a computational work of Frenkel and Mulder@25# suggest a
symmetry in the phase diagrams of rods and disks. On
other hand, considerable asymmetry in the thermodyna
properties of fluids of prolate and oblate particles is obser
in some computer simulations@32#. The latter is in line with
the findings of the present study that quantitative symme
between the (vx ,v0) phase diagrams of rod- and disklik
systems is not obvious~cf. Fig. 5!. Indeed, although there i
a visible congruency between the shapes of the biphasic
gions of both systems, the phase diagram for rods is con
tently shifted toward the origin of the plane, i.e., to mu
lower concentrations and smallerv0’s. Therefore, when
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comparing solutes of the same particle volume there is c
evidence that the isotropic phase in a solution of rod isom
phs is substantially less favored than in one of plate isom
phs at low concentrations~cf. Fig. 5!. In other words, for a
certain concentration of mesogenic particles of fixed mole
lar volume, the former can form a nematic phase, while
latter can still have an isotropic phase. This is reflected in
lower value of the rod critical volume compared to that f
disks, v r

crit58.019,14.0035vd
crit , higher ordering in the

nematic phase, and a relatively broader biphasic range
rods than for disks~cf. Figs. 5 and 6!.

The results in Fig. 5 have profound consequences fo
rod-disk complex solvent. First, in solutions of mixtures
rods and disks of the same particle volume, separation of
rodlike component in the form of a calamitic nematic pha
at low concentrations would prevent formation of, e.g., t
biaxial phase in the system. In fact, such segregation
known from other studies, and can be prevented by the p
ence of either any kind of disk-rod short-range bonding
equilibrium prolate-oblate conformational shape fluctuatio
of the particles@33–35#. Secondly, if the monodisperse so
vent features a rod-disk conformational transformation w
concentration, the appearance of a conformational ph
transition should be expected. Note finally that we may lo
at our results from a more conventional point of view f
thermotropic liquid crystallinity, i.e., we may compare pro
erties of solutes of the same aspect ratio. One finds then
in the absence of attractive intermolecular forces squ
boards~disks! form a stable anisotropic state at a signi
cantly lower aspect ratio than do the rod isomorphs.

The properties of the nematic phase in the biphasic ran
and at vx** in particular, vary significantly with both the
molecular volume and concentration~cf. Fig. 6!. For the
same molecular volume, the volume concentration ju
across the biphasic range is always greater for rods than
disks, which is a consequence of the higher orientatio
order of the nematic phase. The nematic-isotropic concen
tion difference has an initial sharp increase only to flatten
gradually on increasing the system dilution. The order
rameter in the rodlike system drops monotonically on di
tion, at first rapidly in the early stages of dilution, to reach
plateau of about 0.8 for a more diluted system. For the d
klike system on dilution, the order parameter first decrea
slightly to a minimum and then increases toward a platea
about 0.76. Interestingly, this behavior is somewhat differ
from that of the laboratory frame method, where a mon
tonic decrease at higher rates was observed@14#. Finally,
note a general decrease in the values of the nematic o
parameterS and the density jump for disklike systems b
comparison with the results obtained from the laboratory
tice method@14#.

When discussing phase diagrams resulting from
present theory, we should necessarily comment on the
we estimate the expected number of locationsn j 11 acces-
sible to the test plate, since it has important consequence
the phase equilibrium properties. It is assumed that this n
ber can be expressed via the product of probabilities of fi
ing a free site for each of the test disk constituent cells;
Eq. ~5! and after. Due to statistical similarities between d
ferent disk cells, we simplified the problem by assuming t
this product can be evaluated by considering the placem
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of only a few types of cells: the anchor~a!, edge~e1 and
e2!, and interior diagonal~q! cells @cf. Eq. ~4!#. This is in
contrast to a suggestion by Di Marzio, Yang, and Glotz
who considered the tiling problem of square tiles and arg
that sufficient room for a plate on the lattice should be
sured once the edge cells, i.e.,a, e1, ande2 in Fig. 3, are
placed@19#. In order to get more insight into this problem
we performed auxiliary calculations with the diagonal ter
removed from the present theory. With this prescription,
critical threshold aspect ratio in the pure system nea
doubled to reachxDi Marzio

crit 56.056. Consequently, the corre
sponding biphasic range shows up at much highervx andv0
values. However, the density jump across the biphasic ra
dvx / v̄x , remained essentially unchanged by the remova
the diagonal terms, but the nematic order parameter
creased toward values characteristic of the rodlike system
Fig. 5. Clearly, elimination of the diagonal cells~q! from the
computation softens the steric constraints imposed on
plate, which requires in turn a much higher shape anisotr
of particles in order to stabilize the ordered phase. This, h
ever, contradicts experimental observations, which sugge
much lower aspect ratio in discotic systems@36–40#. An
additional argument in favor of accounting for the interi
cells comes from the fact that only in this way can one sec
a thermodynamically correct description of the system, i
the presence of the entire ideal mixing entropy term of re
lar solutions,nx ln(nx /n0)1ns ln(ns/n0), and the convergenc
of the entropy per lattice site to zero on approaching
perfect order limit in a pure system on an infinite latti
@17,18#. We believe, therefore, that the prescription of R
@19# is more relevant for describing yet another interest
system of ‘‘starlike’’ or ‘‘crosslike’’ particles~cf. @14#!.

Only limited comparison of the present numerical resu
with relevant experimental and computational data is p
sible. Numerical equilibrium parameters of our model for t
rodlike system do not differ substantially from those
Warner, who discussed his results in detail in light of exi
ing experimental evidence@8#. Since the differences betwee
his and our results are for now beyond experimental ve
cation, we concentrate here on discussing results for disk
systems. In the athermal limit one parameter of particu
interest is the critical shape anisotropy of molecules nec
sary for formation of the nematic phase. Phase equilib
computer simulations for disklike particles interacting v
repulsive forces usually yield a very low minimum aspe
ratio of xd

crit'2.75– 3.0 @25,41#. These values seem to b
somewhat below the results obtained from limited expe
mental x-ray data, which vary from about 3.2@38,39# to 6.1
@40# deduced from studies in the columnar and crystall
phases of thermotropic disklike molecules, and close toxd

crit

values observed for micelles in lyotropic systems@36,37#.
However, this comparison has to be judged with care du
unavoidable problems with exact estimation of the molecu
~oblate! aspect ratio. Isolated molecules with fully stretch
sidechains, and the same molecules packed into the pure
tem with sidechains taking different conformations, can
be treated equivalently. Moreover, the columnar phase
which the available x-ray data refer@40,42# are much more
dense than the nematic mesophase. Interpenetration o
sidechains between molecules belonging to adjacent colu
prevents realistic determination of the overall molecular
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mensions and, thus, quantitatively reliable extrapolation
these results to the nematic phase. We can only guess
the diameter of a particular disk becomes larger in the l
dense nematic mesophase while the width can, but does
have to, remain approximately constant. Under those circ
stances, our critical shape anisotropyxd

crit53.742 situates us
closer to real systems than computer simulations and
results of Wnek and Moscicki@14#. By analogy to rodlike
systems@8#, we may also expect that nonathermal contrib
tions, i.e., incorporation of attractive forces, will not affe
the threshold shape anisotropy to the extent of moving
below the experimentally observed values.

The molecular frame method is a natural alternative to
method of Herzfeld, where on completion of construction
the reference lattice the lattice unit cell size is reduced to
infinitesimal limit @13#. Thus, the unification of phase equ
librium theory for rodlike and disklike systems by means
lattice models becomes as natural as that derived from c
puter simulations@23,30,32,41,43–45# or off-lattice theories
@26,46–49#. In saying so, we are aware of the limitations
the Flory lattice method, in particular its inability to produc
the translationally ordered phase~the smectic phase for rod
and the columnar one for disks! in the athermal limit~purely
from steric effects!. This is due to the fact that in the cours
of discretization of the real solute particles, orientation
steric constraints in three dimensional space are conve
into polydispersity of the resulting subsolute in one~rods! or
two ~plates! dimensional isotropic solution. The assum
translational disorder manifests itself in the lack of corre
tions between neighboring rows of lattice cells parallel to
orientation axis~rods!, or slices of lattice cells perpendicula
to the axis~plates!, thus a priori excluding translationally
ordered phases from consideration. If needed, the corr
tions can be introduced into the model by assuming the
istence of more or less artificial density waves in rows~the
smectic phase of rods! or slices ~the columnar phase o
plates!.

The athermal theory presented here forms a subst
upon which to build further work on nonathermal, amph
tropic @16# systems of plates, and biaxial systems of mon
and polydisperse particles@20#. The simple model of Wnek
and Moscicki@14# allowed only the study of a solution o
disklike particles in the presence of solute-solvent inter
tions. A substantial advantage of the present theory is
ease with which any kind of intermolecular interactions b
tween all kinds of particles forming the solution can be
troduced and studied. In a forthcoming paper we will rep
on the consequences of introducing the solute-solute att
tive intermolecular interactions for the phase equilibriu
properties of the system@20#. We will discuss features of the
resulting characteristic ‘‘bottleneck’’ phase diagram~cf.,
e.g., Fig. 10 of Ref.@14#! in terms of the strength of inter
molecular forces between all kinds of particles present in
solution. In further work we are interested in mesopha
formed by colloids, supramolecules, and polymers in so
tion. Their aspect ratios in the rod- and disklike forms are
the order of those of conventional liquid crystalline su
stances@50#. Although more complicated in shape and su
ject to more complex interactions, they can be studied wit
the present model where ordering phenomena are prima
dictated by geometry, excluded volume, flexibility, and sp
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cific inter- and intraparticle interactions@38,51,52#. Lyotro-
pic liquid crystalline systems will be of special interest in t
future as they undergo phase transitions with simultane
change of the supraparticle shape with temperature, con
tration @53,54#, or pressure.
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APPENDIX A: CALCULATION OF AVERAGE
PROJECTIONS

In order to calculate the average projections let us fi
consider the Euler anglesV[(a,b,g) specifying rotations
e

Eu
us
n-

r
-
l-

t

that bring the initial coordinate system into coincidence w
the final frame@cf. the scheme in Eq.~1!#. If by M (V) we
identify the Euler matrix whose elements are calculated fr
the Euler angles, then a vector whose components in
former are given byr[@r 1 ,r 2 ,r 3# will be given in the latter
frame byr 8[@r 18 ,r 28 ,r 38# @21#:

r 85M ~V!r , ~A1!

or

r i85(
j

M i j ~V!r j , i , j 51,2,3, ~A2!

whereMi j (V) are elements of the rotation matrix,M (V):
M ~V![M ~a,b,g!5F cosa cosb cosg2sina sing sina cosb cosg1cosa sing 2sinb cosg

2cosa cosb sing2sina cosg cosa cosg2sina cosb sing sinb sing

cosa sinb sina sinb cosb
G . ~A3!
a
m
hat
the
For the frames and rotations defined schematically in Eq.~1!
we have

r i5(
j

M i j ~V!Rj ,

r i
k5(

j
M i j ~V8!Rj , ~A4!

r i5(
j

M i j
21~Vk!r j

k ,

wherer i
k , r i , andRi are the unit vector components in th

$xyzk%, $xyz%, and$XYZ% frames, respectively.
From Eq.~A4! it follows that

Mi j
21~Vk!5M ji ~Vk!5 (

m51

3

Mim~V!M jm~V8![r i j
V,V8 ,

~A5!

which defines the interrelation between different sets of
ler angles of interest,V, V8, andVk.

APPENDIX B: SPECIAL CASE OF BOARDLIKE PLATES,
x1š1 AND x2š1

For highly asymmetric moleculesx1@1 and x2@1, the
projections of thekth plate @cf. Eqs. ~14!–~19!#, reduce to
projections of the plate surface only:
-

`e1
k ~V,V8!.x1x2ur13

V,V8u,

`e2
k ~V,V8!.x1x2ur23

V,V8u, ~B1!

`q
k~V,V9!.x1x2ur13

V,V9u.

In order to preserve the limiting behavior in Eqs.~22! and
~23!, it is necessary to slightly adjust Eq.~B1!:

`e1
k ~V,V8!.x2F S x1211

x1

x2
D ur13

V,V8u11G ,
`e2

k ~V,V8!.x1F S x2211
x2

x1
D ur23

V,V8u11G , ~B2!

`q
k~V,V9!.

2x1x2

Ax1
21x2

2

3H FAx1
21x2

2

2 S 11
x11x2

x1x2
D22G ur13

V,V9u11J .

It is easily verified that such a modification turns out to be
minor approximation which does not alter the equilibriu
parameters of the system in any significant way. Note t
the formalism of the isotropic phase remains unaltered by
limit, so Eq. ~22! holds.
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Uniaxial disks

The formalism simplifies even further if the plates a
square,x15x25x, i.e., disks. The orientational distributio
becomes uniaxial with respect to the discotic nematic dir
tor, n̂iZ, depending solely on the Euler angleb:

wxx~V!5
nV

nd
[

nb

nd
[wxx~b!, ~B3!
he
-

where we introduced subscriptd in place ofx to distinguish
the solute particles. The basic quantities of the theory
come

`̄e15`̄e25x2R1x[`̄X ,

`̄q5@x222x~&21!#R1&x[`̄Q , ~B4!

whereR is given by
R5p22E
0

pE
0

pE
0

2p
A12@cosb cosb81sinb sinb8 cos~a2a8!#2wxx~b!wxx~b8!d~a2a8!dbdb8. ~B5!
n a

om-
solu-

t
e

one
the

nts
The orientational distribution function is now

wxx~b!5
sinb exp~2( ibiQi !

* sinb exp~2( ibiQi !db
, i 5X,Q, ~B6!

with

bX5
2~x21!x2

~x22`̄X!2 H 2vd
21 lnF12vdS 12

`̄X

x2 D G211
`̄X

x2 J ,

bQ5
~x21!2x2

~x22`̄Q!2 H 2vd
21 lnF12vdS 12

`̄Q

x2 D G211
`̄Q

x2 J ,

~B7!

and theQi ’s are defined in Eqs.~24! with the substitution
x5x15x2 . Furthermore, ` j

k(V,V8)[` j
k(V8,V) in the

uniaxial limit. For symmetry reasonsQQ5QX@x222x(&
21)#/x2. The Gibbs function and chemical potentials in t
nematic phase~N! become

GN

n0kBT
5

vd
N

x2 ln
vd

N

x2 1~12vd
N!ln~12vd

N!2
vd

N

x2 ln f 1

2
2~x21!

x22`̄X
F12vd

NS 12
`̄X

x2 D G lnF12vd
NS 12

`̄X

x2 D G
2

~x21!2

x22`̄Q
F12vd

NS 12
`̄Q

x2 D G lnF12vd
NS 12

`̄Q

x2 D G
22

vd
N

x2 @bX~ `̄X2x!1bQ~ `̄Q2&x!#, ~B8!

ms
N

kBT
5 ln~12vd

N!2
2~x21!

x22`̄X
lnF12vd

NS 12
`̄X

x2 D G
2

~x21!2

x22`̄Q
lnF12vd

NS 12
`̄Q

x2 D G , ~B9!
md
N

kBT
5

2~x21!

x22`̄X
3H S 2~ `̄X2x!x2

~x22`̄X!vd
N2`̄XD lnF12vd

NS 12
`̄X

x2 D G
12~ `̄X2x!J 1

~x21!2

x22`̄Q
3H S 2~ `̄Q2&x!x2

~x22`̄Q!vd
N 2`̄QD

3 lnF12vd
NS 12

`̄Q

x2 D G12~ `̄Q2&x!J
1 ln

vd
N

x22 ln f 1 . ~B10!

The isotropic phase chemical potentials are calculable i
straightforward way from Eqs.~34! and ~35! by substituting
x5x15x2 :

ms
I

kBT
5 ln~12vd

I !2
x221

x22`̄d
I lnF12vd

I S 12
`̄d

I

x2 D G ,
~B11!

md
I

kBT
5 ln

vd
I

x22
x221

x22`̄d
I `̄d

I lnF12vd
I S 12

`̄d
I

x2 D G . ~B12!

APPENDIX C: SPECIAL CASE OF LONG RODS

The general theory developed in the present paper enc
passes also another case of practical importance, i.e., a
tion of long rods. This requires substitution of eitherx151
or x251. Let us briefly review the implications of the limi
for the formalism. First we note that the molecular volum
becomesx @instead of (x1x2) for plates#, so the system vol-
ume isn05ns1xnr @cf. Eqs.~4!–~7!#, where the subscriptr
is introduced to distinguish the rod limit. Equation~11! re-
duces to

n j 11

n0
5pap r

x21, ~C1!

as the process of inserting the test rod into a system is
dimensional and consists of putting in the anchor cell and
remaining (x21) cells ~the edge cells!.

Within the framework of the general theory, the$xyz%
frame is defined in such a way that the rod long axis poi
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along either~1! thex or ~2! they axis. In the former case th
number of obstacles from thekth rod is solely given bỳ yz

k :

`yx
k [`e1

k 5xucosak sinbku1xucosak cosbk singk

1sinak cosgku1ucosak cosbk cosgk2sinak singku

~C2!

.x~ ucosak sinbku1ucosak cosbk singk1sinak cosgku!
~C3!

.x~ ur13
V,V8u1ur12

V,V8u![`yz
k ~V,V8!; ~C4!

sincex[x1@x251, the last term on the RHS of Eq.~C2!
can be neglected. After some adjustment to recover pro
behavior in the perfect order and disorder limits we have
projection of thekth rod @cf. Eq. ~B2!#:

`yz
k ~V,V8!.~2x21!

ur13
V,V8u1ur12

V,V8u
2

11, ~C5!

and with the use of Eq.~21! the system rod mean projection

`̄yz5~2x21!E E wx1~V!wx1~V8!

3
ur13

V,V8u1ur12
V,V8u

2
dV dV811. ~C6!

Analogously, in the second case,x[x2@x151, the rel-
evant quantity is thekth rod projection onto thexz plane:

`xz
k [`e2

k 5xusinak sinbku1xusinak cosbk cosgk

1cosak singku1ucosak cosgk2sinak cosbk singku

~C7!

.x~ usinak sinbku1usinak cosbk cosgk1cosak singku!
~C8!

.x~ ur23
V,V8u1ur21

V,V8u![`xz
k ~V,V8!, ~C9!

which after an adjustment similar to the previous case
comes

`xz
k ~V,V8!.~2x21!

ur23
V,V8u1ur21

V,V8u
2

11, ~C10!

giving the mean projection

`̄xz5~2x21!E E w1x~V!w1x~V8!

3
ur23

V,V8u1ur21
V,V8u

2
dV dV811, ~C11!

where the last term on the RHS of Eq.~C7! is set equal to a
constant. The quantitieswx1(V) andw1x(V) are the orien-
tation distribution functions characteristic for each ca
Note that the functional dependences onV of w1x(V) and
wx1(V) are different from each other.
er
e

-

.

Refined molecular frame

Different functional forms of the rod equilibrium orienta
tional distribution function and of the rod projection in cas
~1! and ~2! are a manifestation of the problem of choice
the appropriate molecular frame. In the case of rods these
the long axes which are oreintationally ordered, and not
axes normal to the rod as assumed in the general case. W
ever the choice of the molecular frame, the mean equilibri
projection of the system rods onto the plane perpendicula
the long axis of the test rod, Eq.~C2! and Eq.~C7! must be
quantitatively the same. In fact, it can be quite easily de
onstrated that under properly chosen single Euler angle r
tion the formalism developed for either case, i.e., the lo
axis parallel tox, or y, or z, can be transformed into th
formalism developed for one of the other cases, and v
versa.

Let $xyzi% and $xyzi
k%, i 5X,Y,Z, denote, respectively

the test and thekth rod frames in the case when the rod
along thei axis of the molecular frame. For cases when t
rod points along either~1! the x or ~2! the y axis, the sets of
Euler angles necessary to bring one frame into coincide
with another can be schematically represented, by analog
Eq. ~1!, as

$xyzX% ——→
~p/2,0,0!

$xyzY%,

$xyzX
k % ——→

~p/2,0,0!

$xyzY
k %,

~C12!

$xyzX%→
Vk

$xyzX
k %,

$xyzY%→
Vk8

$xyzY
k %.

The required transformation of the rotation matrix is@cf.
Eq. ~A5!#

Mi j ~Vk!5(
l

S (
m

Mim
21~p/2,0,0!Mml~Vk8! D

3M jl
21~p/2,0,0!. ~C13!

In this way not only does the full expression for`yz
k @cf. Eq.

~C2!# transform into`xz
k in Eq. ~C7!, but also the relevan

approximate forms, Eq.~C3! into Eq.~C8! and Eq.~C4! into
Eq. ~C9!. Thus also the equilibriumw1x(V) becomes
wx1(V) under transformation.

The same considerations affect transformations bring
the rod parallel to thez axis of the molecular frame, i.e., th
convenient molecular frame for the rodlike solute. The r
evant rotations are
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$xyzX% ——→
~0,2p/2,0!

$xyzZ%,

$xyzX
k % ——→

~0,2p/2,0!

$xyzZ
k%,

~C14!

$xyzX%→
Vk

$xyzX
k %,

$xyzZ%→
Vk8

$xyzZ
k%,

and the transformation of the rotation matrix is

Mdt~Vk!5(
p

S (
z

Mdz
21~0,2p/2,0!Mzp~Vk8! D

3Mtp
21~0,2p/2,0!. ~C15!

Under the transformation,̀yz
k for the rod in the direction of

the x axis becomes̀ xy
k for the rod along thez axis, and the

formalism becomes compatible with the theory for rods
Warner@8#.

Using a molecular frame chosen such that the rod is al
the z axis $xzyZ

k% we get@cf., e.g., Eqs.~C4! and ~C5!#

`xy
k .x~ ur31

V,V8u1ur32
V,V8u!.~2x21!

ur31
V,V8u1ur32

V,V8u
2

11.

~C16!

Minimization of the relevant Gibbs function with respect
the orientational order provides the equilibrium form for t
distribution function:

w1x~V![wz~b!5
nb

nr

5
sinb exp~2bxyQxy!

*db sinb exp@2~bxyQxy!#

5
sinb exp~2bxyQxy!

f 1
, ~C17!

with

bxy5
~x21!x

~x2`̄xy!
2 H 2v r

21 lnF12v r S 12
`̄xy

x D G211
`̄xy

x J ,

~C18!

where

`̄xy5E w1x~V8!w1x~V!`xy
k ~V,V8!dV dV8

5~2x21!R11, ~C19!

with R defined in Eq.~B5! and

Qxy52~2x21!E wz~V8!
~ ur31

V,V8u1ur32
V,V8u!

2
dV8.

~C20!

The chemical potentials in the nematic phase are
f

g

ms
N

kBT
5 ln~12v r

N!2
~x21!

x2`̄xy
lnF12v r

NS 12
`̄xy

x D G
~C21!

and

m r
N

kBT
5 ln

v r
N

x
2 ln f 11

x21

x2`̄xy
3H S 2x~ `̄xy21!

v r
N~x2`̄xy!

2`̄xyD
3 lnF12v r

NS 12
`̄xy

x D G12~ `̄xy21!J . ~C22!

In the isotropic phase the mean projection becomes

`̄ r
I 5x1 1

2 , ~C23!

the 1
2 term being due to the finite thickness of the rod. T

relevant chemical potentials reduce to

ms
I

kBT
52~x21!lnS 11

v r
I

2xD 1 ln~12v r
I ! ~C24!

and

ms
I

kBT
52~x21!lnS 11

v r
I

2xD ~x1 1
2 !1 ln

v r
I

x
. ~C25!

APPENDIX D: NUMERICAL PROCEDURE

Our numerical procedure was as follows. The efficien
of the algorithm in finding the equilibrium parameters d
pends strongly on the initial guess for the distribution fun
tion. Therefore, as the initial step, we searched for appro
ate trial functions. It was a quite simple task, since t
nematic phase is apolar, so that the distribution function
the property thatw(b)5w(p2b). Thus, averaging over the
distribution, the integration can be limited to the range$0,
p/2% only, and the results then multiplied by 2. This substa
tially reduces the iteration procedure and provides the po
bility of using any arbitrary function behaving reasonably
the range as the initial guess. Good examples of such us
trial distribution functions exploited in this work arenb /nd
5cos2 b ~or 16.028.5b2! for disks, andnb /nr5ucos3 bu
10.85 cos4 b ~or 16.83210.0b2! for rods. In turn, for the
theory of Warner@8# satisfactory results are obtained wi
nb /nr5ucos3 bu.

At the nth iteration step, for the instantaneous distributi
function, the average projections@Eq. ~B4! for disks or Eq.
~C19! for rods# are calculated in the manner of Ref.@31#.
Next, the exponents in Eq.~B7! @or Eq. ~C18! for rods# are
calculated. This completes thenth step. Results of thenth
step are used next to calculate the (n11)th step instanta-
neous distribution function†Eq. ~B6! with Eq. ~24! for disks
or Eq. ~C17! with Eq. ~C20! for rods; cf. Ref.@31#‡, and the
whole iteration loop is repeated.

At the heart of each iteration step one performs the in
gration ofR with respect toda anddb8 @cf. Eq. ~B5!#. This
integral is digitized with the aid of the trapezoidal quadratu
formula. Integration intervals are divided into subintervals
lengthsDa52p/Ja and Db5Db85p/2Jb8 , the latter for
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~uniaxial! symmetry reasons, so that the integrated funct
is calculated at discrete pointsam5mDa (m50, . . . ,Ja)
andb j85 j Db8 ( j 50, . . . ,Jb8). Particular values ofJa and
Jb8 are set to 1024 and 64, respectively; we found that tw
fold increase of theJa value does not change the final resu
to within the required accuracy of the calculations, and
value ofJb8564 is adopted after@31#. Since the distribution
functions in Eqs.~B6! and ~C17! are independent ofa, it is
sufficient to calculate the integral overa only once, and store
the results in an auxiliary matrix, say,W( iDb, j Db8), where
i , j : j b8> i , j >1 ~cf. Ref. @31#!.

After every iteration step convergence of the procedur
examined in the manner suggested in@31#. In the nth itera-
tion step let the distribution function value for thei th grid
point, b i , be f i

n . The nth step maximum single grid poin
relative deviation, which is a measure of the iteration co
vergence, or simply the ‘‘error,’’ is defined as
,

s.

nd

t.
n

-

e

is

-

en5
L

12L

i f i
n2 f i

n21i
i f i

ni
~D1!

where

L5
i f i

n2 f i
n21i

i f i
n212 f i

n22i
~D2!

and the normalization factori f i
ni is defined as

i f i
ni[~maxu f i

n!Jb> i>1
. ~D3!

It is assumed in our calculations that self-consistency
achieved onceen<131025.
tt.
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st.
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