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Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases
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In this paper a procedure for systemaairiori derivation of the lattice Boltzmann models for nonideal
gases from the Enskog equati@he modified Boltzmann equation for dense gasegresented. This treat-
ment provides a unified theory of lattice Boltzmann models for nonideal gases. The lattice Boltzmann equation
is systematically obtained by discretizing the Enskog equation in phase space and time. The lattice Boltzmann
model derived in this paper is thermodynamically consistent up to the order of discretization error. Existing
lattice Boltzmann models for nonideal gases are analyzed and compared in detail. An evaluation of these
models is made in light of the general procedure to construct the lattice Boltzmann model for nonideal gases
presented in this work.

PACS numbefs): 47.10:+g, 47.11+j, 05.20.Dd

[. INTRODUCTION or hydrodynamic behaviors of the system naturally emerge
from mesoscopic dynamics, provided that the mesoscopic
In recent years, there has been significant progress madkynamics possesses necessary and correct conservation laws

in the development of the lattice Boltzmann equatibBE)  with associated symmetries such as rotational invariance,
method[1-6], a technique developed for modeling various Galilean invariance, etc. It is well known that the macro-
complex systems, especially complex fluids. One particulascopic behavior of a hydrodynamic system is rather insensi-
application of the lattice Boltzmann method which has at-tive to the microscopic or mesoscopic details—the details of
tracted considerable attention is the modeling of inhomogemicroscopic or mesoscopic dynamics only affect the numeri-
neous fluids, such as non-ideal gases or multicomponent fliga| values of the transport coefficients. This observation is a
ids [7-12]. These flows are important, but are difficult to ey physical insight into the construction of simplistic ki-
simulate by conventional techniques of solving the Naviernetic models such as the lattice gas automata and the lattice
Stokes equations. The main difficulty conventional tech-ggitzmann equation.

niques face is due to interfaces in the inhomogeneous flow. Historically, the lattice Boltzmann equation was first de-

Computationally, one might be able to track a few, but cery,q)5h6q empirically 1-3] from its predecessor—the lattice-

Famly npt Very many, mterfaqe; in a system.. It IS thereforegas automatfl3]. This empiricism influences even the most
impractical to simulate a realistic system, which is inhomo-

. . " . ; recent lattice Boltzmann mode[8—11]. Empirical lattice
geneous in density or composition, by directly solving the

Navier-Stokes equations without making some drastic ap_Boltzmann models usually have some inherent artifacts

proximations. One can also view this problem from a differ-W_hiCh are not yet fully under_stood. One part_icular problem
ent perspective: Interfaces between different components ¢¥/th nonideal gases or multicomponent lattice Boltzmann
phases of a fluid system are thermodynamic effects resultin@c’d‘?l,s is the the:,rr.nodynamm inconsistency: The so-called
from interactions among molecules. To solve the Navier- equilibrium state” in these models cannot be described by
Stokes equations, one needs to know the equation of Stat_@’ermodynamlcs. In particular, one ha}s difficulties in defln-
which is usually unknown in the interfacial regions. It is ing an entropy of the system systematically, and thus leading
therefore difficult to incorporate thermodynamics into thef0. for instance, the inconsistency between the thermody-
Navier-Stokes equations in a consistent fashion, although tHéamic pressure and the kinetic off]. Although this issue
interfaces are precisely the result due to thermodynamic efvas previously mentionel®], no progress has been made in
fects. Hence one encounters some fundamental difficulties S0IVing this problem, despite its paramount importance.
There exists ample evidence that models based on the !tis Welllunderstoqd that the orlglnal Boltzmann equation
lattice Boltzmann equation, and its predecessor, the lattice?nly describes rarefied gases; it does not describe dense
gas automataLGA) [13], and other gas kinetic models 9gases or liquids. In the Boltzmann gas lifGL), N—,
[14,15, are particularly suitable for the complex systemsM—0, andro—0, Nm— finite, Nrj— finite, andNrg—0,
such as nonideal gases and multicomponent fli@ds11].  whereN, m, andr, are the particle number, particle mass,
There may be profound reasons for the success of the LGANd interaction range, respectively. Thus, in the BGL, the
and LBE models in simulating those complex systems. Thenean free path~1/Nr2 remains constant, while the total
LGA and LBE models do not start at the macroscopic level;interaction volumeN rg goes to zero. Therefore, in the strict
instead, they start at a mesoscopic level at which one can uskermodynamic sense, the Boltzmann equation only retains
a potentialto model interactions in the system. Macroscopicthe thermodynamic properties ofperfectgas—there is no
contribution to the transport of molecular properties from
inter-particle forces, although collisions influenced by inter-
*Electronic address: luo@icase.edu particle interaction are considered. In order to properly de-
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scribe non-ideal dense gases, the effect of finite particle size, [l. ENSKOG EQUATION FOR DENSE GASES
for in;tance, must be explicitly considgred. It was Enskog The Enskog equatiofi.7,24,23 explicitly includes the ra-
yvho f|_rst extended the Boltzmann equation to densg gases lafus of colliding particlesr g, in the collision integral,
including the volume exclusion effect along the rationale of

van der Waals theory17], which leads to a nonideal gas af+EVita Vef=], (1a)
equation of state. The Enskog equatitime modified Boltz-

mann equation for dense gagesn indeed describe dense . .

gases or liquids with a nonideal gas equation of state to a JIJ dpa[g(x+ron) f(x, &) f(x+2rr, &)

certain extent. The Enskog equation describes a system con-

sisting of hard spheres, and it has been shown that the hard- —g(x—roNf(x,&)f(x—2ror,&)], (1b)

sphere system captures most qualitative properties of a

simple liquid [18,19. Furthermore, the revised Enskog Wheref is the single particlémass distribution function,&

theory seems to be valid for a wide range of densities covanda are the particle velocity and acceleratigris the radial

ering gasses, liquids, and even soli@s]. distribution functiony is the unit vector in the direction from
It was recently demonstratd@1] that the lattice Boltz- the center of the second particle fffx,&;) to the center of

mann equation can be directly derived from the continuoushe first particle off(x,&) at the instant of contact during a

Boltzmann equation. The method proposed in Rg#s] is a  collision, andu; is the collisional space of the second par-

general procedure to construct lattice Boltzmann models in &cle of f(x,£;). If we expand the collision operatdrin a

systematic ana priori fashion. Through this procedure we Taylor series about, use the BGK approximatiof23,25—

can better understand the approximation made in the latticd7], and assume the fluid to be isothermal and incompress-

Boltzmann equation. The method also provides a means t¥le, we obtain the equatior(sletails refer to Appendix A

analyze the existing lattice Boltzmann models. In this paper,

the method of Refs[Zl] is _applied to o_btain the lattice atf+§'vf+a_vgf=_g[f_f(O)]JrJ,, (28

Boltzmann equation for nonideal gasgghich have a non- A

ideal gas equation of stateThe lattice Boltzmann equation

for nonideal gases is derived from the Enskog equation for J'=—fObpg(£-u)-VIn(p®g), (2b)

dense gases. The obtained lattice Boltzmann model for iso-

thermal nonideal gases has a thermodynamic consistency yyhere\ is the relaxation time which characterizes a typical

the sense of approximation, i.e., it is only correct up to theCOIIiSion process, and®) is the Maxwell local equilibrium

order of discretization. We compare our model with the ex_dlstrlbqun function[28] given by
isting ones. In comparing all models, we would like to stress 1

the fact that many defects of the existing LBE models aref©(p,u, 8)= = po(276)  P2exd — (£—u)?/26—U(x)/ ],
due to errors made at the level of fundamental concepts, z 3

rather than at the level of numerical implementation.

This paper is a detailed extension of a work previouslyynereD is the dimension of the momentum spagep, u,
published[22], and is organized as follows. In Sec. Il the and g=kzT/m are mass density, macroscopic velocity, and
Enskog equation for dense gases with the Bhatnagar-Grosfire normalized temperature, respectively;, T, andm are
Krook (BGK) approximation[23] is briefly discussed. In the Boltzmann constant, temperature, and molecular mass,
Sec. lll the discretization procedure to obtain the lattice Bolt-respectivelyJ (x) is a mean-field external potentigler unit
zmann equation for nonideal gases from the Enskog equatiomass;
is described. The discretization in time and phase space, the
small velocity expansion of the equilibrium distribution, and _ 0)
the realization of the forcing term in the lattice Boltzmann Po=y dxdgf “)
equation are also discussed in detail. In Sec. IV the hydro-
dynamics and some related thermodynamic quantities of this the average mass density in the system of volinand
model are given. In Sec. V the model derived in this work is
compared with other existing lattice Boltzmann models for
nonideal gases, and the similarities and differences among
the existing models are explicitly shown. Section VI con-
cludes the paper. A more detailed discussion of the Ensko@he first order collision term)’ in Egs. (2) includes the
equation for dense gases, and a derivation of the collisionolume exclusion effectsee Appendix A for detaijs In the
term leading to a nonideal gas equation of state, are provideariginal work of Enskog,g=g(bp), and b is the second
in Appendix A. The Chapman-Enskog analysis for the latticevirial coefficient in the virial expansion of the equation of
Boltzmann model for nonideal gases is demonstrated in Apstate for the hard-sphere systgh7]. The hydrodynamic mo-
pendix B. In Appendix C, the forcing term in the Boltzmann ments, i.e., mass densipy velocity u, normalized tempera-
equation is derived directly from an equilibrium distribution ture 6, and energy densitg can be defined as follows:
function shifted by acceleration due to an external field. This 1

rovides a simple and clear derivation of the models utilizin _ 0)_ —
tphe external foEce to mimic the nonideal gas effect. k p—j dg 1l )_f dgf= zPo exp(—U/0), (63

z(ﬂ)z%fvdxexq—U(x)la]. (5)
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operator, represented by a collision cross section. In particu-
PUZJ dgg f(o):J dégf, (6D Jar, the collision operator reduces to a parameteof the
single relaxation time in the case of the BGK equation. In the

D 1 2¢(0) limit of the BGL, the interactions among particles have no
59‘9— J dg E(f_ ut effect other than changing the numerical value of the viscos-
ity, as clearly illustrated by the BGK model. Therefore, non-
ideal gas effects are not included in the Boltzmann equation.
To exhibit nonideal gas effects in the thermodynamic limit,
the finite range of interactions among particles in the same
limit (the finite size effect or the volume exclusion effiect
which causes nonideal gas effects, must be explicitly consid-
ered. As is shown in detail below in Sec. V, the existing LBE
f (6d) models use some form of one-body interaction to mimic non-
ideal gas effects. This approximation of multiparticle inter-
action by some self-consistent, mean-field, one-body interac-
tion seems to allow LBE models to simulate isothermal
nonideal gases because the effect of pressure and forcing can
be distinguishable in the momentum equation. However, this
is no longer true in the energy equation. Pressure and forcing
For the Enskog equation or the revised Enskog equatiorfct quite differently in the energy equation: the former af-
both global29] and local30,31] H theorems can be proved. fects the energy transport 8 -u, whereas the latter works

It should be clearly emphasized that the acceleradiim aspa- u. In addition, multiparticle interactions affect the heat
due to a self-consistent external field which is one-body in-conductivity whereas the forcing does not. This suggests that
teraction in nature, as clearly and explicitly illustrated in thethe approximation obtained by using a body force to replace
derivation of the Boltzmann equation from Liouville equa- multiparticle interaction to mimic the nonideal gas effect
tion via Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy would inevitably lead to some adverse consequences. The
[24,25,27,32,3B In other words, the potenti&l in the Max-  only way to correctly model nonideal gases is to at least
wellian defined by Eq(3) only represents an external field of include the “finite-size effect” explicitly. The Enskog equa-
body-force type, and this self-consistent mean-field interaction is one such model.
tion should not be confused with genuine multibody interac- A formal solution of the Enskog equation with the BGK
tions that exist in nonideal gases. In the Boltzmann equatiorapproximation,[Eq. (2)], can be obtained by integrating
all the interactions among particléswltibody interactions  along characteristic lin€ over a time interval of lengtl,
involved in a collision process are considered in the collisior{33]:

1
- a5, (69

£(0)

1
pe:f d§[§(§— u?+U(x)

p

The acceleratiom is purely due to the external fieltl(x),
ie.,

1 2
5 (E-W2HUK

a=&=-VU. 7)

&,
f(x+ &5+ 3 ad?,&+ad,t+6)=e 9N (x, E1)+ %efﬁtg’%f e IO (x’ &+at’ t+t')dt’
0
S ,
+e*5t9”f eV N (x', E+at’ t+t))dt
0

O
—e 9. fo et IV F(x', E+at’ t+t))dt, (8)

wherex’ =x(t) + &’ + at’? is the (approximatefitrajectory  upon a discretization of the above integral solution of the
under the influence of an external fiéldthe approximation Enskog equation. In what follows, we show that the lattice
is made by the assumption that the acceleratios a con-  Boltzmann equation is an explicit finite difference scheme
stant locally. Note that the above equation is implicit notfor solving the above integral solution of the Enskog equa-
only because of the teri¥ . f, but also the time dependence tion.

of hydrodynamic momentg, u, and é in the equilibrium

£(©) and the first order collision terrd’.

o ; L I1l. DERIVATION OF LATTICE BOLTZMANN
Our derivation of the lattice Boltzmann equation is based

EQUATION
A. Discretization in time

We neglected the term df? in Ref. [22] because it does not By using the mean-value theorem, we can rewrite the in-
affect the final result. tegral solution of the BGK Enskog equatié8) as
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1
f(x+ &6+ 2a6? ,£+ad, t+6)=e 29I (x, &)+ Xe“st(l‘f)g“f(o)[xe,gwt aed, t+ €816,

+e 19Uy [x_ £4aed, t+ €8],

—e 17990V f[x,, £+ aed, t+ e8] 6, 9)

wheree is a constant between 0 and 1, ang=x(t)+£&e5,  perhaps more stringent than necessary because energy flux is
+3a(ed,)?. If we assume thab, is small enough, and(©, usually not considered in the isothermal cadgecause of
J’, andV.f are smooth enough, locally in phase space, wehe second order polynomial containedfii® given by Eq.
can neglect the terms of the ordex(52) or smaller in the (11), the quadrature which must be evaluated exactly is
Taylor expansion of Eq9), and obtain
k 2

F(Xt £80, £+ 8)— TG E1) f dé&“exp(—&4/20), 0O=<k=5. (14)
1 ) Because of the exponential function in the above integral, the
- ;[f(x'f’t)_f (x,&1)] Gaussian quadratuf@4] is a natural choice for the evalua-

tion of the integral. With &th order polynomiak),(x) of x,
+I(X,§D6—a V(&) , (10  the Gaussian quadrature defined by the equation

where r=\/6; is the dimensionless relaxation time. It is % 5 n

obvious that the accuracy of the above equation is only f dx g (x)e ¥ 2= 2 W, th(X,) (15
first order in time. Consequently the accuracy of the lattice o et

Boltzmann equations derived from the above equation is als ayactfor 0<k=<2n—1. whereW . andx. are the weights
first order in time in principle. and the abscissas of the quadrature, respectively.

B. Low Mach number expansion and phase space

g b, C. Forcing term
discretization

The forcing term,a- V. f must be constructed explicitly

There are two steps in the derivation of lattice Boltzmanny, he |attice Boltzmann equation. We use the moment con-

equation from Eq(10): (& construction of an appropriate giaint to construct this term. The momefiip to the second
equilibrium distribution function, an¢b) a coherent discreti- orded of the forcing term are
zation of phase space. For the isothermal case, the equilib-

rium distribution function can be obtained by truncation of ©
the Taylor expansion of(®) up to second order im: f dga-V§f=f déa- V=0, (163
= (2 6)~P"Zexp(—U/6)
=7 po(2m exp( f d§§a~V§f=J déga- V. f@=—pa  (16b

(£u) (Euw)? WP
1+ ==+ 2 20

X exp( — &126)

f dggigja.vgfzjdggigja.vgf@):—p(aiu,-+ajui).
16
(Ew  (Fw? o 1od

+ + —
1+ 202 20

=pw(§)

: (1) Here, we note that can be replacedor approximatef by
£(©) without affecting the moments of the forcing term up to
the second order i§—in general the replacement bby f ()
does not hold for the moments higher than the third order in
w(§=(270)"P2exp — £126). (12) £ This is owing to the fact thatand f(°) have exactly the
same conserve@r hydrodynamif moments, a constraint on
The phase space discretization has to be done in such a wéye normal solution of the Boltzmann equation in the
that not only all hydrodynamic moments, but also their cor-Chapman-Enskog analysis.

where

responding fluxes, are preservesactly This implies that The forcing terma-V.f can be written in terms of an
the following quadrature must be evaluated exactly: expansion in¢ as
a Vef=pa(Hlc@+clg+cPeg+--1, 17
f dg£kfed  0=k=3, (13) ¢ PSR ST

where the Einstein notation of summation for the repeated

for isothermal models(Here we require that not only all the Rgman indices, j, ... is used. The first few coefficient
hydrodynamic moments, but also the corresponding fluxesSi,i, i, ¢@n be easily obtained by using the moment con-
are computeexactlyby the quadrature. This requirement is straints given by Eqs(16) if the above expansion is trun-
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cated. With the truncated expansion up to the second order iystem(in £ space is used in this case, and accordingly we

£ and the first order i, we obtain sety(£) = &x&, . Thus the quadrature needed to be evaluated
is the
(0) — 1
== a-u, (183 =& 2, (20
T
where
(1) 1
c/=——=a, (18b)
i gz -
T = J degfe 2, (21)
C_(_z):_i(a_u.+a.u.) (180)
g 284 1 T and {=¢,/&r or é//£7. Naturally, the third-order Hermite

formula [34] is the optimal choice to evaluate for the
where &= /6 is proportional to the thermal velocity of a purpose of deriving the nine-velocity LBE model, i.¢,

particle at temperatur€. Therefore, up to the order @(u) =2j3=1wj§}‘. The three abscissag;] and the corresponding

andO(&?), we have weights (w;) of the quadrature are
aVei=—po(H& o (E-u)+&2EwEa (19 GL=—3, =0, 13=\3, (229

Note that in the above expansion, only terms up to first order _ _ B

in u have been retained, because there is an overall factor of 01=\7/6, w,=2\ml3, wy=\ml6. (22b

&, In the forcing term, as indicated in ELO). Also & is )
O(u) in the Chapman-Enskog analysis for the lattice Boltz-1hen the integral of Eq(15) becomes
mann equation(see Appendix B for an explanatipnlt

4 8
should be stressed that every term in the Boltzmann equation =~ _ | 2

must be treated equally in terms of maintaining the accuracy. ' — 25T w2 (0)+ gl w102%(&,) + ;5 w1P(&) |,
Specifically speaking, the expansion of the forcing term must (23

be of the second order i§, and the same in the small ex-

pansion parametes;, in order to be consistent with the ex- \where £, is the zero velocity vector forr=0, one of the
pansion of the equilibrium. It should be noted that there argectors of3¢7(+1,0) andy3¢r(0,=1) for a=1—4, and
other methods to compute the expansion of the forcing termyna of the vectors of3¢1(+1,+1) for a=5-8. Note that

Up to S(?C_On_d order igf and first order inu, the expansion of = he apove quadrature is exact for the integral defined by Eq.
a- V(9 is identical to that ofa- V. because of the con- (21) whenk=s5.

straints given by Eqd16). Thereforeb the result of Eq19) Now momentum space is discretized with nine discrete
can be obtained by computirgg V ¢ f©) explicitly. _ velocities {€,|a=0,1,...,8. To obtain the nine-velocity

It should be pointed out that there is another way to in-nqqe| the configuration space is discretized accordingly,
clude the effect of forcing due to an external field. Assuming; ¢ it is discretized into a square lattice space with a lattice
that multibody interactions among the patrticles in the SYSter,T&onstanthx= \/§§T5t_ It should be stressed that the tempera-
are of short range, and the mean free path of a particle Rire T (or 6) is a constant here because we are only dealing

much larger than the interaction range, then a patrticle is aC3ith an isothermal model. We can therefore choéséo be
celerated only by the external field between collisions. Thus fundamental quantity iﬁstead' thy8¢r=c=5,/5,, or 0
’ T Y= 0Ux t

the net effect of the acceleration due to the external fieldﬁJI

1 g2 __ A2 H ; H .
during the mean free time is an increment of particle veloc- £7=C°/3. Thus the phase space is discretized coherently:

ity. Therefore, one can use an equilibrium distribution funC_the discretizations of the velocity space and the configuration

tion with a velocity shift to account for the effect of the space are closely COUpled toget.herl. This is one feqtqre Of the
forcing due to the external fielfB5], i.e., {©(p,u,0) be- lattice Boltzmann equation distinctive from other finite dif-

. ference schemes.
comes f(O(p,u—ars,,d) in the presence of an external . . .
field. Naturally, the accelerated equilibrium distribution By comparing Eqs(15) and (23), we can identify the

function f(O(p,u—arés;,0) leads to a forcing term in the weights defined in Eq(15),
lattice Boltzmann equation when discretizestte Appendix

C for details. It should be noted that these two approaches W, =277 expl £/261) W, (24)
are equivalent up to the first order &ip. At a higher order of
s, the velocity shift in the equilibrium distribution will intro-  Where
duce nonlinear terms which are different from what are de-
rived from the continuous equation. 419, a=0
w,={ 1/9, «a=1234 (25)
D. Two-dimensional nine-velocity model on a square lattice 1/36, a=5,6,7.8.

We now use the two-dimensional nine-velocity LBE
model on a square lattice space as a concrete example Ttnen the equilibrium distribution function for the nine-
illustrate our discretization scheme. A Cartesian coordinateelocity model is
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FED=W,fCUx, &, 1)

3(e,-u)  9(e,-u)? 3u?

=W,p| 1+ , 26
P c? 2¢c* 2¢? G
where
(010)1 a:O
e,=1{ (cos¢,,sing,)c, a=1234 (27

(cosg, ,sing,)2c, «=5,6,7,8,

and ¢,=(a—1)w/2 for a=1-4, and ¢,=(a—5)7/2
+ /4 for «=5-8.

E. Discretized forcing term

Applying the same discretization to the forcing term of
Eqg. (19), we have the discretized forcing term for the nine-

velocity model:

(& ;U)ea a. (29

1
Foa=—3W,p| (€~ Uu)+3
c

The forcing in the above equation satisfies the following con-

straints:
> F,=0, (293
> e Fo.=—pa, (29b)
2 ea’iea,jFaz—p(uiaj+ujai). (29C)

a
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F. The lattice Boltzmann equation

The first order collision termJ’ of Eq. (2b), can be ex-
plicitly written in a discrete form:

J,=—1%bpg(e,~u)-VIn(p%g). (32)

With the discretized’ included, the lattice Boltzmann equa-
tion for dense gases is

f (X+e,0,t+ &) —f,(xt)
== 211,00~ 16900 - bpg 19, 1)

X (6,~U)-V(p®g)—F,é, (33

where the forcingF, is given by Eq.(28). The hydrody-
namic moments in the lattice Boltzmann models are given by

p=2 f,=2 59, (34a

=3 0,1,=3 i,

a a

(34b)

1 1
Paz z 2 (ea_u)zfazz 2 (ea_u)zf(aeq)- (340)

3

The first order collision ternd), involves the density gradient
V p, which can be explicitly computed by either the second
order central differencing

€. Vp(X) 8= 3[p(x+e,8) — p(x—€,8)]
or the first order differencing
€, Vp(X) 6= p(X+e,6) — p(X).

The alternative would be to construct a collision term similar

The above constraints are the discrete counterpart of EQg, the original Enskog collision term given by Bdb), with-

(16). If only the first two moment equations in Eq&9) are

to be satisfied, and the third constraint of E890 is re-
placed by

> €4i€xFa=0, (30)

the forcing term thus reduces to

out the Taylor expansion in space.

IV. HYDRODYNAMICS AND THERMODYNAMICS

Through the Chapman-Enskog analy&@se Appendix B
for the detail$, the hydrodynamic equations of the lattice
Boltzmann model for dense gases, given by B8) with the
equilibrium of Eq.(26), are

+ . =
(ea'a) [?tp v (pu) 01 (356)
Fo=—3W,p— (31) .
c
0tu+u-Vu=—;VP+vV2u+a, (35b)
The above forcing term is what has often been used for con-
stant body force in the literatur86,37. The adversity of where the viscosity
using the above forcing term is that the Galilean invariance
is lost if a is not a constant in space. In addition, the work (27—0)
v=———"—"C&y, (36)

done by the forcingpa-u, does not appear in the energy 69
balance equation, and thus leads to an incorrect energy bal-

ance equation. As shown in Sec. V, the forcing terms ofand the pressuréor the equation of statds given by
similar forms are used to produce various nonideal gas ef-

fects in previous model8—11]. P=p6(1+bpg). (37)
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With the above equation of state, the sound spegthe- charging the value obfgdp (or simply justb) in the free
comes energy densityy relative to the temperature, as indicated

by Eg. (39). Bear in mind that the temperatufecannot be
(38) charged, because it is a fixed constant in the isothermal LBE

models. It should be noted thgtshould be computed with a
given potential in principle. The above manipulation to ob-
tain g is not based upon principles of physics. Also, the use
Ot the free energy adds nothing to the physics of the model,
but only reflects a matter of custom or preference.

For ideal gasb=0 andg=1, andP, v, andcg recover the
previous results for ideal gas. The dependence of the visco
ity » on g can be removed by replacirgin the BGK colli-
sion term by 1.

Although in the original work of Ensko¢see Ref[17]), g V. OTHER MODELS
only accommodates the volume exclusion effect, or repulsive
interaction, in the gas of hard spheres, there is no reason to What we propose in this work is a systematic construction
prohibit the inclusion of a more general interaction. Indegd, of the lattice Boltzmann equation in a consistent artiori
can be somewhat arbitrary, depending on the interaction. Thi@shion, with the premise that the continuous Boltzmann
radial distribution functiorg provides a freedom to alter the equation is adequate to describe underlying physics of the
transport coefficientsy( and c) as well as the equation of Systems of interest. In particular, for nonideal gases, one
state. However, it should be stressed that there are bounds fiaust use the Enskog equation for dense gases instead of the
this freedom. From Eq(36), it becomes obvious that the original Boltzmann equation for dilute gases. In light of this
model is stable if and only if>g/2. This suggests thag ~ Vviewpoint, a survey of the existing LBE models for nonideal
also affects the numerical stability of the system. In additiongases is now in order. We discuss two lattice Boltzmann
the sound speed can be changedgoyBut one must not models for nonideal gases which were independently pro-
expect to achieves=c=45,/5, or the basic principle of posed by Shan and Ché8] Swift, Osborn, and Yeomans
physics would be violated, becauselimits the speed of [9]. In spite of the significant differences in their appearances
information propagation in the LBE system. Therefore, thereand technical details, these models share one common fea-

are bounds to the values gfand derivative op?g. ture in their constructions of the lattice Boltzmann model for
With the equation of the state given, the Helmholtz freenonideal gases: The derivation of the lattice Boltzmann mod-
energy density can be given by els is mainly accomplished by constructing a phenomeno-

logical equilibrium distribution function which can accom-

P modate nonideal gas effects and which satisfies all the
‘/’(P):Pf —dp=p0|In P+bf gdp}, (39 conservation constraints, and therefore leads to hydrodynam-
P ics. In what follows, we shall analyze these two models and
because explicitly demonstrate the difference between the model de-
du rived in this paper and the aforementioned two.
P=p dp 7 (40) A. Model with interacting potential

And the radial distribution functiog can also be computed " the model proposed by Shan and Cléh a local
from eitherP or . That is, with eitheP or i given, one can density-dependent potential(p(x))=G8y~(p) is explicitly

derive all the relevant thermodynamic quantities from thediVeNn, whereg is the interaction strength and is an arbi-

free energyy. For example, given the van der Waals equa_trary function of densityp. The change of the particle veloc-

tion of state ity £ (not the macroscopic velocity) due toU(x) is
1 a 6é6=—-VU(X)té=aré;,
P=pbl ————p|, (41)
PPla=bp) 6" and du= — &£ is explicitly substituted into the equilibrium

where parametest accounts for the mean result of attractive distribution function, i.e.,

potential among particlegl7], according to Eqs(37) and 3[e,- (U—ard)]
(41) the radial distribution functiom is f(aeq)=wap[ 1+ “—zt
c
1 a
9= {~bp) bo +9[ea'<u—anst>]2_3<u—aat>2]
4 2
The corresponding free energy density is 2c 2c

o a 1. 3(e,-u) 9(e,-u)? 3u?
— - :Wa [ —
y=p0 In(1—bp of | P c? 2ct 2¢?
With the free energy and the equation of state defined, the 1 (e, u)
Maxwell construction[38] to determine the coexistence —3W,p —Z(ea—u)+3 7 €| aTH
curve becomes physically meaningful and consistent. Never- ¢ c
theless, care must be taken in conducting the Maxwell con- 3 2 (e, )
struction in the discretized situation. The phenomena of —ZW,p £ 782, (42)
liquid-gas phase transition can be simulated by the model by 2 c? ct
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In the above result, the first part is the usual equilibriumin the Enskog equatio, is obtained from a hard-sphere gas;
distribution function which has an ideal gas equation of statehus the attractive potential has to be inserted through param-
built in, and the second part accounts for the interaction oetera.
nonideal gas effects, which is identical to the forcing term It is clear that interparticle interactions are conceived
given by Eq.(28), produced by the forcing terra- V. f in mathematically as external fields in the aforementioned mod-
the streaming operator. By combining the forcing with theels. Perhaps the only plausible justification for this view is
pressure term in the Navier-Stokes equation, the equation diat the interparticle interaction can be approximated by a
the state becomes self-consistent one-body interaction figlds in the Vlasov
approximation for Coulomb gasesn this case,

P=p[6+U(p)].

) ) f dxd&, VoV Ve fa(X, 6%, 62,1)
Thus nonideal gas effects are obtained through the phenom-

enological potentiall(p). To achieve the purpose of mim-

icking nonideal gas effects, the leading term in the density =V§f(X,§,t)'J dxod & (%2, 6, 1) VoV,
expansion ofU has to be of second order ip, i.e., U

*GOp?, or o< p, as specifically indicated in Ref8]. Obvi- zvgf.vﬁ, (45)

ously, the potential (p(x)) is intended to be the interpar-

ticle interaction. However, it is mathematically implementedwhere the Boltzmann approximation has been invoked, and
as an external field such that its sole effect is to produce a

term VU in the momentum equatiof8]. The consequence —

of this conceptual confusion is that the energy balance equa- VU= f dxpd€,1 (X2, &2, ) VoV

tion is incorrect, because the result of an external field is the

work of p a- u, while the result of the interparticle interaction defines the self-inconsistent mean-field poterﬁaﬂ'his ap-

is a heat transfer due to the viscous effect, as shown in Approximation is justified for rarefied collisionless plasma with
pendix B. Specifically, in the energy equation, the correctCoulomb interactions, and is simply inappropriate for non-
term related to the pressure BV -u, where the pressure is ideal gas systems.

exactly the one that appears in the momentum equation.
However, with the one-body interaction, this becomes
pOV-u+pVU-u, i.e., the equation of state is not the same . . i )
in the momentum equation and the energy equation. Further- A comparison with the model proposed in RED] is
more, the third part in Eq42), which is proportional toé)‘tz sllghtly_ more elaborgte. Stressing the consistency of 'Fhermo-
and nonlinear irg, is omitted. This term can be significant dynamlqs_ in t,he lattice Boltzmann quatlon and inspired by
when 5, is set to unity, as it is a common practice in the Cann-Hilliard's model for surface tensiga0,41, the model
lattice Boltzmann simulations. It should also be pointed ouP™@P0Sed by Swift, Osborn, and Yeomdss started with a

that the viscosity in this model remains intact—it is not af- €€ €nergy functional,
fected by the potentidl.

We have also noted a recent attempt to theoretically jus- \If:f dx
tify the model of Shan and Chen. With some crude approxi-
mations[11], He et al. showed that a desirable forcing term

B. Model with free energy

K
S19Al=+ o). (49

where ¢ is the bulk free energy density. The free energy

to mimic nonideal gas effects i§,f®¥(e,—u)-Fs,, . . . .
5 a 2 functional in turn determines the diagonal term of the pres-
where Fc—VV—bpagV In(p°g), and V=—2ap—«V*p sure tensor

accounts for the attractive part in the interparticle interaction.
Without any surprise, this model reproduces an anticipated SV p

non-ideal gas equation of state~p#(1+bpg)+pV, and P=p——-V=p—«pV?—=|Vpl|? (47
avoids the nonlinear term of? in the model of interacting op 2

potential, as expected. However, the energy balance equati%here

from this model is still incorrect, due to the similarity to the

previous model. It should also be noted that it is conceptually dos

incorrect to write the pressure Bs=p6(1+bpg)+pV. One P=pg, v (48
correct way to generalize the van der Waals equation of state p

's writing it as[39] is the equation of state of the fluid. The full pressure tensor is

iven b
P+ap?=6p(1+bpy), 4y
P|J:P5|J+K0"|p(?]p (49)

where parameted is related to the two-body interaction po-

tential by With the pressure tensor given, the equilibrium distribution
function is constructed such that it not only satisfies the con-
servation constraints of Eq$34), but also produces the

r3dr. (44) above pressure tensor by enforcing additional constraints

Eaf(aeq)ea,iea,j = P|] [9]

2@ [dV(n)
a=-32) Tar
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To make our analysis as transparent as possible, it is cranalysis presented in Rg®] and the subsequent wofkO0]
cial to make an explicit connection between the model ofdoes not follow the Chapman-Enskog analysis; therefore, it
Swift et al. and the model of Shan and Chen. The equilib-cannot lead to a mathematically valid derivation of macro-
rium distribution function in the model of Swiftt al. with scopic equations from the mesoscopic equation. Some fur-
triangular latticeg[9] can be rewritten as ther limitations of the model are discussed next.

. . First, the model lacks Galilean invariance, mainly because
e K of the forcing termF o« f#¢. This defect can be fixed by
fE"Q)Z§p Lt (e t2(e, u)2_§ u|+ §{(e§"x_e§¥~y) using a correct forcing term according to E@9), i.e.,

X[ (0402~ (8,0)?] + 26, CuyPapdyp) ~ 5PV p Ferpllemwrsec e Ve
1 However, there are other terms involving the density gradi-
- "oy _ ent which also cause the problem of lack of Galilean invari-
+ S[W (p)—¥(p)—pl, (50) ance[42].

) ) ) ) Second, the ratio between the number of rest particles and
where c=6,/4; is assumed to be unity. The first term in the number of moving particles depends on the local density
bracketd ] is nothing but the usual equilibrium distribution gradient. It can be shown that this ratio is related to tempera-
function of the seven-velocity Frisch-Hasslacher-Pomeayyre, because in the two-speed system, the width of the equi-
model[13,21). The term in bracket} is an expression of the |iprjum distribution, which is the temperature, is determined
tensorE;;=(e, idip) (€,,j9;p) Written in terms of a traceless py this ratio.(To be exact, according to the definition f
and an off-diagonal part with correct symmetry such that aII[Eq. (12)], the ratio w(O)/w(c)zeCZ’Z", which must be a

H 2
the terms proportional toc reduce to the termx[pV=p constant for isothermal fluidsThis means that the tempera-

+||V p||?/2] in the diagonal part of the pressure tensor, given re ma - : -
. e 1D y vary locally depending on the density gradient,
by Eq.(47). This term is directly taken from Cahn-Hilliard's i the model is claimed to simulate an isothermal fluid.

model, and it induces surface tension due to densit_y gradie'ﬂgain, this problem can be rectified by using the correct
in addition to the part due to th@onideal gasequation of forcing term mentioned earlier.
state, but it dpes not contribute to the hydrodyngmm PreéSSUre® Thirg, the model cannot lead to the correct energy balance
(or the equation of staleThe nonideal gas part in the equa- ¢ ation for the very same reason that the terms related to
tion of state is contained in the last part of the above equaye free energy can be considered as a body force due to a
tion, Lo (p.)_ ‘./'(p)_p]/3’ which can be written in a den- thermodynamic potentidfree energy in the modgWhich is
sity expansion in general, a mean-field quantity, as shown in Sec. VA
=Ll (0)— 1 ps2 o We stress that the differences between body force terms
Oe=slpu'(p)=¥(p)=p]=0p(B+Cpt---), (51) and interaction terms cannot be circumvented by technical

where coefficient®, C, . .. are virial coefficients. We have [icks such as using a correct forcing term, or including
noted that only the leading term in the density expansion Ohlghe(rec;rder terms it in the equilibrium distribution func-

¢, Bp?, is needed in order to capture the nonideal gas eflion f; . The reason for this is obvious: as long as a mean-
fects, for this term not only leads to a nonideal gas equatiofi€!ld potential, whether an interaction or a free energy, is
of state, but also provides all the necessary terms to contr@mployed to mimic nonideal gas effects, the constraints of

the surface tension in Cahn-Hilliard’s model, as Egs. (16) must be satisfied; therefore, the inconsistency of
the pressure between the momentum equation and the energy
VVp2=2(pV2p+|Vpl|?). equation arises, regardless of the or@eru) of the equilib-

rium distribution function— this is true even in the con-

By comparing Egs(50) and (42), the connection between tinuum case. Furthermore, certain terms in the pressure ten-
the models of Swifiet al. and Shan and Chen becomes ob-sor, P;;, were arbitrarily omitted in the macroscopic
vious if Eq.(31) for the forcing term is used and the equiva- equations derived from the modg)]. Therefore,P;; is not
lence ofdp=e,-VUxF,, is established. Thus the model of obtained in a self-consistent manner. Following a similar
Swift et al. uses Eq(31) for the forcing term, which is only analysis, one can also conclude that a multicomponent model
valid for a constant body force, whereas the model of Sharonstructed in the same fashifgi0] shares some of the same
and Chen uses E28) for the forcing term. The interaction limitations. One distinctive feature of this mod@] is that,
strength in the model of Swifet al. is proportional to tem- by using Cahn-Hilliard’s model, the surface tension can be
peratured, whereas in the model of Shan and Chen, it iscontrolled independently of the equation of state by the den-
proportional to a constargt. Since the connection of the two sity gradient. This appears to be the reason why the spurious
models can be explicitly established, all the analysis in Seanass flux is reduced in this modd].
V A can be immediately applied to the present model. In a recent work by Holdyclet al.[42], it was shown that

It should be pointed out that at the level of the Boltzmannthe model of Swiftet al. does not satisfy the Navier-Stokes
equation, the density gradient terfiV, p||?, in the free energy  equation, in either the bulk region or interface region, al-
functional, has no justification within the framework of though the LBE mode[9] has conservation laws built in
Chapman-Enskog analysidn fact, the density gradier¥ p [42]. Numerous simple hydrodynamic tests showed that the
can only appear in the second order solutiof @fhe Burnett  departure of the model from the Navier-Stokes equation is
equation[17]) in the Chapman-Enskog analysis, which israther significant both quantitatively and qualitativé42].
beyond the Navier-Stokes equatign$t is clear that the When the model is used to simulate a simple hydrodynamic



PRE 62 THEORY OF THE LATTICE BOLTZMANN METHOD: ... 4991

problem such as a single droplet subjected to shear, simulanethod does not comes without a price—the inconsistency
tions of the kind presented in a recent work of Wagner andn the LBE thermodynamics and discrete effects are inherent
Yeomang43] are qualitative, and do not sufficiently validate to the LBE models. In contrast to the LBE method, it is also
numerical predictions of the model. worthwhile to mention some new approaches more closely
It should also be noted that the Hamiltonian approé@ih  related to standard computational fluid dynamics methods
and the free energy approaf10] are indeed equivalent in [44—46 which show promise for dealing with the interfacial
terms of phenomenology. Given a Hamiltonizhof an in- proplems.
teractingN-particle system, the corresponding free enetgy It is a fair observation that so far a large part of the lattice
can be obtained via the partition function based ufén  pojtzmann enterprise rests upon the phenomenology of cre-
Thus, in principle, information is neither gained nor 10st 4ing various “new” equilibrium distribution functions to
whether the problem is formulated in termsTfor V. One  ,ccommodate different physical phenomena ranging from
cannot claim that_usmg the free energy and utilizing ,thenonideal gases or multi-component flu[@10] to viscoelas-
Maxwell construction leads to a better or more physicalijc media[47]. Previous procedures to construct the equilib-
model_ P.erhaps the only advgntage of using the f_re_e €NerhYum distribution can be summarized as follows. By observ-
is thatV is a globgl state variable, anld therefore it is '”de'ing the hydrodynamic equations of a system of interest, one
pendent of coordinates. However, this advantage bears NQn anticipate those terms in the equilibrium distribution
relevance in the LBE models. which are necessary to produce the desired regustsally a
_ In summary, the main difference between the model degegjrable stress tengoThen proportionality factors for these
rived from the Enskog equation and the existing ones is iRgyms are determined by the conservation constraints. It is
the physics. Our starting point is the Enskog equation f0leyident that this approach lacks mathematical rigor, and that
dense gases in which the nonideal gas effects are naturalije models derived in this fashion may suffer from artificial
considered, whereas in all other existing mod@s11 the  efects which are uncontrollable, such as the models in Refs.
starting point is the original Boltzmann equation which is [9,10,47. The problem common to these models is that the
only suitable for dilute gase@deal gases This necessitates athematical rigor of the Chapman-Enskog analysis was
variousad hocapproximations. One notable feature COMMONcompletely ignored, as typified by the work in RES].
to these models is that the viscosity is independent of non- |1g important to point out that the rigor of the Chapman-

ideal gas effects, which is inconsistent with the Enskog equagnskog analysis can be retained without following the view-

tion. point of deriving lattice Boltzmann models via discretization
of the corresponding continuous kinetic equation. Given a set
VI. CONCLUSION of discrete yelocities on a lattice space With a collision op-
erator obeying conservation laws and associated symmetries,
We are now in the position to lay out the procedure foran orthogonal basis spanned by the eigenvectors of the col-
constructing a thermodynamically consistent lattice Boltz-lision operator can be obtaingd8,49. The kinetic modes of
mann equation for nonideal gases. Given interparticle interthe basis, which are fluxes, can have different relaxation
actions, the radius distribution functiog(r) can be com- times[48,49. Not only does this approach overcome some
puted in principle, and the first order collision tetthin the  shortcomings of the single relaxation time method such as a
Enskog equation can be constructed. This collision ternfixed Prandtl number, but it also follows the Chapman-
would correctly produce the nonideal gas effects. With thisEnskog analysis rigorously.
term implemented in the lattice Boltzmann model, a thermo- In this paper we carry out a systematic derivation of the
dynamic and hydrodynamic consistency can be achieved itattice Boltzmann equation for nonideal gases from the En-
the sense of the finite difference approximation. With skog equation. It should be stressed that the procedure illus-
given, the free energy density can be obtained explicitly. trated here is general and can be easily extended to other
Subsequently, other pertinent thermodynamic quantities sudattice Boltzmann models, e.g., multicomponent mod@ls
as the equation of state, pressure tensor, surface tension, afldis procedure can also be used to improve the accuracy of
so on, can be directly and easily derived from the free enthe lattice Boltzmann models systematically. Our procedure
ergy, while the correct hydrodynamics is preserved in thecan be briefly summarized as follows. First, one can observe
lattice Boltzmann equation. the equation of state of a system, and extract the nonideal gas
It should be emphasized that because the Boltzmanpart in it. This part is related to the radial distribution func-
equation describes mesoscopic dynamics, the constraints irtien g(r). Fromg(r), the first order collision term respon-
posed on it must be compatible with the mesoscopic dynamnsible for it can be constructed. Then one can systematically
ics. Specifically speaking, given an arbitrary interaction in adiscretize the Enskog equation to obtain the corresponding
system, one caim principle compute the equation of state lattice Boltzmann equation. This approach is not only rigor-
(e.g., by means of the virial expansjoithis is an averaging ous, but also systematic. The equilibrium distribution is
process, because macroscopic observafthes equation of uniquely determined in this procedure. It enables one to see
state, surface tension, etare averaged macroscopic quan- clearly what approximation is made in the derivation of the
tities. But, the reverse are not true in general: given an arbilattice Boltzmann equation. In this way it can be shown that
trary equation of state, one may not be to able to find &he accuracy of the lattice Boltzmann equation is indeed sec-
unique corresponding interaction in the mesoscopic descripand order in time and spad¢81].
tion. However, this can be achieved in the formalism of the In addition to ana priori derivation of the lattice Boltz-
lattice Boltzmann equation, owing to the simple structure ofmann model for nonideal gases, we explicitly illustrate the
the formalism. Nevertheless, the simplicity of the LBE differences between our model and existing ones. Based
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upon our analysis, we can conclude that the problem in thghereg is the radial distribution functiom,is the unit vector
model of interacting potentidB] is a minor one, and can be pointing from the particlef; to the particlef, J™, n
easily fixed by either directly using a forcing term as we—0 1 2. .., areobtained by a Taylor expansion of f;
proposed, or adding a correction to remove #halependent =f(&), andf;=f(&;) in Eq. (A2a) of J aboutx,
terms. In contrast to the model of an interacting potential, the
model of free energy9] presents many major problems. It du, =& —8odQdé;, (A3)
starts with the intention to correct the thermodynamic incon-
sistency in other models, but it ends up with more seriougnd o and(} are differential collision cross section and the
inconsistencies, because the pressure tensor in the modelsiglid angle in coordinate space. The Enskog equation is
constructed without any physical basis at the level of thealso called the modified Boltzmann equation in the literature
Boltzmann equation. It is also important to point out that[25].
none of these models can lead to a correct energy balance The termJ(® given by Eq.(A2b) is the usual collision
equation, and therefore they are inconsistent with their conterm in the Boltzmann equation with an extra faapwhich
tinuous counterpart—the Boltzmann equation. Starting withcan be approximated by the BGK approximation, i.e.,
the Enskog equation in the presence of an external field and
through a rigorous discretization procedure, we can obtain a 30— _ l[f_f(O)]

. : : ; g, (A4)
consistent thermodynamics and hydrodynamics for nonideal N
gases in the sense of the discretizing approximation. With
this systematic means, one can use either an interaction orvéhere (%) is the equilibrium distribution function of Max-
free energy to obtain the equation of state, that, when incorvell and Boltzmann.
porated into a collision term, accounts for nonideal gas ef- The termsJ(*) and J®) can be explicitly evaluated for a
fects among the particles. Our future work will extend ourhard sphere potential. For hard spheres of radjyusve have
theory to multicomponent fluids, and obtain a consistent

thermodynamics for lattice Boltzmann models. dQ= ds=2r, cosddd in two dimensions
sds= 2r(2)sin(20)dﬁdcp in three dimensions,
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IW=—1Opp(g—u)- Vg, (A7a)
APPENDIX A: MODIFIED BOLTZMANN EQUATION
FOR DENSE GASES

J@— ) {2 0.V
The Boltzmann equation pg| 2(§—u) p

af+EVi+a V=] (A1) L2 Emuw(Emw)ay;
(D+2) 0

can be modified for dense gas by explicitly considering the

volume exclusion effect in the collision terd for hard 1 (& U)2_1 v.u
spheres of radiusy as[17,24,25 (D+2) 0
. . 1[ D (&
J:f dp[g(X+ror)T(X,&)f(X+2rgr, &) +§ (DTZ)T_l (§—u)-Vinag|,
—g(x=roNf(x, & (x=2rof, &)] (A7b)
S QN TED IS [ NN (A2a) Where b is the second virial coefficientp, u, and 6

=kgT/m, are the mass density, velocity, and normalized

temperature of fluid, respectively is the particle mass; and
J(O)zgf du(f'f1—Ffy), (A2b)  Dis the dimension of th& space. In the above equation, the

Einstein notation for summation among repeated indices is
used. The second virial coefficient for the hard sphere gas is

J(l)zrof dpg(F/£1+Ff,)r- Vg, (A20) b=Vy/m (A8)
=V, /m,

whereV, is the volume of a hard sphere, which is6/3

(2)= r(f'VFf
J 2rogf dpr- (FVI TV, A2d) iy three dimensions, orrr3 in two dimensions. Note that
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bp=Vyn, wheren is the particle number density, is a dimen- APPENDIX B: CHAPMAN-ENSKOG ANALYSIS
sionless quantity called the packing fractidfior the hard- OF THE LATTICE BOLTZMANN EQUATION

sphere systemandg is a function ofbp. By introducing the expansiori§6,51
It should be noted that the collision terdrin the Enskog

equation does not conserve mass, momentum, and energy * N

locally, because it involves nonlocal interactiqis]. How- fo(X+ 6,8, 1+ 8) = >, mD?fa(X.t). (Bla)
ever, mass, momentum, and energy are conserved globally. n=0"

The nonlocal interaction is expected to produce nonideal gas o

effects due to the exclusive volume in momentum and en- f = 2 I (B1b)
ergy equations in hydrodynamics. The first tedffl) in the = T

expansion ofJ is the usual collision term in the original
Boltzmann equation for dilute gasésultiplied by a factor
g), and it conserves mass, momentum, and energy locally. (9t:nZO fnﬁtnv (B1o)
Other higher order terms]™ for n=1, do not conserve -

mass, momentum, and energy locally; they are responsibigheree= 8, andD,=(4,+e,- V), we can rewrite the lattice
for the flux (of mass, momentum, and eneygsansfer due to  Boltzmann equation with a forcing term

nonlocal interactions.

©

To the first order approximation in the Chapman-Enskog fo(X+e,0;,t+ 8) —f(X1)
analysis, onlyJ©®, J®) and J® shall be retained in the
modified Boltzmann equation for the dense gases. Higher :_g[f (x,t)— & x )]+ 3’5~ F 3,
order collision terms)(™, n=3, are neglected because they T e “ “
are involved a higher order or higher power of gradients of (B2)

p, u, andé. The termJ® can be simplify for incompressible
and isothermal fluids. In that case, the last two terms in Eqin the consecutive order of the parameteas
(A7b) vanish. Then the term @fu; must be neglected owing
. . . 0 f(0)—(eq) (B3a
to the conservation constraints. The termVW$ can be in- @ a
cluded intoJ’ by

o a’

. , & fW=_Ip {0 (B3b)
J' =—1Opp(&—u)-[Vg+gV Inp?] g

=—{Obpg(&-u)-Vin(p?g). (A9) 7 T
e fP=- E[1>t20+ 24,110~ aDtOfS) , (B30

It is clear thatJ’ conserves mass locally. However, it is

responsible for flux transfer due to the nonlocal interactionwhereDtnE(0tn+ e,- V). Note that bothF, andJ), in Eq.

the part of the equation of state attributed to nonideal gag| appear in the governing equations in what follows. The

effects: distribution functionf , is the normal solution which is con-
strained by
| dggr=—bpg [ agr@ge-0)-v i) 1) [
2t 1= L (B43)
= —b6pgV In(p?g) = — V(6bp?g). © L%
(A10) 0
> £ e =gl >0 (B4b)
Combining with the ideal gas part of the equation of state, “ “
p6, we obtain the total equation of state: where the equilibriumf(?) (for the nine-velocity modelis

given by
P=p6(1+bpg). (Al11)
(e,-u) 9 (e, u)? 3u?

(eq)— 3 __
fo Wap[l-l- 2 +2 o 202}. (B5)

For hard sphere gases, the radius distribution funagjos
known as up tol§p)> [17,24.

The energy transfer due to the effectBfis The first order collision ternd’,, which is responsible for the
volume exclusion effect in dense gases, is given by
1 1
§f d§§23’=—§bp9f dgf@&(£-u)-Vin(p?g) J\=—1® pg(e,~u)- V In(p2g). (B6)
= —u-V(6bp3g). (A12)  The forcing termF,, for the nine-bit model, is given by

1( )+3(ea~U)
—(e,~u e,
c? c*

This correctly corresponds to the nonideal gas thermal equa- F,=—3w,p

' = -4, (B7)
tion of state[Eq. (A11)].
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which satisfies the following constraints:

> F,=0, (B8a)
> eF.=—pa, (B8b)
2 €4,i€u,jF = —p(Ujgj+u;a;). (B8c)

Also, f, is a Chapman-Enskog ansatzf(x,é&t)
=f(x,§p,u,0), i.e., the temporal dependence of, is
through the hydrodynamic variables u and 6. Therefore,

a,f af”‘a +(9f
tha™ ap tP

a

m&tu (B9)

for isothermal fluids.
For the nine-velocity model, we have

> tQ0=p, (B10a
> e fP=pu, (B10b)
2 eyie,,f 0= 0ps; +puu;, (B109
2 ea,iea,jea’kf&0)=GpAijk|u| (BlOd)
and
> J.=0, (B113
2 eJ,=—0bV(pg), (B11b

a

; €4.i€0.jJ5= bl Ujuju- V= 0(u;d;+u;3)1(pg),
(B110

where g;; and 6;j; are the Kronecket’s with two and four
indices, respectively, and
Ajji1 = 6ij O+ ik Oj1 + it Sjic - (B12)

The governing equations df, up to the order ok are

Dtof(O)___gf(l)+J;_Fa, (B133
(27—9) g

(0) 1=_ 252 3b

(9t1f + 27 Dtof Tf ' (Bl )
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In the derivation of Eq(B13b), we have made the approxi-
mation thatDtog%O, which is accurate up t@(u?). The
moments of the first order governing equatiffg. (B133],
lead to the Euler equations

Gigp+ V- (pu)=0, (B14a

di,(pu)+V-MO=F—6bV(p°g), (B14b)

wheren©@©=3 e e, {9 is the zeroth-order momentum flux
tensor. Withn{? given by Eq.(B100), the above equations
can be rewritten as

drp+ V- (pu) =0, (B15a
1
atou+u'Vu=—;VP+a, (B15b
wherea=F/p is the acceleration, and
P=p6(1+bpg) (B16)

is the equation of state for a nonideal gas, depending on the
radial distribution functiorg. (Note that for the nine-velocity
isothermal model hergg=c?/3.)

The moments of the second order governing equation,
[Eqg. (B13b)], lead to the equations

&,p=0, (B17a

v.-n

-0, (B17b

(29
atl(pu)+ 2r (1)

where =3 e.e. 1) is the first-order momentum flux
tensor. With the aid of EqgB10) and (B15), we have

] a

,
nP=2 e e 'f(l):—a D €yi€u,i Dy

,
=— a[atomi(joM O(V - pu 8+ dpu;+djpu;) ]

,
== a[e(atop"'V'PU)éij +dy,(pUiu;)
+ 0(&|puj+¢9]pu,)]

-
:_a[ep(ﬂiuj+9jui)+o(M3).

whered; = d/dx; . In the above result fon{”, terms such as
uidjp_have been neglected becau¥g is of the order
O(M?), and it is done in consistence with the small velocity
expansion off®® up to the order ofO(u?). [Note that
O(u)=0(M); therefore, we take the liberty to interchange

these notation$.Similarly, we have
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on®=—Lgpa.(a,u,+au;) + O(M?)
it j g P J( iUj Ui (

,
- aep(aiv.u+v2ui)+0(M3)

,
—at‘)pvzui+0(|\/|3), (B18)
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APPENDIX C: EQUILIBRIUM DISTRIBUTION FUNCTION
SHIFTED BY ACCELERATION

If we start with the BGK Boltzmann equation without a
forcing term,

af+§-Vf=—i[f—f(°>] (C1)
t 7'5t ’

and assume that particle is impulsively accelerated by accel-

where the termV-u has been neglected because it is oferationa with the mean free times,. Under this circum-

O(M?) due to Eq.(B15a.
Combining the first and the second order res(iEss.
(B14) and(B17)] together by, = dy,t €y, and recalling that

€= &;, we have the Navier-Stokes equatigascurate up to
the order ofO(M?) in the momentum equatin

dp+V-(pu)=0, (B19a

1
atu+u'Vu=—;VP+vV2u+a, (B19b)

where the viscosity is given by
| 1) (21-9) &
"lg 2)7 Teg 8
and the pressuréhe equation of stajds given by

P=p6(1+bpg)=3c%p(1+bpg), (B20)

where §=c?/3 has been substituted. With the above equa-

tion of state, the sound speedd,, is given by

c2=90

1+d bp?
ﬁ(Pg)

. (B21)

7€ 1+i(bp29)
3 dp

It should be pointed out that, if instead of E&®8c¢), the
constraint

> €464 jFa=0 (B22)

is then imposed, the terma- u, which is the work done by

the force, does not appear in the energy balance equation.

Therefore, the constraint of E§B8c) must be imposed to
assure a correct energy balance equation.

stance, the equilibrium distribution function becon@s]

fO(p,u—ars,,0) =p(270) PPexd — (é—u+ars,)?/24].

(C2
Accordingly,
(D= p(276) "PlPexp — £/26)
X[ L, Eumars) (& (u-ard))?
0 262
(U—a7'5t)2
20
Eu (£u? P
mpw(f){l-i—T‘l'W—ﬁ
1 1(&
_{5(5— u)+ (jzu)g .anstJ. (3

Here we have consistently ignored the terms of the order
O(6?) or higher order. Substitutingd=c?/3, where c
=6,/6;, we have

3(e,-u) . 9(e,-u)? 3u?

1+ =
c? 2c* 2¢c?

f(Eq): Wap

1 3(e,-u)
g(ea—U)Jr -

—3wW,p7é 6, a. (C4)

The second part dl‘(ae‘” exactly produces the forcing terf,
obtained previously whef{®? is substituted into the follow-
ing lattice Boltzmann equation without a forcing term:

1
fa(xt €8t 8) — fo(x ) = = —[fo(x,1) — fEUx1)].
(CH)
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