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Liquid drops and surface tension with smoothed particle applied mechanics
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Smoothed particle applied mechani&PAM), also referred to as smoothed particle hydrodynamics, is a
Lagrangian particle method for the simulation of continuous flows. Here we apply it to the formation of a
liquid drop, surrounded by its vapor, for a van der Wdati/) fluid in two dimensions. The cohesive pressure
of the vdW equation of state gives rise to an attractive, central force between the particles with an interaction
range which is assumed to exceed the interaction range of all the other smoothed forces in the SPAM equations
of motion. With this assumption, stable drops are formed, and the vdW phase diagram is well reproduced by
the simulations. Below the critical temperature, the surface tension for equilibrated drops may be computed
from the pressure excess in their centers. It agrees very well with the surface tension independently determined
from the vibrational frequency of weakly excited drops. We also study strongly deformed drops performing
large-amplitude oscillations, which are reminiscent of the oscillations of a large ball of water under micro-
gravity conditions. In an appendix we comment on the limitations of SPAM by studying the violation of
angular momentum conservation, which is a consequence of noncentral forces contributed by the full New-
tonian viscous stress tensor.

PACS numbgs): 47.11+j, 47.55.Dz, 02.60-x, 02.70.Ns

|. INTRODUCTION N m.

For the simulation of continuous, multiphase flows, the (Vf(r,v))zE —Jf(rj ,vj)Vw(|r—rj|,h). 2
incorporation of surface properties for the phase boundaries =p(ry)
constitutes an interesting problem. In particular, many theo-
retical schemes have been put forward to treat surface ten-
sion for two-phase flow§1-3]. Here, we apply some of The weight or smoothing function(|r|,h) is assumed to be
these ideas to a van der WadledW) fluid exhibiting a an even function of finite rang&>0, which vanishes
liquid-gas phase transition below the critical point. We studysmoothly for|r|=r=h, and which is normalized to unity
the formation and the dynamics of a circular drop floating inwhen integrated over space. The interpolated func{ibn
its atmosphere, where we apply a Lagrangian particleagrees with the true field functidrup toO(h?)+ €y, where
method to integrate the continuous flow equations. Origithe particle errorey depends on the distribution of the par-
nally invented for astrophysical problerf,5], the method ticles and is minimal for regular crystal-like structures
is widely known as smoothed particle hydrodynami®®H.  [10,11]. To the same order of approximatioffg)=(f)(g)
Because of its even wider applicability in continuum me-_ o(h2) for field functionsf andg. Since there is no danger
chanics, we also refer to it as smoothed particle applied M&g; misinterpretation, we drop the brackets for the interpo-
chanics(SPAM) [6,7]. It has some advantages over standarqateq functions in the following. With the discretized sum-
grid-based and hybrid methods, and has comparable acCiyaiiqn interpolant fof and V£, the partial differential equa-

racy[8] and superior stability properties. It is easily extende iPns of continuum mechanics are converted into a set of

to three dimensions and may be adapted to include external .. . . : .
L . -~ _ardinary differential equations fag(t) andv,(t) reminiscent
driving fields. As a disadvantage, the method may sometimes . . R
f conventional molecular dynamics. For an inviscid flow of

be somewhat more expensive computationally than conver? ) . . 7 . .
tional grid-based algori?hms P y a two-dimensional adiabatic ideal gas in the bulk, SPAM is

In SPAM (or SPH the continuous flow, at timg is rep- even isomorphic to mo.lecular dynami.cs WWitkr ) takjng the
resented by a set of “particles” located g{t) and moving role of the pair potential12]. Interestingly, there is also a
with velocity v;(t), i=1, ... N. In addition to their mass close link between the smoothed particles and the embedded
m;, the particles carry field properties such as the mass defoms used for the simulation of met@ls3]. _
sity p; and the internal energy per unit mass, The The smoothed-particle representation of the equations of
“smoothed” value of any field functiorf(r,v) at a space Motion is not unique. For completeness, we summarize in

pointr is a weighted sum of all contributions from neighbor- Sec. Il the equations used in this stydy14]. We show how
ing particles[5,9], to apply them to a vdW fluid in two dimensions. In Sec. IlI

we discuss the equilibrium properties of circular drops and
show that the simulations closely reproduce the phase dia-
" m; gram of a vdW fluid away from the critical region. The sur-
(f(r,v))=j§l p(_rj)f(ri Vpw(|r=rilh, @) face tension is computed from the Laplace equation, which
relates the excess pressure in the center of a drop to the
curvature of the drop surface. In Sec. IV we demonstrate the
and its gradient becomes application of smoothed-particle simulations to the study of
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drop vibrations. The surface tension obtained from the vibra- N v —v
tional frequency agrees very well with the Laplace-equation (Vv);= mE '—'Vwihj . (8
result for equilibrated drops. =1 Pij

The particle interactions in SPAM are generally noncen- i ) .
tral due to the Newtonian viscous stress in the equations dff these equationg; is the pressure, and is the Newton-
motion. It follows that angular momentum is not conservedian shear stress tensor, all evaluated at thg position of particle
as is required by continuum mechanics, but decreases expb-7 and 7, denote the shear and bulk viscosities, respec-
nentially in time with a decay time proportional tch#/ This  tively, andd=2 is the spatial dimension. The notation
error Of Ordero(hz) iS investigated in the Appendix by means tranDOSItlon, amdenotes a unit tensor. S|m||ar|y,
simulating the dynamics of rotating circular drops in two from Fourier's law of heat conduction one has

dimensions.
Qi=—«(VT), 9

Il. THE SPAM EQUATIONS OF MOTION FOR

THE van der WAALS ELUID where the SPAM representation of the temperature gradient

is written as

In the first step, the mass densipy of the particles is
computed from N T-T, h

N =1 Pij
h h_

pl_jgl My, w=w(ri=nlh), @ Here, T, is the temperature associated withand « is the
heat conductivity. Furthermore;;=(p; + p;)/2.
wherem; is the mass of particle As always with SPAM, In the following we restrict ourselves to two dimensions,
sums over particles include also the self-term for which d=2, and the two-dimensional version of the weight func-
=j. Equation(3) conserves the total mass. For the SPAMtion introduced by Lucy4,7] is used,
equations of motion we use a representation that contains the

full Newtonian viscous stress tensor and Fourier’s heat flux 5 ( 3r>( r>3
i i — 1+ =] 1= if r<h
vector as described in Refs,14,15, wir.h={ mh? h h (1)
dr; B 0 if r=h,

which is a quartic spline. Other smoothing functions, such as
cubic or quintic splineg3], have been examined by other
-VWihj ' (4)  authors.
The shear stress tensoris symmetric, of second rank,
and proportional to the shear viscosify The viscous forces
1 P P contributed byo are noncentral forces in E¢4) and violate
g2 E mj<—+ —’) :(vi—vj)Viwihj the conservation law for the total angular momentumte
' shall come back to this point in the Appendix.
These equations are closed by the mechanical and caloric
'ViWih' _ (5) equatio_ns of state for the_pressqmand the_ internal energy
! per unit mass,u, respectively. We consider the van der
Waals model[16], which is simple enough to be derived
In these equationsy; is the internal energy per unit mags,  from statistical mechanics, but still so realistic as to display a
is the pressure tensor, ar@ is the heat flux vector, all gas-to-liquid phase transition similar to that of a real fluid.
computed at the position of particieAs mentioned before, The equations of state are obtained as the mean-field limit
these equations are not unique and depend on the particulta the free energy density of a system of hard particles with
implementation of various field gradients into the SPAM a diameterr and with a superimposed long-range, attractive,
scheme. They have already been shown to give good resulggir potentia[17]. In terms of the mass density(instead of
for a variety of bulk flowd6,7,14,185. the more familiar particle densitypne has for the pressupe
The equilibrium and transport properties of the materialand for the internal energy per unit mass
enter through the pressure tengprand the heat flux vector

.. Formally, kT
o g p= 1"—5— ap?, (12)
Pi=pil—o,—71,(V-V)il, (6) P
2 u=?T—pE (13
o=7 VV+VV+—a(V-V)1 , (7)
i

In these equationd?EkB/m, wherekg is the Boltzmann's

where the velocity gradient tensor in the SPAM representaconstant, andn is the particle mass. Furthermomes=a/m?
tion is given by andb=b/m are, in essence, the familiar vdW parameters
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andb. a controls the strength of the attractive force, dnd
=o?m/2 is equal to twice the size of a digk two dimen-
sions.

It is useful to consider the cohesive pressur@p?, sepa-
rately. If this term, which contributes tB, is inserted into
Eq. (4), one obtains for the corresponding acceleration

dVi
dt

a J

This shows how the attractive, long-range, interatomic vdW
forces are transformed into similarly attractive forces be-
tween the SPAM particles. The distance dependence of this
force is determined by the smoothing functionFor reasons
which will become clear below, we have denoted the
smoothing range bid instead ofh. The analogous contribu-
tion to the energy equation becomes

du N FIG. 1. Stable drop configurations for the reduced temperatures

i\ H 0.2 (a), 0.6 (b), 0.87(c), and 1.05(d) of a vdW fluid. The critical

W)a_ _2@1 m; (Vi = vj) - Viwj . (19 temperatureT,=1.19 in our reduced unitd\=2500 SPAM par-

ticles were used in a box of width=50 with smoothing lengths

On the atomistic level, the attractive vdW forces give riseamounting toh=>5 andH = 10. Equilibrium is not fully reached in

to a surface tensiory [18] which, until very recently, re- (0.

sisted theoretical prediction without severe approximationst

Hadjiconstantinowt al.[19] were able to computeg for this

model with a modified direct-simulation Monte Carlo tech-

hique. On the |evel of continuum mechanics, €t pro- force in Eq.(14) due to the cohesive pressure ltb=2h,

;ﬁﬂgs v?his(ltrr??;eeiolgé?ee df?zgcaecfzc())ru;rﬁosrF;r?ercjlr%t?;nao\:‘dgc\)l- keeping the smoothing length for all other terms contributing
' P .Lo Egs.(4) and (5) at h, we obtain very stable and circular

existing liquid and gaseous doma_ms. At the same time, 1 rops such as depicted in Fig[21]. A similar observation,
generates the proper surface tension at the surfaces witho tr

the need of locating the surface and of determining its loca,
curvature[3]. The surface tension is no input parameter Ofthis modification is heavy: there are about four times as
the simulation. Interestingly, Eq14) resembles the method any particles within the iﬁteraction range, and the compu-
used for the construction of normal vectors for smootheo[];ltional effort rises accordingly '

surfaces with the help of a color functi¢t,5]. The forces :

represented by Eq14) largely cancel in the bulk, both lig- In all simulations reported in this and the following sec-

uid and gaseous, with small fluctuations around the overaﬂOn we ta_keN :ESOO smoothed pgru_cles of equal mass
m. At time t=0 they are periodically arranged on a

direction of the macroscopic density gradient. But in a smalls_ Lare. which is smaller than the square simulation box of
strip of width H around a phase boundary, the accelerationsd ' i - S
L . ; width L. Periodic boundary conditions apply. We use re-

of a particlei due to Eq.(14) are basically perpendicular to ) : = - —

the surface, pointing toward the dense phase. Similar volum@uced units for whichm=1, a=2, b=1/2, andk=1. In

forces for the simulation of two-phase SPAM flows with these units, the critical point of the vdW flui@2] occurs for

surface tension were previously introduced, on a more intuil c=32/27, pc=2/3, andp.=8/27. We takep=1 and 7,

tive level, by Huntef20] and Hooveret al. [6]. =0.1 for the shear and bulk viscosities, respectively, and
Unfortunately, this simple formulation of the SPAM =5 for the heat conductivity. A fourth-order Runge-Kutta

equations of motion leads to instabilities, as will be shown in2lgorithm is used for the integration of the SPAM equations

the next section. There is a simple, although computationallf motion. For most simulations, the time stap=0.05.

costly, way around this problem, which we take for the simu- For a box of widthL =50 and with periodic boundary

ive particle temperature3;, terminating the simulation.
However, if we turn to the mean-field basis of the vdwW
model andincreasethe smoothing length for the attractive

a simpler equation of state, has already been made by
ooveret al.[6]. Of course, the price that has to be paid for

lation of vdW drops. conditions, we show typical equilibrated drops for various
temperatures beloW. in Fig. 1. The smoothing lengths are
Ill. SIMULATION OF van der WAALS DROPS h=5 andH=10.

The radial dependence of the temperatlife), of the
If, as indicated in the preceding section, 8@mesmooth-  densityp(r), and of the pressurp(r), may be interpolated
ing length,H=h, is used for the weight functiow in all the  from an instantaneous configuration according to Eg,
terms contributing to the full particle acceleratida; /dt in ~ wherer is the distance from the center of mass. As an ex-
Eq. (4), we do not get sensible results. Although an origi-ample, we show in Figs. 2, 3, and 4 the results for a drop
nally homogeneous fluid phase separates into a liquid and with a temperaturél~0.91. From Fig. 2 we infer that the
gaseous phase for subcritical temperatures, the particles tefwtal temperatures at the drop center and in the surrounding
to form an interface which cannot be penetrated by othewapor are nearly the same. This indicates that the drop is very
particles. Furthermore, low temperatures may result in negaclose to thermal equilibrium. The spurious temperature de-



PRE 62 LIQUID DROPS AND SURFACE TENSION WITH . .. 4971
094 T T T T T T T T 020 1 I I I ) I I I
0.93 g 0.15
T 092 i 0.10
p
091 5 005
0.00
0.20 | 4
-0.05
0.89 | _
-0.10
0.88 | 4
-0.15
0.87 1 | | | 1 1 1
_020 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

" r

FIG. 2. SPAM-averaged radial temperature dependdr(cg, FIG. 4. SPAM-averaged radial pressure dependepte),

w.here.r is the d'Stan,Ce .from the cgnter of mass. All quantities a'€herer is the distance from the center of mass. All guantities are
given in reduced units introduced in Sec. IlI. given in reduced units introduced in Sec. III.

viations from the mean in the figure are not present in th
unsmoothedr; associated with the individual particles. The lace such that in equilibrium the negative pressure is bal-
positive and negative deviations are correlated with negativ nced byp(0)— p(=)>0 leading up to the Laplace equation
and positive curvatures, respectively, of the density profile ir[18]
Fig. 3. They are a deficiency of the finite interpolation
scheme of Eq(1), which is second-order accurate in the
smoothing lengthh. They may be reduced by reducirg
The penalty, of course, is an unavoidable increassl &br
the description of the same flow. )
The very pronounced minimum and maximum of the lo-!t rélatesy to the pressure in the drop centpr=p(0), and
cal pressure in Fig. 4 are a consequence of the vdw loop§ the vapor pressung,=p() far away from the drop, and
displayed by the isotherms of E¢L2) for subcritical tem- R is the radius for the equimolar §urface of the drop. If the
peratures. They deviate from the flat tie-line obtained frodeW loops are replaced by a fla_lt tie line, the su'rface' tension
Maxwell's equal-area rul§22]. The unstable states repre- vanl_shes and no phase separation takes place in a_5|mulat|on.
sented by these loops are not realized in the bulk, but thepimilar observations have been made befdd. It is inter-
play a decisive role in the surface region separating the ligeSting to note that the unstable parts of the vdW equation are
uid from the vapof18]. If one moves from the inside of a obtalneq by microcanonical molecular dynamics sul'nulatlo.ns
drop (with nonvanishing curvatuyeto its outside, one first ©Of (relatively small homogeneous bulk systems with peri-
passes through a layer of overheated liquid with negativ@dic boundarie$23. _ o
pressure differences with respect to the Maxwell tie-line !N Fig. 5 the phase diagram of the vdW fluid is shown.
pressure, followed by a layer of undercooled vapor with

Efayer gives rise to the surface tensignCondensation takes

Y
pi=pg+ R (16)

positive pressure deviations, before entering the vapor phase. 120 5 ' '

The ensuing integrated pressure contribution of the surface &R o © B
100 F & " -

T
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FIG. 5. Phase diagraf(p) for the vdW fluid. The smooth line

is the theoretical prediction, and the symbols are SPAM results.
FIG. 3. SPAM-averaged radial mass-density dependeiicg 2500 SPAM particles were used in a box of width=-50 with
wherer is the distance from the center of mass. All quantities aresmoothing lengths amounting to=5 andH=10. Reduced units
given in reduced units introduced in Sec. Ill. are used which are defined in Sec. Ill.
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5 T T T T T which the numerical vapor density deviates significantly
b oeeeee- from the vdW theory in the phase diagram of Fig. 5.
4 C e - These data may be compared to the direct simulation
Monte Carlo results of Ref19], which were obtained for a
three-dimensional system, but with a very shallow rectangu-
lar simulation box of extension 546<54.6X 2.70. o is the
vdW hard-core radius. Since the range of the attractive vdwW
force is expected to exceed the third box dimension, we may
reinterpret their pressure as a normal force per unit length in
. two dimensions. Converted to our reduced units, the results
of Ref.[19] are shown as smooth lines in Fig. 6. They are
based on three independent methods of estimatin@) is
0.4 0.5 0.6 0.7 0.8 0.9 1 from the Laplace equatiorip) makes use of a mechanical
T/T, method due to Elsnef24], and (c) is obtained from the
Gibbs free energy excess per unit volume and the density
gradient at the drop interface for the vdW flJitig]. If we
consider that also these data have an uncertainty comparable
%o that of our results, the comparison in Fig. 6 is rather suc-
cessful.

FIG. 6. Temperature dependence of the surface tensfonthe
two-dimensional vdW fluidT .= 32/27 is the vdW critical tempera-
ture. Our reduced units are defined in the main text. The full dot:
are our SPAM results; the smooth lines refer to results of Réi,
where the labels, b, andc distinguish between different methods

of estimatingy. The estimated accuracy of all data-is15%. Re-
duced units are used which are defined in Sec. Il IV. OSCILLATING van der WAALS DROPS

Next, we study excited vdW drops performing small-

The symbols refer to the SPAM results and are ObtalnecLjslmplitude oscillations. From the periedan independent es-

from the densities and temperatures at the drop center and{ ate of the surface tensiom, is obtained. As is shown
the vapor far away from the drop. The theoretical predictio o 4 . :
of Eq. (12), shown by the smooth line, are reproduced rathenrbelow’ iLis in excellent agreement with from the Laplace

well, with two exceptions. First, in the critical region equation(16) for the circular drop in equilibrium.
smoothing lengthsd =10 andh=5, in combination with To prove this assertion, we take as a starting point a well-

only 2500 SPAM particles in a box of width=50, lead to equilibrated circular drop of 2500 SPAM particles, with den-

. . ! sity py=1.69, equimolar radiuk=22.2, and a rather low

a rath(_ar poorly defined drop such as depicted in Fid). 1 . _temperature,T=0.54. It looks similar to that in Fig. (&),
reduction ofH andh leads to less-smoothed drop boundaries . . i
~with no particles remaining in the vapor phasg,€0).

and an improved equilibrium temperature. Second, the deviax. e . )
tions of the vapor densities at low temperatures are inherei%lggigzzgz_ 0.19 for this drop, the Laplace equatiaht)

to the SPAM interpolation scheme. There are not enoug Next, this drop is converted into an elliptic drop with

neighboring SPAM particles within a circle of radilsto daccentricitye=0.55 and the major axes aligned along the

give a good representation of the local density. For 0.6 axis. This is achieved with an area-preserving and, hence
<T<0.75, the gas pressure is already so small that equilib;” ™" b 9 ' '

rium is not fully reached within our simulation time. Far density-conserving transformation for the particle coordi-

< 0.6, all SPAM particles are condensed and none remain iHateS’

the vapor phasgas in Fig. 1a)]. A remedy is again afun- / : :

fortunately expensiveincrease of the number of particles. (X ) = 1 /_ir(3|n(¢/2)smu ) (18)
We may verify from Fig. 3 that the largest smoothing y' sing | cog ¢/2)cosu

length,H=10 in our case, determines the spatial resolution

of the drop surface. The experimental profile is a convolutionvherer = yx“+y<, u=arctankly), and¢=em. For the vis-

of the actual density profile with the smoothing function cosities we takey=5,=0, and for the heat conductivity

w(r,h). It is difficult to extract the surface tension from =5. This large value fok serves to obtain fast temperature

the Slope Ofp(r) [18] at the equimolar surface, which di- adeStmentv re_ducmg denSIty ﬂUCtUEitiOUS in the drop. Wh_en
vides the ||qu|d from the ambient vapor. It is easier to Com_released, the time evolution of the maximum drop extension

pute y directly from the Laplace equatiofi6). In two di- in X andy directions is shown in Fig. 7. It conforms to a

mensionsl the equim0|ar radius is given by damped oscillation with peri0d= 168. The damplng is due
to the finite heat conductivity, and, to a large extent, to the

R7_ 2 fw dr— f“ ded intrinsic viscosity, which is inherent to particle systefi$
“—pglo Lp(r)—pglrdr= pi—pglo rardh and is effective in spite of a vanishing

(17) For small vibration amplitudes, a theory by Lord Rayleigh

[25] may be used to relate the periedo the surface tension.

where p(r) is the density profile as in Fig. 3, ang In Ref.[25] the surface energy per unit length of an infinitely

=p(0), pg=p(=). Using the first equality of Eq(17) for  extended, cylindrical fluid is used for the computation of the

the computation oR, we show in Fig. 6 the surface tension eigenfrequencies of the cylinder, where the fluid is assumed
for the two-dimensional vdW liquid as a function of tem- to be inviscid and incompressible. Restricting this three-

perature(full dots). The estimated uncertainty for these datadimensional result to our two-dimensional drdjpy taking

is =15%. We have excluded the temperature range fon=2 andk=0 in Ref.[25]), one obtains
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a drop, which was initially prepared by slowly deforming the
same circular drop as before along thexis with two re-
flecting pistons, until an aspect ratio of about 5 is reached.
When released, this drop carries out vibrations that closely
resemble the oscillations observed experimentally for a large
ball of water under microgravity conditions in the space
shuttle Columbid27].

V. CONCLUSIONS

We show in this paper that the smoothed-particle method
may easily be adapted to studying two-phase flows and drop
condensation for a van der Waals fluid. The vdW cohesive
pressure- ap? gives rise to an attractive, central force acting
between the smoothed particles. These forces are expected to

FIG. 7. Small-amplitude oscillations of the extension of a vdW 5ncel each other in the bulk and to be effective only in the

drop along thex andy axes, initially prepared with an elliptical

neighborhood of a phase boundary. Their interaction r&hge

shape aligned with the frame of reference. The shear viscagsity needs to be larger tham the interaction ranae of all other
=0, the bulk viscosityn,=0, and the heat conductivity=5. 9 an g

From 7=168 we findy,=4.1 in excellent agreement with

T=27

6y

(19

forces entering the SPAM equations of motion, to remove
the instability ensuing foH =h. Taking H=2h, we obtain
very stable circular drops in two dimensions, and the phase
diagram of the vdW fluid is closely reproduced. The surface
tension may be determined from the Laplace equatidh.

By deforming a circular drop, the restoring force due to

This shows that small-amplitude oscillations of drops arethe surface tension leads to a damped oscillation when the
well reproduced by the SPAM simulations if performed con-drop is released. The damping is a consequence of both the

sistently[26].

intrinsic transport mechanisms inherent to any particle sys-

Also very large amplitude oscillations may be studiedtem, and the macroscopic parametersy, , andx explicitly

successfully. In Fig. 8 we show a sequence of snapshots fantering the SPAM equations of motion.

t=30

t =40

t =60

t=70

t =100

t=110

t =120

t =130

t=140

t =150

t =160

t=170

t =180

t =190

For small-

amplitude vibrations, the surface tension obtained from the
oscillation frequency agrees well with that from the Laplace
equation for equilibrated drops.
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APPENDIX

Here we study the violation of angular momentum con-
servation due to the noncentral forces contributed to(&q.
by the shear stresa. Let us consider the continuum limit
first. If V is an arbitrary volume comoving with the fluid and
with surface®, the time derivative of its angular momentum,

dL

—— | rxvpg?
TSR, Vr vpd®r,

(A1)

is easily converted into a surface integral ©11,2§. As
before,d is the dimension of space. For a conservative sys-

FIG. 8. Snapshots of the large-amplitude oscillations of a two-tem fully contained Withir@, this integral vanishes and the
dimensional vdW drop with an initial aspect ratio close to 5 for total angular momentum is conserved.

various timed. All quantities are given in reduced units introduced
in the main text.

In the smooth-particle representation with finlleand h
>0, the corresponding expression is
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dL % del an 2 % 10000 ; T N — 100 T
dt "E AT 2 o He N i —
N I \\ N = 1600 =
o oj\dw; . N = 2500 ===~
X<—2+—2)F-rij, (AZ) L [ \\‘
pPi  Pj 1) \\
1000 | N .
where we have used Eqé} and (7). In this equationr; - \
=r;—r;, and the caret denotes a unit vector. All SPAM
particles are given the same mass,Equation(A2) differs
from the exact continuum expressiohl) by a term of order
h? due to the interpolation errors for the velocity gradient .
tensorVv appearing in the shear stress tengor 100 L R
In this appendix we take the equation of state of a two- 0 2000 4000
dimensional, adiabatic ideal gas, augmented by a negative
constant, FIG. 9. Time decay of the total angular momentum of a circular
drop consisting oN SPAM particles. The smoothing range= 15.
pxp®=A, A>0 (A3)  Reduced units are used as explained in the Appendix.

which has already been demonstrated to provide phase sepgof the weight function11) is varied between 5 and 15. In
ration with smoothed particlef6]. However, the surface g simulations, the initial temperatufie=1 for all i. For the
pressure generated by the artificial constamt is not suffi-  yiscosities we use=5 andz,= 1. The heat conductivity is
cient to guarantee the formation ofcular drops once con-  set tox=5. Such a large value is chosen to reduce tempera-
densation has taken place antias approached zero. There- y,re gradients, but we have verified that our results are totally
fore, the equation of motion4) is augmented by an jnsensitive to the choice of this parameter.

additional term on the right-hand side, First, an equilibrated circular drop with vanishing angular
N momentum is prepared, similar to that depicted in Fig).1

(%) __sSm S whr, (Ad) Next, this drop is rotationally accelerated with an external

dt s h2 e torque (equal for each particle with respect to the center of

mass$, until a threshold forL is reached, which is still far
which serves the same purpose as @4d) for the vdW fluid  below the stability threshold of the circular drop. In the final
in Sec. lll. Equation(A4) represents aattractive interpar-  stage of the simulation, the decay of the angular momentum
ticle force controled by the parametsr-0, which is as- is followed. In two dimensions, there is only one nonvanish-
sumed to be of longer range,= 2h, than all the other terms ing componentl(t). In Fig. 9 we find an almost exponential
in Eq. (4). Since it is a central force, it does not affect the decay ofL(t) for various systems with identical smoothing
decay properties of the total angular momentum. Its onlyength, h=15, and with particle numbers varying between
purpose is to provide sufficient additional surface tension i500 and 100. With the exception of the too-coarsely-
combination with our simple equation of state. Since thisgrained casé&= 100, the decay curves do not dependhon
force also affects the transport of energy, an equivalent terrthus, the particle erroey mentioned in the Introduction is

is added to the energy equati®), insignificant. It should be noted that due to mass rescaling all
N curves in Fig. 9 refer to drops with about the same diameter
duy sm H and density. If the physical size of the drops were increased
—| === 2, W;i(Vi—V;)-rj; . (A5)
dt/  2n2=1 " S

10000

The scaling according tenYh? is introduced to allow for the
same value of the force parameteif h andN are varied.

For the following we use reduced units, for which the
mechanical and thermal equations of statemrep®—1 and
u=p—(1/p) + kT, respectively. As in Sec. lllk=kg/m is
set equal to unity and is independentNof(The latter follows L
from the requirement that the total madan, and the total NN
internal energy,UEEJN:lmuj, must not change with the | S n

number of SPAM particledl for the same flow. Thud) is ~

“nonextensive” with respect tN, and the Boltzmann con- "\.\13.
stant must be rescaled withNLfor such systems Also the 1000 ! ! Yoo~
force parametes is set equal to unity, and Lucy’s weight 0 500 1000 1500 2000

function (11) is used. Our reference system consistsNof ¢

=2500 SPAM particles of mass=1. For other, the par- FIG. 10. Time decay of the total angular momentum of a circu-
ticle mass is rescaled to keep the total mass unchangemr drop consisting of 900 SPAM particles. The smoothing ramge
Since only totally condensed drops with no atmosphere arg indicated by the labels. Reduced units are used as explained in
considered, no boundary conditions are required. The rangée Appendix.

~
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4975
5000 T T T T T T containing 900 SPAM particles, all of mass=2.778, for
\\ F(R) = 107100/ k2 various smoothing rangds The relaxation times, defined
4000 | + - by L(t)><exp(—t/7), are shown in Fig. 11 as a function lof
The dashed line is a fit of=c/h? to the data points, where
3000 - Y i the fit parametec=1.1x 10° is insensitive toN. This dem-
7 onstrates that angular momentum decay is indeed of second
order inh as expected from the theoretical considerations of
2000 [ N\ . .
Sec. |. Angular momentum is conserved only to or@¢h),
T if a full Newtonian stress tensor is used. We have also veri-
1000 |- t:, ] fied that the decay time is strictly proportional to 1 as
T suggested by EqA2).
0 ! ; : ! L ; : In conclusion, numerical simulations demonstrate that the
0 2 4 6 8 10 12 14 16
h

interpolation error inherent to the discrete SPAM representa-

) tion of continuous fields causes an error of ortiérfor the
FIG. 11. The time constant for the angular momentum decay time derivative of the total angular momentum. For closed

of a cir_cular drop with 900 SPAM pa_lrticle§ as a2 function of the systems the angular momentum decays to zero exponentially
smoothing lengthh. The dashed line is a fit af/h” to the data \yith 4 time constant independent Kf for large enough.

points Wlthc=107 100. Reduced units are used as explained in the We have mentioned in Sec. Il that the equations of motion
Appendix. (4) and (5) are not unique. We computed the angular mo-

mentum decay also for the motion equations used by Riffert
by increasingN withoutrescalation of the particle mass, and et al. [11], a form of the equations that treat the density

keepingh constant, the decay time farwould increase and differently, and obtained very similar results. This demon-
the conservation failure become less severe. strates that the results in this appendix are insensitive to the
In Fig. 10 we compare the decay bft) for a system particular SPAM representation and are of general interest.
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