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Liquid drops and surface tension with smoothed particle applied mechanics

S. Nugent and H. A. Posch
Institut für Experimentalphysik, Universita¨t Wien, Boltzmanngasse 5, A-1090 Wien, Austria

~Received 11 May 2000!

Smoothed particle applied mechanics~SPAM!, also referred to as smoothed particle hydrodynamics, is a
Lagrangian particle method for the simulation of continuous flows. Here we apply it to the formation of a
liquid drop, surrounded by its vapor, for a van der Waals~vdW! fluid in two dimensions. The cohesive pressure
of the vdW equation of state gives rise to an attractive, central force between the particles with an interaction
range which is assumed to exceed the interaction range of all the other smoothed forces in the SPAM equations
of motion. With this assumption, stable drops are formed, and the vdW phase diagram is well reproduced by
the simulations. Below the critical temperature, the surface tension for equilibrated drops may be computed
from the pressure excess in their centers. It agrees very well with the surface tension independently determined
from the vibrational frequency of weakly excited drops. We also study strongly deformed drops performing
large-amplitude oscillations, which are reminiscent of the oscillations of a large ball of water under micro-
gravity conditions. In an appendix we comment on the limitations of SPAM by studying the violation of
angular momentum conservation, which is a consequence of noncentral forces contributed by the full New-
tonian viscous stress tensor.

PACS number~s!: 47.11.1j, 47.55.Dz, 02.60.2x, 02.70.Ns
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I. INTRODUCTION
For the simulation of continuous, multiphase flows, t

incorporation of surface properties for the phase bounda
constitutes an interesting problem. In particular, many th
retical schemes have been put forward to treat surface
sion for two-phase flows@1–3#. Here, we apply some o
these ideas to a van der Waals~vdW! fluid exhibiting a
liquid-gas phase transition below the critical point. We stu
the formation and the dynamics of a circular drop floating
its atmosphere, where we apply a Lagrangian part
method to integrate the continuous flow equations. Or
nally invented for astrophysical problems@4,5#, the method
is widely known as smoothed particle hydrodynamics~SPH!.
Because of its even wider applicability in continuum m
chanics, we also refer to it as smoothed particle applied
chanics~SPAM! @6,7#. It has some advantages over stand
grid-based and hybrid methods, and has comparable a
racy@8# and superior stability properties. It is easily extend
to three dimensions and may be adapted to include exte
driving fields. As a disadvantage, the method may someti
be somewhat more expensive computationally than conv
tional grid-based algorithms.

In SPAM ~or SPH! the continuous flow, at timet, is rep-
resented by a set of ‘‘particles’’ located atr i(t) and moving
with velocity vi(t), i 51, . . . ,N. In addition to their mass
mi , the particles carry field properties such as the mass d
sity r i and the internal energy per unit mass,ui . The
‘‘smoothed’’ value of any field functionf (r ,v) at a space
point r is a weighted sum of all contributions from neighbo
ing particles@5,9#,

^ f ~r ,v!&5(
j 51

N
mj

r~r j !
f ~r j ,vj !w~ ur2r j u,h!, ~1!

and its gradient becomes
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^“ f ~r ,v!&5(
j 51

N
mj

r~r j !
f ~r j ,vj !“w~ ur2r j u,h!. ~2!

The weight or smoothing functionw(ur u,h) is assumed to be
an even function of finite rangeh.0, which vanishes
smoothly for ur u[r>h, and which is normalized to unity
when integrated over space. The interpolated function^ f &
agrees with the true field functionf up toO(h2)1eN , where
the particle erroreN depends on the distribution of the pa
ticles and is minimal for regular crystal-like structure
@10,11#. To the same order of approximation,^ f g&5^ f &^g&
1O(h2) for field functionsf andg. Since there is no dange
for misinterpretation, we drop the brackets for the interp
lated functions in the following. With the discretized sum
mation interpolant forf and“ f , the partial differential equa-
tions of continuum mechanics are converted into a set
ordinary differential equations forr i(t) andvi(t) reminiscent
of conventional molecular dynamics. For an inviscid flow
a two-dimensional adiabatic ideal gas in the bulk, SPAM
even isomorphic to molecular dynamics withw(r ) taking the
role of the pair potential@12#. Interestingly, there is also a
close link between the smoothed particles and the embed
atoms used for the simulation of metals@13#.

The smoothed-particle representation of the equation
motion is not unique. For completeness, we summarize
Sec. II the equations used in this study@7,14#. We show how
to apply them to a vdW fluid in two dimensions. In Sec.
we discuss the equilibrium properties of circular drops a
show that the simulations closely reproduce the phase
gram of a vdW fluid away from the critical region. The su
face tension is computed from the Laplace equation, wh
relates the excess pressure in the center of a drop to
curvature of the drop surface. In Sec. IV we demonstrate
application of smoothed-particle simulations to the study
4968 ©2000 The American Physical Society
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drop vibrations. The surface tension obtained from the vib
tional frequency agrees very well with the Laplace-equat
result for equilibrated drops.

The particle interactions in SPAM are generally nonce
tral due to the Newtonian viscous stress in the equation
motion. It follows that angular momentum is not conserv
as is required by continuum mechanics, but decreases e
nentially in time with a decay time proportional to 1/h2. This
error of orderO(h2) is investigated in the Appendix b
simulating the dynamics of rotating circular drops in tw
dimensions.

II. THE SPAM EQUATIONS OF MOTION FOR
THE van der WAALS FLUID

In the first step, the mass densityr i of the particles is
computed from

r i5(
j 51

N

mjwi j
h , wi j

h [w~ ur i2r j u,h!, ~3!

wheremi is the mass of particlei. As always with SPAM,
sums over particles include also the self-term for whichi
5 j . Equation~3! conserves the total mass. For the SPA
equations of motion we use a representation that contains
full Newtonian viscous stress tensor and Fourier’s heat
vector as described in Refs.@7,14,15#,

dr i

dt
5vi ,

dvi

dt
52(

j 51

N

mj S Pi

r i
2

1
Pj

r j
2D •“wi j

h , ~4!

dui

dt
5

1

2 (
j 51

N

mj S Pi

r i
2

1
Pj

r j
2D :~vi2vj !“ iwi j

h

2(
j 51

N

mj S Qi

r i
2

1
Qj

r j
2D •“ iwi j

h . ~5!

In these equations,ui is the internal energy per unit mass,Pi
is the pressure tensor, andQi is the heat flux vector, al
computed at the position of particlei. As mentioned before
these equations are not unique and depend on the parti
implementation of various field gradients into the SPA
scheme. They have already been shown to give good re
for a variety of bulk flows@6,7,14,15#.

The equilibrium and transport properties of the mate
enter through the pressure tensorPi and the heat flux vecto
Qi . Formally,

Pi5pi12si2hv~“•v! i1, ~6!

si5hF“v1“v12
2

d
~“•v!1G

i

, ~7!

where the velocity gradient tensor in the SPAM represen
tion is given by
-
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~“v! i5m(
j 51

N vj2vi

r i j
“wi j

h . ~8!

In these equations,pi is the pressure, andsi is the Newton-
ian shear stress tensor, all evaluated at the position of par
i. h and hv denote the shear and bulk viscosities, resp
tively, and d52 is the spatial dimension. The notation1

means transposition, and1 denotes a unit tensor. Similarly
from Fourier’s law of heat conduction one has

Qi52k~“T! i , ~9!

where the SPAM representation of the temperature grad
is written as

~“T! i5m(
j 51

N
Tj2Ti

r i j
“ iwi j

h . ~10!

Here, Ti is the temperature associated withi, and k is the
heat conductivity. Furthermore,r i j [(r i1r j )/2.

In the following we restrict ourselves to two dimension
d52, and the two-dimensional version of the weight fun
tion introduced by Lucy@4,7# is used,

w~r ,h!5H 5

ph2 S 11
3r

h D S 12
r

hD 3

if r ,h

0 if r>h,

~11!

which is a quartic spline. Other smoothing functions, such
cubic or quintic splines@3#, have been examined by othe
authors.

The shear stress tensors is symmetric, of second rank
and proportional to the shear viscosityh. The viscous forces
contributed bys are noncentral forces in Eq.~4! and violate
the conservation law for the total angular momentumL . We
shall come back to this point in the Appendix.

These equations are closed by the mechanical and ca
equations of state for the pressurep and the internal energy
per unit mass,u, respectively. We consider the van d
Waals model@16#, which is simple enough to be derive
from statistical mechanics, but still so realistic as to displa
gas-to-liquid phase transition similar to that of a real flu
The equations of state are obtained as the mean-field l
for the free energy density of a system of hard particles w
a diameters and with a superimposed long-range, attracti
pair potential@17#. In terms of the mass densityr ~instead of
the more familiar particle density! one has for the pressurep
and for the internal energy per unit massu,

p5
r k̄T

12rb̄
2ār2, ~12!

u5 k̄T2rā. ~13!

In these equations,k̄[kB /m, wherekB is the Boltzmann’s
constant, andm is the particle mass. Furthermore,ā[a/m2

and b̄[b/m are, in essence, the familiar vdW parametersa
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and b. a controls the strength of the attractive force, andb
5s2p/2 is equal to twice the size of a disk~in two dimen-
sions!.

It is useful to consider the cohesive pressure,2ār2, sepa-
rately. If this term, which contributes toP, is inserted into
Eq. ~4!, one obtains for the corresponding acceleration

S dvi

dt D
a

52ā(
j

mj“ iwi j
H . ~14!

This shows how the attractive, long-range, interatomic vd
forces are transformed into similarly attractive forces b
tween the SPAM particles. The distance dependence of
force is determined by the smoothing functionw. For reasons
which will become clear below, we have denoted t
smoothing range byH instead ofh. The analogous contribu
tion to the energy equation becomes

S dui

dt D
a

522ā(
j 51

N

mj~vi2vj !•“ iwi j
H . ~15!

On the atomistic level, the attractive vdW forces give r
to a surface tensiong @18# which, until very recently, re-
sisted theoretical prediction without severe approximatio
Hadjiconstantinouet al. @19# were able to computeg for this
model with a modified direct-simulation Monte Carlo tec
nique. On the level of continuum mechanics, Eq.~14! pro-
vides a simple volume force for the SPAM flow of a vdW
fluid, which is expected to account for the formation of c
existing liquid and gaseous domains. At the same time
generates the proper surface tension at the surfaces wi
the need of locating the surface and of determining its lo
curvature@3#. The surface tension is no input parameter
the simulation. Interestingly, Eq.~14! resembles the metho
used for the construction of normal vectors for smooth
surfaces with the help of a color function@1,5#. The forces
represented by Eq.~14! largely cancel in the bulk, both liq
uid and gaseous, with small fluctuations around the ove
direction of the macroscopic density gradient. But in a sm
strip of width H around a phase boundary, the accelerati
of a particlei due to Eq.~14! are basically perpendicular t
the surface, pointing toward the dense phase. Similar volu
forces for the simulation of two-phase SPAM flows wi
surface tension were previously introduced, on a more in
tive level, by Hunter@20# and Hooveret al. @6#.

Unfortunately, this simple formulation of the SPAM
equations of motion leads to instabilities, as will be shown
the next section. There is a simple, although computation
costly, way around this problem, which we take for the sim
lation of vdW drops.

III. SIMULATION OF van der WAALS DROPS

If, as indicated in the preceding section, thesamesmooth-
ing length,H5h, is used for the weight functionw in all the
terms contributing to the full particle accelerationdvi /dt in
Eq. ~4!, we do not get sensible results. Although an ori
nally homogeneous fluid phase separates into a liquid a
gaseous phase for subcritical temperatures, the particles
to form an interface which cannot be penetrated by ot
particles. Furthermore, low temperatures may result in ne
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tive particle temperaturesTi , terminating the simulation
However, if we turn to the mean-field basis of the vd
model andincreasethe smoothing length for the attractiv
force in Eq. ~14! due to the cohesive pressure toH52h,
keeping the smoothing length for all other terms contribut
to Eqs.~4! and ~5! at h, we obtain very stable and circula
drops such as depicted in Fig. 1@21#. A similar observation,
for a simpler equation of state, has already been made
Hooveret al. @6#. Of course, the price that has to be paid f
this modification is heavy: there are about four times
many particles within the interaction range, and the com
tational effort rises accordingly.

In all simulations reported in this and the following se
tion we takeN52500 smoothed particles of equal massmi
5m. At time t50 they are periodically arranged on
square, which is smaller than the square simulation box
width L. Periodic boundary conditions apply. We use r
duced units for whichm51, ā52, b̄51/2, and k̄51. In
these units, the critical point of the vdW fluid@22# occurs for
Tc532/27, rc52/3, andpc58/27. We takeh51 and hv
50.1 for the shear and bulk viscosities, respectively, ank
55 for the heat conductivity. A fourth-order Runge-Kut
algorithm is used for the integration of the SPAM equatio
of motion. For most simulations, the time stepDt50.05.

For a box of widthL550 and with periodic boundary
conditions, we show typical equilibrated drops for vario
temperatures belowTc in Fig. 1. The smoothing lengths ar
h55 andH510.

The radial dependence of the temperatureT(r ), of the
densityr(r ), and of the pressurep(r ), may be interpolated
from an instantaneous configuration according to Eq.~1!,
where r is the distance from the center of mass. As an
ample, we show in Figs. 2, 3, and 4 the results for a d
with a temperatureT'0.91. From Fig. 2 we infer that the
local temperatures at the drop center and in the surroun
vapor are nearly the same. This indicates that the drop is v
close to thermal equilibrium. The spurious temperature

FIG. 1. Stable drop configurations for the reduced temperatu
0.2 ~a!, 0.6 ~b!, 0.87 ~c!, and 1.05~d! of a vdW fluid. The critical
temperatureTc51.19 in our reduced units.N52500 SPAM par-
ticles were used in a box of widthL550 with smoothing lengths
amounting toh55 andH510. Equilibrium is not fully reached in
~b!.
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viations from the mean in the figure are not present in
unsmoothedTi associated with the individual particles. Th
positive and negative deviations are correlated with nega
and positive curvatures, respectively, of the density profile
Fig. 3. They are a deficiency of the finite interpolatio
scheme of Eq.~1!, which is second-order accurate in th
smoothing lengthh. They may be reduced by reducingh.
The penalty, of course, is an unavoidable increase ofN for
the description of the same flow.

The very pronounced minimum and maximum of the
cal pressure in Fig. 4 are a consequence of the vdW lo
displayed by the isotherms of Eq.~12! for subcritical tem-
peratures. They deviate from the flat tie-line obtained fr
Maxwell’s equal-area rule@22#. The unstable states repre
sented by these loops are not realized in the bulk, but t
play a decisive role in the surface region separating the
uid from the vapor@18#. If one moves from the inside of a
drop ~with nonvanishing curvature! to its outside, one first
passes through a layer of overheated liquid with nega
pressure differences with respect to the Maxwell tie-l
pressure, followed by a layer of undercooled vapor w
positive pressure deviations, before entering the vapor ph
The ensuing integrated pressure contribution of the sur

FIG. 2. SPAM-averaged radial temperature dependenceT(r ),
wherer is the distance from the center of mass. All quantities
given in reduced units introduced in Sec. III.

FIG. 3. SPAM-averaged radial mass-density dependencer(r ),
wherer is the distance from the center of mass. All quantities
given in reduced units introduced in Sec. III.
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layer gives rise to the surface tensiong. Condensation takes
place such that in equilibrium the negative pressure is b
anced byp(0)2p(`).0 leading up to the Laplace equatio
@18#

pl5pg1
g

R
. ~16!

It relatesg to the pressure in the drop center,pl[p(0), and
to the vapor pressurepg[p(`) far away from the drop, and
R is the radius for the equimolar surface of the drop. If t
vdW loops are replaced by a flat tie line, the surface tens
vanishes and no phase separation takes place in a simula
Similar observations have been made before@19#. It is inter-
esting to note that the unstable parts of the vdW equation
obtained by microcanonical molecular dynamics simulatio
of ~relatively small! homogeneous bulk systems with pe
odic boundaries@23#.

In Fig. 5 the phase diagram of the vdW fluid is show

e

e

FIG. 4. SPAM-averaged radial pressure dependencep(r ),
wherer is the distance from the center of mass. All quantities
given in reduced units introduced in Sec. III.

FIG. 5. Phase diagramT(r) for the vdW fluid. The smooth line
is the theoretical prediction, and the symbols are SPAM resu
2500 SPAM particles were used in a box of widthL550 with
smoothing lengths amounting toh55 andH510. Reduced units
are used which are defined in Sec. III.
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The symbols refer to the SPAM results and are obtai
from the densities and temperatures at the drop center an
the vapor far away from the drop. The theoretical predict
of Eq. ~12!, shown by the smooth line, are reproduced rat
well, with two exceptions. First, in the critical regio
smoothing lengthsH510 and h55, in combination with
only 2500 SPAM particles in a box of widthL550, lead to
a rather poorly defined drop such as depicted in Fig. 1~d!. A
reduction ofH andh leads to less-smoothed drop boundar
and an improved equilibrium temperature. Second, the de
tions of the vapor densities at low temperatures are inhe
to the SPAM interpolation scheme. There are not eno
neighboring SPAM particles within a circle of radiush to
give a good representation of the local density. For 0
,T,0.75, the gas pressure is already so small that equ
rium is not fully reached within our simulation time. ForT
,0.6, all SPAM particles are condensed and none remai
the vapor phase@as in Fig. 1~a!#. A remedy is again an~un-
fortunately expensive! increase of the number of particles.

We may verify from Fig. 3 that the largest smoothin
length,H510 in our case, determines the spatial resolut
of the drop surface. The experimental profile is a convolut
of the actual density profile with the smoothing functio
w(r ,h). It is difficult to extract the surface tensiong from
the slope ofr(r ) @18# at the equimolar surface, which d
vides the liquid from the ambient vapor. It is easier to co
pute g directly from the Laplace equation~16!. In two di-
mensions, the equimolar radius is given by

R25
2

r l2rg
E

0

`

@r~r !2rg#rdr 52
1

r l2rg
E

0

`

r 2
dr

dr
dr,

~17!

where r(r ) is the density profile as in Fig. 3, andr l
[r(0), rg[r(`). Using the first equality of Eq.~17! for
the computation ofR, we show in Fig. 6 the surface tensio
for the two-dimensional vdW liquid as a function of tem
perature~full dots!. The estimated uncertainty for these da
is 615%. We have excluded the temperature range

FIG. 6. Temperature dependence of the surface tensiong for the
two-dimensional vdW fluid.Tc532/27 is the vdW critical tempera
ture. Our reduced units are defined in the main text. The full d
are our SPAM results; the smooth lines refer to results of Ref.@19#,
where the labelsa, b, andc distinguish between different method
of estimatingg. The estimated accuracy of all data is615%. Re-
duced units are used which are defined in Sec. III.
d
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which the numerical vapor density deviates significan
from the vdW theory in the phase diagram of Fig. 5.

These data may be compared to the direct simula
Monte Carlo results of Ref.@19#, which were obtained for a
three-dimensional system, but with a very shallow rectan
lar simulation box of extension 54.6s354.632.7s. s is the
vdW hard-core radius. Since the range of the attractive v
force is expected to exceed the third box dimension, we m
reinterpret their pressure as a normal force per unit lengt
two dimensions. Converted to our reduced units, the res
of Ref. @19# are shown as smooth lines in Fig. 6. They a
based on three independent methods of estimatingg: ~a! is
from the Laplace equation,~b! makes use of a mechanica
method due to Elsner@24#, and ~c! is obtained from the
Gibbs free energy excess per unit volume and the den
gradient at the drop interface for the vdW fluid@18#. If we
consider that also these data have an uncertainty compa
to that of our results, the comparison in Fig. 6 is rather s
cessful.

IV. OSCILLATING van der WAALS DROPS

Next, we study excited vdW drops performing sma
amplitude oscillations. From the periodt an independent es
timate of the surface tensiongt is obtained. As is shown
below, it is in excellent agreement withg from the Laplace
equation~16! for the circular drop in equilibrium.

To prove this assertion, we take as a starting point a w
equilibrated circular drop of 2500 SPAM particles, with de
sity r l51.69, equimolar radiusR522.2, and a rather low
temperature,T50.54. It looks similar to that in Fig. 1~a!,
with no particles remaining in the vapor phase (pg50).
Sincepl2pg50.19 for this drop, the Laplace equation~16!
yields g54.2.

Next, this drop is converted into an elliptic drop wit
eccentricitye50.55 and the major axes aligned along they
axis. This is achieved with an area-preserving and, hen
density-conserving transformation for the particle coor
nates,

S x8

y8
D 5A 2

sinf
r S sin~f/2!sinu

cos~f/2!cosuD , ~18!

wherer 5Ax21y2, u5arctan(x/y), andf5ep. For the vis-
cosities we takeh5hv50, and for the heat conductivityk
55. This large value fork serves to obtain fast temperatu
adjustment, reducing density fluctuations in the drop. Wh
released, the time evolution of the maximum drop extens
in x and y directions is shown in Fig. 7. It conforms to
damped oscillation with periodt5168. The damping is due
to the finite heat conductivity, and, to a large extent, to
intrinsic viscosity, which is inherent to particle systems@7#
and is effective in spite of a vanishingh.

For small vibration amplitudes, a theory by Lord Rayleig
@25# may be used to relate the periodt to the surface tension
In Ref. @25# the surface energy per unit length of an infinite
extended, cylindrical fluid is used for the computation of t
eigenfrequencies of the cylinder, where the fluid is assum
to be inviscid and incompressible. Restricting this thre
dimensional result to our two-dimensional drops~by taking
n52 andk50 in Ref. @25#!, one obtains

ts
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t52pAR3r

6g
. ~19!

Fromt5168 we findgt54.1 in excellent agreement withg.
This shows that small-amplitude oscillations of drops
well reproduced by the SPAM simulations if performed co
sistently@26#.

Also very large amplitude oscillations may be studi
successfully. In Fig. 8 we show a sequence of snapshots

FIG. 7. Small-amplitude oscillations of the extension of a vd
drop along thex and y axes, initially prepared with an elliptica
shape aligned with the frame of reference. The shear viscosih
50, the bulk viscosityhv50, and the heat conductivityk55.

FIG. 8. Snapshots of the large-amplitude oscillations of a tw
dimensional vdW drop with an initial aspect ratio close to 5
various timest. All quantities are given in reduced units introduce
in the main text.
e
-

or

a drop, which was initially prepared by slowly deforming th
same circular drop as before along they axis with two re-
flecting pistons, until an aspect ratio of about 5 is reach
When released, this drop carries out vibrations that clos
resemble the oscillations observed experimentally for a la
ball of water under microgravity conditions in the spa
shuttle Columbia@27#.

V. CONCLUSIONS

We show in this paper that the smoothed-particle meth
may easily be adapted to studying two-phase flows and d
condensation for a van der Waals fluid. The vdW cohes
pressure2ar2 gives rise to an attractive, central force actin
between the smoothed particles. These forces are expect
cancel each other in the bulk and to be effective only in
neighborhood of a phase boundary. Their interaction rangH
needs to be larger thanh, the interaction range of all othe
forces entering the SPAM equations of motion, to remo
the instability ensuing forH5h. Taking H52h, we obtain
very stable circular drops in two dimensions, and the ph
diagram of the vdW fluid is closely reproduced. The surfa
tension may be determined from the Laplace equation~16!.

By deforming a circular drop, the restoring force due
the surface tension leads to a damped oscillation when
drop is released. The damping is a consequence of both
intrinsic transport mechanisms inherent to any particle s
tem, and the macroscopic parametersh, hv , andk explicitly
entering the SPAM equations of motion. For sma
amplitude vibrations, the surface tension obtained from
oscillation frequency agrees well with that from the Lapla
equation for equilibrated drops.
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APPENDIX

Here we study the violation of angular momentum co
servation due to the noncentral forces contributed to Eq.~4!
by the shear stresss. Let us consider the continuum limi
first. If V is an arbitrary volume comoving with the fluid an
with surfaceO, the time derivative of its angular momentum

dL

dt
5

d

dtEV
r3vrddr , ~A1!

is easily converted into a surface integral onO @11,28#. As
before,d is the dimension of space. For a conservative s
tem fully contained withinO, this integral vanishes and th
total angular momentum is conserved.

In the smooth-particle representation with finiteN andh
.0, the corresponding expression is

-
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dL

dt
5m(

i 51

N

r i3
dvi

dt
5

hm2

2 (
i 51

N

(
j . i

N

r i j

3S si

r i
2

1
sj

r j
2D dwi j

h

dri j
• r̂ i j , ~A2!

where we have used Eqs.~4! and ~7!. In this equationr i j
5r i2r j , and the caret denotes a unit vector. All SPA
particles are given the same mass,m. Equation~A2! differs
from the exact continuum expression~A1! by a term of order
h2 due to the interpolation errors for the velocity gradie
tensor“v appearing in the shear stress tensors.

In this appendix we take the equation of state of a tw
dimensional, adiabatic ideal gas, augmented by a nega
constant,

p}r22A, A.0 ~A3!

which has already been demonstrated to provide phase s
ration with smoothed particles@6#. However, the surface
pressure generated by the artificial constant2A is not suffi-
cient to guarantee the formation ofcircular drops once con-
densation has taken place andp has approached zero. Ther
fore, the equation of motion~4! is augmented by an
additional term on the right-hand side,

S dvi

dt D
s

52
sm

h2 (
j 51

N

wi j
Hr i j , ~A4!

which serves the same purpose as Eq.~14! for the vdW fluid
in Sec. III. Equation~A4! represents anattractive interpar-
ticle force controled by the parameters.0, which is as-
sumed to be of longer range,H52h, than all the other terms
in Eq. ~4!. Since it is a central force, it does not affect t
decay properties of the total angular momentum. Its o
purpose is to provide sufficient additional surface tension
combination with our simple equation of state. Since t
force also affects the transport of energy, an equivalent t
is added to the energy equation~5!,

S dui

dt D
s

5
sm

2h2 (
j 51

N

wi j
H~vi2vj !•r i j . ~A5!

The scaling according tosm/h2 is introduced to allow for the
same value of the force parameters, if h andN are varied.

For the following we use reduced units, for which th
mechanical and thermal equations of state arep5r221 and
u5r2(1/r)1 k̄T, respectively. As in Sec. III,k̄[kB /m is
set equal to unity and is independent ofN. ~The latter follows
from the requirement that the total mass,Nm, and the total
internal energy,U[( j 51

N muj , must not change with the
number of SPAM particlesN for the same flow. Thus,U is
‘‘nonextensive’’ with respect toN, and the Boltzmann con
stant must be rescaled with 1/N for such systems!. Also the
force parameters is set equal to unity, and Lucy’s weigh
function ~11! is used. Our reference system consists ofN
52500 SPAM particles of massm51. For otherN, the par-
ticle mass is rescaled to keep the total mass unchan
Since only totally condensed drops with no atmosphere
considered, no boundary conditions are required. The ra
t

-
ve

pa-

y
n
s
m

d.
re
ge

h of the weight function~11! is varied between 5 and 15. I
all simulations, the initial temperatureTi51 for all i. For the
viscosities we useh55 andhv51. The heat conductivity is
set tok55. Such a large value is chosen to reduce tempe
ture gradients, but we have verified that our results are tot
insensitive to the choice of this parameter.

First, an equilibrated circular drop with vanishing angu
momentum is prepared, similar to that depicted in Fig. 1~a!.
Next, this drop is rotationally accelerated with an extern
torque~equal for each particle with respect to the center
mass!, until a threshold forL is reached, which is still far
below the stability threshold of the circular drop. In the fin
stage of the simulation, the decay of the angular momen
is followed. In two dimensions, there is only one nonvanis
ing component,L(t). In Fig. 9 we find an almost exponentia
decay ofL(t) for various systems with identical smoothin
length, h515, and with particle numbers varying betwee
2500 and 100. With the exception of the too-coarse
grained caseN5100, the decay curves do not depend onN.
Thus, the particle erroreN mentioned in the Introduction is
insignificant. It should be noted that due to mass rescaling
curves in Fig. 9 refer to drops with about the same diame
and density. If the physical size of the drops were increa

FIG. 10. Time decay of the total angular momentum of a circ
lar drop consisting of 900 SPAM particles. The smoothing rangh
is indicated by the labels. Reduced units are used as explaine
the Appendix.

FIG. 9. Time decay of the total angular momentum of a circu
drop consisting ofN SPAM particles. The smoothing rangeh515.
Reduced units are used as explained in the Appendix.
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by increasingN withoutrescalation of the particle mass, an
keepingh constant, the decay time forL would increase and
the conservation failure become less severe.

In Fig. 10 we compare the decay ofL(t) for a system

FIG. 11. The time constantt for the angular momentum deca
of a circular drop with 900 SPAM particles as a function of t
smoothing lengthh. The dashed line is a fit ofc/h2 to the data
points withc5107 100. Reduced units are used as explained in
Appendix.
ys

9

.M

ys

r

ys
containing 900 SPAM particles, all of massm52.778, for
various smoothing rangesh. The relaxation timest, defined
by L(t)}exp(2t/t), are shown in Fig. 11 as a function ofh.
The dashed line is a fit oft5c/h2 to the data points, where
the fit parameterc51.13105 is insensitive toN. This dem-
onstrates that angular momentum decay is indeed of sec
order inh as expected from the theoretical considerations
Sec. I. Angular momentum is conserved only to orderO(h),
if a full Newtonian stress tensor is used. We have also v
fied that the decay timet is strictly proportional to 1/h as
suggested by Eq.~A2!.

In conclusion, numerical simulations demonstrate that
interpolation error inherent to the discrete SPAM represen
tion of continuous fields causes an error of orderh2 for the
time derivative of the total angular momentum. For clos
systems the angular momentum decays to zero exponen
with a time constant independent ofN, for large enoughN.

We have mentioned in Sec. II that the equations of mot
~4! and ~5! are not unique. We computed the angular m
mentum decay also for the motion equations used by Rif
et al. @11#, a form of the equations that treat the dens
differently, and obtained very similar results. This demo
strates that the results in this appendix are insensitive to
particular SPAM representation and are of general intere

e

ca

ne,

sh-

s,

lt,
le-

ys.
@1# J.C. Brackbill, D.B. Kothe, and C. Zemach, J. Comput. Ph
100, 335 ~1992!.

@2# J.J. Monaghan, Applied Mathematics Reports and Reprints
44, Monash University, 1995.

@3# J.P. Morris, Int. J. Numer. Methods Fluids33, 333 ~2000!.
@4# L.B. Lucy, Astron. J.82, 1013~1977!.
@5# J.J. Monaghan, Annu. Rev. Astron. Astrophys.30, 543~1992!.
@6# W.G. Hoover, T.G. Pierce, C.G. Hoover, J.O. Shugart, C

Stein, and A.L. Edwards, Comput. Math. Appl.28, 155~1994!.
@7# H.A. Posch, W.G. Hoover, and O. Kum, Phys. Rev. E52, 1711

~1995!.
@8# Advances in the Free-Lagrange Method, edited by H.E.

Trease, M.J. Fritts, and W.P. Crowley, Lecture Notes in Ph
ics Vol. 395~Springer-Verlag, Berlin, 1991!.

@9# W. Benz, in The Numerical Modelling of Nonlinear Stella
Pulsations: Problems and Prospects, Vol. 302 of NATO Ad-
vanced Study Institute Ser. C: edited by J.R. Buchler~Kluwer,
Dordrecht, 1990!, p. 269.

@10# P. Laguna, Astrophys. J.439, 814 ~1995!.
@11# H. Riffert, H. Herold, O. Flebbe, and H. Ruder, Comput. Ph

Commun.89, 1 ~1995!.
@12# O. Kum and W.G. Hoover, J. Stat. Phys.76, 1075~1994!.
@13# Wm. G. Hoover, Physica A260, 244 ~1998!.
@14# O. Kum, W.G. Hoover, and H.A. Posch, Phys. Rev. E52, 4899

~1995!.
@15# H.A. Posch and W.G. Hoover, Physica A240, 286 ~1997!.
.

5/

.

-

.

@16# J. van der Waals, thesis, Leiden, 1873@cited by M. Kac, G.E.
Uhlenbeck, and P. Hemmer, J. Math. Phys.4, 216 ~1963!#.

@17# J.L. Lebowitz and O. Penrose, J. Math. Phys.7, 98 ~1966!.
@18# J.S. Rowlinson and B. Widom,Molecular Theory of Capillar-

ity ~Clarendon Press, Oxford, 1982!.
@19# N.G. Hadjiconstantinou, A.L. Garcia, and B.J. Alder, Physi

A 281, 337 ~2000!.
@20# J.P. Hunter, Ph.D. thesis, Monash University, Melbour

1992.
@21# S. Nugent, Ph.-D. thesis, University of Vienna, 1998.
@22# L.D. Landau and E. M. Lifshitz,Statistical Physics~Pergamon

Press, Oxford, 1959!, Vol. 5.
@23# B.J. Alder and W.G. Hoover, inPhysics of Simple Liquids,

edited by H.N.V. Temperley, J.S. Rowlinson, and G.S. Ru
brooke~North-Holland, Amsterdam, 1968!, p. 79.

@24# A. Elsner, Phys. Lett. A156, 147 ~1991!.
@25# Lord Rayleigh, Proc. R. Soc. London29, 71 ~1879!.
@26# C. M. Stein, Ph.D. thesis, University of California at Davi

1998.
@27# R.E. Apfel, Y. Tian, J. Jankovsky, T. Shi, X. Chen, R.G. Ho

E. Trinh, A. Croonquist, K.C. Thornton, A. Sacco, Jr., C. Co
man, F.W. Leslie, and D.H. Matthiesen, Phys. Rev. Lett.78,
1912 ~1997!.

@28# H. Takeda, S.M. Miyama, and M. Sekiya, Prog. Theor. Ph
92, 939 ~1994!.


