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Nucleation burst in a coagulating system
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The source-enhanced formation and growth of disperse particles is considered assuming the particles born
by nucleation grow then by coagulation and condensation of a low volatile vapor onto their surfaces. After
formulating the basic equations governing the particle-formation–growth process a realistic process is consid-
ered: nucleation-coagulation growth of aerosol particles in a free molecular regime. The kinetics of this process
is studied under the assumption that the particle mass spectrum has a log-normal form whose parameters are
expressed in terms of three moments of particle mass distribution: particle number concentration, and the
moments of the orders 1/3 and 2/3. These three moments together with condensable vapor concentration are
shown to meet a set of four first-order nonlinear differential equations that contain a small parameter: relative
vapor concentration spent to the disperse particle production. This parameter, however, does not permit a direct
application of the perturbation theory: only after two consequent rescalings it becomes possible to remove the
small parameter and describe the particle-formation–growth process in terms of universal functions, depending
on a specially defined nondimensional group playing the role of time. It is shown that the particle-formation–
growth process can be naturally separated into two stages:~i! formation by nucleation and condensational
growth of particles, and~ii ! growth of formed particles by coagulation and condensation. Each stage is
described by its own set of universal functions which are found from the solution of respective differential
equations. The asymptotic stage of the process is shown to be described by a self-preserving distribution
depending only on two moments: particle number concentration and the moment of particle-mass distribution
of the order of 2/3.

PACS number~s!: 68.10.Jy, 05.70.2a, 64.60.Qb
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I. INTRODUCTION

The formation of a disperse phase by spontaneous nu
ation plays an extremely important role in numerous atm
spheric and technological processes. Very diverse manife
tions of this process, such as the formation of aeroso
random atmospheric conditions@1–4# or well managed tech
nological processes of nanomaterial production via an a
sol state @5#, prevent us from describing this proce
uniquely: general models taking into account everything
too difficult even for very powerful modern computers. So
attempting to treat gas-to-particle conversion the models
rificing some details are in order.

This paper reports on a simple model of the partic
formation–growth process which takes into account nuc
ation, condensational growth, and coagulation. The parti
are assumed to form in a free molecular regime~the particle
sizes are much smaller than the mean free path of carrier
molecules! which defines the size dependence of the rate
particle growth due to coagulation and condensation.
consider the free molecular regime not only because o
practical importance. The simple and specific dependenc
the condensational efficiency on the particle mass@a(g)
5ag2/3, whereg is the number of molecules in the partic
and a is the condensation efficiency# allows for restricting
the whole consideration by three moments of the part
mass distribution, which meet the set of four first-order d
ferential equations together with the vapor concentrat
@6–8#. Some complications appear if the process involv
other moments. In this case the assumption on a log-nor
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shape of the particle-mass distribution function saves
simplicity of the scheme.

We assume next that there is a spacially uniform sourc
condensable vapor of productivityI, and only a small part of
it is spent in the formation of particles by nucleation. O
course, newly born particles grow after the nucleation bu
by condensing the nonvolatile vapor onto their surfaces,
change their total number concentration by coagulation.

Hence, there appear four well distinguishable periods
developing the aerodisperse system:~i! the prenucleation pe
riod during which no particles are formed yet, and the vap
concentration grows linearly with time;~ii ! a very short
nucleation burst producing particles which then grow
condensing the vapor molecules;~iii ! the period of conden-
sational growth when the newly born particles deplete
vapor and thus cease nucleation;~iv! coagulation aging when
the particles begin to coalesce, with their number concen
tion dropping down and the total surface area growing
The rate of vapor consumption for gas-to-particle convers
is normally much slower than that for vapor condensation
newly born particles, and the vapor molecules prefer to
posit onto the particle surfaces rather than to form new p
ticles. Coagulation, in turn, requires the collisions betwe
newly born particles and is much slower than condensat
for the latter is related to the interaction between partic
and condensable vapor whose concentration is norm
much higher than that of newly born particles. The who
process is thus regulated by one smallness parameter~non-
dimensional! m equal to the ratio of the vapor consumptio
rate for the formation~or nucleation! of newly born particles
to the total vapor production rate by the source. The ratios
4932 ©2000 The American Physical Society
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PRE 62 4933NUCLEATION BURST IN A COAGULATING SYSTEM
the characteristic times can be expressed in terms of
parameter.

Although we consider here the barrierless nucleation~the
nucleation rateJ is proportional to the squared vapor conce
trationC), the results can be easily extended to any arbitr
dependence of the nucleation rate on the vapor supersa
tion. This is absolutely clear because the time of the nu
ation burst is much shorter than other characteristic t
scales. On the other hand, the barrierless nucleation is
often met in the processes of formation of nanomaterials
functionally is rather simple to operate with. So we assu
J5AC2.

Our model uses the moment method that is very w
suited for considering the particle-formation–growth proc
in the free moleclar regime. The papers@7,8# discuss the
application of this method to the condensational growth p
cesses in the free molecular regime and show that three
ments of particle-size distribution and the concentration
condensable vapor can be expressed in terms of unive
functions, with all details of the process being hidden in
scales of the time and concentraton axes.

This work extends this approach by including the coa
lation process into consideration. We show that there are
different scales of time, the shorter of which defines the
namics of the nucleation-condensation stage while the lon
one scales coagulation aging. It is found that each stag
described by a set of four universal functions that meet f
~different for each stage! first-order differential equations
the right-hand sides of which contain coagulation integra
These integrals are evaluated and expressed in terms o
parameters of log-normal particle-mass distribution. In c
trast to commonly accepted approaches the latter inclu
particle number concentration and two moments of the or
of 1/3 and 2/3. This step allows one to formulate the close
of equations for these three values and the vapor conce
tion. This set contains the smallness parameterm which can
be expressed in terms ofA anda asm5A/a. This parameter
is not treatable by a straightforward application of the p
turbation theory, for settingm50 removes the particle for
mation by nucleation. However, two rather nontrivial resc
ings allow for the separation of the nucleation-condensa
and coagulation-condensation stages of the parti
formation–growth process and the formulation of two clos
sets of equations containing no smallness parameter at

It is shown that the time for the condensation-nucleat
stage is longer than the characteristic condensation
1/AIa by the factorm21/8. The particle number concentra
tion contains the smallness parameter to the power 5/8:f0

}m5/8AI /a.
The coagulation stage is longer than the condensa

stage bym23/16. The asymptotic analysis shows that the m
ments and particle number concentration are the power fu
tions of time: f1/3}t23/5, f2/3}t1/5, and f0}t27/5. These
values of exponents correspond to the predictions of the s
preservation theory for source-enhanced coagulation in
free molecular regime. Numerical analysis confirms th
power laws and gives the values of the constants before
powers. Above asymptotic dependencies correspond to
constant width of the log-normal function (s50.692 for the
source-enhanced growth process!.
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II. BASIC EQUATIONS

We consider a spacially uniform disperse system and
sume the following.

~i! There is a source of condensable vapor of the prod
tivity I.

~ii ! Newly born particles are produced from the vapor
nucleation and can coagulate and grow by condensation.
particle production rate by nucleation is low compared to
source productivity.

~iii ! All growth processes go in the free molecular regim
According to the above assumptions the evolution eq

tions look as follows. The rate of change with time in th
monomeric concentrationC(t) is

dC

dt
5I 2E gJ~g!dg2aCf2/3, ~1!

whereI (t) is the productivity of the external source of vapo
a5pa2vm is the condensation coefficient,a is the particle
radius, andvm5A8kT/pm is the molecular thermal velocity
(m is molecular mass,T is temperature!. The moments of
particle-mass distributionfs are defined as follows:

fs~ t !5E gsN~g,t !dg, ~2!

whereN(g,t) is the particle-mass spectrum,g is the number
of monomers in the particle, anda(g)5ag2/3 is the conden-
sation efficiency.

The first term on the right-hand side~rhs! of Eq. ~1! gives
the increase in the monomer concentration due to an ac
of the source, the second describes the nucleation losses
the last one is responsible for depleting the condensable
por due to its condensation onto the surfaces of newly b
~by nucleation! particles. The continuity equation

]N

]t
1aC

]

]g
g2/3N5J~g,t ! ~3!

describes the time evolution of particle-mass spectrum.
source term can be written down in the form

J5Jcoag~g,t !1Jnucl~g,t !, ~4!

where

Jcoag5
1

2E0

g

K~g2 l ,l !N~g2 l ,t !N~ l ,t !dl

2N~gt!E
0

`

K~g,l !N~ l ,t !dl ~5!

is the contribution to mass spectrum changes due to co
lation,K(g,l ) is the coagulation kernel: In the free molecul
regime it has the form~see, e.g.,@1#!

K~g,l !5a~g1/31 l 1/3!2A1

g
1

1

l
. ~6!

Nucleation is assumed to produce the particles of a c
cal massG(C). The rate of nucleation is chosen in the for
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4934 PRE 62A. A. LUSHNIKOV AND M. KULMALA
Jnucl~g,t !5JG~C!d~g2G!. ~7!

Here d(x) is Dirac’s delta function andG stands for the
critical mass of particles produced by nucleation. In wh
follows we assume that

JG~C!5AC0
2 j ~C/C0!, ~8!

whereA is a constant~with respect toC) andC0 is a char-
acteristic concentration at which nucleation becomes not
able.

Equations~1! and~3! are subject to zero initial condition

C~0!50, N~g,0!50. ~9!

The continuity equation~3! can be cast into the equation
for the moments of mass distributionsfg5*N(g,t)ggdg on
multiplying it by gg, integrating overg, and using the equal
ity:

E
0

`

gg@] tN~g,t !1a]gg2/3N~g,t !#dg5dtfg2gfg21/3.

~10!

In what follows we use the system of unitsa5I 51, i.e.,
all concentrations are measured in the units ofAI /a and time
in 1/AIa.

The basic equations then aquire the form

dtC512Gm j ~C!2Cf2/3, ~11!

dtf2/35G2/3m j ~C!1 2
3 Cf1/32K2/3, ~12!

dtf1/35G1/3m j ~C!1 1
3 Cf02K1/3, ~13!

dtf05m j ~C!2K0 . ~14!

Herem5AC0
2/I !1 is the smallness parameter. For barri

less nucleationC0}AI /a andm}A/a. The reasons whym is
small were discussed in@8#. The coagulation termsKg are
specified as follows:

Kg5
1

2E K~g,l !@~g1 l !g2gg2 l g#N~g!N~ l !dgdl.

~15!

The initial conditions to these equations follow from E
~9!:

fs~0!50, C~0!50. ~16!

III. LOG-NORMAL APPROXIMATION

The details of the particle-mass distribution can be n
excluded from the consideration at the cost of only one
quite reasonable approximation: the mass spectrum of
nucleation mode is assumed to be log normal,

N~g,t !dg5f0~ t !F~g/g0us!
dg

g
, ~17!

where the function
t

e-

-

d
he

F~xus!5
1

A2ps
expS 2

1

2s
ln2 xD ~18!

is normalized to 1.
Let us express the parameterss andg0 of the log-normal

mass distribution in terms off0 , f1/3, f2/3. According to
the Appendix@Eq. ~A3!#,

f1/35f0g0
1/3es/18, f2/35f0g0

2/3e2s/9, ~19!

and

es/95f2/3f0 /f1/3
2 , ~20!

g0
2/35f1/3

4 /~f2/3f0
3!. ~21!

In what follows we widely use the identity~A6! from the
Appendix:

E
0

`

xs f S y

xDF~xus!F~yus!
dx

x

dy

y

5expS ss2

4 D E
0

`

z2s/2F~zu2s! f ~z!
dz

z
. ~22!

For an arbitrary homogeneous coagulation ker
Kl(x,y), with l being the homogeneity exponent, one h
~see the Appendix!

~KNN!l,g5
1

2E Kl~g,l !@~g1 l !g2gg2 l g#N~g!N~ l !dgdl

5
1

2
g0

l1gf0
2 expS s

4
~l1g!2D f l,g~s!, ~23!

where

f l,g~s!5E
0

`

j2(l1g)/2@~j11!g2jg21#

3Kl~1,j!F~ju2s!
dj

j
. ~24!

Now

K05 1
2 g0

1/6f0
2es/144f 0~s!, ~25!

K1/35
1
2 g0

1/2f0
2es/16f 1/3~s!, ~26!

K2/35
1
2 g0

5/6f0
2e25s/144f 2/3~s!. ~27!

For the kernel given by Eq.~6! the functionsf are

f 0~s!5E
0

`

j1/12~11j21/3!2A11xF~ju2s!
dj

j
, ~28!

f 1/3~s!5E
0

`

j21/12@j1/3112~j11!1/3#

3~11j2 1/3!2A11jF~ju2s!
dj

j
, ~29!



e
t o

o

-

n
t

ve
de

into

of
e
ber
ith
s of
ing
t
uch

ered
totic
ed in

ith
mi-

-

e

-

an
er

t to

en-
con-

PRE 62 4935NUCLEATION BURST IN A COAGULATING SYSTEM
f 2/3~s!5E
0

`

j21/4@j2/3112~j11!2/3#

3~11j21/3!2A11jF~ju2s!
dj

j
. ~30!

Finally one has

K052 1
2 f1/3

7/8f2/3
23/16f0

21/16f 0 , ~31!

K1/352 1
2 f1/3

15/8f2/3
23/16f0

5/16f 1/3, ~32!

K2/352 1
2 f1/3

15/8f2/3
5/16f0

23/16f 2/3. ~33!

IV. RESCALING

It is seen that the smallness parameterm cannot so easily
be removed from the set of Eqs.~11!–~14!. No new particles
can form whilem50. The situation can be improved and th
perturbation theory restored after an analysis in the spiri
the renormalization group. This was already done by us
Ref. @7# for powerlike dependencies of the nucleation rate
the vapor concentration.

Let us rescale the unknown functions and time,

t5h21j, C5h21x, f2/35hy,

f1/35h3z, f05h5u. ~34!

The next step is the choice of the parameterh of the trans-
formation. It is fixed by the conditionh65m which removes
the multiplierm from the first term on the rhs of Eq.~14!. In
three other equations~11!, ~12!, and~13! the positive powers
of m still accompany the nucleation terms~the first terms on
their right-hand sides!.

After the renormalization one has

djx512Gm j ~x!2xy, ~35!

djy5G2/3m2/3j ~x!1 2
3 xz2 1

2 m1/2z15/8y5/16u23/16f 2/3,
~36!

djz5G1/3m1/3j ~x!1 1
3 xu2 1

2 m1/2z15/8y23/16u5/16f 1/3,
~37!

dju5 j ~x!2 1
2 m1/2z7/8y23/16u21/16f 0 . ~38!

It is important to notice that the renormalization@Eq. ~34!#
leavess unchanged.

V. HIERARCHY OF TIME SCALES

Coagulation terms in Eqs.~35!–~38! are seen to be pro
portional to a positive power of the small parameterm. If we
simply putm50 in these equations we lose coagulation a
leave only the stage of formation and condensational grow
Let us do this, and in the zeroth order inm we can consider
nucleation condensation alone. This statement, howe
holds while the particle distribution moments are of the or
of unity. At larger times they are expected to grow~except
for the total particle number, the momentu in our list of
dimensionless and renormalized moments!. Their growth
f
in
n

d
h.

r,
r

compensates for the smallness ofm at sufficiently large
times, and then we must take the coagulation process
consideration.

Nothing like this happens to the first terms on the rhs
Eqs.~35!–~38! responsible for the particle formation. Thes
terms never contribute much because the particle num
concentration of the nucleation mode does not grow w
time, and no factors can come up canceling the smallnes
m This fact just means that the two stages of particle ag
~condensation and coagulation! proceed during very differen
time scales. The coagulation process begins to develop m
later than the nucleation burst and can thus be consid
separately. Our idea is to demonstrate that the asymp
stage of the coagulation processes can also be describ
terms of universal functions.

In order to consider the coagulation on an equal foot w
the condensational growth we notice that if we rescale si
larly all the moments andj as

y5m21/4y1 , z5m21/4z1 ,

u5m21/4u1 , j5m21/4j1 , ~39!

then the smallness parameterm1/2 disappears in the coagula
tion terms in Eqs.~36!–~38!. Rescalingx5m1/4x1 leaves
Eqs.~36!, ~37!, and~38! unchanged while the left-hand sid
~lhs! of Eq. ~35! aquires the small multiplier: (d/dj)x
5m1/2(d/dj1)x1. We set this multiplier equal to 0, and re
tain only the rhs of this equation which now reads asx1
51/y1. Next, all terms containing the particle production c
be replaced by proper initial conditions. Then three oth
equations~36!, ~37!, and~38! are rewritten as

dy1

dj1
5

2z1

3y1
2

1

2
z1

15/8y1
5/16u1

23/16f 2/3, ~40!

dz1

dj1
5

u1

3y1
2

1

2
z1

15/8y1
23/16u1

5/16f 1/3, ~41!

du1

dj1
52

1

2
z1

7/8y1
23/16u1

21/16f 0 . ~42!

The initial conditions to these equations are convienen
have in the form

y1~0!5~2m!2/3u1~0!, z1~0!5~2m!1/3u1~0!,

u1~0!5m1/4u` , ~43!

where u05*0
` j (j)dj and e→0. We did not pute50 in

order to retain the initial value ofs(0)50. This simplifies
performing the numerical calculations.

VI. RESULTS AND DISCUSSION

In what follows we assume the simplest possible dep
dence of the nucleation rate on the condensable vapor
centration:

J5AC2. ~44!
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4936 PRE 62A. A. LUSHNIKOV AND M. KULMALA
This dependence corresponds to barrierless nucleation,
dimers are considered to be stable. The constantA is nor-
mally very small, for it contains the average number of c
rier gas molecules in the interaction volume,nVm . Heren is
the number concentration of the carrier gas andVm}am

3 .
This factor appears because the dimerization~the reaction
A1A→A2) does not go without a third body. Usually
molecule of the carrier gas plays this role~see@8#!.

The characteristic concentration in this case isC0

5AJ/a, and the parameterm5A/a}(nVm)'1024 is inde-
pendent of the source productivityI. The exact numerica
value of this parameter is not very important because it
fines only the scales of the time-concentration axes.
functions describing the particle growth kinetics are univ
sal.

A. Nucleation-condensation stage

Settingm50 in the set~35!–~38! gives the equations de
scribing the nucleation-condensation stage,

djx512xy, ~45!

djy5 2
3 xz, ~46!

djz5 1
3 xu, ~47!

dju5 j ~x!, ~48!

wherej (x)5x2. These equations were solved for zero init
conditions. The results are shown in Figs. 1~a!–1~c!. The
vapor concentration drops down on passing the maxim
@Fig. 1~a!# while the momentsy and z always grow@Fig.
1~b!#. The particle number concentration saturates atj'2
and reaches the valueu`56.58. At largej the moments
grow as

y'u`
1/3j2/3, z'u`

2/3j1/3. ~49!

The shapes of these curves depend on the functional for
the nucleation ratej (x).

The particle-mass distribution of the condensing partic
cannot be described in terms of log-normal distribution@8#.
Still this distribution is a narrow function. The attempt
approximate it by a log-normal function is shown in Fi
1~c!. One sees that the width which, according to Eq.~49!,
should go to 0 atj→` remains appreciable even atj510.
At j51000,s(1000)50.137. This very slow drop is a man
festation of the fact that the log-normal approximation is n
very good for describing the condensation stage. On
other hand, it is not a great loss, because no assumption
required for the description of the nucleation-condensa
stage in terms of the moments of mass distribution@7,8#.

B. Coagulation stage

Equations~40!, ~41!, and ~42! with the initial conditions
~43! were solved numerically. Approximations for the fun
tions f g(s) used in the numerical calculations are
e.,

-

-
e
-

l

m

of

s

t
e
are
n

f 0~s!54A2e0.185s, f 1/3~s!54A2~2221/3!e0.11s

f 2/3~s!54A2~2222/3!e0.063s. ~50!

The results are presented in Figs. 2~a!–2~d!. It should be
emphasized that the shape of all curves in these figure
entirely independent of the functional form of the nucleati
rate and includes only the final result of nucleation: the to
particle number concentration. The parameterm entering the
initial condition Eq.~43! defines the length of the transien
period during which the asymptotic mass distribution
settled.

The power asymptotic dependencies ofy, z andu can be
found analytically. Substituting y1(j1)5Yj1

a , z1(j1)
5Zj1

b , andu(j1)5Uj1
c into Eqs.~40!, ~41!, and~42! gives

y150.682j1
1/5, z150.5j1

23/5, u150.394j1
27/5.

~51!

Figures 2~a!–2~c! demonstrate how these dependencies
reached. It is seen that the numerically calculated depen
cies of the moments are well reproduced by the asympt
dependencies Eqs.~51!. Figure 2~d! shows the time depen
dence of the width of the mass distribution. It grows fro
zero to the values50.692 at t→`. The saturation is not
reached fast: during 10–20 units of nondimensional time
m51024. This period slowly grows asm21/4 in decreasing
m.

The asymptotic mass distribution thus depends only
two parameters: number concentration andf2/3. The value
of f1/3 is readily found from Eq.~22!.

VII. CONCLUSION

We considered the source-enhanced particle forma
and growth process. The dispersed particles were assum
be born from a low volatile vapor in a nucleation process a
then grow by condensing it onto their surfaces. Addition
growth due to particle coagulation was also taken into
count. Although the vapor source was assumed to be c
stant, the time evolution of the whole system never led t
steady-state picture. The vapor concentration and the c
centration of newly born particles dropped with time afte
short splash~nucleation burst!.

The process of particle formation and growth is govern
by one small parameter: the ratio of vapor mass converte
newly born particles to the source productivity. However
direct application of the perturbation theory was not possib
and only two subsequent rescalings saved the situation
made resolving the problem possible. It occured that
particle-formation–aging problem goes into two stages,
first of which was comparatively short and included on
nucleation formation of the particles and their condensatio
growth. This stage had been considered in@7#. The coagula-
tion aging~the second stage! occurs very slow and is there
fore insensitive to the nucleation mechanism.

The result of the nucleation stage important for the coa
lation aging is just the total particle number concentrat
of particles produced by the nucleation stage rather than
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FIG. 1. Kinetics of the nucleation-condensation stage. Shown are~a! the universal functionx describing the time dependence of vap
concentration,~b! universal functions describing the time dependence of particle number concentration~curveu), the moment of the order
of 1/3 ~curvez), and the moment of the order of 2/3~curvey). Assuming that the particle-mass distribution at this stage can be desc
by a log-normal function the widths was calculated~c!. This value drops with time unexpectedly slow.
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detailed kinetics. The remarkable feature of the coagula
stage is a kind of self-preservation: the asymptotic m
spectrum depends only on two parameters rather than th
In principle, the self-preservation is not a rare feature
coagulating systems with homogeneous coagulation ker
@9–14#, but external sources and simultaneous conden
tional growth usually prevent the universal asymptotics
particle-mass distributions in such systems@1,2#.

In addition the above consideration gives the following
~i! A simple computational scheme allowing one to fi

the parameters of the particle-mass distribution in suc
n
s

ee.
f
ls
a-
f

a

complicated process like the formation of particles by nuc
ation accompanied by condensational growth and coag
tion.

~ii ! A recipe for universalizing the description of th
particle-formation–growth kinetics. The parameters
the particle-mass distribution are shown to be univer
functions of nondimensional time. The details of the proc
like the source productivity, nucleation rate constant, a
condensational efficiency define only time-concentrat
scales. The shape of the asymptotic particle-mass distr
tion is defined by two parameters: the particle number c



n
cies.
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FIG. 2. Kinetics of the coagulation stage. The time dependence of the number concentration~a! and moments of particle-size distributio
@~b! and~c!# and the width~d!. Numerically found functionsy, z, andu are seen to be well approximated by their asymptotic dependen
The widths saturates rather fast: after five units of dimensionless time.
e
tio

ag

o
se

C

g

centration and the momentf2/3 which defines the averag
particle mass. This fact means that a kind of self-preserva
works at large times. The power exponents in Eq.~49! cor-
respond to the self-preservation in source-enhanced co
lating systems.

Although we considered here a particular problem
aerosol particle formation and growth the strategy propo
above can be applied for solving other similar problems.
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APPENDIX: SOME INTEGRALS WITH LOG-NORMAL
DISTRIBUTION

Here the identity~A6! is derived and used for performin
necessary integrations that help to reduce Eq.~31! to Eqs.
~34!–~36!.

Let F(sux) be the log-normal distribution,

F~xus!5
1

A2ps
expS 2

1

2s
ln2 xD . ~A1!

The integral



gu-

s
nte-
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^xs, f &5E
0

`

xs f S y

xDF~xus1!F~yus2!
dx

x

dy

y
~A2!

is calculated below for an arbitrary functionf. At f 51 the
result is known

^xs,1&5expS s2s1

2 D . ~A3!

Let us introduces125s1s2 /(s11s2). Then the identity
whose validity is readily checked

F~xus1!F~xzus2!5F~xzs12 /s2us12!F~zus11s2! ~A4!

helps in transforming Eq.~A2!,

^xs, f &5E xs f ~z!F~xus1!F~xzus2!
dz

z

dx

x

5es2s12/2E xsF~xzs12 /s2us12!

3F~zus11s2! f ~z!
dz

z

dx

x
. ~A5!
y

J

On integrating overx ends the calculation up,

^xs, f &5expS s12s
2

2 D E
0

`

z2ss12 /s2F~zus11s2! f ~z!dz.

~A6!

Let the mass distribution have the form~17! and the co-
agulation kernel be the homogeneous function of its ar
ments:K(ax,ay)5alK(x,y). Then, using the identity~A6!
yields:

K05E K~x,y!N~x,t !N~y,t !dxdy5f0
2g0

l^xl,K&,

~A7!

whereK(j)5K(1,j) and

K25E xyK~x,y!N~x,t !N~y,t !dxdy

5f0
2lg0

21l^x21l,K1&5f0
2lg0

21l^xl,K&, ~A8!

whereK1(j)5jK(1,j). It is remarkable that both the value
K0 andK2 are expressed in terms of one and the same i
gral ^xl,K&.
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