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Nucleation burst in a coagulating system
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The source-enhanced formation and growth of disperse particles is considered assuming the particles born
by nucleation grow then by coagulation and condensation of a low volatile vapor onto their surfaces. After
formulating the basic equations governing the particle-formation—growth process a realistic process is consid-
ered: nucleation-coagulation growth of aerosol particles in a free molecular regime. The kinetics of this process
is studied under the assumption that the particle mass spectrum has a log-normal form whose parameters are
expressed in terms of three moments of particle mass distribution: particle number concentration, and the
moments of the orders 1/3 and 2/3. These three moments together with condensable vapor concentration are
shown to meet a set of four first-order nonlinear differential equations that contain a small parameter: relative
vapor concentration spent to the disperse particle production. This parameter, however, does not permit a direct
application of the perturbation theory: only after two consequent rescalings it becomes possible to remove the
small parameter and describe the particle-formation—growth process in terms of universal functions, depending
on a specially defined nondimensional group playing the role of time. It is shown that the particle-formation—
growth process can be naturally separated into two stageformation by nucleation and condensational
growth of particles, andii) growth of formed particles by coagulation and condensation. Each stage is
described by its own set of universal functions which are found from the solution of respective differential
equations. The asymptotic stage of the process is shown to be described by a self-preserving distribution
depending only on two moments: particle number concentration and the moment of particle-mass distribution
of the order of 2/3.

PACS numbgs): 68.10.Jy, 05.76-a, 64.60.Qb

[. INTRODUCTION shape of the particle-mass distribution function saves the
simplicity of the scheme.

The formation of a disperse phase by spontaneous nucle- We assume next that there is a spacially uniform source of
ation plays an extremely important role in numerous atmo-<ondensable vapor of productivityand only a small part of
spheric and technological processes. Very diverse manifest#-is spent in the formation of particles by nucleation. Of
tions of this process, such as the formation of aerosol ircourse, newly born particles grow after the nucleation burst
random atmospheric conditioh$—4] or well managed tech- by condensing the nonvolatile vapor onto their surfaces, and
nological processes of nanomaterial production via an aerghange their total number concentration by coagulation.
sol state [5], prevent us from describing this process Hence, there appear four well distinguishable periods in
uniquely: general models taking into account everything aréleveloping the aerodisperse systémthe prenucleation pe-
too difficult even for very powerful modern computers. So infiod during which no particles are formed yet, and the vapor

attempting to treat gas-to-particle conversion the models sa&oncentration grows linearly with timeCii_) a very short
rificing some details are in order. nucleation burst producing particles which then grow by

This paper reports on a simple model of the partide_condensing the vapor moleculdsj) the period of conden-

formation—growth process which takes into account nucle—Sational growth when the newly born particles deplete the

ation, condensational growth, and coagulation. The particlevf':hapor a’.‘d thus cease nucleatign,) 'coagullatlon aging when
. . . e particles begin to coalesce, with their number concentra-
are assumed to form in a free molecular regifte particle

. . tion dropping down and the total surface area growing up.
sizes are much smaller than the mean free path of carrier g bping 9 9 up

lecul hich def he size d d fh e rate of vapor consumption for gas-to-particle conversion
molecules which defines the size dependence of the rates G normally much slower than that for vapor condensation on

particle growth due to coagulation and condensation. Wee,yy horn particles, and the vapor molecules prefer to de-
consider the free molecular regime not only because of it$ssit onto the particle surfaces rather than to form new par-
practical importance. The simple and specific dependence gfles. Coagulation, in turn, requires the collisions between
the condensational efficiency on the particle m@agg)  newly born particles and is much slower than condensation,
= ag?®, whereg is the number of molecules in the particle for the latter is related to the interaction between particles
and « is the condensation efficienpwllows for restricting and condensable vapor whose concentration is normally
the whole consideration by three moments of the particlenuch higher than that of newly born particles. The whole
mass distribution, which meet the set of four first-order dif-process is thus regulated by one smallness paranreder
ferential equations together with the vapor concentratiordimensiongl . equal to the ratio of the vapor consumption
[6—8]. Some complications appear if the process involvegate for the formatiorfor nucleation of newly born particles
other moments. In this case the assumption on a log-norméb the total vapor production rate by the source. The ratios of
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the characteristic times can be expressed in terms of this Il. BASIC EQUATIONS
parameter.

. . We consider a spacially uniform disperse system and as-
Although we consider here the barrierless nucleattbe sume the following.

nucleation raté is proportional to the squared vapor concen- (i) There is a source of condensable vapor of the produc-
tration C), the results can be easily extended to any arbitrar)ﬁvity .

erend_enf:e of the nucleation rate on the vapor supersatura- (i) Newly born particles are produced from the vapor by
tion. This is absolutely clear because the time of the nuclepcleation and can coagulate and grow by condensation. The

ation burst is much shorter than other characteristic timgarticle production rate by nucleation is low compared to the
scales. On the other hand, the barrierless nucleation is veburce productivity.

often met in the processes of formation of nanomaterials and (jii ) All growth processes go in the free molecular regime.

functionally is rather simple to operate with. So we assume According to the above assumptions the evolution equa-

J=AC? tions look as follows. The rate of change with time in the
Our model uses the moment method that is very wellmonomeric concentratio@(t) is

suited for considering the particle-formation—growth process dc

in the f_ree molc_eclar regime. The pape{rﬁs_] discuss the iy _f 93(9)dg— aCdyys, 1)

application of this method to the condensational growth pro- dt

cesses in the free molecular regime and show that three mo- ) o

ments of particle-size distribution and the concentration ofvherel(t) is the productivity of the external source of vapor,

_ 2 . . . - . .
condensable vapor can be expressed in terms of universd~ 7@ Um IS the condensation coefficierd,is the particle
functions, with all details of the process being hidden in the/@dius, and = y8kT/7m is the molecular thermal velocity
scales of the time and concentraton axes. (m is molecular massT is temperature The moments of

This work extends this approach by including the Coagu_partlcle-mass distributiowp,, are defined as follows:
lation process into consideration. We show that there are two
different scales of time, the shorter of which defines the dy- qﬁo(t):f 0’N(g,t)dg, (2
namics of the nucleation-condensation stage while the longer
one scales coagulation aging. It is found that each stage {§hereN(g,t) is the particle-mass spectrugijs the number
described by a set of four universal functions that meet foubf monomers in the particle, ane{g) = «g?? is the conden-
(different for each stagefirst-order differential equations, sation efficiency. '
the right-hand sides of which contain coagulation integrals. The first term on the right-hand sidens) of Eq. (1) gives
These integrals are evaluated and expressed in terms of the, jncrease in the monomer concentration due to an action

parameters of log-normal particle-mass distribution. In con<¢ yhe source, the second describes the nucleation losses, and

tras; to commonly acceptgd approaches the latter mclude[ﬁe last one is responsible for depleting the condensable va-
particle number concentration and two moments of the ordiéb

) or due to its condensation onto the surfaces of newly born

of 1/3 an_d 2/3. This step allows one to formulate the close s y nucleatiop particles. The continuity equation
of equations for these three values and the vapor concenra-
tion. This set contains the smallness paramgtevhich can N 9
be expressed in terms 8fanda asu=A/«a. This parameter -t aC@QZBN:J(Q,t) ()]
is not treatable by a straightforward application of the per-
turbation theory, for setting.=0 removes the particle for- gescribes the time evolution of particle-mass spectrum. The
mation by nucleation. However, two rather nontrivial rescal-g ,rce term can be written down in the form
ings allow for the separation of the nucleation-condensation
and coagulation-condensation stages of the particle- J=Jcoad 9.1) + Inuci(9,1), (4)
formation—growth process and the formulation of two closed
sets of equations containing no smallness parameter at all.where

It is shown that the time for the condensation-nucleation
stage is longer than the characteristic condensation time
1/l a by the factoru =8 The particle number concentra-
tion contains the smallness parameter to the power &¢8:
=l a. ~N( t)fo( DN(I,tdl )

The coagulation stage is longer than the condensation g 0 9 '
stage byu ~¥*6. The asymptotic analysis shows that the mo-
ments and particle number concentration are the power funds the contribution to mass spectrum changes due to coagu-
tions of time: ¢yt 3%, hosct?®, and ¢ooct = 7> These lation,K(g,!) is the coagulation kernel: In the free molecular
values of exponents correspond to the predictions of the selfegime it has the fornisee, e.g.[1])
preservation theory for source-enhanced coagulation in the

free molecular regime. Numerical analysis confirms these 11
\ v K(g.)=alg?+ M2 [+ 1. ®)

1(9
Jcoagzzfo K(g—I,1)N(g—I,t)N(l,t)dI

power laws and gives the values of the constants before the

powers. Above asymptotic dependencies correspond to the

constant width of the log-normal functios£ 0.692 for the Nucleation is assumed to produce the particles of a criti-
source-enhanced growth process cal massG(C). The rate of nucleation is chosen in the form
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Jnuci(9,1)=Js(C)d(g—G). (7) F( | ) 1 1 | (18
X|s)= ——exp — =—In?x
Here 8(x) is Dirac’s delta function ands stands for the V27s 2s

critical mass of particles produced by nucleation. In what

follows we assume that is normalized to 1.
Let us express the parametarandg, of the log-normal

35(C)=ACZj(CICy), (8)  mass distribution in terms obg, 13, ¢by3. According to
the AppendixEq. (A3)],

whereA is a constantwith respect toC) andC is a char-

acteristic concentration at which nucleation becomes notice- b13= hod0 €8, o= Pogh e*, (19
able.
Equations(1) and(3) are subject to zero initial conditions 2Nd
C(0)=0, N(g,0)=0. (9) %= ool B3, (20
The continuity equatiori3) can be cast into the equations 02%= 14 (boshd). (22)
for the moments of mass distributiogs,= [ N(g,t)g”dg on ) ] .
multiplying it by g, integrating over, and using the equal- N what follows we widely use the identit}A6) from the
ity: Appendix:
* 213 : x dy
fo 97[aN(g,t) + adyg?*N(g,t) 1dg=dib,— Y, 15 fo F<X|S>F<V|S>77
1o —oxd 3 J "o (gasyt o) L 22
In what follows we use the system of units=1=1, i.e., —SB 5, 4 (¢]2s) (5)?. (22
all concentrations are measured in the unit§'bffe and time
in 1\l a. For an arbitrary homogeneous coagulation kernel
The basic equations then aquire the form Ki(X,y), with X being the homogeneity exponent, one has
(see the Appendijx
diC=1-Guj(C)—Cdys, (11 L
GG (2t 1z KNN= | K@D g7 IIN@Ndgel
— U3, 1 _ 1 S
dih1/3= G uj(C) +5Cho— Ky, (13 = Egé+~/¢g ex;{Z(M—y)z fro(S), (23
didpo=uj(C)—Kp. (14
where
Here u=AC3/I<1 is the smallness parameter. For barrier- .
less nucleatio_tﬁiooc \/I/a.and,uocA/a. The reasons why is f\(s)= f EMN (g+1)7—E7—1]
small were discussed if8]. The coagulation termk, are 0
specified as follows: de
1 X Kx(l,é)F(§|23)?- (24)
K,=5 | K@D@+) == IIN@Ndgd
(15) Now
The initial conditions to these equations follow from Eq. Ko=1305 °b5e™ “fo(s), (25
(9):
Kis= 390 ¢5e *f 14(9), (26)
¢,(0)=0, C(0)=0. (16)
K= 300 e 5/4(s). 27

I1l. LOG-NORMAL APPROXIMATION
For the kernel given by Ed6) the functionsf are
The details of the particle-mass distribution can be now 0 dé¢
excluded from the consideration at the cost of only one and fo(s)zf ENA 1+ £ 321+ xF(&|25)—, (29
quite reasonable approximation: the mass spectrum of the 0 §
nucleation mode is assumed to be log normal,

” fa9)= [ £+ 1- e+ 1
N(g,t)dg= ¢o(t)F(g/gols)? 17)
X (1+ & 321+ gF(§|25)d—§, (29)

where the function
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Fore(S) = f:g—lf“[§2’3+1—<§+1>2’3]

><<1+s-”3>2¢1T§F<§|2s)d—;. (30)
Finally one has
Ko=—2615b23 ¢5" To, (30)
Kys=—3 b1 bas bo f i3, (32)
Koa= =3 1 baado K. (33

IV. RESCALING

It is seen that the smallness parameiecannot so easily
be removed from the set of Eq4.1)—(14). No new particles

can form whilex=0. The situation can be improved and the
perturbation theory restored after an analysis in the spirit of
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compensates for the smallness pof at sufficiently large
times, and then we must take the coagulation process into
consideration.

Nothing like this happens to the first terms on the rhs of
Egs.(35—(38) responsible for the particle formation. These
terms never contribute much because the particle number
concentration of the nucleation mode does not grow with
time, and no factors can come up canceling the smallness of
m This fact just means that the two stages of particle aging
(condensation and coagulatjgoroceed during very different
time scales. The coagulation process begins to develop much
later than the nucleation burst and can thus be considered
separately. Our idea is to demonstrate that the asymptotic
stage of the coagulation processes can also be described in
terms of universal functions.

In order to consider the coagulation on an equal foot with
the condensational growth we notice that if we rescale simi-
larly all the moments and as

y=p Yy, z=p Vg,

the renormalization group. This was already done by us in

Ref.[7] for powerlike dependencies of the nucleation rate on

the vapor concentration.
Let us rescale the unknown functions and time,
t=7n"1¢,

C=7n"1X, o= ny,

b13= 12, $o=n"U. (34
The next step is the choice of the paramejeof the trans-
formation. It is fixed by the conditiom®= x which removes
the multiplier u from the first term on the rhs of EqL4). In
three other equationd.1), (12), and(13) the positive powers
of w still accompany the nucleation terrthe first terms on
their right-hand sides
After the renormalization one has

dex=1-Gpuj(x)~xy, (35

dgy: GZ/3M2/3j (X) + %XZ— %M1/2215/8y5/16uf3/16f of3s
(36

ng: Gl/3,ul/3j (X)+ %XU— % Ml/2215/8y73/16u5/16f 135
(37
dgu — ] (X) _ %ﬂ1/227/8y73/1%21/16f0 . (38)

It is important to notice that the renormalizatidiq. (34)]
leavess unchanged.

V. HIERARCHY OF TIME SCALES

u=p My, E=p Mg, (39
then the smallness paramejet? disappears in the coagula-
tion terms in Eqs.(36)—(38). Rescalingx=u**; leaves
Egs.(36), (37), and(38) unchanged while the left-hand side
(lhs) of Eq. (35 aquires the small multiplier: d/d&)x
=uYqd/dé;)x;. We set this multiplier equal to 0, and re-
tain only the rhs of this equation which now reads>as
=1/ly,. Next, all terms containing the particle production can
be replaced by proper initial conditions. Then three other
equationg36), (37), and(38) are rewritten as

dy; 2z

1
_ _ ~ _15/8 ,5/16 ,—3/1
d§1 3y1 221 Byl 6ul 6f2/3! (40)
dz up 1 15/8 ,—3/16 ,5/1
_dfl__3y1_zzl &1 ¥ U s, (41)
du; 1 B
- F AR, @2)

The initial conditions to these equations are convienent to
have in the form

y1(0)=(21)*u;(0),  z(0)=(2u)*uy(0),

u;(0)=pu'u.. (43

where up= [§j(£)dé and e—0. We did not pute=0 in

Coagulation terms in Eq$35)—(38) are seen to be pro- order to retain the initial value a§(0)=0. This simplifies

portional to a positive power of the small parameieif we

performing the numerical calculations.

simply putx=0 in these equations we lose coagulation and

leave only the stage of formation and condensational growth.

Let us do this, and in the zeroth orderinwe can consider

VI. RESULTS AND DISCUSSION

nucleation condensation alone. This statement, however, In what follows we assume the simplest possible depen-
holds while the particle distribution moments are of the orderdence of the nucleation rate on the condensable vapor con-

of unity. At larger times they are expected to gréexcept
for the total particle number, the momeatin our list of
dimensionless and renormalized momentBheir growth

centration:

J=AC2 (44)
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This dependence corresponds to barrierless nucleation, i.e., f (s)=4,2e%18%  f, (s)=42(2— 230!
dimers are considered to be stable. The constarg nor-
mally very small, for it contains the average number of car-
rier gas molecules in the interaction volurm/,,. Heren is fora(S) = 41/2(2— 2%%)e%06%, (50)
the number concentration of the carrier gas afg-a2,.
This factor appears because the dimerizafidre reaction The results are presented in Figga)22(d). It should be
A+A—A;) does not go without a third body. Usually a emphasized that the shape of all curves in these figures is
molecule of the carrier gas plays this raqkee[8]). entirely independent of the functional form of the nucleation

The characteristic concentration in this case @3  rate and includes only the final result of nucleation: the total
= J/a, and the parameter=A/ax(nV,)~10 % is inde-  particle number concentration. The parametezntering the
pendent of the source productivity The exact numerical initial condition Eq.(43) defines the length of the transient
value of this parameter is not very important because it deperiod during which the asymptotic mass distribution is
fines only the scales of the time-concentration axes. Thsettled.
functions describing the particle growth kinetics are univer- The power asymptotic dependenciesypf andu can be
sal. found analytically. Substitutingy,(&1)=Y&, z(&1)

=7&%, andu(¢;)=U¢&S into Eqgs.(40), (41), and(42) gives
A. Nucleation-condensation stage

— 1/5 _ —3/5 _ —7/5
Settingu =0 in the set35)—(38) gives the equations de- y1=0.68%7", 2,=0.5, 7", uy=0.394, ™.

scribing the nucleation-condensation stage, (51)
dex=1-xy, (45 Figures 2a)-2(c) demonstrate how these dependencies are
reached. It is seen that the numerically calculated dependen-
d.y=32xz (46)  cies of the moments are well reproduced by the asymptotic

dependencies Eq$51). Figure 2d) shows the time depen-
dence of the width of the mass distribution. It grows from

dez=35xu, (47)  zero to the values=0.692 att—. The saturation is not
reached fast: during 10—20 units of nondimensional time for
du=j(x), (489  m=10"" This period slowly grows ag~"*in decreasing

u.
The asymptotic mass distribution thus depends only on

wherej(x) =x?. These equations were solved for zero initial tWo parameters: number concentration The value
conditions. The results are shown in Figga)+1(c). The par o apigl.
of ¢4/3 is readily found from Eq(22).

vapor concentration drops down on passing the maximum
[Fig. 1(@] while the momentsy and z always grow[Fig.

1(b)]. The particle number concentration saturates-ag VII. CONCLUSION
and reaches the value,=6.58. At large¢ the moments ] ) ]
grow as We considered the source-enhanced particle formation

and growth process. The dispersed particles were assumed to
be born from a low volatile vapor in a nucleation process and
then grow by condensing it onto their surfaces. Additional
growth due to particle coagulation was also taken into ac-
The shapes of these curves depend on the functional form @bunt. Although the vapor source was assumed to be con-
the nucleation ratg¢(x). stant, the time evolution of the whole system never led to a

The particle-mass distribution of the condensing particlesteady-state picture. The vapor concentration and the con-
cannot be described in terms of log-normal distribufi8h  centration of newly born particles dropped with time after a
Still this distribution is a narrow function. The attempt to short splashinucleation bursgt
approximate it by a log-normal function is shown in Fig. The process of particle formation and growth is governed
1(c). One sees that the width which, according to Ef), by one small parameter: the ratio of vapor mass converted to
should go to 0 a€—« remains appreciable even &10.  newly born particles to the source productivity. However, a
At £€=1000,s(1000)=0.137. This very slow drop is a mani- direct application of the perturbation theory was not possible,
festation of the fact that the log-normal approximation is notand only two subsequent rescalings saved the situation and
very good for describing the condensation stage. On thenade resolving the problem possible. It occured that the
other hand, it is not a great loss, because no assumptions gparticle-formation—aging problem goes into two stages, the
required for the description of the nucleation-condensatiorirst of which was comparatively short and included only
stage in terms of the moments of mass distribufio3]. nucleation formation of the particles and their condensational
growth. This stage had been considerefi7ih The coagula-
tion aging(the second stageccurs very slow and is there-
fore insensitive to the nucleation mechanism.

Equations(40), (41), and(42) with the initial conditions The result of the nucleation stage important for the coagu-
(43) were solved numerically. Approximations for the func- lation aging is just the total particle number concentration
tions f (s) used in the numerical calculations are of particles produced by the nucleation stage rather than its

y~ul3e23 72313 (49)

B. Coagulation stage
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FIG. 1. Kinetics of the nucleation-condensation stage. Showraarthe universal functiorx describing the time dependence of vapor
concentration(b) universal functions describing the time dependence of particle number concentcatieau), the moment of the order
of 1/3 (curve z), and the moment of the order of 2(8urvey). Assuming that the particle-mass distribution at this stage can be described
by a log-normal function the width was calculatedc). This value drops with time unexpectedly slow.

detailed kinetics. The remarkable feature of the coagulatiomomplicated process like the formation of particles by nucle-
stage is a kind of self-preservation: the asymptotic masation accompanied by condensational growth and coagula-
spectrum depends only on two parameters rather than thregon.
In principle, the self-preservation is not a rare feature of (ii) A recipe for universalizing the description of the
coagulating systems with homogeneous coagulation kernefzarticle-formation—growth kinetics. The parameters of
[9-14], but external sources and simultaneous condensdhe particle-mass distribution are shown to be universal
tional growth usually prevent the universal asymptotics offunctions of nondimensional time. The details of the process
particle-mass distributions in such systefi?]. like the source productivity, nucleation rate constant, and
In addition the above consideration gives the following. condensational efficiency define only time-concentration
(i) A simple computational scheme allowing one to find scales. The shape of the asymptotic particle-mass distribu-
the parameters of the particle-mass distribution in such &on is defined by two parameters: the particle number con-
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FIG. 2. Kinetics of the coagulation stage. The time dependence of the number concef@atizh moments of particle-size distribution
[(b) and(c)] and the width(d). Numerically found functiony, z, andu are seen to be well approximated by their asymptotic dependencies.
The widths saturates rather fast: after five units of dimensionless time.

centration and the moment,;; which defines the average APPENDIX: SOME INTEGRALS WITH LOG-NORMAL
particle mass. This fact means that a kind of self-preservation DISTRIBUTION

works at large times. The power exponents in E) cor-

respond to the self-preservation in source-enhanced coagu- Here the identityA6) is derived and used for performing
P P gnecessary integrations that help to reduce B4) to Eqgs.

lating systems. (34)—(36)
Although we considered here a particular problem of LetF(§|x) be the loa-normal distribution
aerosol particle formation and growth the strategy proposed 9 '

above can be applied for solving other similar problems.

1 1
F(x|s)= exp — Inzx). (A1)
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y On integrating ovek ends the calculation up,

(x7,f)= f wx”f(z)ﬁxlsl)F(ylsz)d—Xd— (A2)
0 X Xy Slz0_2

(X",f)=exy{ 5 )f {7 %R (s +sp) F(£)dL.
is calculated below for an arbitrary functidnAt f=1 the 0
result is known (AB)

s Let the mass distribution have the forth7) and the co-
(x",l)=ex;< Tl) (A3) agulation kernel be the homogeneous function of its argu-

ments:K (ax,ay) =a*K(x,y). Then, using the identityA6)
yields:

Let us introduces,;,=s:S,/(s;+5S,). Then the identity
whose validity is readily checked

Ko= | K(X,y)N(x,H)N(y,t)dxdy= ¢3gs(x*,K),
F(X|S)F (X¢|S2) =F (x£%12/%2|s ) F({|s1+5;)  (A4) ° f o=0

(A7)
helps in transforming EqA2), where/C(£)=K(1£) and
. . dZ dx
(x ,f>=f X f(g)F(X|Sl)F(X§|Sz)?? Kzzf xyK(x,y)N(x,t)N(y,t)dxdy
= eUZSlZ/ZJ XUF(X§312/SZ|S]_2) = ¢8)\93+)\<X2+)\:K1>: ¢6}\gg+>\<x)\'lc>' (A8)

where/C1(€) = éK(1,£). It is remarkable that both the values
Koy andK, are expressed in terms of one and the same inte-

dZ dx
7 ox gral (x,KC).

XF({|s1+52)f(0) 7 (A5)
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