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Pattern formation in Rayleigh-Bénard convection in a cylindrical container
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We report on numerical investigations of pattern formation in the classical Rayl€igar8eonvection with
cylindrical geometry in the regime of low Prandtl numbers and moderate aspect ratio. Beyond the onset of
convection, we found straight and bent rolls as stable patterns. By increasing the Rayleigh number, we studied
the generation of defects, their dynamics in the form of climbing and gliding, the existence of stable targets and
spirals as well as the occurrence of core instabilities, a variety of pattern types that were also observed in
experiments.

PACS numbds): 47.54:+r, 47.20.Bp, 47.20.Ky

I. INTRODUCTION metric flow immediately after the switch of#t].
For the cylindrical situation, Buell and Cattda8] and

Convection in a fluid layer heated from bel@Rayleigh- ~Marques et al.[19] estimated the critical Rayleigh number as
Benard convection provides many examples of complex @ function of the aspect ratio and characterized its depen-
pattern formation and constitutes a model for transition todence on the wave number. With increasing aspect ratio the

turbulence in hydrodynamical systems. A large amount offitical value approaches the limit value of 1708 for all azi-
work on this problem has focused on classifying and charac®uthal wave numbers, which is the critical Rayleigh number

terizing the various convection states according to their spd© @n unbounded layer. Margsiet al. showed that for an
tial and temporal behavior. Aside from linear stability analy- 2SPect ratio larger than three, the critical curves of the azi-
sis of the conductive basic state, theoretical investigation§tthal modes come close together and it is thus hard to

estimate the influence of the nonlinear terms of the governg's'[InguISh which mode IS responsible for thEﬁ‘ _|nstab|llty._ in
ing equations applying suitable perturbations. Busse and cc?—ther words, f_or values sllgh_tly above the_ critical Rayleigh
. . ._number a variety of modes is unstable simultaneously, and

workers determined the domain where parallel convectlonh f tion of the resulting pattern requires additional in-

rolls are stablgBusse balloori1,2]). For a comprehensive the formatl . gp g . :
. ) o L vestigations. In this paper, we address the question of which
overview of experimental and theoretical investigations, S€&ttractors determine the spatial structure of the convective
[3]. dynamics for moderate Rayleigh numbers. Our aim is to get

~ Our objective is to describe the nonlinear dynamics in &, ynderstanding of the stability of various solution types as
finite cylindrical domain, exploring the formation of differ- 5iractors of the full nonlinear problem.

ent patterns as straight rolls, targets, and spirals. We study
their stability and look for bifurcations. The occurrence of a
variety of convective patterns in a cylinder, partly coexisting II. BASIC EQUATIONS AND NUMERICS

simultaneously .for equal values. of the contrpl parameters, \ye are concerned with buoyancy-driven convection in a
was observed in various experiments and is described igjane circular fluid layer of thicknesband radius. heated
Refs. [4-14]. Theoretical investigations on the generationf,om pelow. The Boussinesq equations that describe the evo-
and stability of those patterns are based mainly on amplitudgtion of the velocity field v(r,¢,z) and the deviation

and phase equatiof8,15-17. In this paper, we study con- @y, 4,7) of the temperature from the conductive profile can
vection and pattern formation in a cylinder by means of the,g \yritten in dimensionless form as

three-dimensional Boussinesq equations applying physical
boundary conditions. Since the experiments referred to
above differ slightly, as, e.g., in their aspect ratio and Prandtl Pt
number, and the described scenarios depended very sensi-
tively on the special experimental setup, as, e.g., the appli- 20
cation of sidewall heating, only parts of our results can be —+(v-V)0=V?0 +v,, 2)
compared with the observed pattern dynamics. at

Fixing both the aspect ratio and the Prandtl number, the
Rayleigh number will be our control parameter. In corre- V-v=0. ©)
spondence with all experiments we found straight and bent
rolls with sidewall defects as the only stable pattern near thélere the units of length and time adeand 7r=d? «, repec-
convective threshold. But for a certain range of the RayleigHively, with « being the thermal diffusivity. The dimension-
number also targets and spirals appear as coexisting sollss parameters are the aspect ratioL/d, the Prandtl num-
tions that are stable and robust against finite pertubations, ker P, and the Rayleigh number R, defined by
phenomenon that was observed only in some of the experi- 3
ments [5]. In other experiments only a sidewall heating p— v R= agd ST (4)

- 1

causes the generation of targets that evolve to a nonaxisym- K VK

ov
E+(V~V)V =V?v—Vp+ROeg, (1)
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respectively, wherev is the kinematic viscosityx is the In order to avoid numerical instabilities due to strong
thermal expansion coefficierd,is the gravitational accelera- negative eigenvalues, we treat the linear terms of the equa-
tion, and ST is the driving temperature difference. The Ray- tions with the implicit Euler method. The nonlinear terms are
leigh number R measures the strength of the buoyancy forceslculated pseudospectrally in the physical space and in-
and serves as the bifurcation parameter in our calculationscluded explicitly in the time step using second-order Adams-

In correspondence with experiments without externalBashforth integration. This method was already successfully
sidewall forcing we assume an insulating jacket with isother-applied and proven to be accurate and efficient in simulations
mal top and bottom plates on the cylinder as the boundarpf the Navier-Stokes equations by Tilgner and BugaH.
conditions for the temperature deviation To prevent aliasing effects in the fast Fourier transformation

we implemented the 2/3 rule in the Fourier decomposed azi-

., (5 muthal direction. We used a resolution of 9 grid points in the
vertical direction, 32 points in the azimuthal direction, and
33 points in the radial direction. The time step amounted to
102 in most of the calculations.

0®=0 on r=a, 6=0 on z=-—

N -
N| -

and no-slip boundary conditions for the velocity field,

11
v=v4=0,=0 on r=a and z=-5,5. (6
2°2 IIl. NUMERICAL RESULTS

Because of the incompressibility of the velocity field In our numerical investigations we set the Prandtl number
given by Eq.(3), the velocity field is usually expressed by P=1. With increasing aspect ratio the need of computer
poloidal and toroidal potentials, an appropriate technique inrmemory and processor time increases strongly and, there-
plane and spherical geometries. But for the cylindrical situfore, we fixed the aspect ratm=4 in all of the following
ation the potentials couple at the boundaries and producealculations. Thus, the results can be compared to the experi-
numerical instabilities. Thus, we follow Margeig20] and  ments with moderate aspect ratios, as, e.g., described in
choose a decomposition that splits the velocity field into itsRef. [5].
axisymmetric and nonaxisymmetric parts We calculated the eigenvalues of the linear operator de-
pending on the azimuthal wave number and estimated the

V=Vaxt Vnonax ™ onset of convection for Rayleigh numbers between 1736 and
where 1748. This agrees with the results of Marge¢ al.[19] (see
L Fig. 1 therein. From there, one can roughly estimate the
- ax critical Rayleigh numbers of the modgs=0, ... ,4 to be
vax—Vfoed)vad)ed), ®) about 1750 for our situation of an aspect ratio equal to 4.
Since the primary instability occurs in a narrow band of Ray-
Vionax™ V X (& + &;). (9 leigh numbers for all small azimuthal wave numbers, we
. . . expect the appearance of different coexisting solution
Here we require the axisymmetric part gfr,#,z) and branches.
¢(r,¢,2) to vanish andf(r,z) andvi{(r,z) to be indepen- In the following we measure the Rayleigh number in
dent of ¢. terms ofe=R/R.— 1, whereR, is the critical Rayleigh num-

The equations for the four potential functions are derivedher of 1736. As initial patterns we used random distributions
by using the equation of motion but they are not given herey, the mode coefficients as well as targets and spirals and
In order to get the equations for the axisymmetric pa&Bd e rformed simulations for several horizontal diffusion times
v%', we multiply Eq.(1) by e, ande,-V X, respectively, 7,=a’ry to reach the attractors.
and multiply Eq.(1) by & -V X ande,- VX to get the equa- For small e above the onset of convection the resulting
tions for the nonaxisymmetric parisand ¢, respectively.  attractor is a time-independent defect-free state consisting of

The four potential functions and the temperature deviatiorgeyen straight rolls along the diamef€ig. 1(a)]. Following
© are then decomposed into Fourier functions in the azithjs solution branch by increasing the bifurcation parameter
muthal direction and Chebychev polynomials in thandz ¢ the rolls bend as to end perpendicular to the boundary, a

direction. As an example, we set state in which two wall foci are generatéBig. 1(b)]. This
Ng2—1 N, N, phenomenon was observed in several experiments and re-
o(r,¢,2)= >, > j|kT,(r/a)e”¢Tk(22). sults from boundary effects3]. A summary of all solution
j==Ng/2 =0 k=0 branches, their interval of stability and their symmetry, is

Jrl even (10) given in Table I. The pattern consisting of seven straight

rolls [Fig. 1(a)] and the following pattern for increased val-
The restriction to even sumist| is a consequence of the ues of the Rayleigh number consisting of seven bent rolls
parity at the origin. For instance, a scalar fiédr,$) in  with two foci [Fig. 1(b)] seem to belong to the same branch
polar coordinates obeys the condition of even pafity and are not distinguished here. They are denoted as seven
(—=r,9)=0(r,¢+ ). In cylindrical coordinates the vector straight/bent rolls in Table I. Before we proceed, the symme-
componenv, shares the same parity, wheregsandv 4 are  try notation will be explained. Due to the cylindrical geom-
odd. The parity of the velocity potentials follows from Egs. etry, the Boussinesq equations are invariant with respect to
(8) and(9), respectively. According to the even or odd parity the O(2) X Z, symmetry, where th&, group accounts for
of the potential, even or odd sunjs-| are included in the the reflection in the midplang22]. This reflection will be
decomposition only. denoted byy. In the convection state the original symmetry
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FIG. 1. Temperature deviatidd in the cross section=0. Dark
colors denote negativ® (corresponding to a cold descending
fluid), bright colors denote positiv® (warm ascending fluid (a)
e€=0.04(seven straight rol)s (b) e=0.38(seven bent rolls forming

two wall foci), (c) €e=0.21 (seven rolls with one wall focys(d)
€=0.73 (eight rolls with two wall foc).

is broken, and the resulting subsymmetry of the different
branches can be generated by three discrete transformation g
In the plots of Fig. 1, these are the midplane reflectjora
reflection « that acts as a reflection in the axis through the
midpoint perpendicular to the rolls, and a rotation by
about the midpoint denoted ,.. We determined the sym-
metry of different solution branches by studying correspond- FIG. 2. The skew-varicose instability generates a cycle of
ing transformations of the Fourier coefficients. For example€limbing and gliding defects. Snapshots of the cycle are shown for
the symmetry of the first branch, the pattern of severf=0-9: time is given inrr.

straight/bent rolls, is given by the reflectian the midplane
reflection combined with the rotatior;- R, and the com-
bination of both transformations- y-R,.

Coexisting with this primary branch we found patterns of
seven rolls with only one wall focU$-ig. 1(c)] and a branch
with eight rolls[Fig. 1(d)]. The patterns of seven rolls in Fig.
1(c) are bent in one preferred direction and thus create onl
one wall focus visible on the bottom of the figure. The two
bloblike structures at the upper side of the figure are no fo
and correspond to local deformations of the rolls. From Fi

17 in[10] we found evidence that these patterns can be ob-
served in experiments but they were not explicitly mentioned
there.

The solution branch of eight bent rolls, Fig(dl shows
this pattern fore=0.73, is stable over a larger range of Ray-
leigh numbers, and we could trace it upete0.8. It loses its
%tability due to the skew-varicose instabiljti7], and a cycle
Cof defect dynamics is initiated. The skew-varicose instability

tauses one roll to break off, generating two defects. The
Y4efects climb to the boundary, merge with neighboring rolls
and, eventually, the original defect-free pattern is recovered.
Afterward the cycle starts again by compression of inner
rolls. The whole cycle is presented in Fig. 2. The effect of

Branch Stability Symmetries  climbing and gliding of defects generated by pinching of

rolls was observed in experimertg] that were performed

TABLE I. Overview of the solution branches. Values of the
intervals are determined with tolerances of 0.03.

range fore . .
with comparable parameter values. The qualitative agree-
7 straight/bent rolls 0...,041 «,yv-R,,«x-y-R, ment of the whole scenario is striking, especially the defect
7 bent rolls with one wall focus 0.12..,0.24 K cycle shown in Fig. 2, with the defect dynamics presented in
8 bent rolls with two wall foci 0.24...,0.82 «,R,,x R, Ref. [7]. To determine the temporal behavior of solutions,
3-targets 0.3...,1.04 0(2) we examined the coefficients in the polynomial expansions
spirals 0.14...,0.35 rot. wave sym.  Of the potentials and of the temperature deviation as, e.g., the

0 defined in Eq(10). Here the cycle of dislocation nucle-
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ation and roll pinching corresponds to a complicated but pe-
riodic trajectory. This contrasts with experiments where the
defect cycle appears chaotically]. In our simulations with

an aspect ratio oa=4 no chaotic trajectories were found.
The cycle seems to be very sensitive to changes in the Ray
leigh number and the used numerical resolution. Thus, we
checked the results partly with higher resolution of 64 grid
points in the azimuthal direction but no chaos was found for
a=4. We observed that up te=2.8 either the periodic be-
havior is conserved or the pattern relaxes to a stationary pat
tern with three wall foci.

A different picture emerges for a larger aspect ratio. t= 170 t= 190
Matching to the experiments of Pocheatal. [7] we per-
formed simulations for an aspect ratio @ 7.66. Because
of the high numerical resolution that is required for this
larger aspect ratio we could perform only simulations over a
shorter time period. We obtained evidence that the defects
appear chaotically. The pinching of the rolls is driven by a
cyclic generation of new rolls from the two wall foci.

Starting simulations with random initial conditions, one of
the branches described above is the attractor that is reache
in the time asymptotic limit. In order to look for target and
spiral patterns, we prepared initial conditions in which rel-
evant modes of these patterns are prescribed.eFightly FIG. 3. Snapshots of the transition from the target state to a
above the onset we found both targets and spirals to be uattern of bent rolls foe=1.07. Time is given inry.
stable. After transition times of about four horizontal diffu-
sion times 7, the final attractor is a state consisting of The resulting wave numbers are inside the Busse balloon

straight or bent rolls. (Fig. 4, diamond symbaJs The distance of the inner rolls
We observed stable target solutions with three rolls peRdjusts for smalk reducing the outer roll but remains rela-
radius (three-target in the range ofe=0.3,...,1. Inthis  tively constant for largee until the solution is subject to the

range the target pattern survives for more tham,l8nd focus instability. We applied a Fourier decomposition to the
seems to be an attractor. In order to check the stability of th@atterns of bent rolls and determined the average wave num-
targets, all modes, including the non-axisymmetric modesher(squares in Fig. % The plot reveals that the onset of time
were perturbed by adding random numbers to the mode calependence produced by the generation of the defect cycle
efficients with a value proportional to the inverse of the wavecoincides with the intersection of the skew-varicose line in
number ¢~ 1//k|). Up to an amplitude of about 30% of the ~ the Busse balloon.

largest modes, the perturbed initial state converged to the One-armed spirals are stable froe=0.14 ...,0.35.
original target solution.

For e larger than 1.04 we found an instability in which the 1t T
center of the target moves toward the boundary, breaking the i
axisymmetry(Fig. 3, upper right This instability is called 7.0}

focus instability and has been investigated in a number of
experiments for moderate and large aspect rdt$0,23

and in theoretical approach¢§7]. In the experiments the
final pattern constitutes a steady state and is called off-center
target. In our simulations with an aspect 4 the off-center v 0.6
target is not stable and the outer roll breaks up at the bound-

ary, producing a state of straight rolls. Snapshots of this tran-  ¢.«|
sition are shown in Fig. 3. The reason for this distinction is [
presumably a consequence of the smaller aspect ratio we

used. In order to prove this conjecture we performed some :
simulations with an aspect ratio af=8 that corresponds to 0.0 i
the experiments in Ref5]. The off-center targets appeared : y 5 '

to be stable for a large range of Rayleigh numbers.

For e smaller than 0.3 the three-target loses stability to a
target with four rolls per radius by generating an additional = gG. 4. ¢ vs wave number of the pattern for stable three-targets
roll in the center. The four-target is a transient pattern that i ¢ ) and bent rolls solutions/{, seven rolls; *, seven rolls with
in turn subject to the focus instability. one focus{d, eight roll§. Both solution types possess wave num-

We estimated the wave numbers of target patterns aners inside the Busse balloon which is given by the Eckii&uand
solutions consisting of bent rolls. For each target pattern wekew-varicos€SV) instability line (Busse balloon courtesy of W.
measured the distance between the two rolls near the centéesch.
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Above this range they are unstable to patterns of bent rolldo patterns of bent rolls. The upper stability boundary of
An example of a spiral that we simulated overr30s given  targets is given by the focus instability, though the resulting
in Fig. 5(@. We see that the spiral has “knots” in the radial off-center pattern is unstable to patterns of straight/bent rolls.
direction yielding a nonhomogeneous amplitude distributionFirst simulations with an aspect ratio af=8 have shown a

in the radial direction. The spiral shown in Figabrotates  stable off-center target.

uniformly in a counterclockwise direction. Spiral rotation  \e could confirm the cycle of climbing and gliding of
can be understood as the motion of the outer defect. In OUjefects for the pattern of straight rolls. Chaos was found for
simulations the defect is the point where the spiral toucheg larger aspect ratio of aboat=8, whereas smaller aspect
the boundary. We can thus compare our results to the megagios yield strictly periodic cycles. Calculations of the wave
surements of defect motion in spirals published by Plapg, mper of the time-independent patterns have shown that the

et al.[24]. The authors find experimentally a linear depen-gye\y.varicose boundary is responsible for the instability
dence of the velocity of the outer defect enOur calcula-  gyen for relatively small aspect ratios.

tions show linear dependengEig. 5b)] though the defect
motion is faster than expected from extrapolation from the
experiments. ACKNOWLEDGMENTS
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