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Pattern formation in Rayleigh-Bénard convection in a cylindrical container

Sten Ru¨diger and Fred Feudel
Institut für Physik, Universita¨t Potsdam, PF 601553, D-14415 Potsdam, Germany

~Received 26 January 2000!

We report on numerical investigations of pattern formation in the classical Rayleigh-Be´nard convection with
cylindrical geometry in the regime of low Prandtl numbers and moderate aspect ratio. Beyond the onset of
convection, we found straight and bent rolls as stable patterns. By increasing the Rayleigh number, we studied
the generation of defects, their dynamics in the form of climbing and gliding, the existence of stable targets and
spirals as well as the occurrence of core instabilities, a variety of pattern types that were also observed in
experiments.

PACS number~s!: 47.54.1r, 47.20.Bp, 47.20.Ky
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I. INTRODUCTION

Convection in a fluid layer heated from below~Rayleigh-
Bénard convection! provides many examples of comple
pattern formation and constitutes a model for transition
turbulence in hydrodynamical systems. A large amount
work on this problem has focused on classifying and cha
terizing the various convection states according to their s
tial and temporal behavior. Aside from linear stability ana
sis of the conductive basic state, theoretical investigati
estimate the influence of the nonlinear terms of the gove
ing equations applying suitable perturbations. Busse and
workers determined the domain where parallel convec
rolls are stable~Busse balloon@1,2#!. For a comprehensive
overview of experimental and theoretical investigations,
@3#.

Our objective is to describe the nonlinear dynamics in
finite cylindrical domain, exploring the formation of differ
ent patterns as straight rolls, targets, and spirals. We s
their stability and look for bifurcations. The occurrence o
variety of convective patterns in a cylinder, partly coexisti
simultaneously for equal values of the control paramet
was observed in various experiments and is describe
Refs. @4–14#. Theoretical investigations on the generati
and stability of those patterns are based mainly on amplit
and phase equations@3,15–17#. In this paper, we study con
vection and pattern formation in a cylinder by means of
three-dimensional Boussinesq equations applying phys
boundary conditions. Since the experiments referred
above differ slightly, as, e.g., in their aspect ratio and Pran
number, and the described scenarios depended very s
tively on the special experimental setup, as, e.g., the ap
cation of sidewall heating, only parts of our results can
compared with the observed pattern dynamics.

Fixing both the aspect ratio and the Prandtl number,
Rayleigh number will be our control parameter. In corr
spondence with all experiments we found straight and b
rolls with sidewall defects as the only stable pattern near
convective threshold. But for a certain range of the Rayle
number also targets and spirals appear as coexisting s
tions that are stable and robust against finite pertubation
phenomenon that was observed only in some of the exp
ments @5#. In other experiments only a sidewall heatin
causes the generation of targets that evolve to a nonaxis
PRE 621063-651X/2000/62~4!/4927~5!/$15.00
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metric flow immediately after the switch off@4#.
For the cylindrical situation, Buell and Catton@18# and

Marqués et al. @19# estimated the critical Rayleigh number a
a function of the aspect ratio and characterized its dep
dence on the wave number. With increasing aspect ratio
critical value approaches the limit value of 1708 for all a
muthal wave numbers, which is the critical Rayleigh numb
for an unbounded layer. Marque´s et al. showed that for an
aspect ratio larger than three, the critical curves of the a
muthal modes come close together and it is thus hard
distinguish which mode is responsible for the instability.
other words, for values slightly above the critical Raylei
number a variety of modes is unstable simultaneously,
the formation of the resulting pattern requires additional
vestigations. In this paper, we address the question of wh
attractors determine the spatial structure of the convec
dynamics for moderate Rayleigh numbers. Our aim is to
an understanding of the stability of various solution types
attractors of the full nonlinear problem.

II. BASIC EQUATIONS AND NUMERICS

We are concerned with buoyancy-driven convection in
plane circular fluid layer of thicknessd and radiusL heated
from below. The Boussinesq equations that describe the e
lution of the velocity field v(r ,f,z) and the deviation
Q(r ,f,z) of the temperature from the conductive profile c
be written in dimensionless form as

P21F]v

]t
1~v•“ !vG5“

2v2“p1RQez, ~1!

]Q

]t
1~v•“ !Q5“

2Q1vz , ~2!

“•v50. ~3!

Here the units of length and time ared andtT5d2/k, repec-
tively, with k being the thermal diffusivity. The dimension
less parameters are the aspect ratioa5L/d, the Prandtl num-
ber P, and the Rayleigh number R, defined by

P5
n

k
, R5

agd3

nk
dT, ~4!
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4928 PRE 62STEN RÜDIGER AND FRED FEUDEL
respectively, wheren is the kinematic viscosity,a is the
thermal expansion coefficient,g is the gravitational accelera
tion, anddT is the driving temperature difference. The Ra
leigh number R measures the strength of the buoyancy fo
and serves as the bifurcation parameter in our calculatio

In correspondence with experiments without exter
sidewall forcing we assume an insulating jacket with isoth
mal top and bottom plates on the cylinder as the bound
conditions for the temperature deviation

] rQ50 on r 5a, Q50 on z52
1

2
,
1

2
, ~5!

and no-slip boundary conditions for the velocity field,

v r5vf5vz50 on r 5a and z52
1

2
,
1

2
. ~6!

Because of the incompressibility of the velocity fie
given by Eq.~3!, the velocity field is usually expressed b
poloidal and toroidal potentials, an appropriate technique
plane and spherical geometries. But for the cylindrical s
ation the potentials couple at the boundaries and prod
numerical instabilities. Thus, we follow Marque´s @20# and
choose a decomposition that splits the velocity field into
axisymmetric and nonaxisymmetric parts

v5vax1vnonax, ~7!

where

vax5“3
1

r
f ef1vf

axef, ~8!

vnonax5“3~xer1cez!. ~9!

Here we require the axisymmetric part ofx(r ,f,z) and
c(r ,f,z) to vanish andf (r ,z) and vf

ax(r ,z) to be indepen-
dent off.

The equations for the four potential functions are deriv
by using the equation of motion but they are not given he
In order to get the equations for the axisymmetric partsf and
vf

ax, we multiply Eq. ~1! by ef and ef•“3, respectively,
and multiply Eq.~1! by er•“3 andez•“3 to get the equa-
tions for the nonaxisymmetric partsx andc, respectively.

The four potential functions and the temperature deviat
Q are then decomposed into Fourier functions in the a
muthal direction and Chebychev polynomials in ther andz
direction. As an example, we set

Q~r ,f,z!5 (
j 52Nf/2

Nf/221

(
l 50

j 1 l even

Nr

(
k50

Nz

Q j lkTl~r /a!ei j fTk~2z!.

~10!

The restriction to even sumsj 1 l is a consequence of th
parity at the origin. For instance, a scalar fieldQ(r ,f) in
polar coordinates obeys the condition of even parityQ
(2r ,f)5Q(r ,f1p). In cylindrical coordinates the vecto
componentvz shares the same parity, whereasv r andvf are
odd. The parity of the velocity potentials follows from Eq
~8! and~9!, respectively. According to the even or odd par
of the potential, even or odd sumsj 1 l are included in the
decomposition only.
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In order to avoid numerical instabilities due to stron
negative eigenvalues, we treat the linear terms of the eq
tions with the implicit Euler method. The nonlinear terms a
calculated pseudospectrally in the physical space and
cluded explicitly in the time step using second-order Adam
Bashforth integration. This method was already successf
applied and proven to be accurate and efficient in simulati
of the Navier-Stokes equations by Tilgner and Busse@21#.
To prevent aliasing effects in the fast Fourier transformat
we implemented the 2/3 rule in the Fourier decomposed
muthal direction. We used a resolution of 9 grid points in t
vertical direction, 32 points in the azimuthal direction, a
33 points in the radial direction. The time step amounted
1022 in most of the calculations.

III. NUMERICAL RESULTS

In our numerical investigations we set the Prandtl num
P51. With increasing aspect ratio the need of compu
memory and processor time increases strongly and, th
fore, we fixed the aspect ratioa54 in all of the following
calculations. Thus, the results can be compared to the ex
ments with moderate aspect ratios, as, e.g., describe
Ref. @5#.

We calculated the eigenvalues of the linear operator
pending on the azimuthal wave number and estimated
onset of convection for Rayleigh numbers between 1736
1748. This agrees with the results of Marque´s et al. @19# ~see
Fig. 1 therein!. From there, one can roughly estimate t
critical Rayleigh numbers of the modesj 50, . . . ,4 to be
about 1750 for our situation of an aspect ratio equal to
Since the primary instability occurs in a narrow band of Ra
leigh numbers for all small azimuthal wave numbers,
expect the appearance of different coexisting solut
branches.

In the following we measure the Rayleigh number
terms ofe5R/Rc21, whereRc is the critical Rayleigh num-
ber of 1736. As initial patterns we used random distributio
to the mode coefficients as well as targets and spirals
performed simulations for several horizontal diffusion tim
th5a2tT to reach the attractors.

For smalle above the onset of convection the resulti
attractor is a time-independent defect-free state consistin
seven straight rolls along the diameter@Fig. 1~a!#. Following
this solution branch by increasing the bifurcation parame
e the rolls bend as to end perpendicular to the boundar
state in which two wall foci are generated@Fig. 1~b!#. This
phenomenon was observed in several experiments and
sults from boundary effects@3#. A summary of all solution
branches, their interval of stability and their symmetry,
given in Table I. The pattern consisting of seven straig
rolls @Fig. 1~a!# and the following pattern for increased va
ues of the Rayleigh number consisting of seven bent r
with two foci @Fig. 1~b!# seem to belong to the same bran
and are not distinguished here. They are denoted as s
straight/bent rolls in Table I. Before we proceed, the symm
try notation will be explained. Due to the cylindrical geom
etry, the Boussinesq equations are invariant with respec
the O(2)3Z2 symmetry, where theZ2 group accounts for
the reflection in the midplane@22#. This reflection will be
denoted byg. In the convection state the original symmet
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PRE 62 4929PATTERN FORMATION IN RAYLEIGH-BÉNARD . . .
is broken, and the resulting subsymmetry of the differ
branches can be generated by three discrete transforma
In the plots of Fig. 1, these are the midplane reflectiong, a
reflectionk that acts as a reflection in the axis through t
midpoint perpendicular to the rolls, and a rotation byp
about the midpoint denoted byRp . We determined the sym
metry of different solution branches by studying correspo
ing transformations of the Fourier coefficients. For examp
the symmetry of the first branch, the pattern of sev
straight/bent rolls, is given by the reflectionk, the midplane
reflection combined with the rotation,g•Rp , and the com-
bination of both transformationsk•g•Rp .

Coexisting with this primary branch we found patterns
seven rolls with only one wall focus@Fig. 1~c!# and a branch
with eight rolls@Fig. 1~d!#. The patterns of seven rolls in Fig
1~c! are bent in one preferred direction and thus create o
one wall focus visible on the bottom of the figure. The tw
bloblike structures at the upper side of the figure are no
and correspond to local deformations of the rolls. From F

FIG. 1. Temperature deviationQ in the cross sectionz50. Dark
colors denote negativeQ ~corresponding to a cold descendin
fluid!, bright colors denote positiveQ ~warm ascending fluid!. ~a!
e50.04~seven straight rolls!, ~b! e50.38~seven bent rolls forming
two wall foci!, ~c! e50.21 ~seven rolls with one wall focus!, ~d!
e50.73 ~eight rolls with two wall foci!.

TABLE I. Overview of the solution branches. Values of th
intervals are determined with tolerances of 0.03.

Branch Stability Symmetries
range fore

7 straight/bent rolls 0, . . . ,0.41 k,g•Rp ,k•g•Rp

7 bent rolls with one wall focus 0.12, . . . ,0.24 k
8 bent rolls with two wall foci 0.24, . . . ,0.82 k,Rp ,k•Rp

3-targets 0.3, . . . ,1.04 O(2)
spirals 0.14, . . . ,0.35 rot. wave sym.
t
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17 in @10# we found evidence that these patterns can be
served in experiments but they were not explicitly mention
there.

The solution branch of eight bent rolls, Fig. 1~d! shows
this pattern fore50.73, is stable over a larger range of Ra
leigh numbers, and we could trace it up toe'0.8. It loses its
stability due to the skew-varicose instability@17#, and a cycle
of defect dynamics is initiated. The skew-varicose instabi
causes one roll to break off, generating two defects. T
defects climb to the boundary, merge with neighboring ro
and, eventually, the original defect-free pattern is recover
Afterward the cycle starts again by compression of inn
rolls. The whole cycle is presented in Fig. 2. The effect
climbing and gliding of defects generated by pinching
rolls was observed in experiments@7# that were performed
with comparable parameter values. The qualitative agr
ment of the whole scenario is striking, especially the def
cycle shown in Fig. 2, with the defect dynamics presented
Ref. @7#. To determine the temporal behavior of solution
we examined the coefficients in the polynomial expansio
of the potentials and of the temperature deviation as, e.g.
Q j lk defined in Eq.~10!. Here the cycle of dislocation nucle

FIG. 2. The skew-varicose instability generates a cycle
climbing and gliding defects. Snapshots of the cycle are shown
e50.9, time is given intT .
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4930 PRE 62STEN RÜDIGER AND FRED FEUDEL
ation and roll pinching corresponds to a complicated but
riodic trajectory. This contrasts with experiments where
defect cycle appears chaotically@7#. In our simulations with
an aspect ratio ofa54 no chaotic trajectories were found
The cycle seems to be very sensitive to changes in the R
leigh number and the used numerical resolution. Thus,
checked the results partly with higher resolution of 64 g
points in the azimuthal direction but no chaos was found
a54. We observed that up toe52.8 either the periodic be
havior is conserved or the pattern relaxes to a stationary
tern with three wall foci.

A different picture emerges for a larger aspect rat
Matching to the experiments of Pocheauet al. @7# we per-
formed simulations for an aspect ratio ofa57.66. Because
of the high numerical resolution that is required for th
larger aspect ratio we could perform only simulations ove
shorter time period. We obtained evidence that the def
appear chaotically. The pinching of the rolls is driven by
cyclic generation of new rolls from the two wall foci.

Starting simulations with random initial conditions, one
the branches described above is the attractor that is rea
in the time asymptotic limit. In order to look for target an
spiral patterns, we prepared initial conditions in which r
evant modes of these patterns are prescribed. Fore slightly
above the onset we found both targets and spirals to be
stable. After transition times of about four horizontal diff
sion times th the final attractor is a state consisting
straight or bent rolls.

We observed stable target solutions with three rolls
radius ~three-target! in the range ofe50.3, . . . ,1. Inthis
range the target pattern survives for more than 10th and
seems to be an attractor. In order to check the stability of
targets, all modes, including the non-axisymmetric mod
were perturbed by adding random numbers to the mode
efficients with a value proportional to the inverse of the wa
number (;1/uku). Up to an amplitude of about630% of the
largest modes, the perturbed initial state converged to
original target solution.

For e larger than 1.04 we found an instability in which th
center of the target moves toward the boundary, breaking
axisymmetry~Fig. 3, upper right!. This instability is called
focus instability and has been investigated in a numbe
experiments for moderate and large aspect ratios@5,10,23#
and in theoretical approaches@17#. In the experiments the
final pattern constitutes a steady state and is called off-ce
target. In our simulations with an aspecta54 the off-center
target is not stable and the outer roll breaks up at the bou
ary, producing a state of straight rolls. Snapshots of this tr
sition are shown in Fig. 3. The reason for this distinction
presumably a consequence of the smaller aspect ratio
used. In order to prove this conjecture we performed so
simulations with an aspect ratio ofa58 that corresponds to
the experiments in Ref.@5#. The off-center targets appeare
to be stable for a large range of Rayleigh numbers.

For e smaller than 0.3 the three-target loses stability t
target with four rolls per radius by generating an additio
roll in the center. The four-target is a transient pattern tha
in turn subject to the focus instability.

We estimated the wave numbers of target patterns
solutions consisting of bent rolls. For each target pattern
measured the distance between the two rolls near the ce
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The resulting wave numbers are inside the Busse ball
~Fig. 4, diamond symbols!. The distance of the inner rolls
adjusts for smalle reducing the outer roll but remains rela
tively constant for largere until the solution is subject to the
focus instability. We applied a Fourier decomposition to t
patterns of bent rolls and determined the average wave n
ber~squares in Fig. 4!. The plot reveals that the onset of tim
dependence produced by the generation of the defect c
coincides with the intersection of the skew-varicose line
the Busse balloon.

One-armed spirals are stable frome50.14, . . . ,0.35.

FIG. 3. Snapshots of the transition from the target state t
pattern of bent rolls fore51.07. Time is given intT .

FIG. 4. e vs wave number of the pattern for stable three-targ
(L) and bent rolls solutions (n, seven rolls; *, seven rolls with
one focus;h, eight rolls!. Both solution types possess wave num
bers inside the Busse balloon which is given by the Eckhaus~E! and
skew-varicose~SV! instability line ~Busse balloon courtesy of W
Pesch!.
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FIG. 5. ~a! Stable spiral solution ate50.27.
~b! Velocity of the spiral defect vse, the straight
line is the result of a least-square fit.
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Above this range they are unstable to patterns of bent ro
An example of a spiral that we simulated over 30th is given
in Fig. 5~a!. We see that the spiral has ‘‘knots’’ in the radi
direction yielding a nonhomogeneous amplitude distribut
in the radial direction. The spiral shown in Fig. 5~a! rotates
uniformly in a counterclockwise direction. Spiral rotatio
can be understood as the motion of the outer defect. In
simulations the defect is the point where the spiral touc
the boundary. We can thus compare our results to the m
surements of defect motion in spirals published by Pla
et al. @24#. The authors find experimentally a linear depe
dence of the velocity of the outer defect one. Our calcula-
tions show linear dependence@Fig. 5~b!# though the defect
motion is faster than expected from extrapolation from
experiments.

IV. CONCLUSION

In conclusion, we found stable target patterns and rota
spirals for the relatively small aspect ratioa54 if e.0.3 and
e.0.15, respectively. We determined the lower and up
stability limits of targets and spirals as well as the transit
for critical e. For smallere both solution types are unstab
lls.
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to patterns of bent rolls. The upper stability boundary
targets is given by the focus instability, though the result
off-center pattern is unstable to patterns of straight/bent ro
First simulations with an aspect ratio ofa58 have shown a
stable off-center target.

We could confirm the cycle of climbing and gliding o
defects for the pattern of straight rolls. Chaos was found
a larger aspect ratio of abouta58, whereas smaller aspec
ratios yield strictly periodic cycles. Calculations of the wa
number of the time-independent patterns have shown tha
skew-varicose boundary is responsible for the instabi
even for relatively small aspect ratios.
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