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Estimating the escape zone for a parametrically excited pendulum-type equation
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This paper derives theoretical results for determining bifurcation curves which provide bounds on antici-
pated “escape” regimes in a two-dimensional parameter space for an equation which is a natural extension of
a commonly used second-order parametrically excited nonlinear pendulum equation. An application of these
results is made for an equation which often arises in smectic liquid-crystal problems. The results for this
application are more refined yet qualitatively similar to those obtained by different methods reported in the
literature.

PACS numbd(s): 05.45—-a, 61.30.Cz

[. INTRODUCTION discussed below remains to be investigated fully: it is in-
tended that these preliminary results will encourage future
A study will be made of the equation numerical work by providing guidance as to the location of

the actual escape regions. An initial numerical investigation
b+ 2§¢+[1+pCos(wt)][sin¢+asin(2¢)]=0, for Eq. (1.1) has been carried out recently by Cliffof8]
1.1 who has confirmed the location and accuracy to within two
or three decimal places of the boundary of the escape region
whereé, p, o, anda are constants and is a time-dependent depicted in Fig. 1 below whea=0.3 andw~2. The first
function which has its derivative with respect to time de-indications are that the full extent of the rich nonlinear be-
noted by a superposed dot. Equatidmnl) for a#0 is moti-  havior available to solutions of this equation will require
vated by the dynamic equations which often appear in thguite extensive and detailed numerical investigations which
smectic liquid-crystal literature that have sinusoidal nonlin-will be reported in future work.
earities similar to the double sine-Gordon equation. A short
summary of such equations may be found in SteWdraind Il. HARMONIC BALANCE METHOD
in the articles mentioned below as they become relevant. The
usual parametrically excited pendulum equation is recovered We follow [2] and try to approximate the escape zone
from Eq.(1.1) by settinga=0. The analysis employed below boundary by means of identifying two bifurcations. As in
is motivated by the work of Clifford and Bishof2] and  [2,3], it will be assumed that the symmetry-breaking bifur-
Capecchi and Bisho[8] who considered the parametrically cation derived below for the case of symmetric systems will
excited pendulum form of Eq(1.1) for small fixed £>0  provide the locus of a curve in thg » plane which is suf-
whena=0: a harmonic balance criterion was used for de-ficiently close to the actual escape region that it provides one
termining approximations for the location of an “escape” good estimate for a bound on the location of part of the
region in the corresponding, » plane. For many applica- €scape parameter zone. Another bounding curve for the es-
tions it is known that predicting parameter regions where n&ape zone is derived from considering a suitable subcritical
major stable nonrotating orbits exist is of primary impor- bifurcation: around the region of interest it will turn out to be
tance and under these circumstances the parametrically eféasonably approximated by the bifurcation curves which
cited pendulum is analogous to a system that allows escap¥ise in the linearized Mathieu equation version of Eql)
from a potential well. Escape parameter regions and chaotigfter a comparison with the usual vertical tangency condition
behavior have been studied extensively for the parametridiscussed below. The escape zone ought to be bounded by
cally excited pendulunj2—7] and it is our aim to extend these curves in thp,w plane, as discussed |2,3].
these basic ideas to E(..1) for fixed £ anda+ 0. The initial The harmonic balance methg€] is commonly used in
results we pursue in Sec. Il enable us to suggest an approXiost of the references cited above and is adopted here so that
mate location for the escape parameter region ingthe @ solution of the form
plane for Eq.(1.1). These results are then interpreted in Sec.
lll in the context of a particular application which arises in d(t)= ot Acod v(wt+B)] 2.9
the smectic liquid-crystal literature involving a special ap-
proximation to a perturbation of a dynamic equation. Theis assumed, wherg= 3 corresponds to the primary unstable
work presented here therefore naturally extends the nonlineaone aroundv=2 for the linearized Mathieu equation form
work for the parametrically excited pendulum cited aboveof Eq. (1.1). For ease of notation, set
and is further illustrated by means of this application. Nu-
merical determination of the escape regions for the cases T=2(wt+pB). (2.2
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Inserting Eqg.(2.1) into Eqg. (1.1) and using the identities *
[[10], p. 361 sin(x cosy)=2nz1 (= 1)1y 4 (x)cog (2n—1)y],

* (2.9

cogxcosy)=Jy(X)+2 —-1)"J,,(x)cog 2ny),
g Y)=Jo(X) n§=:1( VN an(X)cos2ny) where J,, denotes the Bessel function of the first kind of

(2.3 ordern, gives

o)

JO(A)—i—ZHZ,l (—1)"3,,(A)cog2nT)

2 w?AcosT+wéAsinT=[1+pcog2T)cosB+p sin(2T)sinB]{ sin¢g

0

+ cos¢>o[ 221 (—D)" 1, 1(A)cog (2n—1)T] ¢ |+a[1+ p cog2T)cosB+ p sin(2T)sinB]

X

Sin(2¢>0)[ Jo(2A) + 2{121 (— 1)”J2n(2A)COS(2nT)]

+ C0£{2¢>0)[ 221 (—1)"13,,_1(2A)cog (2n— 1)T]] } . (2.5

Following the procedure if2], we collect together the terms For the symmetric solutioby=0, Egs.(2.6) and(2.7) can
involving cosT, sinT, and constants, and equate them tobe suitably squared to eliminate the constgntesulting in
zero, ignoring the sinusoidal contributions from higher mul-the relevant symmetric equation given by

tiples of T. After some straightforward algebraic manipula-

tions (involving trigonometric formulas for products of sines [1A02—2{J1(A)+ady(2A)} ]2+ (wAE)?
and cosineksthis procedure leads to the following three equa- ) )
tions: —pIi(A)—I3(A) +a{Ji(2A) — I3(2A)}]°=0,
(2.11)
7Aw®—pcosp{cosgg[J1(A)—J3(A)] where
+acog2d¢y)[J1(2A)—J3(2A)
#2090l (2R = LA = 3a(A) +a{i(2A) ~ 34280
—2[COS¢OJ1(A)+aCOS{ZQSO)Jl(ZA)]:O, g_ [Jl(A)+J3(A)+a{J1(2A)+J3(2A)}] . ( . 2

2.6
@8 For small3~0 (corresponding to light dampinghe asym-

) metric equation2.10 reduces to
w&A—psinB{cospo[J1(A)+I3(A)]

Jo(A)+2a3y(2A)
2¢0)[J1(2A)+I5(2A)]}=0, (2. =0 0
+acod2¢o)[J1(2A)+I3(2A)]} (2.7) P= 3 (AT Zad,2A) (2.13
singg{Jo(A) —p cosBIL(A)} The symmetry-breaking bifurcation in the p plane can

. _ _ now be obtained by numerically solving the symmetric and

+asin(2¢){Jo(2A) —p cospIy(2A)}=0. asymmetric equation€.11) and (2.13 simultaneously. We
(2.8 first substitute Eq(2.13 for p in Eqg. (2.1, choose fixed

values ofé anda, and set a starting value farin the vicinity

These equations are analogous extensions to equatiof§ @~2. Equation(2.1]) is then solved numerically foA
(3a,b,c) in [2] and indeed collapse to these equations wherising a Newton-Raphson method initiatedAat 1. The re-
ais set to zero. sulting value forA is then inserted into Eq2.13 to deter-
Equation(2.8) can be split into the symmetric solution ~ Mine the corresponding value pffor the original starting
valuew. This procedure is repeated through a range of values
for w and the resulting point&w,p) provide the locus of the
symmetry-breaking bifurcation curve in the p plane for
) . ] the chosen values of the constag@nda. For eachs, if ¢is
and, assumingb,~0, an asymmetric solution fixed, the curve forms one approximation for an expected
lower bound to the escape region corresponding to the value
Jo(A) —p cosBIy(A)+2a{Jg(2A) —p cosBI,(2A)}=0. of a. Examples of these curves are given in Figlabeled on
(2.10 the right of the figure byp) for the case whei=0.05 anda

sin =0, (2.9
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FIG. 1. The symmetry-breaking bifurcation
curvesS and the corresponding subcritical bifur-
cation curvesH obtained by the harmonic bal-
S ance method. The constaattakes the indicated

| values while¢ is set to 0.05 to allow a compari-
son with the results in Ref2] for thea=0 case.
- The escape region for eachis expected to be
located above the relevant intersecting curves.

1.5 2.0 25 3.0 35
(O]

takes the indicated values; the=0 case coincides with the Ill. APPLICATION

symmetry-breaking curve depicted [ig]. — _
The subcritical bifurcation is determined by the usual ver- An application of the results derived above may be made

tical tangency condition wheréA/dw=s. If the left-hand ‘E‘irz]Eq' (2.10 in the paper by Stewart, Carlsson, and Leslie
side of Eq.(2.11 is defined to be the functior then '
dA/dw=—f,/f, in terms of the partial derivatives &f The
standard series representations for Bessel funcfibBlscan

be used to expanfl(A,») aroundA=0. In this case, Eq. + cosa Sin 6 cos¢)cosa sinfsing=0. (3.1)
(2.11) can be expressed as

B3¢,— 2\ — g€ ES(Sina cosh

This, and similar equations with sine terms, may be found

f(A w)=A2[ L w?—(1+2a)]%+ w2&2— 1p2(1+ 2a)2 throughout the smecti€-liquid-crystal literaturg(see Cladis
(A@) {ze™=( e =3p% )% and van Saarloogl3], Schiller, Pelzl, and Demusl4], the
+0(AYH=0. (2.14  work contained in Maclennan, Clark, and Handshy] and

the references iffl]). Smectic liquid crystals are layered
anisotropic fluids, the physics of which can be found in great
detail in the book by de Gennes and Pi{d€i]. The average
molecular alignment in a liquid crystal is described by the

Hence, for small;,

d_A:_ f_w unit vector n, commonly called the director. Hereb
do fa = ¢(z,t) is the orientation angle of the usual director
. ) which, by the physics of smecti€ [16], allows a complete
3 —3A0[ ;07— (1+2a)+2¢] 5 description of the directon within any smectic€ liquid-
- [Lw2—(1+2a)]%+ w22 — Lp2(1+2a)? (A%). crystal sample. The quantiB;>0 is an elastic constant and

Ns>0 is a smectic viscosity coefficient. The electric field
(2.15 E=E(cosa,0,sine) makes a constant angle relative to
the equidistant planes of the smectic layers aligned parallel
Henced A/dw= >~ whenever with the xy plane. The fixed smectic tilt angleis the angle
the directorn makes relative to the layer normé, 0, 1).
L s 9o 19 5 The magnitude of the electric field &y, €; is the (positive
[z0°—(1+2a)]"+ w°§"—2p*(1+2a)°=0. (216  permittivity of free space and, is the dielectric anisotropy
of the liquid crystal, which may be positive or negative.
This equation is expected to provide a reasonable approxFquation(3.1) has been derived ifl2] from the nonlinear
mation to another lower bound for the escape region; it cafontinuum theory for smecti€-liquid crystals developed by
also be obtained by considering the linearized version of Eq-€slie, Stewart, and Nakagaa7]. _
(1.1) in the form of the Mathieu equatiofsee for example ~ FOr €,>0 andE, set to a constant value there is a well-
[[11], p. 260 when o and the other constants are appropri-Known traveling wave solution to E¢3.1), namely[1,12—
ately redefinegd Examples of these curves appear in Fig. 115],
(labeled to the left of the figure bil) for £=0.05 and the
indicated values of. For each given value cd the corre- ¢(z,t)=2 arctafiexp(b7)], 3.2
spondingH and S curves combined as in Fig. 1 form good
approximate lower bounds for the anticipated escape regiohere
in the w, p plane: this is certainly the case far=0 as dis- 12— 112 )
cussed by Clifford and Bishof2]. b=Eq(€eo€ea) B3 " cosa sing, (3.3
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(3.9

(3.9

with zg being an arbitrary constant. The solutig(z,t) trav-
els from to 0 ast increases. This form of solution occurs

T:Z_Ct_ZO,

c=3Eq(B3egen) Y\ gt sina cosb,
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physical situationg and # are chosen known fixed param-
eters while the electric field can be varied. This means that
varying the frequency and magnitude of the electric field
contributions can be accommodated by only needing to con-
sider the effect of varying ande. Equation(3.12) is of the
same form as Eq1.1) with € (the magnitude of the oscillat-

frequently and has been exploited and developed on variougg field contribution playing the rée of p.

occasions in the context of smectic liquid crystdls,19.
To investigate the behavior whefy=Ey(t) we suppose
that for some positive constakt,

Eo(t)=Eo[1+3ecoqwt)] 0<e<1. (3.6)

This models a perturbation to the constant electric field cas

For €,<0 it can be supposed again that a solution similar
to EqQ. (3.10 may be appropriate whea+ 0, given the re-
sults above fore,>0. We suppose in this case that

¢=(dr), (3.16

e

via a static field which is augmented by a small amplitudeWith d again given by Eq(3.11), except that in this case we

oscillating field;w is the frequency of the superimposed field
and e is a small parameter. Given the form of E§.6) it is
observed thaf12]

€COS(wt)%ECOS{%T>, (3.7

whenever

w
|z—z| o<e (3.9
that is, whenever the solution is investigated sufficiently nea
any initially chosen arbitrary poirg,. For a given range of
values forw it can always be ensured that the inequality in
Eqg. (3.8 holds: we are principally interested in the large
behavior. Consequently, we may consider

w
1+ecos<—r)
c

Motivated by the traveling wave solutioi3.2) to Eq. (3.1)
and the general form of the equation discussed in Sec. II, w

E3(1)~E3 (3.9

suppose that for electric fields satisfying the approximation%urves are labeleH. Fora=
in Eq. (3.9 we can choose to examine solutions of the tyPehat the upper of fhe two

¢=(dr)+, (3.10
d=bytana cot®, (3.11

whereb and 7 are defined as above in Eq8.3) and(3.4).
Substituting equation&3.9) and (3.10 into Eq. (3.1) gives

b..+2¢h +[1+ecogwr)][sing+asin(2¢)]=0,

(3.12

where, for notational convenience,
&= 3\tana coté, (3.13
w= E, (314}
a=—1cotatang=—3&2 (3.15

The variablew involves many of the problem-dependent
constant parameters viadefined in Eq.3.5), including the
magnitude of the static electric field contribution. For a given

replacee, in Egs.(3.3) and (3.5 by —¢e,>0. Setting Eq.
(3.16 into Eq.(1.1) gives Eq.(3.12 as before withé andw
as defined in Eq93.13 and(3.14) but with a replaced by

(3.1

a=3cotatang=3¢"2

From the preceding paragraphs we are now in a position
to employ Eq.(3.12 and the results of Sec. Il fa<0 and
a>0 corresponding to the caseg>0 ande,<0, respec-
tively. In both casesa and¢ are related to each other by Egs.
(3.17 and (3.195. For illustrative examples we consider
graphs in thew,e plane whena is set to some particular
hegative or positive values. The method used to obtain Fig. 1
can be repeated to obtain Fig. 2 below for E8.12), the
main difference being the dependenceafpona. The plots
in Fig. 2 have been calculated for the bifurcation curves in
the w, e plane for the valuea=—0.1, 0.3, 0.5, and 0.7, in
order that the values fof remain relatively small: the ap-
proximate corresponding values are 1.118, 0.645, 0.5, and
0.425, respectively. Numerical evidence tends to suggest that
the curves remain similar in form to those in Fig. 1 provided
al,|£€/=0.75. As in Fig. 1, the symmetry-breaking bifurca-

on curves are labele® and the subcritical bifurcation
—0.1 it is seen from the figure
corresponding curves is the sub-
critical bifurcation curve, extended further to the rightof
=2 than in Fig. 1; this curve lies above the symmetry-
breaking bifurcation curve which, unlike Fig. 1, does not
intersect the subcritical bifurcation curve for<lv=<3.5.
There is a similar scenario for tlee= 0.3 case in Fig. 2. This
is due to¢ being much larger than the value considered for
Fig. 1. However, fom=0.5 and 0.7 ¢ becomes smaller and
the symmetry-breaking and subcritical bifurcation curves in-
tersect as shown in Fig. 2 in a similar way to those displayed
in Fig. 1. It is anticipated that any escape region will be
located above these curves in thee plane.

From Fig. 2 it can be seen that escape behavior ought not
to be expected for € e<1 for the given ranges ad. Nev-
ertheless, this does not preclude the existence of transient
chaos. This is certainly the case for some nonlinear oscillator
equations where, for example, a Melnikov-type analysis can
reveal a further boundary, the Melnikov curve, in thee
plane which lies below the symmetry-breaking and subcriti-
cal bifurcation curves; transient chaos may occur for param-
eters in the region above the Melnikov curve. Some ex-
amples of this behavior can be found in the review paper by
Szemplinska-Stupnickig20]. Melnikov boundaries were de-
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a=-0.1 £=1.118 ]

FIG. 2. The symmetry-breaking bifurcation
curvesS and the corresponding subcritical bifur-
cation curvesH, obtained by the harmonic bal-
ance method for Eq3.12. The parametera and
¢ are linked according to Eq3.15 whena<0
and to Eq.(3.17 whena>0. As in Fig. 1, the
escape region is always expected to be located
above the relevant curves.

1.0 1.5 2.0 25 3.0 3.5

termined by Stewareét al. [12] for a slightly different form The motivation for investigating equatiaid.l) when a

of perturbation to Eq(3.1) and its known traveling-wave 0 arises from a well-known dynamic equation from the
solution (3.2). As a result of the differences between thesesmectic liquid-crystal literature, namely, E@3.1). This
perturbations, a direct comparison of the resultfli2| with  equation has a double sine-Gordon-type nonlinearity enter-
those presented here is not feasible, although both sets gfg through two sinusoidal terms. In Sec. Il a special per-
results qualitatively agree that complex nonlinear behavior igyrhation to this equation involving an oscillating electric
to be anticipated as increases, that is, as the magnitude offjg|d term led, by means of some basic approximations and
the oscillating electric field contribution increases. This isassumptions introduced in Eq€3.6—(3.9), to Eq. (3.12

|S|m|Iar t%_the sdltuat|o(;1 for varlqu(sj_tyfpes of norgllnear 0SCil-\yhich then allowed a direct application of the theory derived
ators subjected to a driving periodic force suctrassl): i, sec |1, The resulting bifurcation curves are plotted in Fig.

complex behavior patiems can emergéascreases leading 2. For this particular applicatio§ anda are related to each

to chaos and/or escape regions in theF plane (see, for : . .
example, Fig. 10 if20]). The choice of perturbation intro- other via Eqs(_3.15) a_1nd(3.17), dependlng upon the sign of
the constant dielectric anisotropy of the liquid-crystal ma-

duced here has the advantage over thafli?| of having . . . - )
fewer assumptions imposed upon the proposed solution. Tﬁgnal (which could be ellther positive or n.egat|{/136]).. The
sults clearly have an impact upon the interpretation of the

techniques used in this present paper are therefore more gele: . ,
eral in relation to Eq(3.1) despite the rather basic approxi- Orientation of thec director(and hence the average molecu-
mations in Eqs(3.6—(3.9) used for the special perturbation !ar alignment denoted by the usual director in smectic

to the known traveling-wave solution described here and it idiquid crystals via the phase anglg, especially when the
hoped that this simple example will encourage more extenPossibility of large-time chaotic behavior may be present for
sive numerical analysis of Eq1.1) than is currently avail- parameters lying within the escape zones. These results for

able in the literature. liquid crystals bear some resemblance to those for nonlinear
oscillators with a periodic driving forcg20], as mentioned
IV. CONCLUSIONS briefly in Sec. lll. Further, the application of the results pre-

sented here in Sec. Il agrees qualitatively with those pre-
The theory and results expounded by Clifford and Bishopsented elsewheld 2] for Eq. (3.1) whenEj, is given by Eq.

[2] for the case of equatiofil.1) with £>0 fixed anda=0 (3.6) in that as the amplitude of the oscillatory field contri-
have been extended in Sec. Il to incorporate an additiondution increases, there is an increased opportunity for com-
sinusoidal term whem#0. A general method has been in- plex nonlinear behavior.
troduced to produce symmetry-breaking and subcritical bi- The preliminary results presented here will hopefully
furcation curves in the,e plane around the primary unstable stimulate interest in carrying out more detailed numerical
zone nearw~2. Examples for various values afare dis- work in an attempt to more accurately locate the escape re-
played in Fig. 1 foré=0.05. These intersecting curves, for gions for Eqg.(1.1). The boundary curves presented here will
eacha, represent lower bounds on the location of any antici-guide numerical experiments by giving appropriate areas in
pated escape parameter region in &e plane. The special the frequency and amplitude parameter space for investiga-

case ofa=0 coincides with the results ir2]. tions to begin.
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