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For finite-dimensional maps, an unstable orbit in a neighborhood of an unstable fixed point can be stabilized
by adjusting parameters so that the orbit goes to the fixed point along the straight line connecting tla orbit
a given time and the fixed pointYang Ling, Liu Zengrong and Jian-min Mao, Phys. Rev. L&#.67 (2000].
This is called straight-line stabilization. In this paper, we derive the expression for the region of stabilization,
i.e., the region within which the straight-line stabilization method is valid. For two-dimensional maps, the
parameter adjustments needed by the stabilization method are explicitly given for nine cases. Stabilization of
unstable flows, with or without introducing a Poincanap, is also investigated.

PACS numbds): 05.45.Gg, 05.45.Pq

[. INTRODUCTION Here, £ RN is the dynamical variableN being a finite in-
tegey andF (&,) is the mapping function with parameter

Chaos and instability appear, but are sometimes undesir= RY. Let &, be a fixed point of the map with a nonzeto
able, in many practical problems. An unstable orbit can beand £2 be an unstable fixed point of the map wie 0.
guided into a stable manifold such a manifold existsand  Without loss of generality, we assume that proper coordinate
is therefore stabilized, as suggested by Ott, Grebogi, anghanges have been made so ttis located at the origin.
Yorke[1]. After their work, various methods for stabilization The straight-line stabilization method requires
or chaos control have been propo$2db5], and many appli-
cations of chaos control in different disciplines have been Eni1=Kkén, 2
found [6-§].

The idea of the straight-line stabilization method, as giveriwwherek is a real constant with absolute value less than one.
in Ref. [5], is to guide an unstable orbit near an unstable To determine the region of stabilization, we first expand
fixed point to go to the fixed point directly along the straighteach component of,.; as a Taylor series abodt,= ¢, ,
line connecting the orbitat a given timg¢and the fixed point. i.e.,

In this article, we further derive the expression for the size of _

the stabilization region(i.e., the region where the stabiliza- Enii— & =& E)H AL E— &1, ©)
tion method is valigl The knowledge about the stabilization 5

region is important, and it is particularly so if the stabiliza- WhereJ=(&Fe/a§n)§n=§* is the Jacobian matrix of the map
tion is needed only in a certain region in phase space an@yaluated até,=¢, , and vectorA(|&,—&,]?) is the re-

outside the region, disturbance to the original system by thenainder in the expansion, whose leading term is of the sec-
stabilization process is required to be as small as p055|bl%

V\_/_e al_so prov_ide a means for controlling the size _of the stajggo(érigir ”:Lga{]trixg* |(')fM5;LrZ( Jn(igg bij;ﬁ;?égna:éj,by;he

bilization region, which may be needed in practical prob—:(aF 19£.) o. Therefore Eq(3) becomes

lems. Furthermore, for two-dimensional maps, explicit ex- ervenig, =g, q

pressions of the parameter adjustments needed by the ) )

straight-line stabilization are givefor nine casesStabiliza-  én+1~ & =J(én= &)+ Ac(|n— &)+ Aal(| €0 — &),

tion of unstablelowswith or without introducing a Poincare )

map is also investigated by using the idea of the straight-line = i i

stabilization method. where A2(|§n—§*|~)=(J—J)(§n—§*) is the error intro-
This paper is organized as follows. The derivation of theduced in replacind by J. Secondly, we expand components

expression for the stabilization region is presented in Sec. 110f &, aboute=0 and write

The nine cases for the straight-line stabilization in two-

dimensional maps are listed in Sec. Ill. The flow stabilization & =Me+Aq(|€]?), 5

is investigated in Sec. IV. Conclusions are drawn in Sec. V. ) )
where M=(9¢, [de) .—y is an NXN matrix, and vector

As(| €]?) is the remainder in the expansion. Elimingieand

Il. REGION OF STABILIZATION én+1In EQs.(2), (4) and(5), and we have
We formulate the system to be controlled by niBgZ, (J-DMe=I—kD) &+ A (|E— &P
—&n+1, Where ) )
A (€= &) —(I—DAs(le[?),  (8)
Enr1=Fd&n). (1)  wherel is theNXN identity matrix.
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Up to the first order in|&,—&,| and |e|, i.e., when 20 =05
A([En— &%), Ax(lén—é.17), and Ag(lel?) are all ne-
glected, Eq(6) becomes o
=M1 I-1) T I kDé,. (7
> 00

Here we have assumed matricds-() andM are invertible,
redenotece by e, to indicate that the parameter adjustment
is for thenth iteration of map(1), and redenoted by k; to 1.0 |
indicate the result is up to the first order|if),— &, | and|e|.
Equation(7) is the expression of the parameter adjustment in
the straight-line stabilization. 205 05 00
Obviously, the parameter adjustment given by &g.can
stabilize the unstable orbit only if the expansion remainders,
Ar(|€n—E41D), Ax(|€n—E.|% and Ag(|€?), are all negli- FIG. 1. Numerical results of iterating map) with parameters
gible in comparison with the linear terms. This means thatgiven by Eq.(10) for k=0.5. The dotted region is where the
from Eq. (6), the stabilization method is valid only if the straight-line stabilization method works.
following condition is satisfied:

0.5 1.0
X

and 2, and those dfl are—1 and— 1. According to Eq(7),
the parameters should be adjusted to

Pr=(k—=2)X,, an=(k—2)y,. (10

The size of the stabilization region can be estimated by using
Here we have assumed factky has the same sign ds  EqQ. (8). Let A;; and A, be the components of vector
based on the fact that, is an approximation té. Equation  A;(|&,—&,|?). Up to the second-order terms j&,— &, |,
(8) is the expression for the size of the stabilization regionthey are given by
Unstable orbits in the region can be stabilized by the

1
|§n|>1_—|kl||Al(|§n_§*|2)

+A0([En— &%) — (I=DAg(| €l?)]. 8

straight-line stabilization method, but those outside the re- 1 0%Xp4q ) 0%Xns1

gion cannot. In the stabilization region, the original systemis 21173 ~ _'2 (X=X, )"+ m(xn—x*)(yn—y*)
changed, due to the stabilization procése., due to the "

change in the linear terms of the map, as given in(2y, so 162X, ,

much that even the stability property is changed. Outside the + > > (Yn—VY4)2 (11
region, however, effects of the change in the linear terms of N

the map are suppressed by {lechangefnonlinear terms.

In this sense, disturbance to the original system outside the 1 %Yni1 Y1

_ _ 2 _ —
region is less than that within the region. The stabilizationis 21275~ 2 (Xn =X )"+ &xnayn(xn X5 )(Yn=Yx)
global if the stabilization region is the whol-dimensional

space, and local if the region is bounded. A local stabiliza- 1 6%y, .,
tion is desirable when stabilization is needed only in a cer- + > > (Yn—VYs)2 (12
tain region or when it is required in a practical problem that W

the change made to the original system for the purpose of
stabilization is as small as possible. EquatiBnprovides an | herefore

estimate about how local the stabilization is and how local e 2y N2 _ _

the change to the original system is. Furthermore the con—A1(|§n 9= (2007%0% ~2(X=X) (Ya = Y4)).
stantk, in Eq. (8) can serve as a means for controlling the); ig easy t0 see thatAy(|é,— &, |2)=(—4x, (X,— X, )

. . . . . . n * * n *x /1
size of the st_ab|llzat|on region. _Varym_gl (but keeping — 2y, (X~ %, ) — 2%, (Ya—V, ), Up to the second order in
|ke|<1), the size of the s_tablllzanon region changes and S(P§n—§*|- Vector As(|€|, |?) can be approximated in a way
does the locality of the d_|sturbance to t.he system. . similar to that forA,(|&,— &, |?) and the result is(| €|?)

As an example, consider the following two—d|menS|onaI:(2p2 2pg). Substituting these results into E¢8), we

map: have

Xn+1=2Xa(1=X,) +p, 1
ol <5VI= K], (13)
Ynr1=2Yn(1=Xp) +Q. 9

This is the estimate to the region of stabilization. Figure 1
This map is in form(1) if we let £=(x, y) ande=(p, d).  shows numerical results for the example. The origin is the
The map has a fixed point near the origip=(x,, Y.) fully unstable fixed point of the original map, i.e., mé
wherex, =3(1—1+8p) andy, =q/(2x, —1). Whenp with p=g=0. A point in the dotted region goes to the origin
=(q=0, the fixed pointgi =(0, 0) is fully unstable. Matri- under iterations of the map with the control parameters given
cesJ andM are both diagonal. Diagonal elementsiadire 2 by Eq. (7). The region is given by-0.25<x<0.5 in the
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figure, while the theoretical estimate given by E8) is

—0.35<x<0.35. We consider the agreement acceptable.

IIl. PARAMETER ADJUSTMENTS FOR TWO-

DIMENSIONAL MAPS

For two-dimensional (&) maps, dependence of the pa-

rameter adjustment on the eigenvalues of matricesd M

can be explicitly written down. As a’22 matrix, the Jaco-
bian matrixJ for a 2d map has the following three typical

forms:
me O COoS«
Ji= PSS .
. 0w 2 sina
Jue Mo 1
* 0w’

(14

wherew, pg, M1, Mo, anda are all real, and & a<27r.
If matrix J is not in one of these forms, it can be transformed

into one of them by a coordinate change §oi1Similarly, the

typical forms of matrixM are

vy O cospB
Mi=1 o v, Mo=v sing

Vo 1
M =
3 0 Vo '

(15

wherev, vy, vy, vy, and g are all real, and & B<27.

Therefore Eq.(7) for a planar mapr: &,— &,.1, Where ¢
=(x,y) ande=(p,q), can be written separately for the fol-

lowing nine cases: 1§=J; andM =M,
1
pnzv_lalxny

1

Un 7y 2Yn

if J=J; andM=M,,

1 :
pn:;(alxn003ﬁ+ aynSing),

1 .
qn:;( —a1X,SinB+a,y,cosp);

|f J:Jl andM:Ms,

1 a,
pPn= a1Xp Voyn
1

qn_y_oazyn I

if J=J, andM =M,

1
pn:V_(b1Xn+ boyn),
1

(16)

7

(18)

1
dn=——(b1yn—b2X,); (19
Vo

|f \]:Jz andM:Mz,

1 .
Pn=—[(b1Xn+b2yn)COSB+ (D1yn—boXy)sin B,

1 .
qn:;[ —(byXp+boyn)sin B+ (b1y,—b,x,)cosB];

(20)
if J=J, andM =M,
1 b2 bl
pn—y—o b1+y_ Xn+ bz_V_ yn !
1
On=——(b1yn—Db2X,); D)
Vo
if J=J; andM =M,
1
pn:V_(aOXn_bOyn)1
1
1
qn:_aoyn; (22)
Vo
if J=J3 andM=M,,
1 .
Pn=>[(80Xn—boyn)cOSB+agYnsinB],
1 .
qn:;[(boyn_aOXn)SmB_aOynCOSﬁ]; (23)
if J=J; andM =M,
anV—O aoxn_boyn_ V_anyn '
1
On=—""3a0Yn: (24)
Vo

where a;=(u—K)/(&;—1), i=0,12, bo=(1—Kk)(uq
-1)?, b;=[k(1— x cosa)+ u(u—cosa)]/(1—2u cosa
+u?) andb,= u(1—Kk)sina/(1—2u cosa+ u?).

IV. STABILIZATION OF FLOWS

Flow stabilization can be investigated in the following
two ways. The first is to introduce a Poincarep for the
flow and then study the stabilization problem of the map.
The second is to stabilize the flow itself directly, without
introducing a Poincarenap. We illustrate the two ways by
the following example flow on the plane:

. 1
r=—r(l1-r)+p, '|p|<Z’

6=1, (25)
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where (,6) are the polar coordinates amdis the control 1.5 = 1.001

parameter. Obviously,=1 is a limit cycle of the flow with ’

p=0, which is unstable becausd/@r)[—r(1-r)]|,_;=1 10 r P

>0. We want to stabilize a flow not on the cycle and there- 05 | /

fore leaving the cycle. ) ’ /
First, we stabilize the flow via a Poincaneap, at6=0, > g0 |

say. Let initial conditions be(t=0)=r, (r, IS a positive

real constantand 6(t=0)=0. To use the results obtained in 05 L (

the previous sections, the fixed point of the map correspond- \

ing to the limit cycler=1 should be located at the origin. 1.0 b \

We therefore make the coordinate change:r’'=r—1

and drop the prime for simplicity of notation. By doing 15 590 05 00 05 10 15

so, we have ,=r(t=2nw)=—%—a+2a[1—-e*""3(r,+3

—a)/(ro+3+a)] !, wherea=3\1—4p andn=0. Thus X
the Poincarenap is given by FIG. 2. Stabilization of an unstable flow of E(5). The thin
curve is for the unstable flow to be controlled, which leaves the
1 -1 limit cycle of r=1. The thick circle is for the controlled flow,
1 ht5—a which remains near the limit cycle.
fhe1=—5—a+2a 1—e4”5‘—1 . (26)
ra+ > +a thick curve is for the flow with the control parameter given

by Eqg.(28) andx=1.001, which remains near the cir¢ten

For p=0, the map isr.. =—1+[1—e27r /(r.+1)]"%, revolutions are shown in the figyre

whoge Jacobian n?atrixngéaluated[at the fi;e((j Boimz]o is . The stgbilization gi_ven by the_ parameter adjustmes)

J=e2"_ It is easy to find that mag26) has the fixed point is global, i.e., the region of stabilization is the whole plane.

- —%+a andythereforel\/l — (9, 13p)p_o=—1. From [The ste:gilizlati(r)]n becomes Iogal if we rgqu_ire, fgr a given
- - -~ constanR>1, the parameter adjustment is given

Eg. (7), the parameter adjustment required to stabilize thEfor r<R and zeropforr>R. In tJhis case tge stab)illi‘i:?t’)ion

unstable orbit is given by region is the disk <R.] On the other hand, the stabilization

2™k for the Poincaranap is local because the parameter adjust-
Ph="> r~—r,. (27 ment given in Eq.(27) is linear inr,, and the region of
e’"-1 stabilization can be found by using E®).

This parameter adjustment is to be performed only when the
flow passes the liné=0 and therefore may be difficult to be V. CONCLUSIONS

implemented in practical problems, (i) The region of stabilization for the straight-line stabili-

The unstable flow can also be stabilized directly, without i thod has b timated . in(8q.Th
introducing a Poincareap. To force the unstable flow to be zation method has been estimated, as given in &q.The

closer to the limit cycle when time goes on, paramager size of the region can be changed by varying the con&tant

. . . involved in Eq.(8). (ii) For two-dimensional maps, explicit
should be adjusted so thet-0 whenr>1 andr=>0 when ¢, 135 for the parameter adjustments have been provided
r<1. A simple choice satisfying these requirements is

for the nine casesgiii) Unstable flows can be stabilized with

p=«r(l—r), for «>1. (28) or without introducing a Poincammap.

Figure 2 shows two numerical solutions of fla{®5), one ACKNOWLEDGMENTS
with control and the other without control, but both starting
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