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Relation between stable orbits and quantum transmission resonance in ballistic cavities
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Classical and quantum-mechanical transport properties in chaotic cavities are investigated to establish a link
between them. Because of the stickiness at the boundary between stochastic seas and islands of regular orbits
in phase space, classical trajectories spend a long time in the vicinity of a few regular orbits. The trapping
results in an exclusive excitation of these stable orbits even when the cavity is terminated by classical leads.
The wave-function pattern at quantum transmission resonances is found to be identical with one of the stable
orbits. The correspondence implies that the transmission resonance takes place when the stable orbit satisfies
Bohr and Sommerfeld’s quantization rule, and hence explains why conductance fluctuations in ballistic cavities
contain only several frequency components.

PACS numbgs): 05.45.Pq, 73.20.Dx, 73.23.Ad

One of the striking features of the quantum transportmechanical injection of electrons into the cavity allows only
properties in microstructures is the transmission resonance. few cavity states to be excited because of the collimation
When the Fermi energir coincides with a quasibound state effect[8,9].
level in a cavity, the conductance is suppressed or enhanced, In this paper, we demonstrate that only one or a few regu-
or exhibits both effects with a narrow energy separation. Ifiar orbits can be strongly excited even when the coupling of
the cavity size is comparable to the Fermi wavelenggh ~ the cavity with the leads is classical. The exclusive excitation
the probability densityy(r)|? at the transmission resonance of specific orb|t§ ongmatgs from sfuckmg in the mixed .phase
exhibits a simple standing wave pattern. As the quasiboun?p"’me of chaotic dynamics. It is important to recognize the
states originate from zero-dimensioii@D) states in the cav- act that .there are two classgs of chaotic dynamlcs, namely,
ity, the number of peaks and nodes increases with the inde yper_bollc gnd n_onhyperbollc. In the hyperbolic case, all
number of the transmission resonari@d. This standing classical trajectories are unstable and the probal{ty of

an electron remaining in the cavity for a time longer than

wave pattern has no classical counterpart as the probabilité{ecays exponentially with In the nonhyperbolic case, the

Qensny is anticipated to be uniform in the classical dynam'classical phase space contains stable orbits and the probabil-
ICS. L ) ity distribution is given by a power law. The classical scat-
When the cavity is much larger tharg, the standing ering associated with the cavity geometries that are typically
wave pattern involves many peaks and nodes. As a consgmpioyed in experiments is hyperbolic when the electron
quence, one may expect tha{? is uniform on length scales confinement is by hard walls. However, it is nonhyperbolic
larger tham\ ¢ . In contrast to this expectation, the probability jn soft-wall cavities. In experimental situations, the classical
density is often characterized by a large scale strud®fe dynamics is more likely nonhyperbolic than hyperbolic be-
This quantum eigenstate pattern, which evolves out of th@ause of the inevitability of softening of confinement poten-
large degree of freedom of the system, arisebya$is en- tials in gate-defined devices. In addition, the magnetic field,
hanced near classical regular orbigs4]. which is applied to induce the conductance fluctuations, can
When an isolated cavity is opened to the external environgive rise to a mixed phase space. We show that the scarlike
ment, the 0D levels are nonuniformly broadened in energywave-function pattern at the transmission resonance is noth-
States that couple strongly to the leads are strongly broadng but the stable orbits that are favored by the underlying
ened, while those that couple only weakly are not. If theclassical dynamics.
transport properties reflect the fluctuations in the density of Ketzmerick[10] has investigated the statistical properties
stategDOS), the orbits that correspond to those states of théf the conductance fluctuations. It was shown using a semi-
cavity that survive the introduction of external coupling may classical approximation that the fluctuations in cavities with
give rise to measurable transport signatures. Recently, it ha mixed phase space are fractal. We demonstrate that indi-
become possib|e to experimenta”y investigate the quanturﬁiduaJ features of the conductance fluctuations are directly
transmission properties in ballistic cavitigs—7]. A Fourier ~ related to regular orbits.
analysis of magnetoconductance fluctuations, which arise We first examine the classical dynamics in a soft-wall
from the quantum interference effects, has revealed that theavity to demonstrate the strong excitation of stable orbits
spectrum is dominated by a small number of frequency comk11]. We employ a cavity potential, the boundary of which at
ponents, i.e., the conductance fluctuations are quasiperiodibe Fermi level is given by
[7]. The wave-function scarring has been speculated to be
associated with this quasiperiodic nature of the conductance  Yg(X)=*(W/8)[3+ cog2mx/L)] (|x|<L/2), (1)
fluctuations[5]. However, it has remained unclear which
regular orbit emerges as a ‘“scar” pattern. To explain thewhereW andL are the width and the length of the cavity.
wave-function scarring, it was proposed that the quantumThe plus and minus signs refer to the upper and lower
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FIG. 1. ProbabilityP(t) of electrons staying in a cavity with
L=1.4W for a time longer thart and probabilityP(A) of the en-
closed area being larger th&n Here,to=L/vg andAy=LW. The
probability distributions aB=0 and B, are shown by the solid
and dashed lines, respectively. The dotted line sh&\{ in a
hard-wall cavity aB=0. The thin solid line shows that the power-
law exponent is3=1.6.

FIG. 2. (a) Poincaresurface of section &= 1.48,. The points

boundaries, respectively. The cavity is connected at each er}gpresenbX andx when a trajectory crosses the horizontal symme-

to a lead with widthw/2. We assume parabolic walls of try line with v,>0. The contributions by the trajectories shown in

width W/4, unless stated otherwise. Throughout this papergg) and(e) are indicated by the filled and open circles, respectively.
we choosd. = 1.4N. The long trajectories with/to=36, 88, and 274 that are shown,

Figure 1 showsP(t) and the probabilityP(A) that the  respectively, inb)—(d) circulate in the vicinity of an identical orbit.
area enclosed by the trajectories is larger thaklere,t and  The trajectory in(e), with t=358,, sticks to another regular orbit.
A are normalized byy=L/vg, with vg being the Fermi
velocity, andA,=LW, respectively. For soft confinement, long trajectories typically diminishes exponentially. How-
P(t) exhibits a power-law behavior with the exponentever, the electrons in the soft-wall cavity spend a long time
—1.6. In the presence of a magnetic fi@dthe dynamics is in the vicinity of the stable orbits because of the stickiness of
modified to be more regular. ConsequentB(t) deviates the hierarchical phase space structures. The dwell time be-
from the power-law behavior for short trajectorigs2].  comes longer when the trajectories in the phase space stick
However, the exponent for long trajectories remains almostloser to the KAM orbitd 14]. The large dwell time of the
unchanged. Despite the power-law behavioPgf), P(A) trapped trajectories is essential for the power-law probability
at B=0 decays exponentially witi. This is plausibly be- distributions.
cause of the wide lead, which enlarges the volume of direct Classical leads, in principle, couple with orbits in the cav-
trajectories in phase space. HowevB(A) is given by a ity with a uniform probability. Therefore, the quantum-
power law as soon as the direct trajectories are suppresseaechanical injection of electrons from a narrow lead was
for B/By=W/r.>0.05, where Bop=mve/eW and r. speculated in Ref8] to be the mechanism for a preferential
=mur/eB is the cyclotron radius. The exponent is againexcitation of a small number of regular orbits. However, the
nearly independent d and almost identical to that ¢#(t). selective excitation of regular orbits takes place even with
The rapid achievement of the power law B{A) suggests classical leads as incident electrons are trapped around these
that the lead alignment is not crucial for the chaotic dynam-orbits, as we show below. As is evident in Fig$b)2-2(d),
ics except aB=0 or, perhaps, when the collimation is ex- many long trajectories exhibit the same orbit pattern. Usu-
ceptionally strong. Short trajectories, however, are signifi-ally, several stable orbits are found to coexist wher W.
cantly influenced by the lead configuration. For example, the trajectory in Fig(&) is trapped to another

In Fig. 2(a), we show the Poincarsurface of section at stable orbit. The regular orbit in Fig(€) may be regarded as
B=1.4B,. In constructing the Poincammap, we keep the a mixture of the stable orbit in Fig.(@ and its mirror-
chaotic cavity open to retain the experimental situation. Weeflected image with respect to=0, which is also a stable
inject a large number of electrons from the left-hand sideorbit in the cavity. However, the Poincaneap reveals that
lead. The values of, andx when the electrons cross tlye  the two trajectories are rather distinct stable orbits. In Fig.
=0 line with v,>0 are indicated by the points. Conse- 2(a), the contributions by the trajectories shown in Fig&l)2
quently, true regular orbits do not show up in our plot. Theand Ze) are presented by the filled and open circles, respec-
phase space consists of stochastic seas and islands filled wiiliely. Clearly, the two trajectories are attracted to different
periodic and quasiperiodic orbits. These so-calledphase space structures.
Kolmogorov-Arnol'd-MoserlKAM ) orbits are stable and the We now turn our attention to the quantum transport prop-
existence of the islands is believed to be responsible for therties in the cavity. Figure 3 shows the conductance of the
power-law probability distributionf13]. When the cavity is cavity as a function ofiw./Er, where w.=eB/m is the
formed by a hard wall, the probability of electrons pursuingcyclotron frequency. The conductance is related to the trans-
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FIG. 3. Magnetoconductance of the soft-wall cavity when
=20\ . The dashed and dotted lines indicate magnetic fields
whereB/By=1.4 and 2, respectively. Inset: Fractal analysis of con-
ductance fluctuations using a modified box-counting algorithm. The
solid line manifests the power-law behavior, giving the fractal di-
mensionD = 1.56.

mission probabilities between the leads by the Landauer for-
mula. We have calculated the transmission probabilities us-
ing the lattice Green’s function techniqi#5]. The cavity FIG. 4. Local density of statgs(r) in the cavity shown in gray
potential within a width of 1.4V is simulated by a square scale.(a—(d) correspond to the transmission resonances labeled
lattice having 160 transverse lattice sites. The parabolic poa—d in Fig. 3, respectively. A classical trajectory trapped to a stable
tential outside the cavity boundary defined Yy is hence  orbit at each magnetic field is shown underneath.
taken into account. The Fermi energy is chosen such that the
lead contains 11 occupied modes. show in Fig. 4 gray-scale plots of the local DOS

The semiclassical theory of KetzmerifkQO] predicts that
the conductance fluctuations are fractal when the probability _ _ .
distributions are given by a power law. AA) in Fig. 1 p(N)=—m"ImG"(r,r;Ep), 2
obeys a power law, the conductance fluctuations in Fig. 3 are
expected to be fractal. We show the result of a modifiedvhereG*(E)=(E—H+i¢) ! is the retarded Green’s func-
box-counting analysis in the inset of Fig. 3. The number oftion with H being the Hamiltonian of the system. Below the
“boxes” Nis evaluated as follows. We divide the magnetic- gray-scale plot, a typical long trajectory at each correspond-
field range with an interval (2 w./Eg). The difference of ing magnetic field is shown. The characteristic features in the
the maximum and minimum conductance values within thequantum probability density and the stable orbit resemble
interval is added over the segments. The sum divided bgach other with a remarkable accuracy. It is thus apparent
A(fw/EF) is regarded abl. One indeed finds that the con- that the wave-function pattern at the transmission resonance
ductance fluctuations are fractal over at least one order dg closely associated with the underlying classical dynamics.
magnitude oB. (The lower bound might have been imposed  The correspondence may provide a semiclassical interpre-
by the limited number of data poinisThe fractal behavior tation of the transmission resonance. In chaotic dynamics,
manifests that the tight-binding lattice is fine enough to ex-P(A) is a smooth function ofA. Hence, there is no special
amine the chaotic classical dynamics in the cavity. We obenclosed area that can explain the appearance of the trans-
tain a fractal dimensiol =1.56. It has been derived thBt  mission resonance at certain magnetic fields. However, the
is related to the power-law exponent B{A) (xA #) as  stable orbits may play an important role provided that long
D=2-p/2[10]. This relation expects the fractal dimension trajectories dominate the transport characteristics. It is sug-
to be 1.2, which is considerably smaller than the value foundjested that the transmission resonance takes place when the
in the quantum-mechanical calculation. In Rfl], a simi-  stable orbit satisfies Bohr and Sommerfel¢&S) quantiza-
lar discrepancy was observed in a simulation using a squargion rule. Fromholdet al. [16] demonstrated that quantum
like cavity. If the magnetic-field range for the fractal analysisnumbers can be assigned to the scar patterns in resonant
is too wide, the classical dynamics may be fundamentallytunneling diodes using the quantization rule. The trajectories
altered, resulting in a variation ¢ with the magnetic field, that follow a stable orbit with various revolutions satisfy the
although the numerical result in Fig. 1 indicates that this iSBS quantization condition simultaneously. The quantum in-
unlikely to be the case. To be confident about the estimate derference effects will lead to a profound influence of the
D, we also carried out the fractal analysis using a restrictedtable orbits in determining the conductance. We note that
magnetic-field range. The fractal dimension was confirmedhe width of the transmission resonance is given by the
to be independent of the magnetic field. At present, the oristrength of the coupling between the states in the cavity and
gin of the disagreement is not understood. the lead, and so it depends on the position of the leads with

For the transmission resonances labeled a—d in Fig. 3, weespect to the stable orHit].
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Due to the symmetric cavity geometry, the quantumTherefore, the stable orbits produce a background variation,
eigenstate pattern in our system has to fulfill the symmetryand the influence of the characteristic phase space structures
Therefore, it may seem that asymmetric stable orbits, like thef chaotic dynamics is negligible in the billiard modél9].
one in Fig. 2d), do not give rise to a scarlike feature. How- The phase space structures have been assumed to be the ori-
ever, a quantum eigenstate can be produced by a superpogin of hierarchical repetitions of magnetoconductance fluc-
tion of the asymmetric stable orbit and all of its mirror re- tyations that were observed experimentally in Sinai billiards
flections as all the orbits satisfy the BS quantization rule at20]. However, no theory has succeeded in reproducing the
the same time. _ experimental finding11]. We emphasize that soft boundary

Our result supports the idea proposed by Maruial.[S]  otentials are inevitable in devices defined by Schottky

that the wave-function scarring and the quasiperiodic CONgates *|nstead of the hierarchical phase space structures,

ductance fluctuations have a common origin. As the probgap e oppits that may have resulted from the soft confine-

a.b'"ty density reve_als pronounced scarring only at trar]Sm's'rnent and/or the magnetic field might provide an explanation
sion resonances, it was argued by Zozouleekal. [9,17]

for the self-similar fluctuations.

that the scarring is unlikely to cause the quasiperiodicity. . L
However, as the scarlike feature arises from the stable orbits In high magnetic fields, both the local DOS and the stable

of the underlying classical dynamics, its implication is notOrblt show a circular pattern. ngh-magnetlc-fleld measure-
restricted to some magnetic fields. Moreover, the stable of€Nts of the conductance are often used to infer the cavity
bits vary with magnetic field rather gradually, and so the BSSiZ€- The interpretation of the edge state as an orbit skipping
quantization rule is fulfilled in a fairly periodic manner. along the boundary is readily justified when is much

When the probabmty distribution decays exponentia”y, smaller than the CaVity size. Our simulation indicates that the
all regular orbits are unstable and there are no KAM island$dge state is established in a soft-wall cavity even when the
[13]. Hence, the regular orbits in hard-wall cavities are usumagnetic field is not very high. Therefore, the onset of
ally unable to trap electrons that pass around th@npower  Aharonov-Bohm(AB) conductance oscillations can be sig-
law can be realized in some hard-wall cavities as shown byificantly lower than expected in the skipping orbit picture.
the dotted line in Fig. 32.Most of the numerical studies of In our cavity geometry, the stable orbit bears a loop shape
the cavity conductance reported so [f&y8,9] assumed hard- for B=2B,. We find that the area covered by the chaotic
wall confinements. This is probably the reason that the scatrajectories in this regime is nearly independent of the mag-
ring in squarg6,9] and stadium-shape®,18] cavities was netic field, although it is slightly extended toward the leads
observed only in relatively high magnetic fields. In particu-in high fields. Thus, the period of the AB oscillation is ex-
lar, without a substantial smooth potential, the probabilitypected to depend rather weakly on the magnetic field.
distributions in squarelike cavities are rigidly exponential. In conclusion, we have investigated chaotic trajectories
By applying a magnetic field, the probability distributions and wave functions in a cavity defined by a smooth confine-
can be transformed from an exponential behavior to a powement potential. The underlying classical dynamics selects a
law behavior[12]. The scarring found in Ref¢8] and[9]  few regular orbits, to which long trajectories are trapped. The
may originate from the trapping to hierarchical phase spaceharacteristic pattern of the wave function at quantum trans-
structures induced by the magnetic field. In our system, wellmission resonances is found to be identical to these stable
developed scarlike patterns are found for all the transmissionrbits, resolving the question of which regular orbit is chosen
resonances, and they are unambiguously identified with thas the scarlike pattern of a transmission resonance. The exact
stable orbits. In fact, the scarlike features can be recognizeshatch evidences the self-control of the cavity dynamics,
even for magnetic fields away from the resonance. In analyzwhich is in contrast to the popular view that it is driven by
ing conductance fluctuations to compare with experimentshe leads. The correspondence allows us to interpret the qua-
one has to clarify whether the classical dynamics induces thsiperiodicity of magnetoconductance fluctuations in ballistic
power-law or the exponential probability distribution. cavities in terms of the stable orbits rather than the scarring.

In classical dynamics, only a small portion of incident As the stable orbits are present irrespective of the magnetic-
electrons travel along the long trajectories. In addition, thefield value, the interpretation based on classical dynamics is
probability for these electrons to exit the cavity through aapplicable to a wider range of issues in comparison to the
particular lead barely changes with a small changeBin scarring effect.
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