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The relaxation rates to the invariant density in the chaotic phase space component of the kicked rotor
(standard mapare calculated analytically for a large stochasticity parantetéthese rates are the logarithms
of the poles of the matrix elements of the resolvét(z) = (z—U) %, of the classical evolution operatat.
The resolvent poles are located inside the unit circle. For hyperbolic systems this is a rigorous result, but little
is known about mixed systems such as the kicked rotor. In this work, the leading relaxation rates of the kicked
rotor are calculated in the presence of noise, to the leading ordey/i. Then the limit of vanishing noise is
taken and the relaxation rates are found to be finite, corresponding to poles lying inside the unit circle. It is
found that the slow relaxation rates, in essence, correspond to diffusion modes in the momentum direction.
Faster relaxation modes intermix the motion in the momentum and the angle space. The slowest relaxation rate
of distributions in the angle space is calculated analytically by studying the dynamics of inhomogeneities
projected down to this space. The analytical results are verified by numerical simulations.

PACS numbd(s): 05.45.Ac

. INTRODUCTION 1
H= §J2+Kcos¢92 8(t—n), (1)
n

For chaotic systems specific trajectories are extremely

complicated and look randoiil]. Therefore it is natural to \yhereJ is the angular momentund, is the conjugate angle
explore the statistical properties of such systems. For thigo< g<2+) andK is the stochasticity parameter. Since the
purpose the evolution of probability densities of trajectoriesangular momentum between the kicks is conserved, the
in phase space is studid@—4]. For chaotic systems, the equation of motion generated by the Hamilton{anreduces
probability densities approach an equilibrium density that deto a map, known as the standard map

pends only on the system and not on the initial density. For

hyperbolic systemsA systemy, like the baker map, the re- =06+, (2
laxation is exponential. For such systems the existence of the .
relaxation rates was rigorously established and the relaxation J=J-Ksin§, 3

rates are the Ruelle resonan¢Bs7]. To study these rates it

is instructive to introduce the evolution operator of densitiesvhere ¢ and J are the angle and the angular momentum
that is sometimes called the Frobenius-Pelie) operator. before the kick, whileg andJ are these quantities just before
Relaxation to the equilibrium density is studied traditionally the next kick. FolK>K ~0.9716, diffusion in phase space
in statistical mechanics. In particular, for particles perform-is found, and for larg« the diffusion coefficient is given by
ing a random walk in a finite box, relaxation to the equilib- an expansion in /K as[14]

rium uniform density takes place and is governed by the rate K2
related to the lowest nontrivial mode of the diffusion equa- D(K)=—[1-23,(K)+ ...]. (4)
tion. It is known that for the classical kicked rotor, described 4

by the standard map, diffusive spread in phase space takef% be precise, it was shown that after a large number of

place for a _sufﬁClentIy large stochasncny paramei®9]. kicks n. the variance of the momentum behaves as
Therefore it is natural to study the Frobenius-Perron operator

for the kicked rotor and to compare it to the diffusion opera- ((3—(3))®~2Dn, (5)

tor, a comparison that enables one to study some aspects of

chaotic dynamics in the framework of statistical mechanicavhere(- - -) denotes an averaging over the angle initial dis-
[10]. The kicked rotor model is a paradigm for the chaotictribution, andD is given by Eq.(4).

behavior of systems where one variable is unbounded in the It is assumed that the system evolves in the presence of
phase space. For such classical systems, diffusive spreadifigite noise and the limit of the vanishing noise is taken in
takes place. For their quantum counterparts it is suppressdhbe end of the calculation. The noise is required here in order
by interference effects, leading to a mechanism that is similaro get well defined results. It leads to escape from the accel-

to Anderson localization in disordered solidsl—13. erator modes and other stable islands. Accelerator modes,
The kicked rotor is defined by the Hamiltonién appro-  where the angular momentudrgrows linearly with time, are
priate unit$ found for values oK and the initial values 4, Jy) of the
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angle and the angular momentum, which satikfgin ¢, Green function The Ruelle resonances are the poles of the
=2ml, andJ=27| wherel andl, are integers. In such a matrix elements of the resolvent, on the Riemann sheet, ex-
situation, at each stepgrows by 27l,, as is obvious from trapolated from|z|>1 [17]. These describe the decay of
Egs. (2) and (3), namely, its growth is linear in time. For smooth probability distribution functions to the invariant
some values oK the point (¢,, Jo) is stable and also for density in a coarse grained forf®,5]. Even a smooth initial
initial conditions in its vicinity the momentum grows lin- distribution will develop complicated patterns as a result of
early. This differs from diffusion, which takes place in the the evolution of a chaotic map. The Ruelle resonances de-
chaotic component of phase space. For trajectories in thecribe the decay of itsoarse grainediorm to the invariant
chaotic component of phase space, noise avoids long tim@ensity. In spite of the solid mathematical theory there are
sticking in the vicinity of islands of stabilitj15]. In numeri-  very few examples where the Ruelle resonances were calcu-
cal calculations without noise, diffusion was found figr ~ lated for specific systems. They were calculated analytically
>K_ for trajectories in the extended chaotic component forfor the baker map where the basis of Legendre polynomials
large values oK; however, some exceptions were also re-was used17] and its various variants3]. The Ruelle reso-
ported[15]. The diffusion coefficien(4) was calculated in nances were also calculated for the “cat” map and some of
the presence of finite noisén the long time limit and the its variants[18]. Blum and Agam applied a variational
limit of the vanishing noise can be taken in the end of themethod for the calculation of the leading Ruelle resonances
calculation[14]. It describes the typical spreading of trajec- of the “perturbed cat” map, and the results were verified
tories in the chaotic component. Since the kicked rotor is dumerically [19]. In addition, they calculated the leading
mixed system, as is the case for most physical examples, tHgsonances of the standard map v&ital for various values
rigorous mathematical theory for relaxatif,3,2 does not  Of the stochasticity parametét. The leading Ruelle reso-

apply and one has to resort to heuristic methods. nances for the kicked top were calculated by Weber, Haake,
In the present papdiL6], the Frobenius-Perron operator and $ba[20] with the help of a combination of a cycle
will be calculated for the kicked rotor on the torus: expansion and numerical calculations. The resonances men-
tioned above are not related to the spectrum of the Liouville
(0=J<2m7s), (6) operator that is confined to the unit circle because of its
unitarity.
(0=6<2m), In the present work, the FP operator is calculated for the

) ) o ) kicked rotor. Here the classical evolution operator, for one
wheres s an integer. This is reasonable since the fE&gs.  time step, can be written in the form

(2) and(3)] is 27 periodic in both inJ and iné. The operator
is defined in the space spanned by the Fourier basis as Oyr= S(0—0—3)8(3—I+K sing), (10)

(7) and its operation on a phase space density

1 1 kJ
¢km:(30|km):\/7 \/ﬁ exp(ime)exp( i </

Note that the functiong,, form the basis of eigenstates of
the diffusion operator in the angular momentdmThe FP 14 make the calculation well defined, noise is added to the

Up(6,3)=p(6—J, I+K sin(6—1J)). (11)

operator for an area preserving and invertible map, system. It is shown that the noise acts effectively as coarse
— graining and the resulting FP operator is not unit@se also
x=M(x), [21]). For large stochasticity parametér we show that the

slowest relaxation modes in the limit of infinitesimal noise

are the modes of the diffusion operator in the angular mo-
mentum space. Also calculated is the slowest rate of relax-
ation in the angle space. The approximate analytical results

It was studied rigorously for the hyperbolic systems and®'® tgsted numerically. L - .
g y yp y It is understood that the noise is kept finite when the lim-

many of its properties are know8,3,5,17,18 It is a unitar . _— .
y pLop v 3 y its of largeK ands are taken and then the limit of zero noise

operator in£ 2, the Hilbert space of square integrable func-. S - .
tions. Therefore its resolvent is taken. The natural question is whether it is possible that

this description, which was established only for hyperbolic
o systems, also holds for mixed systems. Clearly, for mixed
E gnz—n 9) systems it can only be approximate. It holds for large values
n=0 of the stochasticity paramet&rsince then most of the phase
o o . space is covered by the chaotic component. For smaller val-
is singular on the unit circle in the complexplane. The yes ofk the weight of the regular regions increases. In such
matrix elements oR are discontinuous there and one finds aa situation, in the limit of increasing resolution the reso-
jump between two Riemann sheets. This results from the fagtances related to the regular component are expected to
that the spectrum is continuous and infinitely degendi2Zite  move to the unit circle in the complexplane, corresponding
The sum(9) is convergent folz|>1, therefore it identifies to the quasiperiodic motion, while the resonances associated
the physical sheet as the one connected with the relgion with the chaotic component stay inside the unit circle. This
>1. (This is analogous to the sign of the small imaginarywas found by Weber, Haake, an@t&[20] for the kicked
increment in the energy that is used in the definition of thetop that is a mixed system.

Up(8,9)=p(M~1(6,9)). (8)

1

R(z)= ——==
2 z—U

N|
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How is the FP operator related to the quantum mechanicajhere thea,, are the eigenvalues of the operafarnamely
evolution operator? It was shown numerically for the bakerA|¢ )=, @r). Obviously
m. m m/-

map that if both operators are calculated with finite resolu-

tion they exhibit the same Ruelle resonan¢2s]. In this o2

calculation it was assumed that the phase space coarse grain- an=—imJ— 7m2 a7

ing tends to zero in the semiclassical linfit-0. It was

shown by Zirnbauef22] that some noise is required for a leading to

meaningful definition of the field theories introduced to

study level statistics for chaotic systefi3]. This noise af- R 1 o2

fects only quantum properties; therefore, the resulting en- (3’ 0'|UpisdJ6)= >, 2—ex;{im(0’—0—‘])—?m2

semble has the same classical FP operator. The localization m &7

length of the kicked rotor calculated from this field theory X 8(J-J"). (18)

[24] is related to the classical FP operator. This operator is

analyzed in the present work, clarifying some issues of tharhe § function in momentum reflects the fact that the noise

work. The results hold only for typical quantum systems,does not affect the momentum. The matrix elements

sin_ce the n_oise introduced i_n. theT present wc_)rk as well as thﬁ<2m2|0|k1m1) of the evolution operatoEJ in the Fourier

noise required for the stabilization of the field thedB2]  |y4qis(7) will be calculated in two steps, first the contribution

washes out the sensitive quantum details, such as the numbgf ihe kick, and then the one of the free motion with noise

theoretical properties of the effective Planck cons{as. will be calculated. According to Eqg3) and (11), the kick
The Frobenius-Perron operator in the bdg)sn the pres-  ansforms the state

ence of noise is defined and calculated in Sec. Il, its Ruelle

resonances are obtained within some approximations in Sec.

1 1 k,J
[l and their regime of validity is tested numerically in Sec. (JOlkimy) = — exmmlo)exp{ i L)
IV. The results are summarized and discussed in Sec. V. V2w \2ms S

IIl. THE EVOLUTION OPERATOR OF PHASE SPACE to the state

DISTRIBUTIONS

1 1 : Ky :
In this section, the evolution operator of phase space den- "5 \/z_q_rsexp(lmlﬂ)exp( I (J+Ksin 9))
sities of the kicked rotor in the presence of some type of
noise is derived. The noise is added to the free motion part =(J36|0x|kym;). (19
(2). In the absence of noise the phase space evolution of a
distributionf is given by Liouville equation Adding the effect of noise yields the matrix element in the

mixed representation
df of . of jaf_o 12
aY——§E4-055'F 53—— . ( )

R 2w 27s A
(Ja|u|k1ml)=f de’f 43 (36]0,010d9" 0')
0 0
If noise that conserve} and leads to diffusion i, is added

to the free motion, Eq(12) should be replaced by X(J’9'|Ux|k1m1)- (20)
of of  o? o*f Its transformation to the basi3) is calculated in Appendix
ERRTIIT A (13 Aand the result is
. R 0_2
whereJ= 6 was used. It can be written as (k2m2|U|k1m1)=Jm2_ml(lT) exp< - 7m§) S,y mys -
— =Af, (14 . . ,
at For o=0, using Eq(21) one can verify by a straightforward
. summation that) TU =1 ; therefore, the operator is unitary as
where the operatoA is required.
3 2 g2 Some of the eigenfunctions & in the limit c=0 are
A=—] 5 +% —. (15)  easily found. Itis convenient to use the representatlof
J 36 0

U. We guess an eigenfunction of the form

The complete set of its eigenfunctions is given by,
= (1/\2m)exp(mé), wheremis an integer. The operator we F(6,3)=6(6— 190)2I expliqd/s)6(I—2ml), (22
need isU,isc=€", and explicitly
with the g integer satisfying ¥q=<s. These are functions
U _ "ok , that are localized on accelerator modes representing linear
("6 |Un°ise|‘]6)_% em(60") em( ) explam) 8= J7), growth of the angular momentum with time.pTo chec% that
(16 these are indeed eigenfunctions, we note that
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OkrF(6,3)=08(0—3— 60) >, 8(I+K sinfy—27l)
|

Xexy{i%(J%—Ksinao)), (23
taking 6, so that
K Sin00=277|0,
wherel g is an integer yielding
UkrF(6,0)=¢'2ml/sE(9,7), (24)

since the right-hand sidgRHS) of Eq. (23) does not vanish
only for J=2l. The eigenvalueg'27’s |ie on the unit
circle and become dense &s>. There are more eigenfunc-
tions of this form located on other periodic orbj&5].

Ill. IDENTIFICATION OF THE RUELLE RESONANCES

The purpose of this section is to calculate the Ruelle reso
nances for the kicked rotor with the help of the Frobineus-
Perron operato(21). The calculation will be done for finite
noises and then the limito—0 will be taken. The Ruelle

resonances are the poles of matrix elements of the resolvent

operatorR of Eq. (9),

R1o=(kymy| I?Q(z)|k2m2)= ( kamy S

1|( 2
0 My |, (25

when analytically continued from outside of the unit circle in
the complex plane. It is useful to introduce the operator

. 1
R'(z)= ~ 26
(2= 175 (26

which is related to the resolvent by

rll)=r 2

SR'IZ)=R@) (27
and

1@ ! =R’ 28

SRl 7| =R'(@. (28

The matrix elements oR and R’ satisfy similar relations.
Continuing the matrix elements &{(z) from the outside to

the inside of the unit circle is equivalent to continuing the

matrix elements oﬁ’(z) from the inside to the outside of

the unit circle. The last continuation is easier to study since

the expansion

-3 20

R'(z (29
@) 1 zU =0
is convergent inside the unit circle, because
|zU||=1. (30)

The resulting matrix elements are
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Ri= (k1m1|§'(2)|k2m2):n§0 a,z", (31)

where
an= (kym;|0"[komy). (32

Through Eqs(27) and (28) this expansion is related to ma-
trix elements outside of the unit circle. 1f, is a singularity

of Ry, then 1%, is a singular point oR;,. Consequently the
first singularity of the analytic continuation &;,(z) from

the inside to the outside of the unit circle gives the first
singularity one encounters when analytically continuing
R1,(z) from outside to inside the unit circle, i.e. it is just the
leading nontrivial resonance. This is the most interesting
resonance determining the relaxation to the invariant density.
The first singularity in the extrapolation of the matrix ele-

ments ofR’ from the inside to the outside of the unit circle is
determined from the fact that it is the radius of convergence

of this series. Moreover, according to the Cauchy-Hadamard
theorem(see[27]) the inverse of the radius of convergence is
given by

(33

1= lim supV|a,|.
n—sos

If a,~c/r" we may say that the radius of convergence is the
asymptotic value of,,_;/a,. This is the basis for the ratio
method for determining the radius of convergence. The reso-
nance that is closest to the unit circle can be identified from
the radius of convergence.

We turn now to calculate the coefficiengs . First the
matrix elementgk0|R’(z)|k0) will be calculated. For these,
the expansion coefficients are

an=(k0|U"kO). (34)

Introducing the resolution of the identity,

>

kn—lvmn—l

X(k1m1|0|k2m2)' : '(kn—lmn—1|0|k0).

a,= > (k0| U lkymy)

ky.mg ky,my

(39

and substitution of the evolution operai@1l) leads to

an= 2 E

k1.mq kp,mp Kn—1,Mp_1
k.K

T) 5k—kl,0Jm1—m2(

2
_ 22
ml) 5k17k2,mls

N

ksK
2
kK
X Ok, kg mys -+ - Im, 0| =~

koK
*Jo-m, s

xem<

S

2

o
Xexp — =

5 (36)

2
mnl) 6kn—17k'mn—ls :
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Summation over thé; yields kK kK
K \]mf ?_(ml+m2++mf)K :Jmf (42)
=2 > ... ‘]Oml(?)
my mp Mp—1

Since J,(X)=(x"/2"n!) for small x and J_,(X)

kK a2 _/_a3n I .

o g o2 =(—1)"J,(x), the contribution of the terms betweeandf
X‘]ml_mZ( s MK ex;{ 2 ml) is of the order

kK
XJmZ_mS(?—(ml—sz)K) c KK\ [mil+[m] 43

, ry : (43

g2
><exp( —?mz) .

KK whereC is the contribution of the factors wittm; that are not
X‘Jmnzmnl(?_(mﬁ my+ - - - +mn2)K) the first and last ones. The first factor afteris

a? kK kK kK
2 -
Xex[{— > mnz)Jmn_lo( s) Jmimi+1( S —(m1+...+mi)K)=Jmimi+l( s —miK)

2
X ex| ——=m;_ 1 + +..+ + 0- .
2 T MM -2 Mg, and the last factor befone; is

(37
Thus in order to obtain the expansion coefficient we I (k—K—(m1+---+mf_l)K)
should perform summation in EG37) over all integers sub- f-17 7 s

ject to the constraint KK
=] _ (—— m-+-~-+m_)K).

m;+my+---+m,_,=0. (39 M-m M s (m 1
We are interested in the limit of largeandK. The limits

are taken in the order The terms in between are of the formnjfl,mj((kK/s)

—M;jK), whereMj=m;+m;, ;+---m;#0 that are of the
(1)s—ow, (2)K—o, (3)o—0. (39 order 14/K. Therefore the largest contribution from a string
m;,m;., ...,m; is from the shortest string, namely=i
Finite o is required to assure the absolute convergence of the- 1. Because of Eq.38) m;= —m; and because of E¢43)
series. Therefore Eq37) is summed for finitec and the the leading contribution is from the string;=—m;==*1.
limit o—0 should be taken in the end of the calculation. The resulting contribution is
Having this limit in mind, the leading term iK/s and 14/K
will be identified. It will be assumed that the mode that is
calculated is sufficiently low so that C:‘Jmimf<k?K_miK> =J+2(k?K—(t1)K> ~3,(K).

0<kK/s<1. (40) (44

Each term in Eq(37) is defined by the string ) ]
The string can start ab—2 places, therefore the leading

(Mg My, o My M ). correction toa'” is
The leadi ibuti
e leading contribution " KK KK KK
al=2(n-2)307% —|J,| — —K|3?| —|e ",
kK kZKZ n S S S
al¥=77 —)~ - (42)
n 0 s 432

which is approximated as
results from the string where ath; vanish. A nonvanishing
m; results in a Bessel function with a large argument, since
K/s<1 andK>1, and therefore it leads to a factor/K in
the contribution taa,. Let m; be the first nonvanishing,
andm; the last nonvanishing one. The first factor in E8j7)
that is notJy(kK/s) is J,mi(kK/s), and the last factor that

differs from Jy(kK/s) is The sum of the contribution@1) and (45) is

K2K2\ "3 K\2
a(nl>~2(n—2)(1— 4SZ> JZ(K)(Z—S) e 7. (45
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a0+ 8~

In the leading ordef1— (k?K?/4s?)] '~1 and

- n—=2
lim——=1.

n—o

Therefore in the leading order

n

a®+al~

1 K 23,()| <& e
a2t 2K 55 €
n

. (47)

22 5
:|:1— 4—52(1—2J2(K)67” )

The resonance closest to the unit cirdg, is identified from
Eq. (33) as the inverse of the radius of convergence

1 k2K2+k2K22J (K)e (48)
z=1— e 7,
K 452 42 P
or within this order of the calculation as
2K2
2
zZez=exp — (1-23,(K)e ™) |. (49
452

MAXIM KHODAS, SHMUEL FISHMAN, AND ODED AGAM

o? ) k'K o? )
Xexp - - My N 5 /8P T 5 M

><5(m+ml+m2+-~+mn72+mn71)s,k—k’- (52)
Because of the last function,a,,# 0 only if (k—k')/s=q is

an integer. The leading contribution results from the string
m;=—m, m,_;=q and all othem,; vanish. It is therefore of
the form

kK
aV= BJ84( ?) , (53)
where
kK kK k'K
B=Jon(MmK)J_, ? J_q ? ‘]q—m’ T
0.2
X exp(— ozmz)ex;{ - 7q2> , (54)

which behaves aa'?) of Eq. (41) in the largen limit. The
leading correction is found from neighboring pairs;
=-—m;,1==*1 as in the case studied before with a result
similar to the approximatiof5) for a*) in the largen limit.
Therefore no new resonances are found from the off-
diagonal terms witlk+# 0, in the order of approximation that
was used.

For s>1 the diffusion modes in momentum space consti-
tute the slow degrees of freedom of the system. However, the
faster relaxation moddsr, alternatively, the modes of a sys-
tem with s=1) cease to be angle independent. To evaluate
the magnitude of such a fast relaxation rate within our per-

These are the eigenvalues of the diffusion operator with thé&urbation scheme, we have to calculate matrix elements as-

diffusion coefficient

K2

D(K)= 5 (1-23,(K)e "), (50)

in agreement with the earlier results4].
The analysis of the off-diagonal matrix elements
a,=(km/U"k'm’) (51)

is similar. We assume again inequalit¢0) and K>1.
Analogously to Eq(37), one obtains

= 2 ... Jmm1<k—K—mK)exr{—%2m2)

mp My Mh-1 S
kK
><Jml_rnz ?—(m+m1)K
a? 5 kK
X ex —7m1 sz_m3 ?—(m+m1+m2)K

0'2 2
xexp ——m) ...

kK
X‘Jmn_zmn_l(?—(m‘f' my+my+ ... +mn2)K)

sociated with the relaxation of disturbances from the invari-

ant density that involve functions from the angular subspace

{|0,m)} with m=#0. Consider, therefore, the matrix element
ap,=(0m|U"km"). (55)

The equation corresponding to E®6) is:

=2 2 ... >

ky,my ky,m; Kn—1:Mn_1

(Om| LAJ||<1ml)

X(k1m1|0|k2m2)' : '(kn—lmn—l|0|km,)

kK
Jmml(T)

kK
S

5k1k2,mls‘]m2m3<
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and summation over the yields a nonvanishing result only to find the strings(59) with the maximal number of “1"s

if k/s=q is an integer. In this case,

an:E 2 E Jmfml(_mK)

mp mp Mp—1

0'2 2
X ex —5m I, —m, (= m=my)K)
2
2

)
X ex —7m sz_m3((—m—m1—m2)K)

1
g 2
X ex| —7m2

xJ (—m—my—my—- - —m,_,)K)

My_2=Mp_g

0'2 2
Xexp — 7mn_2

2
g 2
menl_m,(qK)exp( - 7mn_l)

><57m7m17m27<»-7m|r]727m,171,q- (57)
The result is independent af This is a sum ovem; con-
strained by

m+my+my+---+my_,+my_;=—q. (58

In every particular term in this multiple series, generally, we

will have multiples of terms],(MK). If M=0 andv#0,
such a term vanishes, while if both M amddo not vanish

subject to given values ah, m’, andq. For this purpose
strings with alternating X” and “1” are constructed.
The “X” represent factors]ml,mm(—M,K) where M,

=m+3|_,m, and we have to choose the; so that the
Jml,ml+1(—M|K) are of maximal magnitude. Consider the
string

Iy (~MIK)J (=M144K)

M M= My

xJ (=M42K)J (=M3K) ...

(62)

where the factors eXp- (02/2)m|2) were omitted for the sake
of brevity. Requiring that the second and fourth factors are
“1” yields my ,=m;., andm; 3=m,, as well asM,
=M,,3=0. Therefore Mi=—m;,; and M, ,=m,,
=-—my 3. This implies M ;=M ,=—M 3= =M,
=m*, and this string takes the form

I (MFK) Jo(0) e (—MFK)I(0) - ..

M2~ M3 M 37 Mg

(63

Continuation of the string to the left requires =—m*.
The factors ‘K" are Jopw(—M*K)=J_, «(M*K)
=J,+(M*K). For each value oK we choose the value of
m* so that|J,« (Mm*K)| is maximal, namely,

|‘J2m*(m*K)| :ma)dJZm(mK)L

m

(64)

Now one is left to match this string to the ends that are
determined bym, m’, andg. The term(57) is the sum of
terms of the form

JV(MK)~(1/\/R). The leading contribution is from se- C(')(m,m*)[JZm*(m*K)exp(—ozm*z)]”'c“)(m*,m’,q),

guences with the maximal number of factagg0)=1. To
identify these, we denoté,(0)=1 by “1” and other factors
by “x.” In this way, to every term in Eq(57) corresponds
the sequence af symbols

XEXFLHF X* X XFL* X*L* XFXr - * L XrX, (59
A crucial restriction is that iim#0, two “1” symbols can-
not be nearest neighbors as is shown in what followsn If
#0 the sequence starts withx™ as is clear from Eq.(57).
Let theith symbol be “1.” Then

‘Jmi_lfmi((_ml_mz_'"_mi—l)K):JO(O)- (60)
The previous term is
I, ,-m_ ((=mp=my— - —m;_5)K). (62)

For both to bely(0) it is required tham;_,;=0, andm;_,
—m;_,=0, implying m;_,=0 resulting in

Jmi73((—m1—m2— e _mi_3)K):0,

for m,_3#0. Therefore if the term before théh one is “1”

(and we have two neighbors that are “1"sitherm;_3, and
all m; with j<i—2, vanish and all factors before tht are
“1"s, in contradiction with the fact that fom+#0 the se-

guence starts with ar, or the contribution of the sequence

vanisheg when one of then; does not vanish Now one has

(65

wheren’ is an integer of the order/2. The string(63) is of
period 4, and therefore the end terms are also of period 4 in
n. One can always find enough valuesngfin the beginning

and in the end of strings in Eq57) so that they take the
form (65). The end term<"(m,m*) and C((m*,m’,q)

are sums of the contributions of these. Some of the con-
tributions to the end terms are presented in Appendix B. The
end terms do not affect the resonance. Therefore the largest
resonance associated with the fast decaying modes, corre-
sponding to the slowest one, is up to the fourth root of the

identity
7= "\/ Jom+ (M*K)ex —?m*z ,

independent o, m’, andg. The reason that is determined
only up to the fourth root of the identity is the period 4 of the
string (63). The resonances associated with the other fast
decaying modes cannot be determined in the framework of
the perturbative expansion of the present work.

The Frobenius-Perron operator is the evolution operator

U in the limit of vanishing noise. Therefore the Ruelle reso-

nances are the poles of matrix elements of the resoRént
this limit. They form several groups. There is

(66)

Zozl,

(67)
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which is related to the equilibrium state found for=m’ For a chaotic system, for largeit is expected to decay as
=qg=0. The resonances corresponding to the relaxation o
modes related to the diffusion in the angular momentum Cig(n)~e ", (75)

space are given b . . .
P g y and the relaxation ratg is computed numerically from plots

K2K 2 of Ctg(n) as a function ofn. In what follows the distribu-
zk:exp( ———[1-23,(K)] | (68)  tionsg andf will be selected from the Fgurier bagig) so
4s that y is expected to take the valueg or y. Relaxation of

the form(75) is expected to hold in the chaotic component.
An efficient way to calculate correlation functions liké4)
projected on this component is from a trajectory in phase
~ space. By ergodicity it samples all phase space in this com-
2= \Jams (MFK), (69) ponent. The phase space integrals involved in the calculation

Finally, the largest resonance related to relaxation inéhe
direction is, up to the fourth root of the identity,

wherem* is chosen so that the expression is maximal for a?f Eq. (74 are rep_laced by time av_erages_a_lo_ng the trajec-
given value ofK. The corresponding relaxation ratgs and ory. The trajectories were started in the vicinity of the. hy-
= _ perbolic point ¢r,0) and iterated for a large number of time

y are defined by steps,N. It was verified for several cases that the results
“equilibrize,” namely, they do not depend ax for largeN.

-
z=e ™ (70 The correlation function is calculated from the formula
and by N
- Ciq(n)= lim EE f(i)g(i+n) (76)
[z|=e"7, (71) K N N iZ1 '

leading toy,=|Inz| andy=|In[Z||. The last resonance may wheref(j) andg(j) are the values dfandg at thejth time
take the four values step. We first calculate numerically the slow relaxation rates

y« (70) related to diffusion and then turn to calculate and

z=xe7, (72) (71 related to relaxation in thé direction.
and A. The Diffusive Modes
7= +ie 7. (73 The relaxation rates expected from the approximate cal-

culations of Sec. Il for the diffusive modes are given by Eq.
The perturbative calculation enables one to compute |&|h.ly (68) or
2
IV. NUMERICAL EXPLORATION OF RELAXATION yk=k—2D(K), (77)

S
In Sec. lll the Ruelle resonances were calculated for large

K and extrapolated from finite to vanishing variance of theyhereD (K) is the diffusion coefficient4) for o=0. To test
noiseo. Finite noise has the effect of truncation of the ma-thjs relation, the correlation functiof74) was calculated for
trix of the FP operator and the limi#r—0 is the infinite  various distributiongy andf from the Fourier basi¢7) and
matrix limit. In the limit K—o complete stochasticity takes plots like the ones presented in Fig. 1 were prepared. The
place, while for finiteK the system is a mixed one, but for slope isy, and the values oD (K) are extracted with the
large K the chaotic component covers nearly all of phasenelp of Eq.(77) for various values ok ands. In Fig. 2 these
space. The results of Sec. Il were obtained as the leadingg|yes ofD(K) are depicted for large values of the stochas-
terms in an expansion in powers ofyK. In the present ticity parameterk. Excellent agreement with the theory is
section, the results will be tested numerically for fit@nd  found: (a) The value oD is found to be independent kfand
o=0. The phase spad6) with various values of will be s (b) It agrees with the theoretical predictigd). We find
used. The resonances of the ty{@), corresponding to dif- indeed that for long time the behavior of distributions is
fusion in angular momenturd and of the type(71) corre-  indeed the same as that for a diffusive process. In the past it
sponding to relaxation in thé direction will be calculated was found only that the second moment of the momentum
numerically from the relaxation rates of various perturba-grows linearly as expected for diffusion. The effect of stick-
tions to the uniform invariant density. For largethe relax-  ing to the accelerator modes was not observed for the values
ation of the diffusion mode€70) (with smallk) is slow and  of K used for Fig. 2 since the size of the accelerated region is
these dominate the long time behavior. To see the angulaimall and therefore special effort is required to observe these
relaxation modeg71) one has to eliminate the slow relax- effects in numerical calculatio4d5]. These are expected to
ation. This can be done either by the choice of smalt by  be important for relatively small values &f where the ac-
the use of distributions that are uniform in the momentum celerated regions are larger.
Evolving an initial distributiong for n time steps and pro-  In Fig. 3 the correlation function is plotted for relatively
jecting it on a distributiorf defines the correlation function small values of the stochasticity paramekewhere larger
. deviations from the theory presented in Sec. Ill are expected.
Cig(n)=(f|U"g). (74)  The diffusion coefficient as a function f is presented in
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FIG. 1. The functionC¢4(n) (semilogarithmic plat for (&) f=g= ¢4, K=20, s=370; (b) f=g= ¢y, K=30, s=900; (c) f=g
= ¢p50, K=40,5=3200;(d) f= 15, g= ¢13, K=27,5=450. The dashed line represents the best fit to the data. The number of iterations

is N=8x10°.

Fig. 4. Deviations of the numerical results from the analyti-the same. Therefore the behavior that is found is indeed dif-

cal predictions are found for some valuesofAlso for these

fusive, but the value of the diffusion coefficient for some

the decay of correlations is found to be exponential and thgalues ofK is larger than the one that is theoretically pre-

diffusion coefficient extracted for all modes by E@7) is

3000r
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FIG. 2. The diffusion coefficienD for K=10 as found from

100

120

plots like the ones presented in Fig. 1 for the first méd&)]
(squares the second modé¢l(b)] (starg, the fifth mode[1(c)]
(circles, correlation function for the off-diagonal first mofi&(d)]
(pentagramand other off-diagonal correlation functioftsangles,

compared to the theoretical valgsolid line).

dicted. This is a result of stickin@or finite time9 to accel-
erator modes. For most values Kfthe value ofD found
from Eq.(77) agrees with the one found from direct evalua-
tions of trajectories in the chaotic component. The theoretical
errors(marked by the dashed line in Fig) were estimated
from the next term of the formula of Rechester and White for
the diffusion coefficienf14]. The actual errors are larger due
to the nonperturbative nature of the accelerator modes and
the surrounding regionuch modes cannot be found in an
expansion in 1YK). Since in all calculations only trajecto-
ries belonging to the chaotic component were propagated,
real acceleration is avoided. The trajectories used in the cal-
culation of the correlation function by E{76) effectively
generate a projection on the chaotic component of phase
space.

B. Angular Relaxation

In order to observe the angular relaxation mode it is re-
quired that no relaxation in thé direction be present, be-
cause such a relaxation, if present, would be expected to
dominate the long time limit. Since the results are indepen-
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dent ofs, we uses=1. For this purpose we takg= ¢

[see Eq(7)] so thatg=k/s is an integer, and= ¢,. From
Egs. (69 and (71) one concludes that the slowest of the

angular relaxation rates is

200

1501

100y

50

FIG. 4. The diffusion coefficienD for K<20 as found from

20

25

plots like the ones presented in Fig. 3 for the first méd&)]
(squares the second modé¢l(b)] (stars, the fifth mode[1(c)]

(circles and off diagonal first modgl(d)] (pentagram compared

approximate error. The values Dfobtained by direct simulation of

propagation of trajectories are marked by diamonds.

~ 1
7= 5 In[mast|Jpms (M K) )]

(78

The absolute value of the correlation functiGgy(n) is pre-
sented in Figs. 5 and 6 fay= ¢o, and f= ¢y, and forg
=f=¢y,, respectively, for several values Kf The numeri-

cal calculations are complicated since the relaxation is fast,
with a characteristic time of the order of one time step.
Moreover, there are oscillations of the correlation function,
while Eq.(78) is just the envelope. In Figs. 5 and 6 the best
fit to the envelope is marked by a dashed line. The slope of
the dashed line is the numerical estimate for the relaxation
rate. In Fig. 7 the numerical estimate is compared with the
theoretical prediction. The error in the theoretical prediction

is estimated as the value of the next order contributics,to

This results from a term where the “1”s in sequences cor-

responding to Eqg63) and(65) are replaced by anx” that
represents a Bessel function of order/H/ leading to an
error of the order In(x1/\K) in the relaxation rate. It is

difficult to estimate the error resulting from the numerical
procedure of calculating the relaxation rates. The reason is
that near the origin of the correlation function a large number
of modes contribute. On the other hand, in the tail of the
correlation function, where only one relaxation rate is domi-
to the theoretical valuésolid line). The dashed line represents the nant, the signal is too small. Nevertheless, the comparison
between our numerical and theoretical results shows a good

qualitative agreement.
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V. SUMMARY AND DISCUSSION

whereJ; and 6; are the momentum and angle before itre
Relaxation to equilibrium was studied for the kicked rotor kick. For a chaotic trajectory

that is a standard system for the exploration of classical Sing: sin@:)=(sin 6~sinb:_.Y=Co(li —i 80
chaos in driven systems and its quantum mechanical sup- (sing; sing;)=( osindli—j)=Cu(li=iD. (80

pression. Relaxation and diffusion are important concepts iyhere C(|i —j|) is the correlation function74) with f
statistical mechanics. Here they were studied for a mixe L 0,

- : , - . If the sum =;_,C(i) converges, as is the case
chaotic system. Very little is known rigorously about such

systems, although most models describing real physical SywhereCff falls off exponentially, diffusion is found and the

) . . Yalue of the diffusion coefficient is
tems are mixed, namely, in some regions of phase space thée
motion is regular while in some regions it is chaotic.

2
In this work the kicked rotor was studied in a phase space D= K_
that is the torus defined by the inequal{8). The relaxation 2
of distributions in phase space takes place in stages. First, the

inhomogeneity ind decays with rapid relaxation rates, the In Appendix C we show that Eq50), which was obtained

slowest of them isy. Then relaxation of the inhomogeneities by Rechester and White 4], is just
in the J direction takes place with the relaxation rates related

2 Cirli). (81

2 2
to the diffusion coefficient via Eq(77). Diffusion was pre- D= K2 > Cyli). (82)
viously believed to be a good approximation for the kicked i=-2
rotor, but here, to the best of our knowledge, the various time

scales were analyzed carefully for the first ime. In particular® derivation that is very similar is presented [i28]. If the
we have found the time scaleji/below which the diffusion sum diverges one obtains anomalous diffusion.

o ” X ) Finite noise leads to the effective truncation of the evolu-
approximation doe_s not_hold since relaxation of correlatlon§ion operator(21). In the basis7) it means that it results in
in the angle direction still takes place. '

There is a clear relation between the relaxation of inholimited resolution. Moreover, fowr>0 the operatot is
mogeneities inp and the diffusion constant since nonunitary. The approximate eigenvaluesbfjiven by Eq.

(21), which were found in this work, are 1 ad of Eq. (49)
[if inequality (40) is satisfied andz of Eq. (60). In our ap-

n
Jni1—Jd0)%) = K2(sing; siné;), 79 N . ;
(n1730)7 i,jE:O {sind; sin6;) (79 proximation method we could not obtain many eigenvalues
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related to angular relaxation modes. Because of the effeCtiVQnd}' approach the values of the po|es of the matrix elements

truncationy,, an eigenfunction olJ can be expanded in of the resolvenR of Eq. (25) obtained from the extrapola-
terms of the basis state(gl The relaxatlorlrates of these tion from |z|>1 (corresponding to the ©e—0, which is
states are-In(z) and—In(|z|), wherez, andz are given by  used in the standard definition of the Green’s fundtion
Egs.(49) and(66). In the limit c— 0, the evolution operator ~ These are the Ruelle resonances that are related to the
is unitary; ., approaches some generalized function while relaxation rates via Eq$70) and(71). This is very similar to
the situation for hyperbolic systems such as the baker map.
1.67 For hyperbolic systems the Ruelle resonancekted to the
| relaxation ratesapproach fixed values inside the unit circle
in the complexz plane in the limit of an infinite matrix for
the evolution operator or of infinitely fine phase space reso-
lution. This was found to be correct here also when one takes
the limit c—0 in Egs.(49) and (66) resulting in Eqs(68)
and(69). Numerical tests in the absence of noise confirm that
the analytical results provide a good approximation for the
relaxation to equilibrium and diffusion in the chaotic com-
ponent. Results of a similar nature were found in the stan-
dard map withs=1 for some values ok [19], for the “per-
turbed cat” mag19], and also for the kicked tof20]. In all
0 ‘ ‘ , , ‘ these works it was found, within the approximations used,
10 12 14 K 16 18 20 that the leading resonances are either real or form the quartet
(£A,xiA), whereA is a real number satisfying<0A<1.
FIG. 7. The fast relaxation raig as found from plots like Figs. 1 ne generality of this form should be subject to further re-
5 and 6 forf = ¢gy, g= o, (triangles, f=dg,, g= o, (circleg,  Search. For the kicked top it was attribufed] to the domi-
f=g= ¢, (stars and f =g= ¢, (squarel compared to the theo- Nance of an orbit of period 4.
retical value(78) (solid line). The dashed lines denote the theoreti-  In mixed systems, such as the kicked rotor, even in the
cally estimated error. Here we usseét1 andN=10%. chaotic components there is sticking to regular islands and
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acceleration modes. Noise eliminates this sticking. The anaand by the Fund for the Promotion of Research at the Tech-
lytic formulas (68) and (69) are obtained from an expansion nion. One of ug(S.F) would like to thank R.E. Prange for

in powers of 1{K for a finite variance of noise? and the the hospitality at the University of Maryland, where this
limit 0®>—0 is taken in the end of the calculation. A nonva- work was completed.

nishing value ofo? assures the convergence of the series

(57). Appearance of the islands and the sticking are nonper-

turbative effects and therefore are not reproduced in ouf\PPENDIX A: MATRIX ELEMENTS OF THE EVOLUTION
theory. For this reason, in the absence of noise the results are OPERATOR IN THE PRESENCE OF NOISE

only approximate. The effect of the sticking is extremely
small for most values of the stochasticity parame{eras
verified by the numerical calculations without noise.

The physical reason for the decay of the correlations is
that in a chaotic system, because of the stretching and fold-
ing mechanisms, there is persistent flow in the direction ofk,m,|0|k,m,)
functions with finer details, namely, larggsd and|m| in our
case. Consequently, the projection on a given function, for 2m 2ms em o [27s
example one of the basis functioli®) in our case, decays :f def deo do fo dJ’ (kom,|J6)

[20,29. The crucial point is that this function should be suf-

ficiently smooth. This argument should also hold for the cha- X (360]Unoisdd’ 0')(3"6'|Uykimy). (A1)
otic component of mixed systems. In the present paper the

actual relaxation rates were calculated. Here noise was used )

in order to make the analytical calculations possible. In reaPubstitution of Eqs(18) and(19) yields

experiments some level of noise is present, therefore the re-

sults in the presence of noise are of experimental relevance. ) o

It was shown with the help of the Cauchy-Hadamard theo J' i f i T

rem [27] [see the discussion following E¢B2)] that fors Tkama|Okymy) = do dJ 40" = \/_ 2rs
>K>1 exponential relaxation to the invariant density takes

place with the ratey;=D(K)/s?, whereD(K) is given by X expl —im 0)exp{i —sz)

Eq. (4). It was deduced from the radius of convergence for 2 S

the series of the matrix element B [see Eq.(29)]. This 1

rate is independent af. It is found for all functions that can X 2 —expim(6’— 6))

be expanded in the bagg), with an absolutely convergent m 2m

expansion. It excludes, for example, functions of the form 5
(22). We believe this statement can be made rigorous by ><exp< —imJ— U—m )
experts.

For the baker map it was found that the resolvent of the
evolution operator of the quantum Wigner function, when
coarse grained, has the same poles as the classical Frobenius-
Perron operatof21]. We believe it should also hold here.
The fact that the Ruelle resonances of the modes of slow
relaxation arez,, which are identical to the ones of the dif-
fusion operator, gives additional support to approximationsterms containingd are exgim(— 6))exp(—im,6). Integra-
made for the calculation of the ensemble averaged localizaion over 6 yields S, ~m, leading to
tion length in[24].

Finally, the Ruelle resonances, which were introduced
and established rigorously for hyperbolic systems, can be 2ms —k,J
used to describe relaxation and transport in the chaotic com- (k2m2|U|k1ml)— J dJ d&’ i )
ponent of mixed systems. Here it was demonstrated for the V2 S
kicked rotor.

In this appendix the matrix elements in the representation
(7) are calculated. For this purpose EZ0) is transformed to
the Fourier representation by

o o
><exp(im10’)exp( [ %(J"‘K sine’)).

(A2)

1
><27T exp(—im,6")
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(el Olkumy) = 5 [ a0 exp(—i(m;—my) o)
2 0

0'2 2
Xexp — - m;

Ko
><exr<|€K sing >6k2kl,mzs. (A4)

Finally, with the help of the integral representation for

Bessel functions:
1 (2=
Jm(z)=—J doexp(—imé@)expiz sing),
2 0

one obtains Eq(21).

APPENDIX B: END TERMS IN STRINGS
OF THE FAST MODES

. . . . . ff
In this appendix, possible examples for contributions to

the end terms in the expressiofb) are presented. The left
end term is a sum of terms of the form

cO(m,m*)

= Jomemrs (= MK)I_ o (M*K) Jo(0)

0_2
xexr{ - 7(m2+(m+ m* )2+ m*z)}

+ 2 I
my

><‘me72m*7m1(m~kK)‘JO(O)

—m K)‘]2m1+m+m* (( —m-= ml)K)

o 2 2 * 2 k2
X ex —?(m +mit(m+m*+my+m*9)| ...,

(B1)

where in the first terrm;=(m+m*) and m,=mz=m"*,
while in the second termm,=—(m+m*+m,;) and my
=m,=m*. Forg#0 the right end term is a sum of terms of
the form
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c(m*,m’,q)

- 2 ‘JZm*+m 1+q( m* K)

Mp—1

X J—m* —2mn71—q((mn—1+ Q)K)‘]mnfl—m'(qK)

0-2 * 2 * 2 2
X ex —?(m +(mM*+m,_+q)+mi_)| ...,

(B2)

where m,,_, (m*+m,_;+q) and m,_z=m*. For q
=0 one has to taken,_;=m’ and the end term consists of
a sum ovem,_,.

APPENDIX C: RELATION BETWEEN THE DIFFUSION
COEFFICIENT AND CORRELATION FUNCTION

In this appendix the relation between E¢82) and (50)
will be derived(for a somewhat similar derivation sg28]).
For this purpose we note that

20d@ (27s dJ
f f —smHU”sma

-(0,4]0"|0,1) -

(CY

1
_Z[(O’_ 1

where the representatidik,m) [see Eq.(7)] is used. The
matrix elements ofJ are given by Eq(21) and the matrix
elements ofJ? required for the present calculation are

. 22
(0,m,|U2[0,my) = I (—MoK)e™ 7 ™28y, i, (C2)

as can be easily obtained from the multiplication of two ma-
trices of the form(21). From Eq. (Cl) it is clear that
Cs:(0)=3. Inspecting Eq(21) with k;=k,=0, one notes
that it |s requwed that alson;=m,=0, thereforeC;;(1)
=0. Substitution of Eq(C2) in Eq. (C1) yields

1
Cit(2)= 5 3(K)e " (€3
Using the fact thatC:¢(—n)=C;¢(n), substitution of the
values ofC;:(0) andCs;(2) into Eq.(82) yields the expres-
sion (50) that was obtained by Rechester and WHitd].
Because of the discussion following the expressia®) the
correlation function€;(n) with n>2 lead to terms that are

of higher orders in /K than Eq.(50).
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