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Relaxation to the invariant density for the kicked rotor
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The relaxation rates to the invariant density in the chaotic phase space component of the kicked rotor
~standard map! are calculated analytically for a large stochasticity parameterK. These rates are the logarithms

of the poles of the matrix elements of the resolvent,R̂(z)5(z2Û)21, of the classical evolution operatorÛ.
The resolvent poles are located inside the unit circle. For hyperbolic systems this is a rigorous result, but little
is known about mixed systems such as the kicked rotor. In this work, the leading relaxation rates of the kicked
rotor are calculated in the presence of noise, to the leading order in 1/AK. Then the limit of vanishing noise is
taken and the relaxation rates are found to be finite, corresponding to poles lying inside the unit circle. It is
found that the slow relaxation rates, in essence, correspond to diffusion modes in the momentum direction.
Faster relaxation modes intermix the motion in the momentum and the angle space. The slowest relaxation rate
of distributions in the angle space is calculated analytically by studying the dynamics of inhomogeneities
projected down to this space. The analytical results are verified by numerical simulations.

PACS number~s!: 05.45.Ac
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I. INTRODUCTION

For chaotic systems specific trajectories are extrem
complicated and look random@1#. Therefore it is natural to
explore the statistical properties of such systems. For
purpose the evolution of probability densities of trajector
in phase space is studied@2–4#. For chaotic systems, th
probability densities approach an equilibrium density that
pends only on the system and not on the initial density.
hyperbolic systems (A systems!, like the baker map, the re
laxation is exponential. For such systems the existence o
relaxation rates was rigorously established and the relaxa
rates are the Ruelle resonances@5–7#. To study these rates i
is instructive to introduce the evolution operator of densit
that is sometimes called the Frobenius-Perron~FP! operator.
Relaxation to the equilibrium density is studied traditiona
in statistical mechanics. In particular, for particles perfor
ing a random walk in a finite box, relaxation to the equili
rium uniform density takes place and is governed by the
related to the lowest nontrivial mode of the diffusion equ
tion. It is known that for the classical kicked rotor, describ
by the standard map, diffusive spread in phase space t
place for a sufficiently large stochasticity parameter@8,9#.
Therefore it is natural to study the Frobenius-Perron oper
for the kicked rotor and to compare it to the diffusion ope
tor, a comparison that enables one to study some aspec
chaotic dynamics in the framework of statistical mechan
@10#. The kicked rotor model is a paradigm for the chao
behavior of systems where one variable is unbounded in
phase space. For such classical systems, diffusive sprea
takes place. For their quantum counterparts it is suppre
by interference effects, leading to a mechanism that is sim
to Anderson localization in disordered solids@11–13#.

The kicked rotor is defined by the Hamiltonian~in appro-
priate units!
PRE 621063-651X/2000/62~4!/4769~15!/$15.00
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2
J21K cosu(

n
d~ t2n!, ~1!

whereJ is the angular momentum,u is the conjugate angle
(0<u,2p) andK is the stochasticity parameter. Since t
angular momentum between the kicks is conserved,
equation of motion generated by the Hamiltonian~1! reduces
to a map, known as the standard map

ū5u1 J̄, ~2!

J̄5J2K sinu, ~3!

where u and J are the angle and the angular momentu
before the kick, whileū andJ̄ are these quantities just befor
the next kick. ForK.Kc'0.9716, diffusion in phase spac
is found, and for largeK the diffusion coefficient is given by
an expansion in 1/AK as @14#

D~K !5
K2

4
@122J2~K !1 . . . #. ~4!

To be precise, it was shown that after a large number
kicks n, the variance of the momentum behaves as

^~J2^J&!2&;2Dn, ~5!

where^•••& denotes an averaging over the angle initial d
tribution, andD is given by Eq.~4!.

It is assumed that the system evolves in the presenc
finite noise and the limit of the vanishing noise is taken
the end of the calculation. The noise is required here in or
to get well defined results. It leads to escape from the ac
erator modes and other stable islands. Accelerator mo
where the angular momentumJ grows linearly with time, are
found for values ofK and the initial values (u0 , J0) of the
4769 ©2000 The American Physical Society
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angle and the angular momentum, which satisfyK sinu0
52p l 0 and J52p l where l and l 0 are integers. In such a
situation, at each stepJ grows by 2p l 0, as is obvious from
Eqs. ~2! and ~3!, namely, its growth is linear in time. Fo
some values ofK the point (u0 , J0) is stable and also fo
initial conditions in its vicinity the momentum grows lin
early. This differs from diffusion, which takes place in th
chaotic component of phase space. For trajectories in
chaotic component of phase space, noise avoids long
sticking in the vicinity of islands of stability@15#. In numeri-
cal calculations without noise, diffusion was found forK
.Kc for trajectories in the extended chaotic component
large values ofK; however, some exceptions were also
ported @15#. The diffusion coefficient~4! was calculated in
the presence of finite noise~in the long time limit! and the
limit of the vanishing noise can be taken in the end of
calculation@14#. It describes the typical spreading of traje
tories in the chaotic component. Since the kicked rotor i
mixed system, as is the case for most physical examples
rigorous mathematical theory for relaxation@5,3,2# does not
apply and one has to resort to heuristic methods.

In the present paper@16#, the Frobenius-Perron operato
will be calculated for the kicked rotor on the torus:

~0<J,2ps!, ~6!

~0<u,2p!,

wheres is an integer. This is reasonable since the map@Eqs.
~2! and~3!# is 2p periodic in both inJ and inu. The operator
is defined in the space spanned by the Fourier basis as

fkm5~Juukm!5
1

A2p

1

A2ps
exp~ imu!expS i

kJ

s D . ~7!

Note that the functionsfk0 form the basis of eigenstates o
the diffusion operator in the angular momentumJ. The FP
operator for an area preserving and invertible map,

x̄5M ~x!,

is

Ûr~u,J!5r„M 21~u,J!…. ~8!

It was studied rigorously for the hyperbolic systems a
many of its properties are known@2,3,5,17,18#. It is a unitary
operator inL 2, the Hilbert space of square integrable fun
tions. Therefore its resolvent

R̂~z!5
1

z2Û
5

1

z (
n50

`

Ûnz2n ~9!

is singular on the unit circle in the complexz plane. The
matrix elements ofR̂ are discontinuous there and one finds
jump between two Riemann sheets. This results from the
that the spectrum is continuous and infinitely degenerate@2#.
The sum~9! is convergent foruzu.1, therefore it identifies
the physical sheet as the one connected with the regionuzu
.1. ~This is analogous to the sign of the small imagina
increment in the energy that is used in the definition of
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Green function!. The Ruelle resonances are the poles of
matrix elements of the resolvent, on the Riemann sheet,
trapolated fromuzu.1 @17#. These describe the decay o
smooth probability distribution functions to the invarian
density in a coarse grained form@3,5#. Even a smooth initial
distribution will develop complicated patterns as a result
the evolution of a chaotic map. The Ruelle resonances
scribe the decay of itscoarse grainedform to the invariant
density. In spite of the solid mathematical theory there
very few examples where the Ruelle resonances were ca
lated for specific systems. They were calculated analytic
for the baker map where the basis of Legendre polynom
was used@17# and its various variants@3#. The Ruelle reso-
nances were also calculated for the ‘‘cat’’ map and some
its variants @18#. Blum and Agam applied a variationa
method for the calculation of the leading Ruelle resonan
of the ‘‘perturbed cat’’ map, and the results were verifi
numerically @19#. In addition, they calculated the leadin
resonances of the standard map withs51 for various values
of the stochasticity parameterK. The leading Ruelle reso
nances for the kicked top were calculated by Weber, Haa
and Šeba @20# with the help of a combination of a cycl
expansion and numerical calculations. The resonances m
tioned above are not related to the spectrum of the Liouv
operator that is confined to the unit circle because of
unitarity.

In the present work, the FP operator is calculated for
kicked rotor. Here the classical evolution operator, for o
time step, can be written in the form

ÛKR5d~ū2u2 J̄!d~ J̄2J1K sinu!, ~10!

and its operation on a phase space densityr is

Ûr~u,J!5r„u2J, J1K sin~u2J!…. ~11!

To make the calculation well defined, noise is added to
system. It is shown that the noise acts effectively as coa
graining and the resulting FP operator is not unitary~see also
@21#!. For large stochasticity parameterK, we show that the
slowest relaxation modes in the limit of infinitesimal noi
are the modes of the diffusion operator in the angular m
mentum space. Also calculated is the slowest rate of re
ation in the angle space. The approximate analytical res
are tested numerically.

It is understood that the noise is kept finite when the li
its of largeK ands are taken and then the limit of zero nois
is taken. The natural question is whether it is possible t
this description, which was established only for hyperbo
systems, also holds for mixed systems. Clearly, for mix
systems it can only be approximate. It holds for large valu
of the stochasticity parameterK since then most of the phas
space is covered by the chaotic component. For smaller
ues ofK the weight of the regular regions increases. In su
a situation, in the limit of increasing resolution the res
nances related to the regular component are expecte
move to the unit circle in the complexz plane, corresponding
to the quasiperiodic motion, while the resonances associ
with the chaotic component stay inside the unit circle. T
was found by Weber, Haake, and Sˇeba @20# for the kicked
top that is a mixed system.
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How is the FP operator related to the quantum mechan
evolution operator? It was shown numerically for the ba
map that if both operators are calculated with finite reso
tion they exhibit the same Ruelle resonances@21#. In this
calculation it was assumed that the phase space coarse g
ing tends to zero in the semiclassical limit\→0. It was
shown by Zirnbauer@22# that some noise is required for
meaningful definition of the field theories introduced
study level statistics for chaotic systems@23#. This noise af-
fects only quantum properties; therefore, the resulting
semble has the same classical FP operator. The localiza
length of the kicked rotor calculated from this field theo
@24# is related to the classical FP operator. This operato
analyzed in the present work, clarifying some issues of t
work. The results hold only for typical quantum system
since the noise introduced in the present work as well as
noise required for the stabilization of the field theory@22#
washes out the sensitive quantum details, such as the nu
theoretical properties of the effective Planck constant@25#.

The Frobenius-Perron operator in the basis~7! in the pres-
ence of noise is defined and calculated in Sec. II, its Ru
resonances are obtained within some approximations in
III and their regime of validity is tested numerically in Se
IV. The results are summarized and discussed in Sec. V

II. THE EVOLUTION OPERATOR OF PHASE SPACE
DISTRIBUTIONS

In this section, the evolution operator of phase space d
sities of the kicked rotor in the presence of some type
noise is derived. The noise is added to the free motion
~2!. In the absence of noise the phase space evolution
distribution f is given by Liouville equation

d f

dt
5

] f

]t
1 u̇

] f

]u
1 J̇

] f

]J
50. ~12!

If noise that conservesJ, and leads to diffusion inu, is added
to the free motion, Eq.~12! should be replaced by

] f

]t
1J

] f

]u
2

s2

2

]2f

]u2
50, ~13!

whereJ5 u̇ was used. It can be written as

] f

]t
5Âf , ~14!

where the operatorÂ is

Â52J
]

]u
1

s2

2

]2

]u2
. ~15!

The complete set of its eigenfunctions is given bywm

5(1/A2p)exp(imu), wherem is an integer. The operator w
need isÛnoise5eÂ, and explicitly

~J8u8uÛnoiseuJu!5(
m

wm~u8!wm* ~u!exp~am!d~J2J8!,

~16!
al
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where theam are the eigenvalues of the operatorÂ, namely
Âuwm)5amuwm). Obviously

am52 imJ2
s2

2
m2 ~17!

leading to

~J8u8uÛnoiseuJu!5(
m

1

2p
expS im~u82u2J!2

s2

2
m2D

3d~J2J8!. ~18!

The d function in momentum reflects the fact that the no
does not affect the momentum. The matrix eleme
(k2m2uÛuk1m1) of the evolution operatorÛ in the Fourier
basis~7! will be calculated in two steps, first the contributio
of the kick, and then the one of the free motion with noi
will be calculated. According to Eqs.~3! and ~11!, the kick
transforms the state

~Juuk1m1!5
1

A2p

1

A2ps
exp~ im1u!expS i

k1J

s D
to the state

1

A2p

1

A2ps
exp~ im1u!expS i

k1

s
~J1K sinu! D

[~JuuÛKuk1m1!. ~19!

Adding the effect of noise yields the matrix element in t
mixed representation

~JuuÛuk1m1!5E
0

2p

du8E
0

2ps

dJ8~JuuÛnoiseuJ8u8!

3~J8u8uÛKuk1m1!. ~20!

Its transformation to the basis~7! is calculated in Appendix
A and the result is

~k2m2uÛuk1m1!5Jm22m1S k1K

s DexpS 2
s2

2
m2

2D dk22k1 ,m2s .

~21!

For s50, using Eq.~21! one can verify by a straightforward
summation thatÛ†Û5I ; therefore, the operator is unitary a
required.

Some of the eigenfunctions ofÛ in the limit s50 are
easily found. It is convenient to use the representation~10! of
Û. We guess an eigenfunction of the form

F~u,J!5d~u2u0!(
l

exp~ iqJ/s!d~J22p l !, ~22!

with the q integer satisfying 1<q<s. These are functions
that are localized on accelerator modes representing lin
growth of the angular momentum with time. To check th
these are indeed eigenfunctions, we note that
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ÛKRF~u,J!5d~u2J2u0!(
l

d~J1K sinu022p l !

3expS i
q

s
~J1K sinu0! D , ~23!

taking u0 so that

K sinu052p l 0 ,

wherel 0 is an integer yielding

ÛKRF~u,J!5ei2pql0 /sF~u,J!, ~24!

since the right-hand side~RHS! of Eq. ~23! does not vanish
only for J52p l . The eigenvaluesei2pql0 /s lie on the unit
circle and become dense ass→`. There are more eigenfunc
tions of this form located on other periodic orbits@26#.

III. IDENTIFICATION OF THE RUELLE RESONANCES

The purpose of this section is to calculate the Ruelle re
nances for the kicked rotor with the help of the Frobine
Perron operator~21!. The calculation will be done for finite
noises and then the limits→0 will be taken. The Ruelle
resonances are the poles of matrix elements of the reso
operatorR̂ of Eq. ~9!,

R125„k1m1uR̂~z!uk2m2…5S k1m1U 1

z2Û
Uk2m2D , ~25!

when analytically continued from outside of the unit circle
the complex plane. It is useful to introduce the operator

R̂8~z!5
1

12zÛ
, ~26!

which is related to the resolvent by

1

z
R̂8S 1

zD5R̂~z! ~27!

and

1

z
R̂S 1

zD5R̂8~z!. ~28!

The matrix elements ofR̂ and R̂8 satisfy similar relations.
Continuing the matrix elements ofR̂(z) from the outside to
the inside of the unit circle is equivalent to continuing t
matrix elements ofR̂8(z) from the inside to the outside o
the unit circle. The last continuation is easier to study sin
the expansion

R̂8~z!5
1

12zÛ
5 (

n50

`

znÛn ~29!

is convergent inside the unit circle, because

uuzÛuu<1. ~30!

The resulting matrix elements are
o-
-

nt

e

R128 5„k1m1uR̂8~z!uk2m2…5 (
n50

`

anzn, ~31!

where

an5~k1m1uÛnuk2m2!. ~32!

Through Eqs.~27! and ~28! this expansion is related to ma
trix elements outside of the unit circle. Ifzc is a singularity
of R12, then 1/zc is a singular point ofR128 . Consequently the
first singularity of the analytic continuation ofR128 (z) from
the inside to the outside of the unit circle gives the fi
singularity one encounters when analytically continui
R12(z) from outside to inside the unit circle, i.e. it is just th
leading nontrivial resonance. This is the most interest
resonance determining the relaxation to the invariant dens
The first singularity in the extrapolation of the matrix el
ments ofR̂8 from the inside to the outside of the unit circle
determined from the fact that it is the radius of convergen
of this series. Moreover, according to the Cauchy-Hadam
theorem~see@27#! the inverse of the radius of convergence
given by

r 215 lim
n→`

supAn uanu. ~33!

If an;c/r n we may say that the radius of convergence is
asymptotic value ofan21 /an . This is the basis for the ratio
method for determining the radius of convergence. The re
nance that is closest to the unit circle can be identified fr
the radius of convergence.

We turn now to calculate the coefficientsan . First the
matrix elements„k0uR̂8(z)uk0… will be calculated. For these
the expansion coefficients are

an5~k0uÛnuk0!. ~34!

Introducing the resolution of the identity,

an5 (
k1 ,m1

(
k2 ,m2

. . . (
kn21 ,mn21

~k0uÛuk1m1!

3~k1m1uÛuk2m2!•••~kn21mn21uÛuk0!, ~35!

and substitution of the evolution operator~21! leads to

an5 (
k1 ,m1

(
k2 ,m2

. . . (
kn21 ,mn21

3J02m1S k1K

s D dk2k1,0Jm12m2S k2K

s D
3expS 2

s2

2
m1

2D dk12k2 ,m1s

3Jm22m3S k3K

s DexpS 2
s2

2
m2

2D
3dk22k3 ,m2s . . . Jmn2120S kK

s D
3expS 2

s2

2
mn21

2 D dkn212k,mn21s . ~36!
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Summation over theki yields

an5(
m1

(
m2

. . . (
mn21

J02m1S kK

s D
3Jm12m2S kK

s
2m1K DexpS 2

s2

2
m1

2D
3Jm22m3S kK

s
2~m11m2!K D

3expS 2
s2

2
m2

2D . . .

3Jmn222mn21S kK

s
2~m11m21•••1mn22!K D

3expS 2
s2

2
mn22

2 D Jmn2120S kK

s D
3expS 2

s2

2
mn21

2 D dm11m21•••1mn221mn21,0 .

~37!

Thus in order to obtain the expansion coefficientan we
should perform summation in Eq.~37! over all integers sub-
ject to the constraint

m11m21•••1mn2150. ~38!

We are interested in the limit of larges andK. The limits
are taken in the order

~1!s→`, ~2!K→`, ~3!s→0. ~39!

Finite s is required to assure the absolute convergence of
series. Therefore Eq.~37! is summed for finites and the
limit s→0 should be taken in the end of the calculatio
Having this limit in mind, the leading term inK/s and 1/AK
will be identified. It will be assumed that the mode that
calculated is sufficiently low so that

0,kK/s!1. ~40!

Each term in Eq.~37! is defined by the string

~m1 ,m2 , . . . ,mi , . . . ,mn21!.

The leading contribution

an
(0)5J0

nS kK

s D'S 12
k2K2

4s2 D n

~41!

results from the string where allmj vanish. A nonvanishing
mj results in a Bessel function with a large argument, sin
K/s!1 andK@1, and therefore it leads to a factor 1/AK in
the contribution toan . Let mi be the first nonvanishingmj
andmf the last nonvanishing one. The first factor in Eq.~37!
that is notJ0(kK/s) is J2mi

(kK/s), and the last factor tha

differs from J0(kK/s) is
e

.

e

JmfS kK

s
2~m11m21•••1mf !K D5JmfS kK

s D . ~42!

Since Jn(x)'(xn/2nn!) for small x and J2n(x)
5(21)nJn(x), the contribution of the terms betweeni andf
is of the order

CS kK

s D umi u1umf u

, ~43!

whereC is the contribution of the factors withmj that are not
the first and last ones. The first factor aftermi is

Jmi2mi 11S kK

s
2~m11•••1mi !K D5Jmi2mi 11S kK

s
2miK D

and the last factor beforemf is

Jmf 212mfS kK

s
2~m11•••1mf 21!K D

5Jmf 212mfS kK

s
2~mi1•••1mf 21!K D .

The terms in between are of the formJmj 212mj
„(kK/s)

2M jK…, where M j5mi1mi 111•••mjÞ0 that are of the
order 1/AK. Therefore the largest contribution from a strin
mi ,mi 11 , . . . ,mf is from the shortest string, namely,f 5 i
11. Because of Eq.~38! mi52mf and because of Eq.~43!
the leading contribution is from the stringmi52mf561.
The resulting contribution is

C5Jmi2mfS kK

s
2miK D5J62S kK

s
2~61!K D'J2~K !.

~44!

The string can start atn22 places, therefore the leadin
correction toan

(0) is

an
(1)52~n22!J0

n23S kK

s D J2S kK

s
2K D J1

2S kK

s De2s2
,

which is approximated as

an
(1)'2~n22!S 12

k2K2

4s2 D n23

J2~K !S kK

2s D 2

e2s2
. ~45!

The sum of the contributions~41! and ~45! is
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an
(0)1an

(1);S 12
k2K2

4s2 D n

12nS 12
k2K2

4s2 D n21

J2~K !

3S kK

2s D 2

e2s2S n22

n D F 1

12
k2K2

4s2
G 2

. ~46!

In the leading order@12(k2K2/4s2)#21'1 and

lim
n→`

n22

n
51.

Therefore in the leading order

an
(0)1an

(1);F S 12
k2K2

4s2 D 12J2~K !S kK

2s D 2

e2s2G n

5F12
k2K2

4s2
„122J2~K !e2s2

…G n

. ~47!

The resonance closest to the unit circle,zk , is identified from
Eq. ~33! as the inverse of the radius of convergence

zk512
k2K2

4s2
1

k2K2

4s2
2J2~K !e2s2

, ~48!

or within this order of the calculation as

zk5expS 2
k2K2

4s2
„122J2~K !e2s2

…D . ~49!

These are the eigenvalues of the diffusion operator with
diffusion coefficient

D~K !5
K2

4
„122J2~K !e2s2

…, ~50!

in agreement with the earlier results@14#.
The analysis of the off-diagonal matrix elements

an5~kmuÛnuk8m8! ~51!

is similar. We assume again inequality~40! and K@1.
Analogously to Eq.~37!, one obtains

an5(
m1

(
m2

. . . (
mn21

Jm2m1S kK

s
2mKDexpS 2

s2

2
m2D

3Jm12m2S kK

s
2~m1m1!K D

3expS 2
s2

2
m1

2D Jm22m3S kK

s
2~m1m11m2!K D

3expS 2
s2

2
m2

2D . . .

3Jmn222mn21S kK

s
2~m1m11m21 . . . 1mn22!K D
e

3expS 2
s2

2
mn22

2 D Jmn212m8S k8K

s DexpS 2
s2

2
mn21

2 D
3d (m1m11m21•••1mn221mn21)s,k2k8. ~52!

Because of the lastd function,anÞ0 only if (k2k8)/s5q is
an integer. The leading contribution results from the str
m152m, mn215q and all othermj vanish. It is therefore of
the form

an
(0)5BJ0

n24S kK

s D , ~53!

where

B5J2m~mK!J2mS kK

s D J2qS kK

s D Jq2m8S k8K

s D
3exp~2s2m2!expS 2

s2

2
q2D , ~54!

which behaves asan
(0) of Eq. ~41! in the largen limit. The

leading correction is found from neighboring pairsmi
52mi 11561 as in the case studied before with a res
similar to the approximation~45! for an

(1) in the largen limit.
Therefore no new resonances are found from the
diagonal terms withkÞ0, in the order of approximation tha
was used.

For s@1 the diffusion modes in momentum space cons
tute the slow degrees of freedom of the system. However,
faster relaxation modes~or, alternatively, the modes of a sys
tem with s'1) cease to be angle independent. To evalu
the magnitude of such a fast relaxation rate within our p
turbation scheme, we have to calculate matrix elements
sociated with the relaxation of disturbances from the inva
ant density that involve functions from the angular subsp
$u0,m)% with mÞ0. Consider, therefore, the matrix eleme

an5~0muÛnukm8!. ~55!

The equation corresponding to Eq.~36! is:

an5 (
k1 ,m1

(
k2 ,m2

. . . (
kn21 ,mn21

~0muÛuk1m1!

3~k1m1uÛuk2m2!•••~kn21mn21uÛukm8!

5 (
k1 ,m1

(
k2 ,m2

. . . (
kn21 ,mn21

Jm2m1S k1K

s D
3expS 2

s2

2
m2D d2k1 ,msJm12m2S k2K

s D
3expS 2

s2

2
m1

2D dk12k2,m1sJm22m3S k3K

s D
3expS 2

s2

2
m2

2D dk22k3,m2s•••Jmn212m8S kK

s D
3expS 2

s2

2
mn21

2 D dkn212k,mn21s ~56!
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and summation over theki yields a nonvanishing result onl
if k/s[q is an integer. In this case,

an5(
m1

(
m2

. . . (
mn21

Jm2m1
~2mK!

3expS 2
s2

2
m2D Jm12m2

„~2m2m1!K…

3expS 2
s2

2
m1

2D Jm22m3
„~2m2m12m2!K…

3expS 2
s2

2
m2

2D . . .

3Jmn222mn21
„~2m2m12m22•••2mn22!K…

3expS 2
s2

2
mn22

2 D
3Jmn212m8~qK!expS 2

s2

2
mn21

2 D
3d2m2m12m22•••2mn222mn21 ,q . ~57!

The result is independent ofs. This is a sum overmi con-
strained by

m1m11m21•••1mn221mn2152q. ~58!

In every particular term in this multiple series, generally,
will have multiples of termsJn(MK). If M50 andnÞ0,
such a term vanishes, while if both M andn do not vanish
Jn(MK);(1/AK). The leading contribution is from se
quences with the maximal number of factorsJ0(0)51. To
identify these, we denoteJ0(0)51 by ‘‘1’’ and other factors
by ‘‘ x.’’ In this way, to every term in Eq.~57! corresponds
the sequence ofn symbols

x* x*1* x* x* x*1* x*1* x* x* •••*1* x* x. ~59!

A crucial restriction is that ifmÞ0, two ‘‘1’’ symbols can-
not be nearest neighbors as is shown in what follows. Ifm
Þ0 the sequence starts with ‘‘x’’ as is clear from Eq.~57!.
Let the i th symbol be ‘‘1.’’ Then

Jmi 212mi
„~2m12m22•••2mi 21!K…5J0~0!. ~60!

The previous term is

Jmi 222mi 21
„~2m12m22•••2mi 22!K…. ~61!

For both to beJ0(0) it is required thatmi 2150, andmi 22
2mi 2150, implying mi 2250 resulting in

Jmi 23
„~2m12m22•••2mi 23!K…50,

for mi 23Þ0. Therefore if the term before thei th one is ‘‘1’’
~and we have two neighbors that are ‘‘1’’s! eithermi 23, and
all mj with j , i 22, vanish and all factors before thei th are
‘‘1’’s, in contradiction with the fact that formÞ0 the se-
quence starts with anx, or the contribution of the sequenc
vanishes~ when one of themj does not vanish!. Now one has
to find the strings~59! with the maximal number of ‘‘1’’s
subject to given values ofm, m8, and q. For this purpose
strings with alternating ‘‘x’’ and ‘‘1’’ are constructed.

The ‘‘x’’ represent factorsJml2ml 11
(2MlK) where Ml

5m1( i 51
l mi and we have to choose themi so that the

Jml2ml 11
(2MlK) are of maximal magnitude. Consider th

string

. . . Jml2ml 11
~2MlK !Jml 112ml 12

~2Ml 11K !

3Jml 122ml 13
~2Ml 12K !Jml 132ml 14

~2Ml 13K ! . . .

~62!

where the factors exp„2(s2/2)ml
2
… were omitted for the sake

of brevity. Requiring that the second and fourth factors
‘‘1’’ yields ml 115ml 12 and ml 135ml 14 as well asMl 11
5Ml 1350. Therefore Ml52ml 11 and Ml 125ml 12
52ml 13. This implies ml 115ml 1252ml 1352ml 14
[m* , and this string takes the form

. . . Jml2m* ~m* K !J0~0!J2m* ~2m* K !J0~0! . . . . ~63!

Continuation of the string to the left requiresml52m* .
The factors ‘‘x’’ are J2m* (2m* K)5J22m* (m* K)
5J2m* (m* K). For each value ofK we choose the value o
m* so thatuJ2m* (m* K)u is maximal, namely,

uJ2m* ~m* K !u5max
m

uJ2m~mK!u. ~64!

Now one is left to match this string to the ends that a
determined bym, m8, and q. The term~57! is the sum of
terms of the form

C( l )~m,m* !@J2m* ~m* K !exp~2s2m* 2!#n8C(r )~m* ,m8,q!,
~65!

wheren8 is an integer of the ordern/2. The string~63! is of
period 4, and therefore the end terms are also of period
n. One can always find enough values ofmi in the beginning
and in the end of strings in Eq.~57! so that they take the
form ~65!. The end termsC( l )(m,m* ) and C(r )(m* ,m8,q)
are sums of the contributions of thesemi . Some of the con-
tributions to the end terms are presented in Appendix B. T
end terms do not affect the resonance. Therefore the lar
resonance associated with the fast decaying modes, c
sponding to the slowest one, is up to the fourth root of
identity

z̃5AJ2m* ~m* K !expS 2
s2

2
m* 2D , ~66!

independent ofm, m8, andq. The reason thatz̃ is determined
only up to the fourth root of the identity is the period 4 of th
string ~63!. The resonances associated with the other
decaying modes cannot be determined in the framework
the perturbative expansion of the present work.

The Frobenius-Perron operator is the evolution opera
Û in the limit of vanishing noise. Therefore the Ruelle res
nances are the poles of matrix elements of the resolventR̂ in
this limit. They form several groups. There is

z051, ~67!
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which is related to the equilibrium state found form5m8
5q50. The resonances corresponding to the relaxa
modes related to the diffusion in the angular moment
space are given by

zk5expS 2
k2K2

4s2
@122J2~K !# D . ~68!

Finally, the largest resonance related to relaxation in thu
direction is, up to the fourth root of the identity,

z̃5AJ2m* ~m* K !, ~69!

wherem* is chosen so that the expression is maximal fo
given value ofK. The corresponding relaxation ratesgk and
g̃ are defined by

zk5e2gk ~70!

and by

uz̃u5e2g̃, ~71!

leading togk5u ln zku andg̃5 zlnuz̃uz. The last resonance ma
take the four values

z̃56e2g̃, ~72!

and

z̃56 ie2g̃. ~73!

The perturbative calculation enables one to compute onlyuz̃u.

IV. NUMERICAL EXPLORATION OF RELAXATION

In Sec. III the Ruelle resonances were calculated for la
K and extrapolated from finite to vanishing variance of t
noises. Finite noise has the effect of truncation of the m
trix of the FP operator and the limits→0 is the infinite
matrix limit. In the limit K→` complete stochasticity take
place, while for finiteK the system is a mixed one, but fo
large K the chaotic component covers nearly all of pha
space. The results of Sec. III were obtained as the lea
terms in an expansion in powers of 1/AK. In the present
section, the results will be tested numerically for finiteK and
s50. The phase space~6! with various values ofs will be
used. The resonances of the type~70!, corresponding to dif-
fusion in angular momentumJ and of the type~71! corre-
sponding to relaxation in theu direction will be calculated
numerically from the relaxation rates of various perturb
tions to the uniform invariant density. For larges, the relax-
ation of the diffusion modes~70! ~with small k) is slow and
these dominate the long time behavior. To see the ang
relaxation modes~71! one has to eliminate the slow relax
ation. This can be done either by the choice of smalls or by
the use of distributions that are uniform in the momentumJ.
Evolving an initial distributiong for n time steps and pro
jecting it on a distributionf defines the correlation function

Cf g~n!5~ f uÛnug!. ~74!
n

a

e

-

e
g

-

lar

For a chaotic system, for largen it is expected to decay as

Cf g~n!;e2gn, ~75!

and the relaxation rateg is computed numerically from plots
of Cf g(n) as a function ofn. In what follows the distribu-
tions g and f will be selected from the Fourier basis~7! so
that g is expected to take the valuesgk or g̃. Relaxation of
the form ~75! is expected to hold in the chaotic compone
An efficient way to calculate correlation functions like~74!
projected on this component is from a trajectory in pha
space. By ergodicity it samples all phase space in this c
ponent. The phase space integrals involved in the calcula
of Eq. ~74! are replaced by time averages along the traj
tory. The trajectories were started in the vicinity of the h
perbolic point (p,0) and iterated for a large number of tim
steps,N. It was verified for several cases that the resu
‘‘equilibrize,’’ namely, they do not depend onN for largeN.
The correlation function is calculated from the formula

Cf g~n!5 lim
N→`

1

N (
i 51

N

f ~ i !g~ i 1n!, ~76!

wheref ( j ) andg( j ) are the values off andg at the j th time
step. We first calculate numerically the slow relaxation ra
gk ~70! related to diffusion and then turn to calculate andg̃
~71! related to relaxation in theu direction.

A. The Diffusive Modes

The relaxation rates expected from the approximate
culations of Sec. III for the diffusive modes are given by E
~68! or

gk5
k2

s2
D~K !, ~77!

whereD(K) is the diffusion coefficient~4! for s50. To test
this relation, the correlation function~74! was calculated for
various distributionsg and f from the Fourier basis~7! and
plots like the ones presented in Fig. 1 were prepared.
slope isgk and the values ofD(K) are extracted with the
help of Eq.~77! for various values ofk ands. In Fig. 2 these
values ofD(K) are depicted for large values of the stocha
ticity parameterK. Excellent agreement with the theory
found:~a! The value ofD is found to be independent ofk and
s; ~b! It agrees with the theoretical prediction~4!. We find
indeed that for long time the behavior of distributions
indeed the same as that for a diffusive process. In the pa
was found only that the second moment of the moment
grows linearly as expected for diffusion. The effect of stic
ing to the accelerator modes was not observed for the va
of K used for Fig. 2 since the size of the accelerated regio
small and therefore special effort is required to observe th
effects in numerical calculations@15#. These are expected t
be important for relatively small values ofK where the ac-
celerated regions are larger.

In Fig. 3 the correlation function is plotted for relativel
small values of the stochasticity parameterK where larger
deviations from the theory presented in Sec. III are expec
The diffusion coefficient as a function ofK is presented in
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FIG. 1. The functionCf g(n) ~semilogarithmic plot! for ~a! f 5g5f10, K520, s5370; ~b! f 5g5f20, K530, s5900; ~c! f 5g
5f50, K540, s53200;~d! f 5f12, g5f13, K527, s5450. The dashed line represents the best fit to the data. The number of iter
is N583106.
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Fig. 4. Deviations of the numerical results from the analy
cal predictions are found for some values ofK. Also for these
the decay of correlations is found to be exponential and
diffusion coefficient extracted for all modes by Eq.~77! is

FIG. 2. The diffusion coefficientD for K>10 as found from
plots like the ones presented in Fig. 1 for the first mode@1~a!#
~squares!, the second mode@1~b!# ~stars!, the fifth mode @1~c!#
~circles!, correlation function for the off-diagonal first mode@1~d!#
~pentagram! and other off-diagonal correlation functions~triangles!,
compared to the theoretical value~solid line!.
-

e

the same. Therefore the behavior that is found is indeed
fusive, but the value of the diffusion coefficient for som
values ofK is larger than the one that is theoretically pr
dicted. This is a result of sticking~for finite times! to accel-
erator modes. For most values ofK the value ofD found
from Eq. ~77! agrees with the one found from direct evalu
tions of trajectories in the chaotic component. The theoret
errors~marked by the dashed line in Fig. 4! were estimated
from the next term of the formula of Rechester and White
the diffusion coefficient@14#. The actual errors are larger du
to the nonperturbative nature of the accelerator modes
the surrounding regions~such modes cannot be found in a
expansion in 1/AK). Since in all calculations only trajecto
ries belonging to the chaotic component were propaga
real acceleration is avoided. The trajectories used in the
culation of the correlation function by Eq.~76! effectively
generate a projection on the chaotic component of ph
space.

B. Angular Relaxation

In order to observe the angular relaxation mode it is
quired that no relaxation in theJ direction be present, be
cause such a relaxation, if present, would be expected
dominate the long time limit. Since the results are indep
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FIG. 3. The functionCf g(n) for ~a! f 5g5f10, K57, s5250; ~b! f 5g5f20, K58, s5510; ~c! f 5g5f50, K53, s5340; ~d! f
5f11, g5f12, K517, s5225. The dashed line represents the best fit to the data. The number of iterations isN583106.
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dent of s, we uses51. For this purpose we takeg5fkm8
@see Eq.~7!# so thatq5k/s is an integer, andf 5f0m . From
Eqs. ~69! and ~71! one concludes that the slowest of th
angular relaxation rates is

FIG. 4. The diffusion coefficientD for K<20 as found from
plots like the ones presented in Fig. 3 for the first mode@1~a!#
~squares!, the second mode@1~b!# ~stars!, the fifth mode @1~c!#
~circles! and off diagonal first mode@1~d!# ~pentagram!, compared
to the theoretical value~solid line!. The dashed line represents th
approximate error. The values ofD obtained by direct simulation o
propagation of trajectories are marked by diamonds.
g̃52
1

2
ln@max

m*
„uJ2m* ~m* K !u…#. ~78!

The absolute value of the correlation functionCf g(n) is pre-
sented in Figs. 5 and 6 forg5f02 and f 5f01 and for g
5f5f01, respectively, for several values ofK. The numeri-
cal calculations are complicated since the relaxation is f
with a characteristic time of the order of one time ste
Moreover, there are oscillations of the correlation functio
while Eq. ~78! is just the envelope. In Figs. 5 and 6 the be
fit to the envelope is marked by a dashed line. The slope
the dashed line is the numerical estimate for the relaxa
rate. In Fig. 7 the numerical estimate is compared with
theoretical prediction. The error in the theoretical predicti
is estimated as the value of the next order contribution toan .
This results from a term where the ‘‘1’’s in sequences c
responding to Eqs.~63! and~65! are replaced by an ‘‘x’’ that
represents a Bessel function of order 1/AK, leading to an
error of the order ln(161/AK) in the relaxation rate. It is
difficult to estimate the error resulting from the numeric
procedure of calculating the relaxation rates. The reaso
that near the origin of the correlation function a large num
of modes contribute. On the other hand, in the tail of t
correlation function, where only one relaxation rate is dom
nant, the signal is too small. Nevertheless, the compari
between our numerical and theoretical results shows a g
qualitative agreement.
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FIG. 5. The absolute value of the functionCf g(n) for f 5f01, g5f02 and~a! K516.3,~b! K519.5,~c! K512, ~d! K516. The dashed
line represents the best fit to the data. The valuess51 andN5108 were used.
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V. SUMMARY AND DISCUSSION

Relaxation to equilibrium was studied for the kicked rot
that is a standard system for the exploration of class
chaos in driven systems and its quantum mechanical
pression. Relaxation and diffusion are important concept
statistical mechanics. Here they were studied for a mi
chaotic system. Very little is known rigorously about su
systems, although most models describing real physical
tems are mixed, namely, in some regions of phase space
motion is regular while in some regions it is chaotic.

In this work the kicked rotor was studied in a phase sp
that is the torus defined by the inequality~6!. The relaxation
of distributions in phase space takes place in stages. First
inhomogeneity inu decays with rapid relaxation rates, th
slowest of them isg̃. Then relaxation of the inhomogeneitie
in theJ direction takes place with the relaxation rates rela
to the diffusion coefficient via Eq.~77!. Diffusion was pre-
viously believed to be a good approximation for the kick
rotor, but here, to the best of our knowledge, the various t
scales were analyzed carefully for the first time. In particu
we have found the time scale 1/g̃, below which the diffusion
approximation does not hold since relaxation of correlatio
in the angle direction still takes place.

There is a clear relation between the relaxation of in
mogeneities inu and the diffusion constant since

^~Jn112J0!2&5 (
i , j 50

n

K2^sinu i sinu j&, ~79!
al
p-
in
d

s-
the

e

he

d

e
r

s

-

whereJi andu i are the momentum and angle before thei th
kick. For a chaotic trajectory

^sinu i sinu j&5^sin u0 sinu u i 2 j u&5Cf f~ u i 2 j u!, ~80!

where Cf f(u i 2 j u) is the correlation function~74! with f
5f01. If the sum ( i 50

` Cf f( i ) converges, as is the cas
whereCf f falls off exponentially, diffusion is found and th
value of the diffusion coefficient is

D5
K2

2 (
i 52`

`

Cf f~ i !. ~81!

In Appendix C we show that Eq.~50!, which was obtained
by Rechester and White in@14#, is just

D5
K2

2 (
i 522

2

Cf f~ i !. ~82!

A derivation that is very similar is presented in@28#. If the
sum diverges one obtains anomalous diffusion.

Finite noise leads to the effective truncation of the evo
tion operator~21!. In the basis~7! it means that it results in
limited resolution. Moreover, fors.0 the operatorŨ is
nonunitary. The approximate eigenvalues ofÛ given by Eq.
~21!, which were found in this work, are 1 andzk of Eq. ~49!

@if inequality ~40! is satisfied# and z̃ of Eq. ~60!. In our ap-
proximation method we could not obtain many eigenvalu



4780 PRE 62MAXIM KHODAS, SHMUEL FISHMAN, AND ODED AGAM
FIG. 6. The absolute value of the functionCf g(n) for f 5g5f01 and~a! K510.7,~b! K514.3,~c! K512.55,~d! K514.7. The dashed
line represents the best fit to the data. The valuess51 andN5108 were used.
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related to angular relaxation modes. Because of the effec
truncationcg , an eigenfunction ofÛ can be expanded in
terms of the basis states~7!. The relaxation rates of thes
states are2 ln(zk) and2 ln(uz̃u), wherezk andz̃ are given by
Eqs.~49! and~66!. In the limit s→0, the evolution operato
is unitary;cg approaches some generalized function whilezk

FIG. 7. The fast relaxation rateg̃ as found from plots like Figs.
5 and 6 for f 5f01, g5f02 ~triangles!, f 5f02, g5f04 ~circles!,
f 5g5f02 ~stars! and f 5g5f01 ~squares!, compared to the theo
retical value~78! ~solid line!. The dashed lines denote the theore
cally estimated error. Here we useds51 andN5108.
veandz̃ approach the values of the poles of the matrix eleme

of the resolventR̂ of Eq. ~25! obtained from the extrapola
tion from uzu.1 ~corresponding to the 0,e→0, which is
used in the standard definition of the Green’s function!.

These are the Ruelle resonances that are related to
relaxation rates via Eqs.~70! and~71!. This is very similar to
the situation for hyperbolic systems such as the baker m
For hyperbolic systems the Ruelle resonances~related to the
relaxation rates! approach fixed values inside the unit circ
in the complexz plane in the limit of an infinite matrix for
the evolution operator or of infinitely fine phase space re
lution. This was found to be correct here also when one ta
the limit s→0 in Eqs.~49! and ~66! resulting in Eqs.~68!
and~69!. Numerical tests in the absence of noise confirm t
the analytical results provide a good approximation for
relaxation to equilibrium and diffusion in the chaotic com
ponent. Results of a similar nature were found in the st
dard map withs51 for some values ofK @19#, for the ‘‘per-
turbed cat’’ map@19#, and also for the kicked top@20#. In all
these works it was found, within the approximations us
that the leading resonances are either real or form the qu
(6A,6 iA), whereA is a real number satisfying 0,A,1.
The generality of this form should be subject to further
search. For the kicked top it was attributed@20# to the domi-
nance of an orbit of period 4.

In mixed systems, such as the kicked rotor, even in
chaotic components there is sticking to regular islands
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acceleration modes. Noise eliminates this sticking. The a
lytic formulas~68! and~69! are obtained from an expansio
in powers of 1/AK for a finite variance of noises2 and the
limit s2→0 is taken in the end of the calculation. A nonv
nishing value ofs2 assures the convergence of the ser
~57!. Appearance of the islands and the sticking are nonp
turbative effects and therefore are not reproduced in
theory. For this reason, in the absence of noise the result
only approximate. The effect of the sticking is extreme
small for most values of the stochasticity parameterK, as
verified by the numerical calculations without noise.

The physical reason for the decay of the correlations
that in a chaotic system, because of the stretching and f
ing mechanisms, there is persistent flow in the direction
functions with finer details, namely, largeruku andumu in our
case. Consequently, the projection on a given function,
example one of the basis functions~7! in our case, decays
@20,29#. The crucial point is that this function should be su
ficiently smooth. This argument should also hold for the c
otic component of mixed systems. In the present paper
actual relaxation rates were calculated. Here noise was
in order to make the analytical calculations possible. In r
experiments some level of noise is present, therefore the
sults in the presence of noise are of experimental releva
It was shown with the help of the Cauchy-Hadamard th
rem @27# @see the discussion following Eq.~32!# that for s
@K@1 exponential relaxation to the invariant density tak
place with the rateg15D(K)/s2, whereD(K) is given by
Eq. ~4!. It was deduced from the radius of convergence
the series of the matrix element ofR̂8 @see Eq.~29!#. This
rate is independent ofs. It is found for all functions that can
be expanded in the basis~7!, with an absolutely convergen
expansion. It excludes, for example, functions of the fo
~22!. We believe this statement can be made rigorous
experts.

For the baker map it was found that the resolvent of
evolution operator of the quantum Wigner function, wh
coarse grained, has the same poles as the classical Frobe
Perron operator@21#. We believe it should also hold here
The fact that the Ruelle resonances of the modes of s
relaxation arezk , which are identical to the ones of the di
fusion operator, gives additional support to approximatio
made for the calculation of the ensemble averaged loca
tion length in@24#.

Finally, the Ruelle resonances, which were introduc
and established rigorously for hyperbolic systems, can
used to describe relaxation and transport in the chaotic c
ponent of mixed systems. Here it was demonstrated for
kicked rotor.

ACKNOWLEDGMENTS

We have benefited from discussions with E. Berg, R. D
fman, I. Guarneri, F. Haake, E. Ott, R. Prange, S. Rahav
Weber, and M. Zirenbauer. We thank in particular D. Alon
for extremely illuminating remarks and helpful suggestio
This research was supported in part by the US-NSF G
No. NSF DMR 962 4559, the U.S.-Israel Binational Scien
Foundation~BSF!, by the Minerva Center for Non-linea
Physics of Complex Systems, by the Israel Science Foun
tion, by the Niedersachsen Ministry of Science~Germany!
a-

s
r-

ur
re

is
d-
f

r

-
e
ed
l
e-
e.
-

s

r

y

e

ius-

w

s
a-

d
e
-

e

-
J.

.
nt
e

a-

and by the Fund for the Promotion of Research at the Te
nion. One of us~S.F.! would like to thank R.E. Prange fo
the hospitality at the University of Maryland, where th
work was completed.

APPENDIX A: MATRIX ELEMENTS OF THE EVOLUTION
OPERATOR IN THE PRESENCE OF NOISE

In this appendix the matrix elements in the representa
~7! are calculated. For this purpose Eq.~20! is transformed to
the Fourier representation by

~k2m2uÛuk1m1!

5E
0

2p

duE
0

2ps

dJE
0

2p

du8E
0

2ps

dJ8~k2m2uJu!

3~JuuÛnoiseuJ8u8!~J8u8uÛKuk1m1!. ~A1!

Substitution of Eqs.~18! and ~19! yields

~k2m2uÛuk1m1!5E
0

2p

duE
0

2ps

dJE
0

2p

du8
1

A2p

1

A2ps

3exp~2 im2u!expS i
2k2J

s D
3(

m

1

2p
exp„im~u82u!…

3expS 2 imJ2
s2

2
m2D 1

A2p

1

A2ps

3exp~ im1u8!expS i
k1

s
~J1K sinu8! D .

~A2!

Terms containingu are exp„im(2u)…exp(2im2u). Integra-
tion overu yields dm,2m2

leading to

~k2m2uÛuk1m1!5E
0

2ps

dJE
0

2p

du8
1

A2ps
expS i

2k2J

s D
3

1

2p
exp„2 im2u8…

3expS im2J2
s2

2
m2

2D 1

A2ps

3exp~ im1u8!expS i
k1

s
~J1K sinu8! D .

~A3!

Integration overJ results indk22k1 ,m2s , yielding
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~k2m2uÛuk1m1!5
1

2pE0

2p

du8 exp„2 i ~m22m1!u8…

3expS 2
s2

2
m2

2D
3expS i

k1

s
K sinu8D dk22k1 ,m2s . ~A4!

Finally, with the help of the integral representation f
Bessel functions:

Jm~z!5
1

2pE0

2p

du exp~2 imu!exp~ iz sinu!,

one obtains Eq.~21!.

APPENDIX B: END TERMS IN STRINGS
OF THE FAST MODES

In this appendix, possible examples for contributions
the end terms in the expression~65! are presented. The lef
end term is a sum of terms of the form

C( l )~m,m* !

5J2m1m* ~2mK!J2m22m* ~m* K !J0~0!

3expF2
s2

2
„m21~m1m* !21m* 2

…G
1(

m1

Jm2m1
~2mK!J2m11m1m* „~2m2m1!K…

3J2m22m* 2m1
~m* K !J0~0!

3expF2
s2

2
„m21m1

21~m1m* 1m1!21m* 2
…G . . . ,

~B1!

where in the first termm15(m1m* ) and m25m35m* ,
while in the second termm252(m1m* 1m1) and m3
5m45m* . For qÞ0 the right end term is a sum of terms
the form
-

cs

-

m

o

C(r )~m* ,m8,q!

5 (
mn21

J2m* 1mn211q~2m* K !

3J2m* 22mn212q„~mn211q!K…Jmn212m8~qK!

3expF2
s2

2
„m* 21~m* 1mn211q!21mn21

2
…G . . . ,

~B2!

where mn2252(m* 1mn211q) and mn235m* . For q
50 one has to takemn215m8 and the end term consists o
a sum overmn22.

APPENDIX C: RELATION BETWEEN THE DIFFUSION
COEFFICIENT AND CORRELATION FUNCTION

In this appendix the relation between Eqs.~82! and ~50!
will be derived~for a somewhat similar derivation see@28#!.
For this purpose we note that

Cf f~n!5E
0

2p du

2pE0

2ps dJ

2ps
sinuÛn sin u

52
1

4
@„0,21u2~0,1u#Ûn@ u0,1!2u0,21…#, ~C1!

where the representationuk,m) @see Eq.~7!# is used. The
matrix elements ofÛ are given by Eq.~21! and the matrix
elements ofÛ2 required for the present calculation are

~0,m2uÛ2u0,m1!5J2m2
~2m2K !e2s2m2

2
dm1 ,2m2

, ~C2!

as can be easily obtained from the multiplication of two m
trices of the form ~21!. From Eq. ~C1! it is clear that
Cf f(0)5 1

2 . Inspecting Eq.~21! with k15k250, one notes
that it is required that alsom15m250, thereforeCf f(1)
50. Substitution of Eq.~C2! in Eq. ~C1! yields

Cf f~2!52
1

2
J2~K !e2s2

. ~C3!

Using the fact thatCf f(2n)5Cf f(n), substitution of the
values ofCf f(0) andCf f(2) into Eq.~82! yields the expres-
sion ~50! that was obtained by Rechester and White@14#.
Because of the discussion following the expression~59! the
correlation functionsCf f(n) with n.2 lead to terms that are
of higher orders in 1/AK than Eq.~50!.
-

t.
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