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Microscopic expressions for the thermodynamic temperature
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We show that arbitrary phase space vector fields can be used to generate phase functions whose ensemble
averages give the thermodynamic temperature. We describe conditions for the validity of these functions in
periodic boundary systems and the molecular dynarfid) ensemble, and test them with a short-ranged
potential MD simulation.

PACS numbes): 05.20.Gg

[. INTRODUCTION result. Finally, in Sec. IV we will apply these temperature-
yielding functions to MD simulations of systems with short-
The temperature of an equilibrium system is calculatedanged potentials.
from the mean kinetic energy of its particles. However, Rugh
[1] has recently derived a new expression whose average ||. GENERALIZED TEMPERATURE EXPRESSIONS
yields the temperature in the microcanonical ensemble. The ) . .
derivation involves the differentiation of the phase space vol- L€t us consider al-particle system at equilibrium. We
ume of the ensemblévhose logarithm gives the entropy define  I'=(I'y, ... .I'en)=(P1, - - - ,Pan.01s - - - Gan)
with respect to the energy. The resultant expression dependd€re d; and p; represent the B spatial coordinates and
not only on the momenta of the particles, but also on thei€onjugate momenta which determine the dynamics of the
(spatia) configuration. This result reflects the fact that theSyStem via Hamilton’s equations. The energy of our system
temperature of a system affects the configurations adopted given by the Hamiltoniaft((I') = Zp{/m+V({q;}), where
by that system, and consequently one would expect to b¥ represents the potential energy of the system.
able to calculate the temperature from configurational as well In this section we will prove the following result. Suppose
as kinetic information. we choose a vector fiel8(T') such that 6<[(VH-B(T))|
In Ref. [2], a completely configurational version of <, 0<[(V-B(T))|< (where(---) represents an en-
Rugh’s result was derived, and applied to Monte Carlo simusemble averageand(V-B(I')) grows more slowly than
lations, where the equipartition theorem cannot be used sinc®" in the thermodynamic limit. Then
only the configurational degrees of freedom are considered
[3]. Not only did the temperature indeed correspond to the (VH-B(I))
input temperature, but it was found to be a useful diagnostic (V-B(I)) @
for revealing coding errors as well. In R¢#], Rugh’s result
was applied to the nonequilibrium domain, as an alternativerhjs result, as applied to the canonical ensemble, appears in
means of defining the local temperature. As such, it correctlyRef. [3] without proof. For certain choices dd(I), it is
accounted for heat fluxes where the kinetic temperaturgossible to derive such temperature expressions using the
failed to do so. approach of Gray and Gubbif§l—however, it is not evi-
These applications have required extensions of Rugh'gent how to extend their method of deriving hypervirial re-
original work. In this paper we will justify these modifica- |ations to arbitraryB(I').
tions. We will prove that the temperature expression used in |n Secs. I1 A and I C we will prove Eq(1) for the micro-
Ref.[4] is indeed equal to Rugh’s expressiomQ¢1/N), and  canonical and canonical ensembles respectively. Moreover,
that the configurational temperature expression given by Eqt js possible to apply Eq(l) to systems with periodic
(8) in Ref.[2] holds. boundary conditions and the “MD ensembles.” We will de-

For practical reasons, atomistic simulations are usuallyelop the additional necessary conditions in Secs. 1B and
conducted under periodic boundary conditions. Furthermorg; p.

linear momentum is conserved in molecular dynanidB)
simulations. Thus the ensembles explored by MD simula-
tions are not the full microcanonical or canonical ensembles,
but subsets of thesghe “MD ensembles’). We will there- We begin with a proof of Eq(1) in the microcanonical
fore also prove that the temperature expressions in Refe€nsemble. Consider old-particle system, whose physical
[2,4] hold for periodic boundary conditions, and in the ca-volumeV is determined by a set of barriers or walls. If we
nonical and microcanonical MD ensembles. denote by() the set of alll' allowed within our phase space
In order to prove these results, we will derive a more(for a givenN andV), then the extent of) in the spatial
general temperature expression in Sec. Il. Within the frameeoordinates is limited by the physical size of the system. The
work of this broader result, we will consider which functions momenta are unbounded, so tlhforms a cylinder in phase
yield the temperature for periodic systems and MD simula-space.
tions. In Sec. Il we will use this theorem to obtain more We define the surface of constant energy(E)
specific results such as the equipartition theorem and Rugh’s={I": H(I") =E}, and the set of all points of equal or lower

A. Microcanonical ensemble
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energy Q(E):={T":H(I')<E}. Thus Q=Q(«). Tradition- where we assume<Q(B(I"))z<«. From first principles,
ally, the microcanonical ensemble is the set of phase points

whose energy lies betwe&handE+ AE,AE<E, with each h3NNI IW5(E) = lim hSNN!WB(E+ 6) —Wi(E)
point being equally likely to occur. Thus o(@imensionless 550 o
partition function would be

1
1 :“mg f B(I') dug+s
_f dr 2 5—0 A(E+9)
h3NNI JoE+AENQE)
where h is Planck’s constant. In the limit aAaE—0, the a A(E)B(F) d’uE}
microcanonical ensemble of ener§ybecomes the surface 1
Q(ri)tig\r/llth a probability distribution given by the partition _ "mg f B(I")-A(M)dAg, 5
5—0 A(E+9)
dAe -
S(H(I')—E)dI'= f —f B(I)-n(I")dAg|,
|, 20— A®) ;
1 whereﬁ(F) is a unit normal vector to the surfaéddE) atT'.
- h3NNI L(E) ME (3 We apply Gauss’ theorem to obtain
C IWg(E) 1 (E+s
wheredA¢ represents the infinitesimal area elemengE) h3NN!—E= lim Ef f V-B(IdA;d¢
atT’, anddug=dAg/||VH(T)|. We immediately note the J 6-09JE  JAE)

dimensional inconsistency of this expression. From a physi-
cal point of view, it is necessary at this point to reduce the :f V-B(I) dug.
spatial coordinates and momenta to dimensionless piiits A(E)
andq; . However, since there is no unique choice of units :

; : Therefore, it follows that
for converting the phase space coordinates to a reduced form,
there will be infinitely many different instantaneous expres- 1 1 9SE(E)  (V-B(I))e
sions for the temperature which will all give equivalent val- KTA(E) = =<VH- B(D)e”
ues in different bases unitsee, e.g., Ref6]). In what fol- B E

Iows., we will assume that ourisz'\i‘ndqi are dimensionless as from Eg. (5), we have thatSz(E)=S(E)+kIn(B(I') )¢ .
required(as will be the factoh™"). _ Now, as long ag3(I"))e grows more slowly thae in the
In the surface ensemble, the entrdgE) can be defined thermodynamic limitgSg(E)/JE = S(E)/JE in the thermo-
as dynamic limit [a relation we will henceforth denote as
dSp(E)/ JE=9S(E)/JE]. ConsequentlyTz(E)=T(E), and
j we recover the same result as Ef). Furthermore, we may
A(E) Ke drop the condition tha{3(I"))g be positive, since Eq6)
gives the same value, whether we us8(I").
and the average value of a phase funct&(f’) in the en- In order to apply Gauss’ theorem, we require tNat be
semble is continuous(i.e., that be differentiablé for finite energies.
As far as conditions oB(I") are concerned, we require that
(V-B(I))g|<w, that O<[{VH-B(T))g|<w, and that

(6)

S(E)/Kk —
e =
h3NN!

A(E)B(F)df“E e~ S(E)/K (In{VH-B(I'))|)/N=0. Given the dependence 8fE) on

(B(T))g= =N f B(INdug. the Hamiltonian, the family of vector field3(I") that obey
f A h="N! JAE) these criteria is not immediately obvious, and we have not
A(E) attempted to develop a more general method of generating

_ . . such vector fields. We simply note that the last condition
The temperature of a microcanonical ensemble with energyjiows all finite-order polynomials and bounded functions of
E, temperaturd, entropyS, and volumeV is determined via  p, andq;, as well as ratios of finite-order polynomials. How-

the thermodynamic relation ever, it remains clearer from the canonical caseere the
domain of integration does not depend on the Hamiltonian
L _ IS(E) 4) whether such functions will obey the first two conditidi$.
T(E)  JE |,

B. Microcanonical periodic and MD systems
Suppose, for an arbitrary vector fielB(I'), we define

B(I)=VH(I")-B(I') and Let us now consider the necessary changes to the proof of

Eq. (6) in order for it to hold in a periodic system. For peri-
1 odic systems, the extent 6f in the spatial coordinates is no
—fA(E)B(F) due, (5) longer determined by boundary walls, but by the size and

h3NN! shape of the primitive cell. If the primitive cell of the peri-
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odic system is the same size and shape as the bounded sy$anes which correspond to conservation of linear momen-
tem, thenQ) will be the same in both cases. tum in each Cartesian direction. We denote their normal vec-

The difference between the bounded and periodic systemgrs asP, , ﬁ)y, andP, .
is that particles cannot pass through the walls of the bounded The entropy will still correspond to the phase space vol-
system. This implies that the energy at the walls is infinite,yme, except that this volume is nowN6-4 dimensional.
so that our surfaces of constant energy ||eent|W!an Q, However, we can on|y app|y Gauss’ theorem to the projec_
and do not pass through the boundary, which we deafte  tion of the vector fieldB(I") onto Q5. Alternatively we
This assumption is implicit in our application of Gauss’ theo-must selectB(I') so that it lies entirely inQyp. Such a
rem. : L 2

. . B(I') must satisfy the condition thaB(I')-P,=0 («

. In t,be perlodl_c _s_ystem, partlcle&a_n pass through the =X,Y,2). In this case, Eq(6) will generate the correct tem-
walls” of our primitive cell, reappearing on the other side perature in the MD ensemble

of the cell. Therefore surfaces of constant enecgp (and

do) pass throughy(). Thus, when we use Gauss’ theorem,
our Gaussian surface consists not onlyA(fE) and A(E C. Canonical ensemble
+h), but also all points o@() whose energies lie betwe&n

andE-+h. This extra term is of the form We now move on to a proof of Eq1) in the canonical

ensemble, starting with the bounded case. We invoke Gauss'’

1 ) ) theorem over()(E) for an arbitrary vector field in phase
IimH“ B(F)-n(F)dA—f B(F)~n(F)dA} spaceB(I")e £ (where we assume a finite, positiy&,
hol| Jo(E+h) IQ(E) ie.

= | B()-n()dL, ~BHB(TY.

f IA(E) A(E)e B(I")-n(I")dAg

wheredQ (E)=0QNQ(E), dA is the volume measure on — M)
Q, JA(E)=0QNA(E), anddL is the volume measure on = L}(E)V-(B(F)e ydr
AA(E). Note thatn(I') does not necessarily point in the
same direction a¥ H(I'), since the walls of the primitive
cell are not determined by the energy surfaces. Fo(@&do

hold in every microcanonical ensemble, we require, as a con-
dition on B(I'), that

= f e AV . B(I"dI
Q(E)

—ﬁf e ATV H(T)-B(I')dT.
Q(E)

J B(I')-n(IdL=0, VE. 7)
IA(E
e In the limit asE— o, we obtain

To determine which functions satisfy this criterion, we con-
sider a system where one of the particles is at one of the

walls of the primitive celft corresponding to a phase point lim e*ﬁEJ B(I)-n(T")dAg
I',. There is an equivalent system where this particle is E—oo A(E)

placed on the “opposite” wall of the primitive cell, repre-

sented byl',. It follows thatn(I',)=—n(I',). Therefore, :J e ARV . B(T)dl"
sincel’y andI'y, must lie in the same microcanonical en- Q

semble, ifB(I',)=B(I'y), then the criterion of Eq(7) is

satisfied. Therefore any function which is periodic in the —ﬁj e AHYH(T)-B(IN)dI. (8)
primitive cell[i.e., such that, il"; andI', describe the same Q

state, therB(I',) =B(I'y)] will satisfy Eq. (1) for periodic

systems. Note that this is a sufficient condition but not 8or Eq.(8) to be of any use, we require that the two integrals

necessary one. ; . o . :
Finally, let us consider the MD microcanonical ensemble.o.r:/(;geugght hand side be finite. For the latter integral this

This ensemble represents the family of systems encounteret
during a constant energy molecular dynamics simulation,
where linear momentum is conserved. iy, be the set of

allowedTI for such a simulation. Clearl§2,,y is smaller than ‘ f e ANV H(T)-B(N)dI'| <o

), which admits all possibilities for the total linear momen- @

tum. Phase pointE with the same linear momentum in tke .

direction, say, all lie on the santypenplane in(), so that = lim f e PEB(I) - n(I")dAg=0.
Qup is the intersection of) with the three phase space E—oo T AE)

This means that whenever the last integral in 8j.exists,
Y1 two or more particles are at the wall, or if the particle is in a the left hand side of Eq(8) must be identically zero. It
corner, then this corresponds to a subse?@fof measure zero.  follows by rearrangement that
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gur hold for the periodic boundary system and the “MD en-
L)e AHNY . B(T)dl (V-B(I) sembles” are the same in both the canonical and microca-
—=p= - nonical ensembles.

f e AUy 2((T) . B(I)dTl (VH(I)-B(I))"
Q

Ill. FORMULAS

© Having proven Eq(1) in the canonical and microcanoni-
in agreement with Eq(1). Sinceg is finite, we have sub- cal ensembles, and found the conditions for it to hold in
sumed the first two conditions dB(I") into the proof. The systems with periodic boundary conditions and the MD en-
third is implicit in the convergence ofVH-B(T))e. For sembles, we now demonstrate its use in generating expres-

Eq. (9) to hold, we require that the integral sions whose phase space average yields the system tempera-
ture.
B . B If we chooseB(I')=(0, ... [, ...,0), so that only the
e BEJA(E)B(F) n()dAg=ePTSE~E(B(I)) e ith component is nonzero, then we obtain
— eAlTS5(E)—El (VH(T)-B(T)) IH
kTGET:_—: i /-
(V-B(IN) ar;

converge. When we consider thafl"SE)~El also con-

verges, but thae™® does not, we immediately obtain the This is the familiar generalized equipartition theoré®ET).
third condition onB(T"). Thus the conditions for Eq1) to  If I'; is a momentum, then we obtain the equipartition theo-
hold in the canonical ensemble are the same as those for ttiem, (p?/m)=KT. If it is a coordinate, then we obtain the

microcanonical ensemble. lesser known Clausius virial theorefy-q;F;)=kT, where
F; is the generalized force acting on coordingi¢8,9]. We
D. Canonical periodic and MD ensembles note that the Clausius virial theorem gives a function of co-

ordinates only, whose average is the temperature of the sys-

As with the microcanonical case, we must be careful ingm However. the functioB(I')(=T) is not periodic inQ
our application of Gauss’ theorem to canonical systems with, ihis case s,o that this theorem doet hold for periodic
periodic boundary conditions. In analogy with the microca-gystems. It is therefore of little use to practitioners of most

nonical case, our Gaussian surface consists not only qfip simulations as a means of calculating the temperature.

A(E), but of 9Q(E) as well, and the left hand side of E&) If we select an arbitrary vector fiel(T'), and choose
becomes
B(I')= X(T) 10
lim f e AHB(T)-n(I)dAg. (0= VH()-X(I)’ (10
E— o J A(E)UJIQ(E)

then forall choices ofX(I'), B(I')=1. Consequently, we
We have already seen that the integral o&€éE) must go to  obtain
zero in order for(VH(T")-B(I')) to exist, so we simply

require that i: . L 11
kT VH(I)-X(I') /"’
LQG_BH(F)B(F)'ﬁ(F)dAZO, VB. providing this average exists. SubstitutiXgI') = VH(I),

we obtain Rugh'’s final equatidi]. Since the Hamiltonian is

However, via the properties of the Laplace transform weP€riodic in systems with periodic boundary conditioB¢I’)
have that will also be periodic, so that Rugh’s result holds in periodic
systems. Furthermore, it satisfies the criterion for the MD
~ ensembles, so that it can be applied to MD simulations as
fQe*BH(F)B(F)-n(F)dA=O,V,8 well.
4

~ IV. EXAMPLE: SIMULATION APPLICATION
= B(I')-n(I")dL=0, VE.
IA(E) In this section we consider the application of Ef).to a
simulation of a system of particles interacting with a short-
Therefore, the condition under which E@) will hold in all ranged pair potential, as in Refg2,4]. These simulations
canonical ensembles is equivalent to the condition undesmploy periodic boundary conditions, and as a consequence,
which Eq.(1) will hold in all microcanonical ensembles. Just the forces acting on a body are not correlated withahso-
as in the microcanonical case, E§) will hold in the ca- |ute positions of the particles, but only their relative posi-
nonical ensemble as long &1’) is periodic in(}. tions. Thus many of the simple vector fields, whose diver-
Finally, we consider the canonical MD ensemble. As withgences are easily calculateslich asB(I') =I'] do not satisfy
the microcanonical MD ensemble, our application of Gaussthe first criterion for Eq.(1) to hold; in this case(VH
theorem requires th&(I') lie in Qyp, so we again require .1 =0. In general, it is more difficult to find functions
that B(I')-P,=0 (a=x,y,2) for Eq. (9) to hold in the which are correlated with the interparticle forces. Due to this
canonical MD ensemble. Thus the conditions for Eg.to  difficulty, from this point on we restrict ourselves to choices
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of B(I') which are directly related t¥ H, to ensure that this

condition is met. 1 —Ei Vi-Fi 2; FiF:ViF
= - 13b)
KT 2 :
A. Theory corR 2 Fi2 (2 Ff)
In systems of particles interacting with a short-ranged pair i [
potential®(r), the Hamiltonian can be separated into a mo-
mentum contributionthe kinetic energyK) and a spatial ﬂ_z V..E
contribution(the potential energy), i.e., 1 m < '
oo e~ T 7 , (139
i 2
HID=K({ph+V(dah =3 7=+ 3 (). 2 tF
i=14M =1 j<i im
(12
wherer;;=r;—r;, andr; is the vector describing the position < - E Vi Fi>
of theith particle. If the potential has a continuous first de- 1 _ : (13d)
rivative, thenVH satisfies the requirements of Gauss’ theo- KTeorr > '
rem, and, consequently, those of our temperature expres- 2| F

sions. Note that if we defing;; as the minimum image
separation of theth andjth particles, therV is periodic in  where the label refers to theparticle, rather than the gen-
the spatial coordinates. Thi¥sH will be periodic as well. As  eralized coordinateF; represents thévectol force acting on

a consequence, we can obtain the temperature of our systgsarticle i, p; represents its momentum, V;
using Rugh’'s expression, i.e., by substituting(T") =[alox; ol dy; ,dl dz;], wherex;, y;, andz refer to the
=VH(I) into Eq.(11) above. Cartesian coordinates of, and : represents the dyadic op-

We now make the following important observation— erator (i.e., for vectors a,b, and matrix M, ab:M
sinceV'H satisfies the criteria for Eq1) to hold in periodic =3, ;a,b;Mg,). Equation(13d) corresponds to the tem-
boundary systems and MD ensembles, it follows tWdt perature expression used in RE?], and Eg.(130 corre-
andVV must as well. Therefore, we would expect to be ablesponds to the temperature expression used in [Rgf.

to generate the temperature by substituting(I) If we consider the second term on the right hand side of
=VK({p;}) andX(I')=VV({q;}) into Eq. (11). Egs. (138 and (13b), the numerator increases &kfor a
Since the interaction potential is short-rangad,will  short-ranged potentigkince F;F; : V;F; will not contribute

grow asN in the thermodynamic limit. Consequently, the anything at large particle separatipnbut the denominator
Hamiltonian grows ad\ in the thermodynamic limit, and if increases abl?. Therefore, this second term becomes negli-
we substituteB(I')=VH(I"), B(I')=VK({p;}), andB(I") gible in the thermodynamic limit. Thus the order-1 term is
=VV({q;}) into Eg. (1), we would also expect to generate contained in the first term on the right hand side of Egs.
the temperature. (1339 and(13b). We will denote byT 1 and Ty the tem-

In this paper we will not examine the temperatures genperature calculated by the omission of these second terms
erated from the kinetic energy, since they are closely relategespectively, i.e.,
to the equipartition temperatut&;p?/3Nm), and do not re-
veal any new results. Our interest lies in the fact that tem- 3_N_

i ' > Vi-F

perature expressions generated itf({q;}) containno ex- 1 m i
plicit reference to the momenta in our system, a fact which KT > ) (139
was exploited in Ref[2]. The temperature we obtain from nort S ey b
substituting X(I')=VH(I') into Eq. (11) we denote by T m?
Thomr— NOr" since it is generated using the normal vector
field V’H, andR since it is generated using Rugh'’s prescrip- _z V.F
tion. In a similar manner, we denote By, the temperature 1 = Vit
we obtain from substitutin& (I") = VV({q;})—the configu- T . (13f)
rational part of the Hamiltonian—into Eq11). When sub- conl 2 |:i2
stituting these vector fields into E¢l), we denote the cor- [
responding temperatures ds,z and To,, F denoting
that we are calculating a ratidraction) of averages in this

We expect that the temperatures given by EdRa—
(13f) should all be equal in the thermodynamic limit. It is

case. . . .
In making the appropriate substitutions, we obtain the extherefore of interest to compare their rates of convergence in
pressions ' this limit, in order to ascertain the appropriateness of their
use.
2
3N Pi
1 F_Ei Vi-Fi 22 E*‘Z; FiFj :ViF; B. Results
KT o 2 - 2 2 , As an application of the above theory, we considered a
noR z p_i+F2 z p_i+F2 three-dimensional microcanonical Weeks-Chandler-
T m2 T m2 Andersen(WCA) potential system. The WCA pair potential

(138  ®(r) is defined a$10]
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TABLE I. A comparison of values of the three reduced normal temperatures with values of the reduced
equipartition temperature, for simulations of systems with 8lze500, reduced density* =0.8, and vari-
ous reduced energies per parti€l&. For each normal temperature, two values are reported. The first is the
temperature as determined from the simulation, and the second is the discrepancy between that normal
temperature and the equipartition temperature, given as a percentage of the equipartition temperature. The
numbers in brackets indicate the error in the last decimal place given.

E* T:quip T:orR T:orF T:orl
abs rel(%) abs rel(%) abs rel(%)
0.8 0.5081(1) 0.5097(3) 0.31 0.5090(1) 0.19 0.50653) -0.31
1.0 0.6374(1) 0.6389(7) 0.24 0.6381(4) 0.11 0.63487) -0.41
1.2 0.76792)  0.7705(4) 0.34 0.7694(1) 0.20 0.76524) -0.35
15 0.9664(2) 0.9701(6) 0.38 0.9687(2) 0.24 0.9631(6) -0.34
1.8 1.1671(3) 1.1709(6) 0.32 1.1694(3) 0.20 1.1621(6) -0.43
2.0 1.3024(2) 1.3060(6) 0.28 1.3042(3) 0.14 1.29586) -0.51
2.2 1.4386(2) 1.4424(9) 0.26 1.44039) 0.12 1.43079) -0.55
2.5 1.6450(2) 1.6497(9) 0.28 1.64738) 0.14 1.635909) -0.55
o\ [g\6 difference is about six orders of magnitude. For this reason,
D(r)= € (7) —(? +e, r<2'%q 14 the value of the normal temperature can be considered as a
(n= . (14) “perturbation” to the corresponding configurational tem-
0 otherwise perature which has a negligible effect on our results. It is

interesting to note, given this dependence on the physical
for interparticle separations whereo and e represent our structure of the system rather than on its momentum distri-
units of length and energy, respectively. This potential ispution, that the normal and configurational temperature ex-
continuous, has a continuous first derivative and a piecewisgressions yield the correct temperature across the solid-liquid
continuous second derivative. Due to the discontinuity in thephase transition, despite the difference in the microscopic
derivative of the force, errors appear in the computed systergrrangements of atoms on either side of the transition tem-
trajectories whenever the separation between two particlgserature.
crosses the=2%¢ boundary. However, these errors are too | Fig. 1, we compare a series of systems of fixed energy
small, in comparison with system size errors, to affect OUher particle E* =1.5) and system sizeN(=864), but with

results. Thus, if we substitute this pair pot_ential_into Bp), varying densities. The discrepancy betwdgi,, and T*,
\(’\gf)e)t(geb(g 2a32| Otfotr;? dteernzlr')de);;tures defined in EtS3- increases when the density of the system is decreased—while
qual, ) o andT? - agree quite well with the equipartition values,

. T*
Values of these six reduced temperatures were calculatef.ﬂ b | dl lable. H in the th
for the three-dimensional microcanonical simulation of a pe-' norl ecomes Iess and ess refiable. However, in the thermo-

riodic WCA system at various sizé$ reduced number den- dynamic limit, To,., must converge to the other two rlormal
sities p*, and reduced total energies per partigfe. They temperatures. This result indicates that, wiifg,, and T}, =

were determined by the average of ten separate s;imulation@,USt converge toward$ the thermodynamic_ temperature, Ir-
each of 200000 time stefisf 5t* =0.001). The errors as- réspective of the density, larger systems sizes are required

sociated with each temperature were given by one third of 1.01
the maximum deviation from the average over these ten runs.

The first comparison was made between systems with the 1.00 ,___5___g___ﬁ___Q___D___n__g___.
same density and size, but differing energies. The values of g £ *x ¥
the equipartition temperaturekquuipz(Eip?/3N m)) and T 0.99 | *
the normal temperature3§{,z, Thnor, andT}h,,) Were cal- g ¥
culated for a system of 500 particles with a reduced density 5 0.98 t
p*=0.8, and reduced energies per particle ranging from o ¥ +T
E*=0.8 to 2.5. These values appear in Table I. The four g 097 XToon
temperatures agree to within 0.6—0.8 % of the equipartition & ¥ BT om
temperature over the range of energies shown. 0.96 | O Toore

The values for the three configurational temperatures
match the corresponding normal temperatures to within 0.95 —> 0.4 06 08
0.01%, i.e., to the number of digits shown in Table I. This Density p*

can be explained in terms of the kinetic and configuration

terms in the numerator and denominator of the normal tem- FIG. 1. Variation of temperature values with system density. For
perature expressions. At high densities, the configuratioR system of 864 particles at reduced energy per parfitle 1.5,
terms are much larger than those contributed by the momewarious reduced temperatures are given for different reduced densi-
tum terms—in two dimensions this is typically a difference ties. Temperatures are reported as a fraction of the reduced equipar-
of four orders of magnitude, and in three dimensions theition temperature.
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tures towards a common value. We would interpret this
value as the thermodynamic temperature of a system at that
state point, in the thermodynamic limit.

0.98 |

0.97 | V. CONCLUSION

We have derived a general functional which, given a vec-
tor field B(I") which satisfies certain broad conditions, will
determine the thermodynamic temperature of an equilibrium
system in the thermodynamic limit via EqL). Its rate of
convergence in the thermodynamic limit will be determined

; by the order of B(T') - VH). We note, however, that if we
0.000 0.005 0.010 defineB(T") as per Eq(10), then(B(T')- VH)=1, and what
Inverse system size 1/N we obtain in Eq.(1) is precisely the derivative of the loga-

FIG. 2. Variation of temperature values with system size. Forfithm of the ensemble phase space volume with respect to
the state poinp* =0.8 andE* = 1.5, the three reduced configura- the energy. In the thermodynamic limit, this will yield the
tional temperatures and the reduced equipartition temperature atBermodynamic temperatu@S/JE. However, for different
given for different system sizes. B(I'), the value we obtain will depend upon our sampling of
phase space during the simulation, and hence the values ob-
tained from different expressions may vary. The temperature
expressiond ,,r and T,k fall into this category.

Temperature

0.96

0.95 |

for the same degree of convergenceTdf,, as the density

drops. One practical problem that arises from the application of
*We should also note from Fig. 1 that, whi®,z and  £q (1) to periodic boundary systems is the difficulty in
Troe are indistinguishable from their configurational coun- avoiding vector fieldsB(I") such that(B(I')- VH)=0. To
terparts on the scale of the gra@nd hence are not shown  circumvent this problem, we have only considered vector
the difference betweefiy,; and TZ,,; becomes evident be- fields B(T") that are linear transformations §F4. This ap-

low densities ofp* ~0.5. This is a result of the drop in the proach is by no means exhaustive, but serves to demonstrate
number of particle interactions per time step at lower densipne application of this theory.

ties. When the number of these interactions is reduced, the |t js clear from Eqs(133—(13f) that T, ;o Will be com-

conflgura_ltlonal contrlbutpns do not don_nnate _the klnetlcputationally more expensive thah,, or Tpor—the omitted
contributions as they do in the high density regime. Conseterm involves calculations which assume the intermolecular
quently, the inclusion of kinetic termsvhich, by themselves  forces to have already been evaluated, thus requiring a sec-
would produce a value within 0.1% of the equipartition ond force loop. It is therefore of interest to determine
valug in T3, will always correctTg,,, toward the equipar- whether these approximations #/JE make a useful sub-
tition value. stitution for T,,,r . From our results we conclude tHBt, e is

To further examine the system size dependence of oumore reliable thafT ., and in our work is a useful expres-
temperature expressions, we consider a single state poigfon for the temperature whenev&,z is valid. It is for
(p*=0.8E*=1.5), and compare the temperature expresthese reasons that the fractional form§dz or Teoe) ap-
sions as a function of the number of particles in the systempear in Refs[2,4].
ranging fromN =108 to 2048. The results of this comparison  Equation(1) has important consequences for practitioners
appear in Fig. 2, where the three configurational temperaef nonequilibrium MD simulations, stressing the fact that the
tures are plotted against inverse system size. At this densitynstantaneous kinetic energy per kinetic degree of freedom is
the difference between the normal temperatures and the comnot the only function whose ensemble average yields the
responding configurational temperatures is not distinguishtemperature. The preference given to the kinetic energy is
able on the scale of the graph for all but the 108 particlegenerally due to its ease of calculation: apart from this, there
system(where the discrepancy is 0.029%60 we show only is no reason—in both equilibrium and nonequilibrium
the configurational temperatures. We observe, within the erealculations—to prefer the kinetic energy expression over
rors of our calculations, the convergence of all four temperaany other.
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