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Microscopic expressions for the thermodynamic temperature

Owen G. Jepps, Gary Ayton, and Denis J. Evans
Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia

~Received 19 November 1998; revised manuscript received 29 May 2000!

We show that arbitrary phase space vector fields can be used to generate phase functions whose ensemble
averages give the thermodynamic temperature. We describe conditions for the validity of these functions in
periodic boundary systems and the molecular dynamics~MD! ensemble, and test them with a short-ranged
potential MD simulation.

PACS number~s!: 05.20.Gg
te
g

ra
Th
o

en
e

he
pt

b
e

f
u

in
re
th
st

tiv
ct
tu

h
-

d

E

al
or

la
le

e
a

re
e
s
la
re
gh

e-
rt-

the
em

e

-

rs in

the

e-

ver,

-
nd

l
e
e

he

r

I. INTRODUCTION

The temperature of an equilibrium system is calcula
from the mean kinetic energy of its particles. However, Ru
@1# has recently derived a new expression whose ave
yields the temperature in the microcanonical ensemble.
derivation involves the differentiation of the phase space v
ume of the ensemble~whose logarithm gives the entropy!
with respect to the energy. The resultant expression dep
not only on the momenta of the particles, but also on th
~spatial! configuration. This result reflects the fact that t
temperature of a system affects the configurations ado
by that system, and consequently one would expect to
able to calculate the temperature from configurational as w
as kinetic information.

In Ref. @2#, a completely configurational version o
Rugh’s result was derived, and applied to Monte Carlo sim
lations, where the equipartition theorem cannot be used s
only the configurational degrees of freedom are conside
@3#. Not only did the temperature indeed correspond to
input temperature, but it was found to be a useful diagno
for revealing coding errors as well. In Ref.@4#, Rugh’s result
was applied to the nonequilibrium domain, as an alterna
means of defining the local temperature. As such, it corre
accounted for heat fluxes where the kinetic tempera
failed to do so.

These applications have required extensions of Rug
original work. In this paper we will justify these modifica
tions. We will prove that the temperature expression use
Ref. @4# is indeed equal to Rugh’s expression toO(1/N), and
that the configurational temperature expression given by
~8! in Ref. @2# holds.

For practical reasons, atomistic simulations are usu
conducted under periodic boundary conditions. Furtherm
linear momentum is conserved in molecular dynamics~MD!
simulations. Thus the ensembles explored by MD simu
tions are not the full microcanonical or canonical ensemb
but subsets of these~the ‘‘MD ensembles’’!. We will there-
fore also prove that the temperature expressions in R
@2,4# hold for periodic boundary conditions, and in the c
nonical and microcanonical MD ensembles.

In order to prove these results, we will derive a mo
general temperature expression in Sec. II. Within the fram
work of this broader result, we will consider which function
yield the temperature for periodic systems and MD simu
tions. In Sec. III we will use this theorem to obtain mo
specific results such as the equipartition theorem and Ru
PRE 621063-651X/2000/62~4!/4757~7!/$15.00
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result. Finally, in Sec. IV we will apply these temperatur
yielding functions to MD simulations of systems with sho
ranged potentials.

II. GENERALIZED TEMPERATURE EXPRESSIONS

Let us consider anN-particle system at equilibrium. We
define G5(G1 , . . . ,G6N)5(p1 , . . . ,p3N ,q1 , . . . ,q3N),
where qi and pi represent the 6N spatial coordinates and
conjugate momenta which determine the dynamics of
system via Hamilton’s equations. The energy of our syst
is given by the HamiltonianH(G)5(pi

2/m1V($qj%), where
V represents the potential energy of the system.

In this section we will prove the following result. Suppos
we choose a vector fieldB(G) such that 0,u^“H•B(G)&u
,`, 0,u^“•B(G)&u,` ~where ^•••& represents an en
semble average!, and ^“H•B(G)& grows more slowly than
eN in the thermodynamic limit. Then

^“H•B~G!&

^“•B~G!&
5kT. ~1!

This result, as applied to the canonical ensemble, appea
Ref. @3# without proof. For certain choices ofB(G), it is
possible to derive such temperature expressions using
approach of Gray and Gubbins@5#—however, it is not evi-
dent how to extend their method of deriving hypervirial r
lations to arbitraryB(G).

In Secs. II A and II C we will prove Eq.~1! for the micro-
canonical and canonical ensembles respectively. Moreo
it is possible to apply Eq.~1! to systems with periodic
boundary conditions and the ‘‘MD ensembles.’’ We will de
velop the additional necessary conditions in Secs. II B a
II D.

A. Microcanonical ensemble

We begin with a proof of Eq.~1! in the microcanonical
ensemble. Consider ourN-particle system, whose physica
volume V is determined by a set of barriers or walls. If w
denote byV the set of allG allowed within our phase spac
~for a givenN and V), then the extent ofV in the spatial
coordinates is limited by the physical size of the system. T
momenta are unbounded, so thatV forms a cylinder in phase
space.

We define the surface of constant energyA(E)
ª$G:H(G)5E%, and the set of all points of equal or lowe
4757 ©2000 The American Physical Society
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energyV(E)ª$G:H(G)<E%. Thus V5V(`). Tradition-
ally, the microcanonical ensemble is the set of phase po
whose energy lies betweenE andE1DE,DE!E, with each
point being equally likely to occur. Thus our~dimensionless!
partition function would be

1

h3NN!
E

V(E1DE)\V(E)
dG, ~2!

where h is Planck’s constant. In the limit asDE→0, the
microcanonical ensemble of energyE becomes the surfac
A(E) with a probability distribution given by the partitio
function

1

h3NN!
E

V
d„H~G!2E…dG5

1

h3NN!
E

A(E)

dAE

i“H~G!i

5
1

h3NN!
E

A(E)
dmE , ~3!

wheredAE represents the infinitesimal area element onA(E)
at G, and dmE5dAE /i“H(G)i . We immediately note the
dimensional inconsistency of this expression. From a ph
cal point of view, it is necessary at this point to reduce
spatial coordinates and momenta to dimensionless unitspi*
and qi* . However, since there is no unique choice of un
for converting the phase space coordinates to a reduced f
there will be infinitely many different instantaneous expre
sions for the temperature which will all give equivalent va
ues in different bases units~see, e.g., Ref.@6#!. In what fol-
lows, we will assume that ourpi andqi are dimensionless a
required~as will be the factorh3N).

In the surface ensemble, the entropyS(E) can be defined
as

eS(E)/k5
1

h3NN!
E

A(E)
dmE ,

and the average value of a phase functionB(G) in the en-
semble is

^B~G!&E5

E
A(E)

B~G!dmE

E
A(E)

dmE

5
e2S(E)/k

h3NN!
E

A(E)
B~G!dmE .

The temperature of a microcanonical ensemble with ene
E, temperatureT, entropyS, and volumeV is determined via
the thermodynamic relation

1

T~E!
5

]S~E!

]E U
V

. ~4!

Suppose, for an arbitrary vector fieldB(G), we define
B(G)5“H(G)•B(G) and

WB~E!5eSB(E)/k5
1

h3NN!
E

A(E)
B~G! dmE , ~5!
ts

i-
e

m,
-

y

where we assume 0,^B(G)&E,`. From first principles,

h3NN!
]WB~E!

]E
5 lim

d→0
h3NN!

WB~E1d!2WB~E!

d

5 lim
d→0

1

d F E
A(E1d)

B~G! dmE1d

2E
A(E)

B~G! dmEG
5 lim

d→0

1

d F E
A(E1d)

B~G!•n̂~G!dAE1d

2E
A(E)

B~G!•n̂~G!dAEG ,
wheren̂(G) is a unit normal vector to the surfaceA(E) at G.
We apply Gauss’ theorem to obtain

h3NN!
]WB~E!

]E
5 lim

d→0

1

dEE

E1dE
A(j)

“•B~G!dAj dj

5E
A(E)

“•B~G! dmE .

Therefore, it follows that

1

kTB~E!
ª

1

k

]SB~E!

]E
5

^“•B~G!&E

^“H•B~G!&E
. ~6!

From Eq. ~5!, we have thatSB(E)5S(E)1k ln^B(G)&E .
Now, as long aŝB(G)&E grows more slowly thaneN in the
thermodynamic limit,]SB(E)/]E5]S(E)/]E in the thermo-
dynamic limit @a relation we will henceforth denote a
]SB(E)/]E.]S(E)/]E#. Consequently,TB(E).T(E), and
we recover the same result as Eq.~1!. Furthermore, we may
drop the condition that̂B(G)&E be positive, since Eq.~6!
gives the same value, whether we use6B(G).

In order to apply Gauss’ theorem, we require that“H be
continuous~i.e., thatH be differentiable! for finite energies.
As far as conditions onB(G) are concerned, we require tha
u^“•B(G)&Eu,`, that 0,u^“H•B(G)&Eu,`, and that
„lnu^“H•B(G)&u…/N.0. Given the dependence ofA(E) on
the Hamiltonian, the family of vector fieldsB(G) that obey
these criteria is not immediately obvious, and we have
attempted to develop a more general method of genera
such vector fields. We simply note that the last conditi
allows all finite-order polynomials and bounded functions
pi andqi , as well as ratios of finite-order polynomials. How
ever, it remains clearer from the canonical case~where the
domain of integration does not depend on the Hamiltoni!
whether such functions will obey the first two conditions@7#.

B. Microcanonical periodic and MD systems

Let us now consider the necessary changes to the proo
Eq. ~6! in order for it to hold in a periodic system. For per
odic systems, the extent ofV in the spatial coordinates is n
longer determined by boundary walls, but by the size a
shape of the primitive cell. If the primitive cell of the per
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odic system is the same size and shape as the bounded
tem, thenV will be the same in both cases.

The difference between the bounded and periodic syst
is that particles cannot pass through the walls of the boun
system. This implies that the energy at the walls is infin
so that our surfaces of constant energy lie entirelywithin V,
and do not pass through the boundary, which we denote]V.
This assumption is implicit in our application of Gauss’ the
rem.

In the periodic system, particlescan pass through the
‘‘walls’’ of our primitive cell, reappearing on the other sid
of the cell. Therefore surfaces of constant energycan ~and
do! pass through]V. Thus, when we use Gauss’ theore
our Gaussian surface consists not only ofA(E) and A(E
1h), but also all points on]V whose energies lie betweenE
andE1h. This extra term is of the form

lim
h→0

1

h F E
]V(E1h)

B~G!•n̂~G!dA2E
]V(E)

B~G!•n̂~G!dAG
5E

]A(E)
B~G!•n̂~G!dL,

where]V(E)5]VùV(E), dA is the volume measure o
]V, ]A(E)5]VùA(E), anddL is the volume measure o
]A(E). Note that n̂(G) does not necessarily point in th
same direction as“H(G), since the walls of the primitive
cell are not determined by the energy surfaces. For Eq.~6! to
hold in every microcanonical ensemble, we require, as a c
dition on B(G), that

E
]A(E)

B~G!•n̂~G!dL50, ;E. ~7!

To determine which functions satisfy this criterion, we co
sider a system where one of the particles is at one of
walls of the primitive cell,1 corresponding to a phase poi
Ga . There is an equivalent system where this particle
placed on the ‘‘opposite’’ wall of the primitive cell, repre
sented byGb . It follows that n̂(Ga)52n̂(Gb). Therefore,
since Ga and Gb must lie in the same microcanonical e
semble, if B(Ga)5B(Gb), then the criterion of Eq.~7! is
satisfied. Therefore any function which is periodic in t
primitive cell @i.e., such that, ifGa andGb describe the same
state, thenB(Ga)5B(Gb)# will satisfy Eq. ~1! for periodic
systems. Note that this is a sufficient condition but no
necessary one.

Finally, let us consider the MD microcanonical ensemb
This ensemble represents the family of systems encount
during a constant energy molecular dynamics simulati
where linear momentum is conserved. LetVMD be the set of
allowedG for such a simulation. ClearlyVMD is smaller than
V, which admits all possibilities for the total linear mome
tum. Phase pointsG with the same linear momentum in thex
direction, say, all lie on the same~hyper!plane inV, so that
VMD is the intersection ofV with the three phase spac

1If two or more particles are at the wall, or if the particle is in
corner, then this corresponds to a subset of]V of measure zero.
ys-
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,
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e
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.
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planes which correspond to conservation of linear mom
tum in each Cartesian direction. We denote their normal v
tors asP̂x , P̂y , andP̂z .

The entropy will still correspond to the phase space v
ume, except that this volume is now 6N24 dimensional.
However, we can only apply Gauss’ theorem to the proj
tion of the vector fieldB(G) onto VMD . Alternatively we
must selectB(G) so that it lies entirely inVMD . Such a
B(G) must satisfy the condition thatB(G)•P̂a50 (a
5x,y,z). In this case, Eq.~6! will generate the correct tem
perature in the MD ensemble.

C. Canonical ensemble

We now move on to a proof of Eq.~1! in the canonical
ensemble, starting with the bounded case. We invoke Ga
theorem overV(E) for an arbitrary vector field in phas
spaceB(G)e2bH(G) ~where we assume a finite, positiveb),
i.e.,

E
A(E)

e2bH(G)B~G!•n̂~G!dAE

5E
V(E)

“•„B~G!e2bH(G)
…dG

5E
V(E)

e2bH(G)
“•B~G!dG

2bE
V(E)

e2bH(G)
“H~G!•B~G!dG.

In the limit asE→`, we obtain

lim
E→`

e2bEE
A(E)

B~G!•n̂~G!dAE

5E
V

e2bH(G)
“•B~G!dG

2bE
V

e2bH(G)
“H~G!•B~G!dG. ~8!

For Eq.~8! to be of any use, we require that the two integra
on the right hand side be finite. For the latter integral t
gives us

U E
V

e2bH(G)
“H~G!•B~G!dGU,`

⇒ lim
E→`

E
A(E)

e2bEB~G!•n̂~G!dAE50.

This means that whenever the last integral in Eq.~8! exists,
the left hand side of Eq.~8! must be identically zero. It
follows by rearrangement that
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1

kT
5b5

E
V

e2bH(G)
“•B~G!dG

E
V

e2bH(G)
“H~G!•B~G!dG

5
^“•B~G!&

^“H~G!•B~G!&
,

~9!

in agreement with Eq.~1!. Sinceb is finite, we have sub-
sumed the first two conditions onB(G) into the proof. The
third is implicit in the convergence of̂“H•B(G)&E . For
Eq. ~9! to hold, we require that the integral

e2bEE
A(E)

B~G!•n̂~G!dAE5eb[TS(E)2E]^B~G!&E

5eb[TSB(E)2E]

converge. When we consider thateb[TS(E)2E] also con-
verges, but thateS(E) does not, we immediately obtain th
third condition onB(G). Thus the conditions for Eq.~1! to
hold in the canonical ensemble are the same as those fo
microcanonical ensemble.

D. Canonical periodic and MD ensembles

As with the microcanonical case, we must be careful
our application of Gauss’ theorem to canonical systems w
periodic boundary conditions. In analogy with the microc
nonical case, our Gaussian surface consists not only
A(E), but of]V(E) as well, and the left hand side of Eq.~8!
becomes

lim
E→`

E
A(E)ø]V(E)

e2bH(G)B~G!•n̂~G!dAE .

We have already seen that the integral overA(E) must go to
zero in order for^“H(G)•B(G)& to exist, so we simply
require that

E
]V

e2bH(G)B~G!•n̂~G!dA50, ;b.

However, via the properties of the Laplace transform
have that

E
]V

e2bH(G)B~G!•n̂~G!dA50,;b

⇔E
]A(E)

B~G!•n̂~G!dL50, ;E.

Therefore, the condition under which Eq.~1! will hold in all
canonical ensembles is equivalent to the condition un
which Eq.~1! will hold in all microcanonical ensembles. Ju
as in the microcanonical case, Eq.~9! will hold in the ca-
nonical ensemble as long asB(G) is periodic inV.

Finally, we consider the canonical MD ensemble. As w
the microcanonical MD ensemble, our application of Gau
theorem requires thatB(G) lie in VMD , so we again require
that B(G)•P̂a50 (a5x,y,z) for Eq. ~9! to hold in the
canonical MD ensemble. Thus the conditions for Eq.~1! to
the

n
h
-
of

e

er

’

hold for the periodic boundary system and the ‘‘MD e
sembles’’ are the same in both the canonical and micro
nonical ensembles.

III. FORMULAS

Having proven Eq.~1! in the canonical and microcanon
cal ensembles, and found the conditions for it to hold
systems with periodic boundary conditions and the MD e
sembles, we now demonstrate its use in generating exp
sions whose phase space average yields the system tem
ture.

If we chooseB(G)5(0, . . . ,G i , . . . ,0), so that only the
i th component is nonzero, then we obtain

kTGET5
^“H~G!•B~G!&

^“•B~G!&
5 K G i

]H
]G i

L .

This is the familiar generalized equipartition theorem~GET!.
If G i is a momentum, then we obtain the equipartition the
rem, ^pi

2/m&5kT. If it is a coordinate, then we obtain th
lesser known Clausius virial theorem,^2qiFi&5kT, where
Fi is the generalized force acting on coordinateqi @8,9#. We
note that the Clausius virial theorem gives a function of c
ordinates only, whose average is the temperature of the
tem. However, the functionB(G)(5G) is not periodic inV
in this case, so that this theorem doesnot hold for periodic
systems. It is therefore of little use to practitioners of mo
MD simulations as a means of calculating the temperatu

If we select an arbitrary vector fieldX(G), and choose

B~G!5
X~G!

“H~G!•X~G!
, ~10!

then forall choices ofX(G), B(G)[1. Consequently, we
obtain

1

kT
5 K“•

X~G!

“H~G!•X~G!L , ~11!

providing this average exists. SubstitutingX(G)5“H(G),
we obtain Rugh’s final equation@1#. Since the Hamiltonian is
periodic in systems with periodic boundary conditions,B(G)
will also be periodic, so that Rugh’s result holds in period
systems. Furthermore, it satisfies the criterion for the M
ensembles, so that it can be applied to MD simulations
well.

IV. EXAMPLE: SIMULATION APPLICATION

In this section we consider the application of Eq.~1! to a
simulation of a system of particles interacting with a sho
ranged pair potential, as in Refs.@2,4#. These simulations
employ periodic boundary conditions, and as a conseque
the forces acting on a body are not correlated with theabso-
lute positions of the particles, but only their relative pos
tions. Thus many of the simple vector fields, whose div
gences are easily calculated@such asB(G)5G# do not satisfy
the first criterion for Eq.~1! to hold; in this case,̂ “H
•G&E50. In general, it is more difficult to find function
which are correlated with the interparticle forces. Due to t
difficulty, from this point on we restrict ourselves to choic
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of B(G) which are directly related to“H, to ensure that this
condition is met.

A. Theory

In systems of particles interacting with a short-ranged p
potentialF(r ), the Hamiltonian can be separated into a m
mentum contribution~the kinetic energyK) and a spatial
contribution~the potential energyV), i.e.,

H~G!5K~$pi%!1V~$qi%!5(
i 51

3N pi
2

2m
1(

i 51

N

(
j , i

F~ir i j i!,

~12!

wherer i j 5r i2r j , andr i is the vector describing the positio
of the i th particle. If the potential has a continuous first d
rivative, then“H satisfies the requirements of Gauss’ the
rem, and, consequently, those of our temperature exp
sions. Note that if we definer i j as the minimum image
separation of thei th and j th particles, thenV is periodic in
the spatial coordinates. Thus“H will be periodic as well. As
a consequence, we can obtain the temperature of our sy
using Rugh’s expression, i.e., by substitutingX(G)
5“H(G) into Eq. ~11! above.

We now make the following important observation—
since“H satisfies the criteria for Eq.~1! to hold in periodic
boundary systems and MD ensembles, it follows that“K
and“V must as well. Therefore, we would expect to be a
to generate the temperature by substitutingX(G)
5“K($pi%) andX(G)5“V($qi%) into Eq. ~11!.

Since the interaction potential is short-ranged,V will
grow asN in the thermodynamic limit. Consequently, th
Hamiltonian grows asN in the thermodynamic limit, and if
we substituteB(G)5“H(G), B(G)5“K($pi%), andB(G)
5“V($qi%) into Eq. ~1!, we would also expect to genera
the temperature.

In this paper we will not examine the temperatures g
erated from the kinetic energy, since they are closely rela
to the equipartition temperature^( i pi

2/3Nm&, and do not re-
veal any new results. Our interest lies in the fact that te
perature expressions generated with“V($qi%) containno ex-
plicit reference to the momenta in our system, a fact wh
was exploited in Ref.@2#. The temperature we obtain from
substituting X(G)5“H(G) into Eq. ~11! we denote by
TnorR—‘‘nor’’ since it is generated using the normal vect
field “H, andR since it is generated using Rugh’s prescr
tion. In a similar manner, we denote byTconR the temperature
we obtain from substitutingX(G)5“V($qi%)—the configu-
rational part of the Hamiltonian—into Eq.~11!. When sub-
stituting these vector fields into Eq.~1!, we denote the cor-
responding temperatures asTnorF and TconF , F denoting
that we are calculating a ratio~fraction! of averages in this
case.

In making the appropriate substitutions, we obtain the
pressions

1

kTnorR
5K 3N

m
2(

i
“ i•Fi

(
i

pi
2

m2
1Fi

2

2

2(
i

pi
2

m3
12(

i j
FiFj :“ iFj

S (
i

pi
2

m2
1Fi

2D 2 L ,

~13a!
ir
-

-
-
s-

em

e

-
d

-

h

-

-

1

kTconR
5K 2(

i
“ i•Fi

(
i

Fi
2

2

2(
i j

FiFj :“ iFj

S (
i

Fi
2D 2 L , ~13b!

1

kTnorF
5

K 3N

m
2(

i
“ i•Fi L

K (
i

pi
2

m2
1Fi

2L , ~13c!

1

kTconF
5

K 2(
i

“ i•Fi L
K (

i
Fi

2L , ~13d!

where the labeli refers to theparticle, rather than the gen
eralized coordinate.Fi represents the~vector! force acting on
particle i , pi represents its momentum, “ i
5@]/]xi ,]/]yi ,]/]zi #, where xi , yi , and zi refer to the
Cartesian coordinates ofr i , and : represents the dyadic op
erator ~i.e., for vectors a,b, and matrix M , ab:M
5(a,baabbMba). Equation~13d! corresponds to the tem
perature expression used in Ref.@2#, and Eq.~13c! corre-
sponds to the temperature expression used in Ref.@4#.

If we consider the second term on the right hand side
Eqs. ~13a! and ~13b!, the numerator increases asN for a
short-ranged potential~sinceFiFj :“ iFj will not contribute
anything at large particle separations!, but the denominator
increases asN2. Therefore, this second term becomes neg
gible in the thermodynamic limit. Thus the order-1 term
contained in the first term on the right hand side of E
~13a! and ~13b!. We will denote byTnor1 andTcon1 the tem-
perature calculated by the omission of these second te
respectively, i.e.,

1

kTnor1
5K 3N

m
2(

i
“ i•Fi

(
i

Fi
21

pi
2

m2

L , ~13e!

1

kTcon1
5K 2(

i
“ i•Fi

(
i

Fi
2 L . ~13f!

We expect that the temperatures given by Eqs.~13a!–
~13f! should all be equal in the thermodynamic limit. It
therefore of interest to compare their rates of convergenc
this limit, in order to ascertain the appropriateness of th
use.

B. Results

As an application of the above theory, we considere
three-dimensional microcanonical Weeks-Chandl
Andersen~WCA! potential system. The WCA pair potentia
F(r ) is defined as@10#
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TABLE I. A comparison of values of the three reduced normal temperatures with values of the re
equipartition temperature, for simulations of systems with sizeN5500, reduced densityr* 50.8, and vari-

ous reduced energies per particleĒ* . For each normal temperature, two values are reported. The first i
temperature as determined from the simulation, and the second is the discrepancy between that
temperature and the equipartition temperature, given as a percentage of the equipartition temperat
numbers in brackets indicate the error in the last decimal place given.

Ē* Tequip* TnorR* TnorF* Tnor1*

abs rel~%! abs rel~%! abs rel~%!

0.8 0.5081~1! 0.5097~3! 0.31 0.5090~1! 0.19 0.5065~3! -0.31
1.0 0.6374~1! 0.6389~7! 0.24 0.6381~4! 0.11 0.6348~7! -0.41
1.2 0.7679~2! 0.7705~4! 0.34 0.7694~1! 0.20 0.7652~4! -0.35
1.5 0.9664~2! 0.9701~6! 0.38 0.9687~2! 0.24 0.9631~6! -0.34
1.8 1.1671~3! 1.1709~6! 0.32 1.1694~3! 0.20 1.1621~6! -0.43
2.0 1.3024~2! 1.3060~6! 0.28 1.3042~3! 0.14 1.2958~6! -0.51
2.2 1.4386~2! 1.4424~9! 0.26 1.4403~9! 0.12 1.4307~9! -0.55
2.5 1.6450~2! 1.6497~9! 0.28 1.6473~8! 0.14 1.6359~9! -0.55
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r D 6G1e, r ,21/6s

0 otherwise

~14!

for interparticle separationsr, wheres and e represent our
units of length and energy, respectively. This potential
continuous, has a continuous first derivative and a piecew
continuous second derivative. Due to the discontinuity in
derivative of the force, errors appear in the computed sys
trajectories whenever the separation between two parti
crosses ther 521/6s boundary. However, these errors are t
small, in comparison with system size errors, to affect
results. Thus, if we substitute this pair potential into Eq.~12!,
we expect each of the temperatures defined in Eqs.~13a!–
~13f! to be equal, to order (lnN)/N.

Values of these six reduced temperatures were calcul
for the three-dimensional microcanonical simulation of a
riodic WCA system at various sizesN, reduced number den
sities r* , and reduced total energies per particleĒ* . They
were determined by the average of ten separate simulat
each of 200 000 time steps~of dt* 50.001). The errors as
sociated with each temperature were given by one third
the maximum deviation from the average over these ten r

The first comparison was made between systems with
same density and size, but differing energies. The value
the equipartition temperature (kTequip* 5^( i pi

2/3Nm&) and
the normal temperatures (TnorR* , TnorF* , andTnor1* ) were cal-
culated for a system of 500 particles with a reduced den
r* 50.8, and reduced energies per particle ranging fr
Ē* 50.8 to 2.5. These values appear in Table I. The f
temperatures agree to within 0.6–0.8 % of the equipartit
temperature over the range of energies shown.

The values for the three configurational temperatu
match the corresponding normal temperatures to wit
0.01%, i.e., to the number of digits shown in Table I. Th
can be explained in terms of the kinetic and configurat
terms in the numerator and denominator of the normal te
perature expressions. At high densities, the configura
terms are much larger than those contributed by the mom
tum terms—in two dimensions this is typically a differen
of four orders of magnitude, and in three dimensions
s
se
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n
-
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difference is about six orders of magnitude. For this reas
the value of the normal temperature can be considered
‘‘perturbation’’ to the corresponding configurational tem
perature which has a negligible effect on our results. It
interesting to note, given this dependence on the phys
structure of the system rather than on its momentum dis
bution, that the normal and configurational temperature
pressions yield the correct temperature across the solid-liq
phase transition, despite the difference in the microsco
arrangements of atoms on either side of the transition t
perature.

In Fig. 1, we compare a series of systems of fixed ene
per particle (Ē* 51.5) and system size (N5864), but with
varying densities. The discrepancy betweenTnor1* and TnorR*
increases when the density of the system is decreased—w
TnorR* andTnorF* agree quite well with the equipartition value
Tnor1* becomes less and less reliable. However, in the ther
dynamic limit, Tnor1* must converge to the other two norm
temperatures. This result indicates that, whileTnor1* andTnorR*
must converge towards the thermodynamic temperature
respective of the density, larger systems sizes are requ

FIG. 1. Variation of temperature values with system density. F

a system of 864 particles at reduced energy per particleĒ* 51.5,
various reduced temperatures are given for different reduced de
ties. Temperatures are reported as a fraction of the reduced equ
tition temperature.
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for the same degree of convergence ofTnor1* as the density
drops.

We should also note from Fig. 1 that, whileTnorR* and
TnorF* are indistinguishable from their configurational cou
terparts on the scale of the graph~and hence are not shown!,
the difference betweenTnor1* and Tcon1* becomes evident be
low densities ofr* '0.5. This is a result of the drop in th
number of particle interactions per time step at lower den
ties. When the number of these interactions is reduced,
configurational contributions do not dominate the kine
contributions as they do in the high density regime. Con
quently, the inclusion of kinetic terms~which, by themselves
would produce a value within 0.1% of the equipartitio
value! in Tnor1* will always correctTcon1* toward the equipar-
tition value.

To further examine the system size dependence of
temperature expressions, we consider a single state p
(r* 50.8,Ē* 51.5), and compare the temperature expr
sions as a function of the number of particles in the syst
ranging fromN5108 to 2048. The results of this compariso
appear in Fig. 2, where the three configurational tempe
tures are plotted against inverse system size. At this den
the difference between the normal temperatures and the
responding configurational temperatures is not distingu
able on the scale of the graph for all but the 108 parti
system~where the discrepancy is 0.02%!, so we show only
the configurational temperatures. We observe, within the
rors of our calculations, the convergence of all four tempe

FIG. 2. Variation of temperature values with system size. F

the state pointr* 50.8 andĒ* 51.5, the three reduced configura
tional temperatures and the reduced equipartition temperature
given for different system sizes.
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tures towards a common value. We would interpret t
value as the thermodynamic temperature of a system at
state point, in the thermodynamic limit.

V. CONCLUSION

We have derived a general functional which, given a v
tor field B(G) which satisfies certain broad conditions, w
determine the thermodynamic temperature of an equilibri
system in the thermodynamic limit via Eq.~1!. Its rate of
convergence in the thermodynamic limit will be determin
by the order of̂ B(G)•“H&. We note, however, that if we
defineB(G) as per Eq.~10!, then^B„G…•“H&[1, and what
we obtain in Eq.~1! is precisely the derivative of the loga
rithm of the ensemble phase space volume with respec
the energy. In the thermodynamic limit, this will yield th
thermodynamic temperature]S/]E. However, for different
B(G), the value we obtain will depend upon our sampling
phase space during the simulation, and hence the values
tained from different expressions may vary. The temperat
expressionsTnorR andTconR fall into this category.

One practical problem that arises from the application
Eq. ~1! to periodic boundary systems is the difficulty
avoiding vector fieldsB(G) such that̂ B(G)•“H&50. To
circumvent this problem, we have only considered vec
fields B(G) that are linear transformations of“H. This ap-
proach is by no means exhaustive, but serves to demons
one application of this theory.

It is clear from Eqs.~13a!–~13f! that TnorR will be com-
putationally more expensive thanTnor1 or TnorF—the omitted
term involves calculations which assume the intermolecu
forces to have already been evaluated, thus requiring a
ond force loop. It is therefore of interest to determi
whether these approximations to]S/]E make a useful sub-
stitution forTnorR . From our results we conclude thatTnorF is
more reliable thanTnor1, and in our work is a useful expres
sion for the temperature wheneverTnorR is valid. It is for
these reasons that the fractional forms (TnorF or TconF) ap-
pear in Refs.@2,4#.

Equation~1! has important consequences for practition
of nonequilibrium MD simulations, stressing the fact that t
instantaneous kinetic energy per kinetic degree of freedom
not the only function whose ensemble average yields
temperature. The preference given to the kinetic energ
generally due to its ease of calculation: apart from this, th
is no reason—in both equilibrium and nonequilibriu
calculations—to prefer the kinetic energy expression o
any other.
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