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Scaling behavior in explosive fragmentation
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We investigate the explosive fragmentation process in two dimensions using molecular-dynamics simula-
tions. We show that the mass distribution of fragments follows a power law, with a scaling exponent that is
strongly dependent on the macroscopic characteristics of the system prior to the explosion process. In particu-
lar, for thermalized initial configurations at low temperatures, we observe that the exponent is ctdseite
suggest that this result can be interpreted in terms of a multiplicative fracture process.

PACS numbd(s): 46.50+a, 64.60.Ak

[. INTRODUCTION resents today an important tool for the understanding of the
microscopic mechanisms governing this physical phenom-
The fragmentation process is ubiquitous in everyday lifeenon. For example, Hayakawal] observed power-law be-
From practical experience, we know that an object undehavior modeling a three-dimensional fractured object by a
stress or shock will break up into smaller pieces. Althoughset of mass points connected by elastic springs. Inabkéh
complex under a microscopic point of view, some remark{12] modeled a fracture in terms of a competitive process
able statistical features can be observed. The form of theaking place during the crack propagation. The resulting
mass distribution of fragments, for example, has received gower-law behavior followed by a flat tail in the cumulative
lot of attention in recent years. Experiments on impact fragdistribution of mass fragments is consistent with the experi-
mentation using glass spheres show that the mass distribmental observations of Meibom and Balslé).
tion follows a power law, with an exponent3 [1]. Ishii and Recently, Chinget al. [13] studied fragmentation using a
Matsushitg 2] have studied the fragment size and mass dismolecular-dynamic$MD) approach similar to the one intro-
tribution of long, thin glass rods and found that they changeduced by Holian and Gradjl4]. The fragmented object is
from a log-normal to a power-law form as the falling height represented as a set of patrticles interacting via the Lennard-
is increased. Oddersheds al. [3] observed a power-law Jones(LJ) potential, while the fracture process develops due
distribution in experiments of impact fragmentation usingto random initial velocities assigned to the particles. The
different materialge.g., gypsum, soap, and steaf differ- resulting steady-state cumulative mass distribution has an ef-
ent shapese.g., balls, cubes, plates, and haiBhe scaling fective power-law region, with an exponent that increases
exponent was found to be rather dependent on the shape with the initial energy assigned to the particles. Chatal.
the object, but insensitive to the type of material. This expo-interpreted this dependence in the exponent as an indication
nent independence was then interpreted as an evidence thhaat fragmentation is not a self-organizing phenomenon, con-
fragmentation can be a self-organized critical phenomeng&ary to the assumption of Oddershesteal. [3].
[4]. Using thick plates of dry clay, Meibom and Balslgs] The question of criticality in fragmentation, however, is
observed that the mass distribution of fragments displays &r from being completely answered. Very recently, it has
crossover between two different power-law regimes for fragbeen suggested that, in impact fragmentation, criticality
ments larger and smaller than the plate thickness. Finallygould be tuned at a nonzero impact enef$%,16, so that
power-law behavior has also been observedandwichex-  the fragment-size distribution should satisfy a scaling form
periments using thin glass and plaster plates, but the expaimilar to that of the cluster-size distribution of percolation
nent, once more, was shown to be nonuniversal with thelusters, but belonging to another universality clgEg. In
input energy{6]. the present paper, we investigate the explosive fragmentation
The foregoing experimental observations about the fragprocess using classical MD simulations. We study the mass
mentation process induced many theoretical studies. Theistribution of fragments focusing on the dependence of the
simplest one, based on an one-dimensional prof2s§,  scaling exponent with the external input energy provided to
predicts a log-normal distribution. More realistic models, us-“explode” a given object. Contrary to the observations
ing assumptions about preexisting flaws and breakingnade in Ching’set al. experiment[13], we show that the
mechanisms, yield power-law behavi®,9]. Incorporating fragment mass distribution displays power-law behavior,
hierarchical order to the process in a probabilistic type ofwith a scaling exponent that is independent of the input en-
model, Marsili and Zhan@10] could predict a nonuniversal ergy. Our simulations indicate, however, that this exponent is
power-law behavior for fragmentation, with an exponent thatsensitive to the way in which the object to be fragmented is
is dependent on its detailed breaking mechanism and initighrepared, i.e., to the initial configuration of the system. The
conditions. These models, however, are not able to reproducructure of this paper is the following. The model for frag-
the nonuniversal behavior observed in experiments. mentation and the simulation details are described in Sec. Il.
The numerical modeling of the fragmentation process repin Sec. lll, we present and discuss our results and the con-
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clusions are summarized in Sec. IV. by solving Newton’s equations of motion wiffee boundary
conditions different from the expanding boundary condi-
Il. MODEL tions used by Holian and Gradg4]. It is useful to introduce

here the parametdR, the ratio between the initialtotal)

In order to model the fragmentation process, we start byinetic energy to the initial potential energy, immediately
describing the system to be fragmented. For the sake of comyfter the velocities are settled according to Ef). As a
parison with previous studigd.3], we build up an object in  result, the system expands and the particles distribute them-
two different ways. In theandominitial Configuration case, gelves in C|uster$0r fragment$ of different masseisee
we just place the particles randomly in the MD simulation Figs. 1c) and Xd)].
box, according to the desired number density, and the parti- |1 order to generate good statistics, we adapted the
cle’s velocities are settled in random directions. In the seCneighbor-list method18] to account for the free boundary
ond case, we use MD simulation to generatthermalized  conditions in the fragmentation process. Basically, at time
Conﬁguration as an initial state of the SyStem. The particle§er0, we use a simulation box |arger then the one used for
interact through a 6 12 LJ pair potential and the system is pyilding the object. This is our fragmentation space. This
brought to the desired equilibrium temperature, using thearge simulation box is divided into cells, in the usual man-
neighbor-list method with periodic boundary conditions inner of the neighbor-list method, but without introducing pe-
all directions. This allows us to simulate as much as 40 00Qjodic boundary conditions. At each step, we check if there is
particles with a 300 MHz Pentium Il PC. a particle crossing the boundary of the simulation box. If that

In Figs. Xa) and 1b) we show snapshots of the initial s the case, we rescale the size of the box and rebuild the
thermalized configurations for a two-dimensional object withpeighbor list. To update the particle’s coordinates and veloci-
40000 particles and number density=po®=0.61. In Fig.  ties, we use the leapfrog integration technidag] with a
1(a) the reduced temperature T = «T/e=0.37, while in  time stepAt=0.005, which is sufficiently small to ensure
case(b) the temperature i$* =0.037. Herep ande are the  global energy conservation.

LJ distance and energy units, respectively. The positions and Next, we perform the clustefor fragment identification
velocities obtained with these processes are then used as iRind counting. Each particle is considered as a monomeric
tial states in the fragmentation process. cluster with unitary mass. Two particles will belong to the

To simulate the expansion process that follows an explosame cluster if they are separated by a distance smaller than
sive event, one can add an isotropic term to the initial Veéan arbitrary CUtOff,rC:30'. The fragments are classified ac-

locities, as follows13-15: cording to their massn and counted to compute the distri-
T bution n(m), normalized here by the total number of frag-
vi(0)=v; +Cr;(0), D ments. Asn(m) is not a continuous function, it is more

T . . — convenient to work with the cumulative distributi¢8], the
Whgrgvi are t.he |n|t|al vequUes a”“’i(‘?) are the |n|t|al total number of fragments with masses larger than or equal
positions, obtained in the previogandomic or thermalized to m. defined as

stage. The proportionality consta@t(with units of inverse

of time) is a measure of the initial energy imparted to the
object. From time zero onward, no energy is added to the F(m)= Ean(m’)dm/. @)
system and the particles positions and velocities are obtained
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FIG. 2. Double logarithmic plot of the cumulative mass distri-  F|G. 3. Double logarithmic plot of the cumulative mass distri-
bution of fragmentsF(m) after 15000 (circles and 150000 pution of fragmentsF(m) after 150 000 time steps, at different
(squares MD time steps. Although the object is free to expand values ofR, obtained from an initial random configuration as shown
indefinitely, the fragment mass distribution at the intermediate masHk Ref. [13]. A power law is observed for an intermediate range of
region becomes steady after a sufficient number of time steps. Th@ass values, with an exponefit= 1.40+0.02 independently oR.
parameters used in this simulation are the same as those used in Fighr [argem, the distributions decay exponentially. The solid line in
1(a). the inset is the least-square fit to the data in the scaling regions for

all cases, with the number indicating the expongniThe number
As in Ref.[3], if n(m) follows a power law,n(m)sm™#, of particles is fixed taN=40 000.
F(m) should also exhibit scaling with the same exponént

As shown in Fig. 2, although the system is free to expandihan that in Fig. 3, extending over almost two orders of mag-
the cumulative distributiofr (m) becomes steady after a suf- pitude forR=0.43 and decreasing upon increasRicas the
ficient number of time steps. In our simulations, we onlyformation of large clusters becomes less probable with large
calculateF(m) after 150 000 time steps. energy inputs. Analyzing the radial distribution function
g(r) for the initial configuration used in Fig. 4 we found that
the system is a mix solid-liquid phase.

In order to simulate the fragmentation of a solid, we de-

For the sake of comparison with previous res(dese Ref. Ccrease the initial configuration temperature 6= 0.037,
[13]), we first present results obtained with random initial maintaining the number density” =0.61. In Fig. 5 we show
configurations. The number density js*=0.61 andN the steady staté(m) for a range ofR values between 0.43
=40000 particles. In Fig. 3 we plot the distributiéiim)  and 2.00. Once again, we can identify a region of masses
against the fragment mass for different values of the pa-
rameterR. A power-law region can be observed for interme- 1
diate masses, with an expong®#= 1.40=0.02 for all cases.
For largem, the distributions fall off exponentially. Clearly, *
the exponenp is unchanged when the paramef®efa mea- N

Ill. RESULTS AND DISCUSSION

sure of the input energys increased from 0.43 to 2.00. The Y
width of the region for which the power law holds also be- ,
comes narrower aR increases. It is the definition of the &?gmh
range of fragment masses for which the power law holds thai 5 | %ﬂﬁe‘s\%\
gives the larger source of error to the expongnilthough =

[¢]

the value of the exponerg that we found is in agreement =
with the results obtained by Chinet al. [13], namely, 8
—1=0.41 for R=0.43, we did not observe the energy de- =3[ ©--oR-=043

pendence detected in their study. This can perhaps be attrik e Roz00
uted to the small number of particles used in R&8], typi-
cally N=4200. 5 , , ,
Next we discuss the results of simulations performed with 0 1 2 3 4

. S . . lo
thermalized states as initial configurations for the fragmenta- o™

tion process. In Fig. 4 the equilibrium temperatureTis FIG. 4. Cumulative mass distribution for a thermalized initial
=0.37, while the number density and the rangeRofalues  configuration aff* =0.37[see Fig. 1a)], for the same values d?
are the same as in Fig. 3. Again we observe a power-lawind N used in Fig. 3. The power-law region is wider than that
region for intermediate masses, but now with an exponengbtained if Fig. 3 for the samR, but now the scaling exponent is
B=1.14+0.03. The range of this scaling region is larger §=1.14+0.03, as shown in the inset.
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1 of fragment masses, it results tha¢m) should follow a
I log-normal distribution,
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5 . s . If o2 is sufficiently large, only the ii term remains for

0 ! 2 8 4 small masses. In our case? can be quite large; for ex-

log,,m
Jo ample, 0?=4.0 and logn=5.9 for a run with 40000 par-

FIG. 5. Cumulative mass distribution for the thermalized initial ticles at T* =0.037 andR=0.43. As shown in Fig. 5, the
configuration shown in Fig. (b) (T*=0.037). The solid line cor- |og-normal expression foF(m) with these parameters fits
responds to the cumulative forf(m) of the log-normal distribu-  \yell the results from numerical simulations. Therefore, it
tion [Eq. (3], with logm=5.9 ando”=4.0. According to the solid provides a plausible mechanism to explain the power-law
line shown in the inset, a power law with an expon@#1.05  pehavior that we observe at low temperatures and in the
+0.02 represents the least-square fit to the data in the scaling reange of small masses. Corrections to tha diistribution at
gion. large masses are due to the finite size of the system.

For liquids, the fragmentation process is slower than for
where F(m) follows a power-law behavior, with an expo- solids. Besides, there will be particles that do not belong to
nent 8=1.05-0.02, which remains approximately un- any cluster and eventually form other clusters, or adhere to
changed within the range & values used in the simulations. an existing fragment, increasing its mass. In both cases, the
It is important to mention that several test simulations weamplification process may lead to a power-law distribution
carried out with objects that are different, but prepared in thavith a coefficient different from-1 [19].
same way(e.g., two objects thermalized &t* =0.037),
showed the same power-law exponent.

The different values oR used to generate Figs. 2-5 are
reached by increasing the value of the cons@im Eq. (1). In summary, we have presented in this paper a model for
We observe that the expongsitis rather robust to changes in two-dimensional explosive fragmentation using molecular-
the input energy. On the other hand, our results indicate thafynamics simulation. The essential features of the fragmen-
B is sensitive to the way in which the object to be frag-tation process of an object composed by a set of Lennard-
mented is prepared, that is, to the initial state of the systemyones particles are shown to be a result of the competition
Indeed, when comparing the curves f@r=0.43 obtained between the input kinetic energy imparted to the system and
with different initial configurations, we see that the power-the cohesive forces that maintain its integrity prior to the
law exponent varies frong=1.40 (Fig. 3) to 1.05(Fig. 5.  explosion. Our simulations predict that the mass distribution
Therefore, we suggest that this exponent should solely desf fragments should display power-law behavior, with an
pend on themacroscopicproperties of the object. For in- exponent that is independent of the input energy representing
stance, as the initial configuration resembles more closely the explosion process. We show that, for an initial configu-
solid state, the exponergg tends to a value close to 1.0. ration resembling a solid, the fragment mass distribution fol-
Additional simulations performed with a number density lows an 1 behavior, consistent with a typical multiplica-
p*=0.95 and a reduced temperatufé =0.37 (a typical tive procesg§19].
two-dimensional LJ solidproduced a power-law exponent  How realistic is the fragmentation model used in our
of B=1.07+0.02. simulations? For a solid object, like the one shown in Fig.

It is possible to interpret the origin of ther/type of  1(b), the observed scaling exponent corresponding to small
distribution that we found for thermalized initial configura- masses is similar to that observed in experiments with gyp-
tions at low temperatures, in terms of a typioalltiplicative  sum disks[3]. However, the exponential crossover that we
procesg19]. In the solid phase, the fragments form rapidly observed for larger fragment masses cannot be attributed to
as one gives kinetic energy to the system. In this situationthe morphology of the object being fragmented, as in Ref.
the system has enough potential energy to hold clusters t¢3]. In our case, the crossover should be related to finite size
gether. A small fragment with madd , is produced from a and input energy effects, both limiting the largest fragment
large one with mas#/1, through a succession & breaks, mass.
such that the differenc®l,,_,—M, is a random portion of It has recently been suggested that the crossover (oass
the fragment with mass,,_,. If we apply the central limit the largest fragment massan be used as the order param-
theorem[19], and assume that every fragmentation of a clus-eter defining the critical region of fragmentatid6,17. The
ter produces the same fractional increase to the distributioscaling exponent found in these studies is exactly one-half of

IV. CONCLUSIONS
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