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Exact solution of return hysteresis loops in a one-dimensional random-field Ising model
at zero temperature
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Minor hysteresis loops within the main loop are obtained exactly in the one-dimensional ferromagnetic
random-field Ising model at zero temperature. Numerical simulations of the model show excellent agreement
with the exact results.

PACS numbes): 05.50+q, 02.50-r, 75.10.Nr, 75.60-d

[. INTRODUCTION in one dimension and on a Bethe latticg8] in the case
when the system evolves from a saturated state. The antifer-
Hysteresis is observed in any material that is driven by aomagnetic RFIM has also been solved exactly in one dimen-
force cycling faster than it can equilibrate. It has practicalsion [9] if the system evolves from an initial state with all
importance and old scientific interegt] renewed by the Spins parallel to each other. The restriction to an initial state
present focus of statistical mechanics on nonequilibrium phewith all spins parallel to each other means that solutions for
nomena. There have been many theoretical studies of hysteRinor hysteresis loops lying within the main hysteresis loop
esis recently, and also simulations and experiméatss)]. could not be obtained even in one d|men5|_on so far. In the
The purpose of the present paper is to make a small contrRresent paper we are able to lift this restriction for the ferro-

bution in the context of exactly solvable models of hyster-m""gnetIC RFIM in one dimension. We present exact solu-

esis. Work on exactly solvable models of hysteresis forms éions of return hysteresis loops starting anywhere on the par-

very small fraction of the total work on hysteresis, but it goesem loop.

back to the earliest attempts at a theory of hysteresis. Ray-
leigh, Preisach, and Stoner-Wohlfafth| studied models of
hysteresis that could be solved exactly. However, these mod- The one-dimensional random-field Ising model is charac-
els neglected the frequency dependence of hysteresis loogsrized by the Hamiltonian

and were purely phenomenological. For example, in the Prei-

sach model, a ferromagnet is assumed to consist of many _

independent magnetic domains of varying sizes. Each do- H__‘]Ei S‘S‘”_Ei hisi_hzi Si- @

main is assumed to have a rectangular hysteresis loop char-

acterized by two coercive fields. Each domain is also asHeres;==*1 are the Ising spind); is the quenched random
sumed to relax instantaneously, and therefore the hysteredigld drawn from a continuous probability distributigith;),
loops have no frequency dependence. The distribution of thend h is the external field. The zero temperature dynamics
size of domains and their coercive fields is varied in order t&mounts to flipping a spin only if it lowers the energy of the
fit experimental hysteresis loops. The Preisach model is pasystem. It normally causes an avalanche, i.e., a large number
ticularly successful in fitting to experimental results, but it of neighboring spins have to be flipped before the system
does not attempt to explain why the individual domains havesomes to a stable state. We keep the applied field fixed dur-
rectangular loops. Subsequently, several models based on thig an avalanche, and raise it afterwards until the next ava-
dissipative Langevin dynamics of Heisenberg ferromagnettanche occurs. More details of the model can be found in
in the presence of an oscillating external field have beemefs.[4,7,8. The ferromagnetic RFIMJ=0) has two im-
studied, and exact results have been obtained for the frgportant properties. It is Abeliai8], i.e., the stable state after
quency dependence of the hysteresis loops in some speciih avalanche does not depend upon the order in which the
caseq 3]. More recently, Sethnat al. [4] have studied the spins flip during an avalanche. And it has return point
zero temperature dynamics of the ferromagnetic randommemory[4], i.e., the stable state in a slowly changing fibld
field Ising modelRFIM) on a lattice as a model of hysteresis depends only on the state where this field was last reversed.
and Barkhausen noise in ferromagnets. The limitation to thén the special case when we starthat — and raise the
zero temperature dynamics means that the model of Sethrild monotonically, the state atdoes not depend on the rate
et al. neglects the frequency dependence of the hysterestf increase inh. Large rates of increase result in fewer but
loops just like the earliest models of hysteresis mentionedarger avalanches, and small rates in more numerous but
above, but it has the advantage of being a microscopic modemaller avalanches. The final state remains the same. We
and describes several other phenomena as[@klincluding  exploit this property in determining the stable statehat
athermal martensitic transformations, fluid flow in porousthrough a single large avalanche from the initial staté at
media, and pinning of flux lines in superconductors. The zere= —%. The Abelian property tells us that, during this ava-
temperature dynamics of the ferromagnetic RFIM has beetanche, whether a spin at sitdlips or not depends on the
solved exactly in the mean field approximati@h, as wellas  quenched fieldh; on the site and the number of nearest

II. STARTING WITH A SATURATED STATE
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FIG. 1. Hysteresis looyfilled squares between two saturated FIG. 2. Hysteresis loofffilled squaresfor a rectangular distri-
states for a Gaussian random figldean=0, variance=1, J=1). bution of the random field of width 6J&1). Return loop(open
Two excursions from the lower half are showmn=1 toh’'=-1 squares shows an excursion from the lower hali€1.5 toh’=
and back(open squargsandh=1 to h’'=—0.6 and backopen —0.5 and back
circles.

. . . Ill. REVERSING THE APPLIED FIELD
neighborsn (n=0,1,2) that have flipped up before it, but not

on the order in which the neighbors flipped. This probability =~ Reversing the applied field fromm= +% does not consti-

is given by tute a new problem because the upper half of the large hys-
teresis loop shown in Fig. 1 can be obtained from the lower

o half by symmetry. However, reversing the applied field from

Pn(h)=prot{h;j+2(n—1)J+h]=0= Jz(l_n)J_hp(hi)dhi - any other point constitutes a new and somewhat more diffi-

cult problem. The reason is that, in a starting state at a finite
We now need to calculate the probability that a neares{ield h, whether the spin at a site is flipped or not depends in
neighbor of a sité flips up before sitd. Let us denote the a nontrivial way on the random field at that site as well as on
conditional probability that sité+1 (or sitei —1) flips u nelghporlng_ sites. The state IS thus “strongly cor.related,”
P Y ( ) flips up and it is difficult to do perturbation theory about this state.

before sitei by P*(h). There are many ways in which the . : . ]
sitei+ 1 could be up, and we must sum over all the possi- The calculation of the return trajectory is rather tedious. A

bilities to calculateP* (h). If site i is down and sité +1 is €W Preliminary remarks may be helpful to the reader before
Up, a spin at sité+m (m=1) must have flipped up before takmg up the calculation. Consider a sitéhat is up at the
any of its neighbors were up with probability,(h), and point of return on the lower hysteresis loop and_ turns down
then the spins from-+m to i + 1 must have flipped up in an on the return trajectory. Ldt; be the quenched field on the

: site i, h the applied field at the point of return, ahd the
avalanche. Summing over these cases, we get applied field when sitéturns down. We characterize the site

" i by a set of three integerg n’, andn”, each of which can
. m—1 take three possible values 0, 1, or 2. The reason why we need
P (h)_mzl Po(MIp(h) =po(h)] three integers to characterize the siteill become clearer in
due course. Let us first define what the three integers repre-
or sent:n is the number of nearest neighbors of sitkat are up
just before sitd flips up on the lower hysteresis loop; is
(h) the number of nearest neighbors of ditthat are up at the
Po ] start of the return trajectory at applied fidldn’=n); n” is
1—[ps(h)=po(h)] the number of nearest neighbors of sit¢hat are up just
before it flips down at applied field’ (n”<n’). The prob-
The probability that an arbitrary site is up at fididis  ability for the sitei to turn down ah’ obviously depends on

P*(h)=

given by h;, h’, andn”. If the sitei initiates a downward avalanche,
i.e., if it turns down before any of its nearest neighbors turn
p(h)=[P*(h)]?p,(h)+2P*(h)[1—P*(h)]p.(h) down, thenn”=n’. If the sitei turns down during an ava-
lanche, i.e., if it turns down after one or more of its nearest
+[1=P*(h)]*po(h). (2} neighbors have turned down, thefi<n’. The importance

of the integem is that it characterizes the relative strength of
The magnetization per spim(h) is related top(h) by the  the quenched fielti; at the sitei. For example, in=0, we
simple equationm(h)=2p(h)—1. The lower half of the must haveh;—2J+h=0, i.e., the quenched field on the site
large hysteresis loop in Fig. 1 shows(h) for a Gaussian i must be relatively largeh;=2J—h). Thea posterioridis-
distribution of the quenched field, and in Fig. 2 it is showntribution of the quenched field on the up spins at the point of
for a rectangular distribution. The upper half of the mainreturn is strongly modified from the initial distribution. We
loop in each case has been obtained by symmatryh) = classify the up spins at the point of return into three main
—m(—h). categories characterized by the value of the integesnd
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each of these categories into subcategories characterized byf(h)={1—p2(h)}[P*(h)]+{1—pl(h)}[l—P*(h)].
the values o’ andn”.

We start backtracking from an arbitrary applied fialdn The above equation can be understood as follows. Sup-
the lower loop, and come down tg (h’<h). We want the pose the spin at siteis up, andf(h) denotes the probability
magnetization alh’. Obviously, spins can flip down only on that the spin at sité+1 is down. Before the spin at siie
the reverse trajectory, and therefore we focus on spins that 1 is relaxed, the spin at site+ 2 is up with the probability
are up ath but turn down ath’. As discussed above, we [P*(h)] and down with the probabilitf1—P*(h)]. The
divide the up spins &b into three main categories character- probability that the spin stays down in the two cases even
izing the range of their random field and how they turned upafter it is relaxed is given by1l—p,(h)} and{1—p(h)},
on the lower hysteresis loop. Spins in category O haye respectively. The probability for the spiniat 1 to flip down
=2J—h. These spins could turn up laeven if none of their ath’ is equal to[ p;(h)—p4(h’)]. After it flips down, the
neighbors were up to help them. Spins in category 1 havespin ati—1 can also flip down with the same probability if it
—h=<h;=<2J—h, and spins in category 2 have2J—h belongs to category 1 and the spiniat2 is up. Thus an
=<h;=<-—nh. No spin could be up &t if it has hy<—2J—h. avalanche can start. The avalanche will go on until it meets a
The three main categories listed above are determined by thgategory-1 spin that does not flip downtat or it meets a
number of up neighbors that a spin has just before it turns category O spin that has an up neighbor on the other side.
up during an upward avalanchetatAfter that avalanche has The probability that a nearest neighbor of an up spin is down
settled, the number of up neighbors may increase. Thus eachh’ is given by,
of the three main categories can be further divided into three
subcategories characterized by the number of up neighbors f(h)

n’ after the avalanche. Some of the subcategories may be da(h,h")= h h1
empty becaus@’=n. For example, ifn=2, there are no 1=[pa(h) =ps(h")]

subcategories witm'=0, or 1. A spin of category 2n( 4. f(h) is the " ;
_ ; : ; , probability that the neighbor was already
=2) that is up ath necessarily has both neighbors up' (o in the initial state. The other factor is the sum of an

=2). Spins of category 1 could have one or both neighborgyfinite series that accounts for avalanches of various sizes
up. Spins of category O could have zero, one, or two neighy hich may bring the neighbor down.

bors up ath. An important point to note is that, when the — ap gyalanche can also be started by a spin of category 2
applied field is reversed, spins of category 2 with both ne'ghﬂipping down. This gives another term

bors up are as susceptible to turning down as spins of cat-

egory 1 with one neighbor up because the net field in both [po(h)—po(h")][P*(h)]
cases lies in the same range. gp(h,h")= -
In the first instance, we consider a restricted range of the 1=[pa(h)=ps(h")]

reversed fieldh—2J<h’<h. In this range, the only spins Th tor in the ab i b derstood
that could turn down are spins of category 2 with two neigh- € numerator in the above equation can be understood as
]‘sollows. Suppose the spins at sites+1, andi+2 are up

bors up, spins of category 1 with one neighbor up, and spin > . .
of category O with zero neighbors up. We add the contribu2nd Sitél +1 belongs to category 2P*(h)] is the probabil-
ity that sitei+2 was up before sité+1 was relaxed ah.

tions from these three categories, and subtract the sum fro . h bability that the riaht sid iah
the number of up spins &t This gives us the magnetization The numerator g|vest_ '€ probabi ity t ?tt e right si '€ neigh-
bor of the up spin at siteflips down ath’. The denominator

ath’. Consider the spins of category 2 first: their fraction at ; N
his equal tof P* (h)]2[ po(h) — p1(h)]. The factor P* (h)] takes care of any pos§|ble avalanches star_tgd by the flipping
gives the probability that a nearest neighbor of a spin is uﬂ'o_W“ of a category 2 site. The tota_l probability that a nearest
on the lower hysteresis loop before that spin is relaxed. Thu8€ighbor of an up spin is down &t is equal toq, +qp . We
[P*(h)]? is the probability that both neighbors of the spin also need the probability that a nearest neighbor of an up

are up before it is relaxed. The factgr,(h) — p;(h)] gives spin is up before that spin is relaxedtdt This is equal to

the probability that the spin turns up if two neighbors are upth€ Probability that the neighbor in question was up on the

but not if only one neighbor is up. Thus, the fraction of !ower hyster(isis Ioop befo_re the site was relaxed, ae".it
category 2 spins that turn down lat on the return loop is IS e'q'ual toP .(h)' With th.|s knowledge, we are now In a
position to write the fraction of category 1 spins that turn

i b
given by down on the return loop dt’. We get
2(h,h")=[P*(h)][p(h)— pa(h")]. ' ) ,
GO =PI —po(N)] gi(h.h')=2[P* (M][a%(h.h’)+p(h,h)[ps(h)
Now we take up the spins of category 1. In the initial state —p(h")].

at h, category 1 spins come in two subcategori@sspins

with one neighbor up an@i) spins with two neighbors up. In Spins of category 1 cannot have both nearest neighbors
the restricted range of the reversed field+(2J<h’<h), down. The reason is that this class of spins are flipped up
spins in subcategoryii) cannot turn down spontaneously. during an avalanche on the lower hysteresis loop. Therefore
However, they can turn down in an avalanche, if the avathey must be connected by up spins to a spin of category 0O
lanche puts one of their neighbors in categ@ryand it turns  on one side at least. A spin of category 0 cannot turn down if
down. An avalanche can start with a category 1 spin that hai has at least one neighbor up. However, if both neighbors of
one neighbor down in the starting statehaf his occurs with  a spin of category 0 are down ht, it may turn down. The

the probabilityf(h) given by fraction of such spins is given by,
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q?(h,h’)=[qa(h,h’)+qb(h,h’)]Z[po(h)— po(h")]. ity that a nearest neighbor of a down spin is up on the lower
return loop before that neighbor is relaxed is given by
We are now in a position to write the magnetization on
the return loop in the rang¢h—2J<h’'<h]. We get, (h.h' h7) a
(h') — I(h') _ ¢] N, "= ,
)=z ()~ 4, where " L=[pa(h")=pa(h")]

p'(h")=p(h)=gf(h.h")=ar(h.h")=afth,h). @)

The key to getting the return magnetization beyond the range ,

considgzlredgabovfaJ is to note that%he state of th)é system on £'?he a=[p:(h")=po(N) JP*(h)+[1-(da+dp)IPo(h)

reverse trajectory ah’=h—-2J is the same as would be +(ga+ap)Po(h”).

obtained from the initial state &' = + 0. If the initial state

ath’=x is exposed to an applied field—2J, spins with The magnetization on the lower return loop is given by
h;=<—h will flip down spontaneously and start avalanchesm”(h”)=2p"(h")—1, where

where the adjacent spins in the rangd<h;<2J—h will

flip down. When this avalanche is finished, the remaining up ~ p"(h”")=p’(h")+(da+dy)?[ po(h”) —po(h’)]

spins will belong to three categorie§) spins withh;=2J e " ,

—h with one neighbor up(ji) spins withh;=4J—h with no 2(atAp)Prr (D" M) [a(h") = paCh")]
neighbors up, andiii) spins withh;=—h with two neigh- +p,zr(h,h'.h”)[pz(h”)—po(h')]- (4)

bors up. This is precisely the state obtained at the end of the

reverse trajectory obtained above. Therefore, the reverse trag may be expected, the exact results obtained above agree
jectory in the rangéd’ <h—2J merges with the upper half of quite well with numerical simulations of the model. Figure 1

the big hysteresis loop. shows a comparison for a Gaussian distribution of the ran-
dom field, and Fig. 2 for a rectangular distribution. The exact
IV. REVERSING THE FIELD AGAIN results involve the probabilitiepg(h), p1(h), and p,(h),

which are integrals over the random-field distribution. For a
eFectangular distribution of the random-field these integrals
are linear functions of the applied field. However, for a
. Gaussian distribution of the random field, the integrals over
by symmetry to the problem of the return loop analyzed iny, o \anqom field distribution become error functions which

the previous section. We need not repeat this calculation,, e 15 e evaluated numerically. The exact expressions are
However, if the reversed field is re-reversed before it reacheghOWn by continuous lines. Simulations for a chain of 1000
h_?‘]' we have a new problem on our hands, which we noWspins (averaged over 1000 different realizations of the
analyze. random-field distributionpare indistinguishable from the ex-

) , - .
we t_urn_back the f'elq ah’. Our Ob]e,Ct 'sj, to obtain the 5y expressions, but these are shown by large symbols at
magnetization at an arbitrary vall¢ (h’<h"<h) on the sparse intervals for visual convenience

lower half of the return loop. Essentially, we are looking at
the same strings of spins that turned down in the previous
section, but now they turn up from the other end. If a spin is
down on the lower half of the return |00p, it must have been The nonequ”ibrium response of RFIM at zero tempera-
down at the end of the upper half as well. The reason is thayre is related to experimentally measurable quantities in
on the lower half spins can only flip up, none can flip down.several diverse systems. It has been calculated exactly in one
Thus the probability that a nearest neighbor of a down spin iglimension using probabilistic methods, and checked against
down on the lower return loop is equal tQ,(h,h")  numerical simulations of the model. The probabilistic
+0p(h,h"). The probability that the nearest neighbor is upmethod used here and in earlier wdik-9] assumes the
increases steadily as more spins flip up on the lower halfexistence of a unique thermodynamic state which is self-
First, let us look at the probability of an up neighbor at theayeraging. The numerical simulations do not involve making
start of the lower return loop. Consider three adjacent sitesany assumptions about the thermodynamic state, and explic-
i—1,i, andi+1. Given that site + 1 is down, we want the jtly average the results for reasonably large systems over
probability that sitei is up. It follows from the previous different realizations of the random field distribution. The
section that, if sité is up ath’, it must be a spin of category agreement between the theoretical expressions and the simu-
0, or there must be a string of up spins to the lefi @bn-  |ation results is an indication that the zero temperature dy-

taining a spin of category 0. Spins of category 0 are up withamics brings the RFIM to a self-averaging thermodynamic
probability unity if they are adjacent to an up spin, otherwisestate.
they have to have a quenched field in excessJof 4. Thus

The magnetization in reversed field merges with the upp
half of the big hysteresis loop when the field falls belbw
—2J. Pulling up the field from belovih—2J can be related

V. CONCLUDING REMARKS

the probability that sité is up and is a spin of category 0 is ACKNOWLEDGMENT
equal to[1—(ga+ap)Jpo(h) +(gatan)Po(h”). The prob-
ability that sitei is up and not a spin of category O is equalto | thank Deepak Dhar for a critical reading of the

[P*(h)][pi(h")—po(h)]. Putting it together, the probabil- manuscript.




PRE 62

[1] J. S. W. Rayleigh, Philos. Ma@3, 225(1887); F. Preisach, Z.
Phys.94, 277 (1935; E. C. Stoner, and E. P. Wohlfarth, Phi-
los. Trans. R. Soc. London, Ser. 240, 599 (1948; H.
Barkhausen, Z. Phy20, 401 (1919.

[2]I. D. Mayergoyz, Mathematical Models of Hysteresis
(Springer-Verlag, Berlin, 1991 For a more recent review, see
G. Bertotti, Hysteresis in MagnetisnfAcademic Press, San
Diego, 1998.

[3] See, for example, D. Dhar and P. B. Thomas, J. Phy&5A
4967 (1992; Europhys. Lett.21, 965 (1993; P. B. Thomas
and D. Dhar, J. Phys. A6, 3979 (1993, and references
therein; S. W. Sides, R. A. Ramos, P. A. Rikvold, and M. A.
Novotny, J. Appl. Phys79, 6482(1996; Y. L. He and G. C.
Wang, Phys. Rev. Letil5, 2336(1993.

EXACT SOLUTION OF RETURN HYSTERESIS LOG®. . .

4729

Dahmen and J. P. Sethna, Phys. Rev6314 872(1996); J.

P. Sethna, O. Perkovic, and K. Dahmen, e-print
cond-mat/9704059; O. Perkovic, K. A. Dahmen, and J. P.
Setna, e-print cond-mat/9609072; e-print cond-mat/9807336.

[5] S. Zapperi, P. Cizeau, G. Durin, and H. E. Stanley, Phys. Rev.
B 58, 6353(1998, and references therein.

[6] E. Vives, J. Ortin, L. Manosa, |. Rafols, R. Perez-Magrane,
and A. Planes, Phys. Rev. Let2, 1694(1994); A. H. Thomp-
son, A. J. Katz, and R. A. Raschkibjd. 58, 29 (1987; G.
Ravikumaret al, Phys. Rev. B67, R11 069(1998.

[7] P. Shukla, Physica £33 235(1996); D. Dhar, P. Shukla, and
J. P. Sethna, J. Phys. 20, 5259(1997).

[8] S. Sabhapandit, P. Shukla, and D. Dhar, J. Stat. P48/sL03
(2000.

[4] J. P. Sethna, K. A. Dahmen, S. Kartha, J. A. Krumhansl, B. W. [9] P. Shukla, Physica £33 242(1996; P. Shukla, R, Roy, and

Roberts, and J. D. Shore, Phys. Rev. Lég.3347(1993; K.

E. Ray,ibid. 275 380 (2000; 276, 365 (2000.



