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Exact solution of return hysteresis loops in a one-dimensional random-field Ising model
at zero temperature

Prabodh Shukla
Physics Department, North Eastern Hill University, Shillong-793 022, India

~Received 10 April 2000; revised manuscript received 19 June 2000!

Minor hysteresis loops within the main loop are obtained exactly in the one-dimensional ferromagnetic
random-field Ising model at zero temperature. Numerical simulations of the model show excellent agreement
with the exact results.

PACS number~s!: 05.50.1q, 02.50.2r, 75.10.Nr, 75.60.2d
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I. INTRODUCTION

Hysteresis is observed in any material that is driven b
force cycling faster than it can equilibrate. It has practi
importance and old scientific interest@1# renewed by the
present focus of statistical mechanics on nonequilibrium p
nomena. There have been many theoretical studies of hy
esis recently, and also simulations and experiments@2–5#.
The purpose of the present paper is to make a small co
bution in the context of exactly solvable models of hyst
esis. Work on exactly solvable models of hysteresis form
very small fraction of the total work on hysteresis, but it go
back to the earliest attempts at a theory of hysteresis. R
leigh, Preisach, and Stoner-Wohlfarth@1# studied models of
hysteresis that could be solved exactly. However, these m
els neglected the frequency dependence of hysteresis l
and were purely phenomenological. For example, in the P
sach model, a ferromagnet is assumed to consist of m
independent magnetic domains of varying sizes. Each
main is assumed to have a rectangular hysteresis loop c
acterized by two coercive fields. Each domain is also
sumed to relax instantaneously, and therefore the hyste
loops have no frequency dependence. The distribution of
size of domains and their coercive fields is varied in orde
fit experimental hysteresis loops. The Preisach model is
ticularly successful in fitting to experimental results, but
does not attempt to explain why the individual domains ha
rectangular loops. Subsequently, several models based o
dissipative Langevin dynamics of Heisenberg ferromagn
in the presence of an oscillating external field have b
studied, and exact results have been obtained for the
quency dependence of the hysteresis loops in some sp
cases@3#. More recently, Sethnaet al. @4# have studied the
zero temperature dynamics of the ferromagnetic rand
field Ising model~RFIM! on a lattice as a model of hysteres
and Barkhausen noise in ferromagnets. The limitation to
zero temperature dynamics means that the model of Se
et al. neglects the frequency dependence of the hyster
loops just like the earliest models of hysteresis mentio
above, but it has the advantage of being a microscopic m
and describes several other phenomena as well@6#, including
athermal martensitic transformations, fluid flow in poro
media, and pinning of flux lines in superconductors. The z
temperature dynamics of the ferromagnetic RFIM has b
solved exactly in the mean field approximation@4#, as well as
PRE 621063-651X/2000/62~4!/4725~5!/$15.00
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in one dimension and on a Bethe lattice@7,8# in the case
when the system evolves from a saturated state. The ant
romagnetic RFIM has also been solved exactly in one dim
sion @9# if the system evolves from an initial state with a
spins parallel to each other. The restriction to an initial st
with all spins parallel to each other means that solutions
minor hysteresis loops lying within the main hysteresis lo
could not be obtained even in one dimension so far. In
present paper we are able to lift this restriction for the fer
magnetic RFIM in one dimension. We present exact so
tions of return hysteresis loops starting anywhere on the
ent loop.

II. STARTING WITH A SATURATED STATE

The one-dimensional random-field Ising model is char
terized by the Hamiltonian

H52J(
i

sisi 112(
i

hisi2h(
i

si . ~1!

Heresi561 are the Ising spins,hi is the quenched random
field drawn from a continuous probability distributionp(hi),
and h is the external field. The zero temperature dynam
amounts to flipping a spin only if it lowers the energy of th
system. It normally causes an avalanche, i.e., a large num
of neighboring spins have to be flipped before the syst
comes to a stable state. We keep the applied field fixed
ing an avalanche, and raise it afterwards until the next a
lanche occurs. More details of the model can be found
Refs. @4,7,8#. The ferromagnetic RFIM (J>0) has two im-
portant properties. It is Abelian@8#, i.e., the stable state afte
an avalanche does not depend upon the order in which
spins flip during an avalanche. And it has return po
memory@4#, i.e., the stable state in a slowly changing fieldh
depends only on the state where this field was last rever
In the special case when we start ath52` and raise the
field monotonically, the state ath does not depend on the ra
of increase inh. Large rates of increase result in fewer b
larger avalanches, and small rates in more numerous
smaller avalanches. The final state remains the same.
exploit this property in determining the stable state ath
through a single large avalanche from the initial state ah
52`. The Abelian property tells us that, during this av
lanche, whether a spin at sitei flips or not depends on the
quenched fieldhi on the site and the number of neare
4725 ©2000 The American Physical Society
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4726 PRE 62PRABODH SHUKLA
neighborsn (n50,1,2) that have flipped up before it, but n
on the order in which the neighbors flipped. This probabil
is given by

pn~h!5prob@hi12~n21!J1h#>05E
2(12n)J2h

`

p~hi !dhi .

We now need to calculate the probability that a near
neighbor of a sitei flips up before sitei. Let us denote the
conditional probability that sitei 11 ~or site i 21) flips up
before sitei by P* (h). There are many ways in which th
site i 11 could be up, and we must sum over all the pos
bilities to calculateP* (h). If site i is down and sitei 11 is
up, a spin at sitei 1m (m>1) must have flipped up befor
any of its neighbors were up with probabilityp0(h), and
then the spins fromi 1m to i 11 must have flipped up in an
avalanche. Summing over these cases, we get

P* ~h!5 (
m51

`

p0~h!@p1~h!2p0~h!#m21

or

P* ~h!5
p0~h!

12@p1~h!2p0~h!#
.

The probability that an arbitrary site is up at fieldh is
given by

p~h!5@P* ~h!#2p2~h!12P* ~h!@12P* ~h!#p1~h!

1@12P* ~h!#2p0~h!. ~2!

The magnetization per spinm(h) is related top(h) by the
simple equationm(h)52p(h)21. The lower half of the
large hysteresis loop in Fig. 1 showsm(h) for a Gaussian
distribution of the quenched field, and in Fig. 2 it is show
for a rectangular distribution. The upper half of the ma
loop in each case has been obtained by symmetry,mu(h)5
2m(2h).

FIG. 1. Hysteresis loop~filled squares! between two saturated
states for a Gaussian random field~mean50, variance51, J51).
Two excursions from the lower half are shown:h51 to h8521
and back~open squares!, and h51 to h8520.6 and back~open
circles!.
st

i-

III. REVERSING THE APPLIED FIELD

Reversing the applied field fromh51` does not consti-
tute a new problem because the upper half of the large h
teresis loop shown in Fig. 1 can be obtained from the low
half by symmetry. However, reversing the applied field fro
any other point constitutes a new and somewhat more d
cult problem. The reason is that, in a starting state at a fi
field h, whether the spin at a site is flipped or not depends
a nontrivial way on the random field at that site as well as
neighboring sites. The state is thus ‘‘strongly correlated
and it is difficult to do perturbation theory about this state

The calculation of the return trajectory is rather tedious
few preliminary remarks may be helpful to the reader bef
taking up the calculation. Consider a sitei that is up at the
point of return on the lower hysteresis loop and turns do
on the return trajectory. Lethi be the quenched field on th
site i, h the applied field at the point of return, andh8 the
applied field when sitei turns down. We characterize the si
i by a set of three integersn, n8, andn9, each of which can
take three possible values 0, 1, or 2. The reason why we n
three integers to characterize the sitei will become clearer in
due course. Let us first define what the three integers re
sent:n is the number of nearest neighbors of sitei that are up
just before sitei flips up on the lower hysteresis loop;n8 is
the number of nearest neighbors of sitei that are up at the
start of the return trajectory at applied fieldh (n8>n); n9 is
the number of nearest neighbors of sitei that are up just
before it flips down at applied fieldh8 (n9<n8). The prob-
ability for the sitei to turn down ath8 obviously depends on
hi , h8, andn9. If the site i initiates a downward avalanche
i.e., if it turns down before any of its nearest neighbors tu
down, thenn95n8. If the site i turns down during an ava
lanche, i.e., if it turns down after one or more of its near
neighbors have turned down, thenn9,n8. The importance
of the integern is that it characterizes the relative strength
the quenched fieldhi at the sitei. For example, ifn50, we
must havehi22J1h>0, i.e., the quenched field on the si
i must be relatively large (hi>2J2h). Thea posterioridis-
tribution of the quenched field on the up spins at the poin
return is strongly modified from the initial distribution. W
classify the up spins at the point of return into three m
categories characterized by the value of the integern, and

FIG. 2. Hysteresis loop~filled squares! for a rectangular distri-
bution of the random field of width 6 (J51). Return loop~open
squares! shows an excursion from the lower half (h51.5 to h85
20.5 and back!.
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PRE 62 4727EXACT SOLUTION OF RETURN HYSTERESIS LOOPS . . .
each of these categories into subcategories characterize
the values ofn8 andn9.

We start backtracking from an arbitrary applied fieldh on
the lower loop, and come down toh8 (h8<h). We want the
magnetization ath8. Obviously, spins can flip down only o
the reverse trajectory, and therefore we focus on spins
are up ath but turn down ath8. As discussed above, w
divide the up spins ath into three main categories characte
izing the range of their random field and how they turned
on the lower hysteresis loop. Spins in category 0 havehi
>2J2h. These spins could turn up ath even if none of their
neighbors were up to help them. Spins in category 1 ha
2h<hi<2J2h, and spins in category 2 have22J2h
<hi<2h. No spin could be up ath if it has hi<22J2h.
The three main categories listed above are determined by
number of up neighborsn that a spin has just before it turn
up during an upward avalanche ath. After that avalanche ha
settled, the number of up neighbors may increase. Thus
of the three main categories can be further divided into th
subcategories characterized by the number of up neigh
n8 after the avalanche. Some of the subcategories ma
empty becausen8>n. For example, ifn52, there are no
subcategories withn850, or 1. A spin of category 2 (n
52) that is up ath necessarily has both neighbors up (n8
52). Spins of category 1 could have one or both neighb
up. Spins of category 0 could have zero, one, or two nei
bors up ath. An important point to note is that, when th
applied field is reversed, spins of category 2 with both nei
bors up are as susceptible to turning down as spins of
egory 1 with one neighbor up because the net field in b
cases lies in the same range.

In the first instance, we consider a restricted range of
reversed field:h22J<h8<h. In this range, the only spin
that could turn down are spins of category 2 with two neig
bors up, spins of category 1 with one neighbor up, and sp
of category 0 with zero neighbors up. We add the contri
tions from these three categories, and subtract the sum
the number of up spins ath. This gives us the magnetizatio
at h8. Consider the spins of category 2 first: their fraction
h is equal to@P* (h)#2@p2(h)2p1(h)#. The factor@P* (h)#
gives the probability that a nearest neighbor of a spin is
on the lower hysteresis loop before that spin is relaxed. T
@P* (h)#2 is the probability that both neighbors of the sp
are up before it is relaxed. The factor@p2(h)2p1(h)# gives
the probability that the spin turns up if two neighbors are
but not if only one neighbor is up. Thus, the fraction
category 2 spins that turn down ath8 on the return loop is
given by

qr
2~h,h8!5@P* ~h!#2@p2~h!2p2~h8!#.

Now we take up the spins of category 1. In the initial sta
at h, category 1 spins come in two subcategories:~i! spins
with one neighbor up and~ii ! spins with two neighbors up. In
the restricted range of the reversed field (h22J<h8<h),
spins in subcategory~ii ! cannot turn down spontaneousl
However, they can turn down in an avalanche, if the a
lanche puts one of their neighbors in category~ii ! and it turns
down. An avalanche can start with a category 1 spin that
one neighbor down in the starting state ath. This occurs with
the probabilityf (h) given by
by
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f ~h!5$12p2~h!%@P* ~h!#1$12p1~h!%@12P* ~h!#.

The above equation can be understood as follows. S
pose the spin at sitei is up, andf (h) denotes the probability
that the spin at sitei 11 is down. Before the spin at sitei
11 is relaxed, the spin at sitei 12 is up with the probability
@P* (h)# and down with the probability@12P* (h)#. The
probability that the spin stays down in the two cases e
after it is relaxed is given by$12p2(h)% and $12p1(h)%,
respectively. The probability for the spin ati 11 to flip down
at h8 is equal to@p1(h)2p1(h8)#. After it flips down, the
spin ati 21 can also flip down with the same probability if
belongs to category 1 and the spin ati 22 is up. Thus an
avalanche can start. The avalanche will go on until it mee
category-1 spin that does not flip down ath8 or it meets a
category 0 spin that has an up neighbor on the other s
The probability that a nearest neighbor of an up spin is do
at h8 is given by,

qa~h,h8!5
f ~h!

12@p1~h!2p1~h8!#
.

Here, f (h) is the probability that the neighbor was alrea
down in the initial state. The other factor is the sum of
infinite series that accounts for avalanches of various s
which may bring the neighbor down.

An avalanche can also be started by a spin of catego
flipping down. This gives another term,

qb~h,h8!5
@p2~h!2p2~h8!#@P* ~h!#

12@p1~h!2p1~h8!#
.

The numerator in the above equation can be understoo
follows. Suppose the spins at sitesi, i 11, andi 12 are up
and sitei 11 belongs to category 2.@P* (h)# is the probabil-
ity that site i 12 was up before sitei 11 was relaxed ath.
The numerator gives the probability that the right side nei
bor of the up spin at sitei flips down ath8. The denominator
takes care of any possible avalanches started by the flip
down of a category 2 site. The total probability that a near
neighbor of an up spin is down ath8 is equal toqa1qb . We
also need the probability that a nearest neighbor of an
spin is up before that spin is relaxed ath8. This is equal to
the probability that the neighbor in question was up on
lower hysteresis loop before the site was relaxed ath, i.e., it
is equal toP* (h). With this knowledge, we are now in
position to write the fraction of category 1 spins that tu
down on the return loop ath8. We get

qr
1~h,h8!52@P* ~h!#@qa~h,h8!1qb~h,h8!#@p1~h!

2p1~h8!#.

Spins of category 1 cannot have both nearest neighb
down. The reason is that this class of spins are flipped
during an avalanche on the lower hysteresis loop. There
they must be connected by up spins to a spin of catego
on one side at least. A spin of category 0 cannot turn dow
it has at least one neighbor up. However, if both neighbors
a spin of category 0 are down ath8, it may turn down. The
fraction of such spins is given by,
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qr
0~h,h8!5@qa~h,h8!1qb~h,h8!#2@p0~h!2p0~h8!#.

We are now in a position to write the magnetization
the return loop in the range@h22J<h8<h#. We get,
m8(h8)52p8(h8)21, where

p8~h8!5p~h!2qr
2~h,h8!2qr

1~h,h8!2qr
0~h,h8!. ~3!

The key to getting the return magnetization beyond the ra
considered above is to note that the state of the system o
reverse trajectory ath85h22J is the same as would b
obtained from the initial state ath851`. If the initial state
at h85` is exposed to an applied fieldh22J, spins with
hi<2h will flip down spontaneously and start avalanch
where the adjacent spins in the range2h<hi<2J2h will
flip down. When this avalanche is finished, the remaining
spins will belong to three categories:~i! spins withhi>2J
2h with one neighbor up,~ii ! spins withhi>4J2h with no
neighbors up, and~iii ! spins withhi>2h with two neigh-
bors up. This is precisely the state obtained at the end of
reverse trajectory obtained above. Therefore, the reverse
jectory in the rangeh8<h22J merges with the upper half o
the big hysteresis loop.

IV. REVERSING THE FIELD AGAIN

The magnetization in reversed field merges with the up
half of the big hysteresis loop when the field falls belowh
22J. Pulling up the field from belowh22J can be related
by symmetry to the problem of the return loop analyzed
the previous section. We need not repeat this calculat
However, if the reversed field is re-reversed before it reac
h22J, we have a new problem on our hands, which we n
analyze.

We turn back the field ath8. Our object is to obtain the
magnetization at an arbitrary valueh9 (h8<h9<h) on the
lower half of the return loop. Essentially, we are looking
the same strings of spins that turned down in the previ
section, but now they turn up from the other end. If a spin
down on the lower half of the return loop, it must have be
down at the end of the upper half as well. The reason is
on the lower half spins can only flip up, none can flip dow
Thus the probability that a nearest neighbor of a down spi
down on the lower return loop is equal toqa(h,h8)
1qb(h,h8). The probability that the nearest neighbor is
increases steadily as more spins flip up on the lower h
First, let us look at the probability of an up neighbor at t
start of the lower return loop. Consider three adjacent si
i 21, i, andi 11. Given that sitei 11 is down, we want the
probability that sitei is up. It follows from the previous
section that, if sitei is up ath8, it must be a spin of categor
0, or there must be a string of up spins to the left ofi con-
taining a spin of category 0. Spins of category 0 are up w
probability unity if they are adjacent to an up spin, otherw
they have to have a quenched field in excess of 4J2h. Thus
the probability that sitei is up and is a spin of category 0
equal to@12(qa1qb)#p0(h)1(qa1qb)p0(h9). The prob-
ability that sitei is up and not a spin of category 0 is equal
@P* (h)#@p1(h8)2p0(h)#. Putting it together, the probabil
e
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ity that a nearest neighbor of a down spin is up on the low
return loop before that neighbor is relaxed is given by

prr ~h,h8,h9!5
a

12@p1~h9!2p1~h8!#
,

where,

a5@p1~h8!2p0~h!#P* ~h!1@12~qa1qb!#p0~h!

1~qa1qb!p0~h9!.

The magnetization on the lower return loop is given
m9(h9)52p9(h9)21, where

p9~h9!5p8~h8!1~qa1qb!2@p0~h9!2p0~h8!#

12~qa1qb!prr ~h,h8,h9!@p1~h9!2p1~h8!#

1prr
2 ~h,h8,h9!@p2~h9!2p0~h8!#. ~4!

As may be expected, the exact results obtained above a
quite well with numerical simulations of the model. Figure
shows a comparison for a Gaussian distribution of the r
dom field, and Fig. 2 for a rectangular distribution. The ex
results involve the probabilitiesp0(h), p1(h), and p2(h),
which are integrals over the random-field distribution. Fo
rectangular distribution of the random-field these integr
are linear functions of the applied field. However, for
Gaussian distribution of the random field, the integrals o
the random field distribution become error functions whi
have to be evaluated numerically. The exact expressions
shown by continuous lines. Simulations for a chain of 10
spins ~averaged over 1000 different realizations of t
random-field distribution! are indistinguishable from the ex
act expressions, but these are shown by large symbo
sparse intervals for visual convenience.

V. CONCLUDING REMARKS

The nonequilibrium response of RFIM at zero tempe
ture is related to experimentally measurable quantities
several diverse systems. It has been calculated exactly in
dimension using probabilistic methods, and checked aga
numerical simulations of the model. The probabilis
method used here and in earlier work@7–9# assumes the
existence of a unique thermodynamic state which is s
averaging. The numerical simulations do not involve mak
any assumptions about the thermodynamic state, and ex
itly average the results for reasonably large systems o
different realizations of the random field distribution. Th
agreement between the theoretical expressions and the s
lation results is an indication that the zero temperature
namics brings the RFIM to a self-averaging thermodynam
state.
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