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Derivation of a two-generator framework of nonequilibrium thermodynamics
for quantum systems
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Starting from the quantum description of isolated systems on the microscopic level we derive the two-
generator formulation of nonequilibrium thermodynamics by means of the projection-operator technique. As a
generalized canonical ensemble is employed, we obtain a convenient starting point for practical calculations in
nonequilibrium thermodynamics; in particular, also in the classical limit. All dynamical material properties are
contained in a canonical nonequilibrium correlation. However, the generalized canonical approach is inappro-
priate for systems with large fluctuations; possible steps toward a suitable generalization for quantum systems
are discussed.

PACS numbsg(s): 05.70.Ln, 05.30-d

I. INTRODUCTION with multiplicative noise, the present derivation for quantum
systems is limited to situations withegligible fluctuation
The understanding of nonequilibrium thermodynamicseffects In the final remarks, we comment on the possibility
beyond the regime of linear constitutive equations is of greaof including fluctuations and on the expected form of the
importance in many branches of science and engineering. leorresponding fluctuation-dissipation theorem.
order to provide both a practical and general framework, a
two-genera}tpr.formulation of the time-evolution equations Il PROJECTION-OPERATOR APPROACH
for nonequilibrium sytems, referred to as GENERY@eneral
equation for the nonequilibrium reversible-irreversible cou- In the projection-operator approach, one can account for
pling), was deduced by considering the compatibility of twothe effects of the eliminated variables either by memory ef-
levels of description and by studying a large number of spefects, while considering linear equations for the relevant
cific examples[1]. The key idea of the GENERIC frame- variables, or by suitable nonlinearities, while using a Mar-
work is the use of two separate generators, energy and eRevian approximation, or by a combination of bdttil]. In
tropy, for the reversible and irreversible dynamitss idea  order to arrive at GENERIC, one needs to keep sufficiently
had previously been proposed in the context of plasma physnany variables and the appropriate nonlinearities for achiev-
ics[2]). This is of crucial importance when treating systemsing a realistic description of a system by Markovian time-
without local equilibrium states, such as systems describedvolution equations.
by Boltzmann'’s kinetic equation. We here consider the following situation. The relevant
The relationship between GENERIC and a number of alvariables of an isolated nonequilibrium system with Hamil-
ternative approaches to nonequilibrium thermodynamics haton operatorH are given by the self-adjoint Hilbert space
been establishedsee the summary if3] and references operatorsA,, wherek is a discrete or continuous label. Our
therein. Moreover, a number of new results has been progoal is to determine time-evolution equations for the expec-
duced by this formulation of nonequilibrium thermodynam- tation valuesx, of these generally noncommuting observ-
ics. We here mention only the new insights into reptationablesA, by means of the projection-operator technique.
models for melts of linear polymefd], a modification of the There are several fundamental differences between our
Doi-Ohta model for multiphase flows], and new ways of approach and previous work on the projection-operator ap-
producing equations for discrete hydrodynan{iés More-  proach(as elegantly presented in REL1]). First, we express
over, the applicability of GENERIC to relativistic systems the projected time-evolution equations in terms of two sepa-
has been established. Covariant hydrodynamic equations odite generators for reversible and irreversible contributions,
the GENERIC form have been propodéd, a generally co- whereas previously only one generator was ugsther the
variant version of the formalism has even been developeftee energy or the entrofdyL1]). Second, we do not treat the
[8], and the implications for cosmological models have beerHamiltonian separately in constructing projectors, nor do we
explored[9]. insist on including it in the list of relevant variables, thus
Starting from Hamilton’s equations of classical mechan-avoiding the concept of a global temperature constant typi-
ics, the GENERIC form of coarse-grained time-evolutioncally occurring in one-generator theories and possible redun-
equations for the slow dynamic variables was derived by thelancies among the relevant variables. A further difference
standard projection-operator technidd®] (we here use the concerns the time evolution assumed in correlation functions
book [11] as a basic reference for the projection-operatoroccurring in Green-Kubo-type formulas.
technique. It is the goal of this work to derive GENERIC
from a quantum mechanical description of an isolated micro-
scopic system. While the generalized microcanonical deriva-
tion from classical mechanid4.0] includes a description of A key step in the projection-operator formalism is the
large fluctuations in terms of stochastic differential equationgdentification of the relevant density matrixwhen the fea-

A. Relevant density matrix
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tures of interest in a given system can be fully described in .
terms of tﬂe Eme-dependent variabbes (x,). We here as- P(x)F=tr{p(x)F}+2 [A—Xk] tr[
sume thatp=p(x) has the following properties: .

a;(x)
IX

F}, (€)

as well as the complementary projec@fx) =1—P(x). We

tr{p(x)}=1, (1)  also use the notatio®(t)=P(x(t)), Q(t)=Q(x(t)). The
projection-operator formalism can be based on the following
tr{;(X)Ak}:Xk: 2) rigorous identity, to be verified by differentiation with re-
spect to timd 11]:
and;(x) maximizes the entropy elt=e''P(t)+ Q(0)G(0})
1=_ In o t .
Stpl=~ketipInpl, ® +f e-P(U)[iL — P(u)]Q(U)G(u,Hdu, (10)
0

wherekg is Boltzmann's constant. We obtain the following

explicit expression for the density matrix of a generalizedWhere the generator of time translatiohsin the Heisenberg
canonical form: picture operates on observabfesas the commutator with the

Hamilton operator divided by Planck’s constant,F

_ =[H,F]/%; the overdot indicates differentiation with respect
P(X)ZZ(X)_leXF{ —; )\k(X)Ak), (4)  to time; and in the time-ordered exponential
t
G(u,t)=Tex;( f iLQ(s)ds) (11
Z(x)=tr[ exp( — > MOA ] (5) u
k

the operators are ordered from left to right as time increases.
The physical relevance of the formal identi¢¥0) can be
understood as follows: It expresses the well-known solution
of the inhomogeneous linear differential equations for the
slow observables, as projected out Bft), in the presence

of inhomogeneities given by the rapid contributions, as pro-
jected out byQ(t).

where the Lagrange multipliers, =\ (x) are determined by
Eqg. (2). The term “generalized canonical”’ emphasizes the
fact that the list of variable8, is much more general than in
a canonical ensemble, so that Ed) corresponds to “qua-
siequilibrium” states characterized by the slow variablgs
We define the entrop$(x) by inserting the density matrix

(4) into Eq. (3) for S[;], thus obtaining C. Exact time-evolution equation
By acting with both sides of Eq10) oniLA; and aver-
S(x)=Kg| In Z(x)+2k (X)X |- (6)  aging with respect to the initial density matrixx(0)) we
obtain an exact time-evolution equation fqit),
Equations(2), (5), and(6) then lead to dx;(t) o
g = P ((E)ILA;}
IS(X) _y 7 t
e BAk(X), (7)

t —
+J tr{p(x(u))iLQ(W)G(u,t)iLA;}du. (12)
which offers a nice interpretation of the Lagrange multipliers 0
A as the conjugates of the state variablgs(leading to  In deriving Eq.(12) we assumed that the exact initial density
force-flux pairg. Of course, the total energy of the system ismatrix is of the relevant form(4). This should be looked

given by upon as a condition for the adequate definition of the rel-
o evant density matrix rather than a restriction of initial states
E(x)=tr{p(X)H}. 8  [11].

In the following, the first term on the right-hand side of

The proposed construction of the relevant density matrixeq. (12) is referred to as reversible and the second term as
does not take into account possible symmetries, which mayreversible. The reversible term can be written as
restrict the functional form of the density matrix in certain
variables. For example, Galileian invariance should imply dx;(t)
restrictions on the possible occurrence of velocities. Hence, dt
in general, one should identify not only the relevant vari- ) )
ables, but also the underlying symmetries. Work on thelhe energy, as a conserved quantity, should certainly be

proper inclusion of symmetries in the construction of the@mong the slow variables. However, contrary to previous
relevant density matrix is in progress. work, we here do not necessarily inclubeexplicitly in the

list of relevant observables, because this list typically con-
tains internal energy and momentum densities, in terms of
which the total energy can be expressed, and such redundan-

Following [11], we can now define the fundamental pro- cies need to be avoided. Thaccessibility of the energy
jection operator in terms of the relevant density matrixthrough the relevant variables is hence expressed through the
through the following action on arbitrary observables formal assumption

=ilfltr{;(x(t))[H,Aj]}. (13

rev

B. Projection operator
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P(t)H=H. (14) It is customary to neglect the project@ix) occurring in the
exponential of this expression, which then leads to
With this assumption one obtains the final expression for the
reversible contribution to the time evolution,

( < )
=2 Lix(t)— = (15) X[H,A Je MU du, 22

rev

1(i\2 (7 — _
M j(x) = r(%‘) fo tr{p()[H AT Q(x)
dXJ( B
dt

However, this last approximation is not necessary in order to
obtain the decompositioi20). From a practical point of

1 _ view, it might even be advantageous to keep the projegtor
Lix(x)=—tr{p(x)[ A} A} (16)  because, in a computer simulation, it would allow us to bring

i in information about the underlying nonequilibrium state
for which the friction matrix is to be evaluated, after every
time step.
1 Equations(21) and(22) can be expressed conveniently in
[e*A,B]:e*AI e?A[B,Ale #Ad¢, (17)  terms of thecanonical nonequilibrium correlation

0

with the Poisson matrix
By means of the operator identity

1 J—
we obtain the following still exact result for the irreversible ~ (A:B)x= fo tr{P(X)egzk Ak(X)AkAe_gzk XK(X)AKB} dé,
contribution in Eq.(12): (23
dt

i\ — which is the natural izati i
_|_ _ generalization of the analogous canoni-
(ﬁ) fo H{lp(x(W),HIQ(UG(U,HIH, A Jdu cal correlation of Kuboet al. [12] (the original canonical

) correlation is based on a density matrix proportional to
¢ — s exd —H/(kgT)]), and closely related to Grabert’'s generalized
%) JO () tr{p(x(u)[H, A, Q(u) canonical correlatiof11] (as mentioned before, we here
avoid the prominent role oH in the list of relevant vari-
XG(u,t)[H,A]}du (18)  ables. This generalization is necessary for going from near-
_ equilibrium to far-from-equilibrium situations. The twofold
with role of the Hamiltonian in the time evolution and in the
. density matrix, which leads to considerable mathematical
[H Ak](s):j egE MOOATH Ak]e‘fz NOAGE, simplifications near equilibrium(see, e.g., temperature
v o ! ’ ! Green’s functiong12]), is lost in moving far away from
(29 equilibrium.

irr

D. Markovian approximation E. GENERIC properties

The crucial assumption of the projection-operator formal- In summary, we have derived the time-evolution equation
ism now is that there should exist a clear separation of time
scales. The relevant variablggevolve on a time scale large j_E L (%) aE(X) (x) S( ) (24)
compared to some intermediate scaleand all other vari- dt Ik d Mk '
ables evolve rapidly compared to Experience shows that
this situation exists for many macroscopic systems of interesvhere the building blocks, E, L, andM are given by the
[11]. In view of the occurrence of the projectd@s(project- ~ Microscopic expressiort§), (8), (16), and(21), respectively.
ing on the fast variabl@sin the integral of Eq.(18), the In this equation, memory effects are eliminated in favor of
integrand should decay rapidly, and the integral is expectefonlinearities inx. The time-evolution equatio24) holds
to be dominated by values afbetweert — 7 andt. Then, all ~ far from equilibrium; the basic assumption is that the non-
slow variables in the integral can be evaluated at tirand,  €quilibrium states of the system of interest can be character-
in particular, A (x(u)) can be pulled out of the integral as ized by the observables, with expectations .

A(x(t)). With Eq.(7) we then obtain the following approxi- Note that Eq(24) is the fundamental equation of the GE-
mate version of Eq(18): NERIC framework. Various properties of the building blocks
can immediately be derived from the microscopic expres-
dxj(t) 2 M (98( ( ) 20 sions, such as the_antisymmetry of the matrix from Eq.
Cdt o ikX(0) (20 (16). The fact thatp(x) commutes with>, A (X) A, implies

the degeneracy requirement
with the friction matrix

S( ) _
1(i\2(r | 2 L) = (25
Mije(x) = k—B(g) fo tr{p()[H, AJP QU0 e CMUQ(x)
which is an important part of the GENERIC framewdd.
X[H,A;]}du. (21 The other basic degeneracy requirement of that framework,
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JE(X) replaced by the ftstochastic differential equations
> Mj(x) ——=0, (26)
K Xk X JE(X) IS(X) IM i (X)
HZE ij(X)—aX +Mi(x) X +kg Ix
can be shown only when the possibly approximate assump- K k k k
tion (14) expressing the accessibility of energy may be used d
[the situation concerning the rigor of proofing the mutual +E Bj.(x) dtv’ (27)

degeneracy requirement25) and (26) is hence reversed

compared to the previous woikO], where a generalized \yhere thew, are independent Wiener proces$éd], and
microcanonical description of a classical system was emgeir configuration-dependent prefactérs, are given by the

ployed. Other properties, such as the Jacobi identity ex+yctuation-dissipation theoremf the second kind12],
pressing the time-structure invariance of the Poisson bracket

associated with the antisymmetric matti1], remain to be
shown(cf. comments i{3]). 2,, Bj(X) By (X) = 2kgM ji(X). (28

IIl. CONCLUDING REMARKS The configuration-dependent or multiplicative and hence
non-Gaussian noise in ER7) implies nontrivial fluctuation
The fact that the building block®), (8), (16), and(21) of  effects on the averages of the stochastic procegsewhich
GENERIC arise so naturally from the projection-operatorare known as fluctuation renormalizatif].
formalism applied to isolated quantum systems provides a For quantum systems also, it would be convenient to de-
further argument in favor of the two-generator approach tascribe thermal fluctuations by stochastic differential equa-
nonequilibrium thermodynamics. Without any modifications,tions for the expectations of the operat@(@ rather than by
the GENERIC framework is now established to be consistenfme-evolution equations for some density matix], be-
not only with special7] and general8] relativity, but also  cause one would like to have a self-contained description on
with quantum mechanics. the coarse-grained level, and because efficient integration
The integrand occurring in E¢21) should be considered schemes are known for stochastic differential equatiads
as the most natural nonequilibrium correlation function f0r|t is natural to assume that even in the guantum case we
guantum systems. The results of this work are of great helpecover the equatior@7) and(29) for the thermal noise. As
also for classical systems because they indicate how to movg equilibrium thermodynamics, the structure of the coarse-
from a generalized microcanonical ensemilé] to a gen-  grained equations should not depend on the classical or
eralized canonical nonequilibrium ensemble. As in equilib-quantum nature of the microscopic system, whereas the ex-
rium thermodynamics, this should be helpful in practical cal-plicit expressions for the building blocka thermodynamic
culations and, in particular, the classical counterparts of thgotential for an equilibrium systeni, S L, M for a nonequi-
formulas derived in this work might be used as a startingibrium system should occur as natural generalizations in
point for nonequilibrium Monte Carlo and molecular dynam- going from classical to quantum systems. Moreover, canoni-
ics simulations. cal correlations naturally occur in the fluctuation-dissipation
Compared to the previous result for the generalized mitheorem[12]. While the generalized canonical ensemble
crocanonical ensemble for a classical sys{eil], the ex-  clearly becomes inappropriate for evaluating the Poisson and
pressiong16) and(21) for the Poisson and friction matrices friction matrices(16) and(21) in the presence of large fluc-
obtained after replacing commutators by Poisson bracketgations, it is not obvious what density matrix should then be
are formally identical, which is a remarkable result. The onlyysed in these expressions. A generalized microcanonical en-
difference is thap here represents the generalized canonicatemble with sharp values for the observabigsdoes not
ensembld4) instead of a microcanonical ensemble. This dif-exist in a quantum mechanical system because, in general,
ference does not matter as long as fluctuations are negligibljhe observables, do not commute. The proper coupling of
small. By arguments analogous to those used in equilibriunthe quantum fluctuations resulting from Heisenberg’s uncer-
statistical mechanicésee, e.g., Sec. 2.4 ¢13]), we expect tainty principle and of the thermal fluctuations resulting from
sharply peaked contributions to averages for both the microeoarse graining should be achieved by constructing a quan-
canonical and the canonical ensembles. However, when fluttm microcanonical nonequilibrium ensemble with uni-
tuations become large, the assumption of a generalized céermly as well-defined values of the observablgs as al-
nonical ensembléd) in terms of the averages of the relevant lowed by their commutation relations. Wigner distribution
observables becomes inappropriate. The more detailed clafitnctions as relevant variabl¢43,15,16 would provide a
sical projection-operator result for distribution functions asconvenient mathematical tool for developing the correspond-
relevant variables shows that the GENERZ2) should be ing projection-operator formalism.
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