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Ohta-Jasnow-Kawasaki approximation for nonconserved coarsening under shear

Andrea Cavagna,* Alan J. Bray,† and Rui D. M. Travasso‡

Department of Physics and Astronomy, The University, Oxford Road, Manchester M13 9PL, United Kingdom
~Received 15 June 2000!

We analytically study coarsening dynamics in a system with nonconserved scalar order parameter, when a
uniform time-independent shear flow is present. We use an anisotropic version of the Ohta-Jasnow-Kawasaki
approximation to calculate the growth exponents in two and three dimensions: ford53 the exponents we find
are the same as expected on the basis of simple scaling arguments, that is, 3/2 in the flow direction and 1/2 in
all the other directions, while ford52 we find an unusual behavior, in that the domains experience an
unlimited narrowing for very large times and a nontrivial dynamical scaling appears. In addition, we consider
the case where an oscillatory shear is applied to a two-dimensional system, finding in this case a standardt1/2

growth, modulated by periodic oscillations. We support our two-dimensional results by means of numerical
simulations and we propose to test our predictions by experiments on twisted nematic liquid crystals.

PACS number~s!: 82.20.Mj, 64.75.1g, 05.70.Ln
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I. INTRODUCTION

When a statistical system in its homogeneous disorde
phase is suddenly quenched below the critical temperat
deep into a multiphase coexistence region, a dynamical
cess known ascoarsening, or phase ordering, results: do-
mains of the different ordered phases are formed and c
pete with each other in the attempt to break the symm
and project the system onto one single equilibrium state@1#.
An equivalent phenomenon occurs in the case of binary
ids: a system at the critical concentration tries to phase s
rate after the quench, by forming domains of the two diff
ent components~spinodal decomposition!. An interesting
problem is the analysis of the dynamical evolution of the
domains, and in particular the determination of their grow
rate. In this aim a property shared by many statistical s
tems, calleddynamical scaling, stating that space and tim
scale homogeneously in the equal-time two-point correla
function C(r ,t)5 f „r /L(t)…, proves very useful. It is then
natural to identify the length scaleL(t) as the typical size of
the domains during coarsening. This length scale has ge
ally a power-law dependence on time,L(t);t1/z, sometimes
with logarithmic corrections. The determination of the exp
nent z for many different statistical systems has been
object of much effort in recent years and we can say t
ordinary coarsening is now quite well understood@1#.

A related topic, which is now attracting growing attentio
is the problem of phase ordering when the system is sub
to an external shear. Apart from the great technological
evance of such a problem, especially in the case of spin
decomposition, the basic theoretical understanding of
phenomena involved is far from being well establish
@2–4#. When a shear is present, domain growth is hea
affected by the presence of the induced flow and the dyna
cal scaling behavior is drastically different from the case
ordinary coarsening. In particular, two main points are w
thy of careful investigation: First, the growth of the domai

*Email address: andrea@a13.ph.man.ac.uk
†Email address: bray@a13.ph.man.ac.uk
‡Email address: rui@a13.ph.man.ac.uk
PRE 621063-651X/2000/62~4!/4702~18!/$15.00
d
re,
o-

-
ry

-
a-
-

e
h
s-

n

er-

-
e
t

ct
l-
al
e

y
i-
f
-

is anisotropic and therefore the dynamical evolution is
scribed by more than one exponent. The determination of
shear exponents is, of course, of the utmost importance.
ondly, it is not clear whether the shear causes an interrup
of coarsening, the dynamical balance between growth
deformation giving rise to a stationary state~as argued in
@5#!, or, on the contrary, whether domain growth continu
indefinitely. Experimental, numerical, and theoretical e
dence concerning both these points is still very tentative@6#.

In the present work we perform a theoretical investigat
of the coarsening dynamics in a statistical system with n
conserved scalar order parameter~model A, in the classifica-
tion of Hohenberg and Halperin@7#!, when a shear flow uni-
form in space is present. If, on one hand, such a mode
unsuitable for describing spinodal decomposition in bina
fluids, on the other hand it allows us to compute the grow
exponents in any spatial dimension, in the context of a s
ably modified version of the classic Ohta-Jasnow-Kawas
~OJK! approximation@8#. When considering the relevance o
nonconserved dynamics for advancing our understandin
domain growth in the presence of a shear, we must take
account the fact that the only existing analytic calculations
the growth exponents for spinodal decomposition~conserved
dynamics, or model B! have been performed in the limit o
infinite dimensionN of the order parameter@9#, where no
saturation of coarsening is found. However, in that case
very concept of domains is meaningless and thus a calc
tion that takes into account the more physical case of a sc
order parameter is desirable. Besides, an understandin
the effect of shear on nonconserved coarsening is by itse
interesting problem, from both the theoretical and expe
mental points of view. Indeed, experiments have been p
formed in the past on twisted nematic liquid crystals@10#,
showing that these systems are a perfect test for analy
results in statistical models with nonconserved order par
eter. Many results, from growth laws to persistence ex
nents, have been successfully tested on twisted nematic
uid crystals @11# and we therefore propose a she
experiment on such systems to check the results of our
culation.

We investigate two very different cases. In the first,
shear uniform in time is applied and the behavior of t
4702 ©2000 The American Physical Society
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system is analyzed asymptotically for very large times. In
second case, we consider a shear flow that is periodic
oscillating in time and study the properties of the model
times much longer than the period of the oscillation. T
primary effect of the shear flow is naturally to stretch t
domains in the direction of the flow, such that they can
roughly represented as highly elongated ellipsoids, with
growth taking place along the main axes. Two natural len
scales therefore arise,L i and L' , the size of the domain
along the largest and the smallest axes, respectively.
determination of the growth laws for these two length sca
is the main objective of this work.

In the case of a time-independent shear, our results
nontrivial and, especially in two dimensions, quite une
pected. Ford52 our calculation givesL i;g1/2t(ln t)1/4 and
L';g21/2(ln t)21/4, whereg is the shear rate, while ford
53 we find L i;gt3/2 and L';t1/2. The three-dimensiona
exponents are the same as one would expect on the bas
simple scaling arguments and are compatible with calc
tions for conserved dynamics in the large-N limit @9#: the
growth along the flow is enhanced by a factorgt, while the
transverse growth is unaffected by the shear. On the o
hand, the two-dimensional result comes as quite a surp
the short size of the domainsL' goes asymptotically to zero
for very large times, while the scale area grows as in
unsheared case,L iL';t. As we shall show, there are topo
logical arguments supporting this last result. As long as
approach is valid, we do not find any evidence of the onse
a stationary state giving rise to an interruption of the coa
ening process. However, in two dimensions our calculat
breaks down when the thickness of the domains beco
comparable with the interfacial width. We cannot say wh
happens when this stage is reached, but it is possible
some kind of stationary state occurs in this regime. In
case of an oscillatory shear flow in two dimensions, we fi
L i;t1/2Ag/v f i(t) and L';t1/2Av/g f'(t), wherev is the
frequency of the periodic flow: both length scales grow li
t1/2, but are modulated by oscillatory functionsf i(t) and
f'(t) with the same period as the flow and with mutua
opposite phases. In this case also, therefore, we do not
any stationary state.

The structure of the paper is the following. In Sec. II w
introduce the OJK approximation, with the appropria
modifications due to the presence of the shear. We end
II by formulating some self-consistency equations for t
matrix encoding the anisotropy of the domains~the elonga-
tion matrix!. Given the technical difficulty of such equation
in Sec. III we present some simple geometric arguments
ful to achieve a better understanding of the asymptotic
havior of the many quantities involved in the calculatio
The explicit solution of the equations in two dimension
together with the calculation of the growth exponents, is c
ried out in Sec. IV for a time-independent shear rate and
Sec. V for an oscillatory shear rate, while in Sec. VI w
solve the time-independent problem in three dimensions
Sec. VII we present some numerical simulations in two
mensions, supporting our results, and in Sec. VIII we disc
a possible experimental test in the context of twisted nem
liquid crystals. Finally, we draw our conclusions in Sec. I
A shorter account of part of this work can be found in@12#.
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II. THE OJK APPROACH

The time evolution of a statistical system with nonco
served scalar order parameterf(xW ,t) is described by the
time-dependent Ginzburg-Landau equation@13#

]f~xW ,t !

]t
5¹2f~xW ,t !2V8~f!, ~1!

whereV(f) is a double-well potential. Under the hypothes
that the thicknessj of the interface separating different do
mains is much smaller than the sizeL of the domains, it is
possible to write an equation for the motion of the interfa
itself, assumed to be well localized in space. This is
Allen-Cahn equation@14#, asserting that the velocityv of the
interface is proportional to the local curvature,

v~xW ,t !52¹W •nW ~xW ,t !, ~2!

wherenW (xW ,t) is the unit vector normal to the interface an
¹W •nW (xW ,t) is the curvature. The normal vector can be writt
in general as

nW ~xW ,t !5
¹W m~xW ,t !

u¹W m~xW ,t !u
, ~3!

wherem(xW ,t) can be any field that is zero at the interface
the domain, defined by the vanishing of the order param
f(xW ,t). Given that this is the only restriction on the fie
m(xW ,t), it is convenientnot to use the order parameter itse
in order to describe the motion of the interface via Eq.~2!,
but a smoother field@8#. Indeed, as we shall see, the princip
effect of the OJK approximation is to produce a Gauss
distribution for the fieldm(xW ,t), which would be particularly
unsuitable for the highly non-Gaussian, double-peaked
tribution of the order parameterf(xW ,t).

From Eqs.~2! and ~3! we have

v~xW ,t !52 (
a51

d
]

]xa
S ]am~xW ,t !

u¹W m~xW ,t !u
D

52
¹2m~xW ,t !

u¹W m~xW ,t !u
1 (

a,b51

d
]am~xW ,t !]bm~xW ,t !

u¹W m~xW ,t !u2

3
]a]bm~xW ,t !

u¹W m~xW ,t !u
. ~4!

By considering a frame comoving with the interface, we c
write

05
dm~xW ,t !

dt
5

]m~xW ,t !

]t
1vW tot•¹W m~xW ,t !. ~5!

If a shear flow is present, it can be taken into account
including in the total velocityvW tot of the interface a contri-
bution due to the velocity fielduW induced by the shear:

vW tot5vnW 1uW , ~6!
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where vnW is the curvature driven velocity, with directio
orthogonal to the interface and modulus given by Eq.~4!. By
substituting relation~4! into Eq. ~5! and noting thatnW •¹W m

5u¹W mu, we finally get the OJK equation

]m~xW ,t !

]t
1 (

a51

d

ua

]m~xW ,t !

]xa

5¹2m~xW ,t !2 (
a,b51

d

na~xW ,t !nb~xW ,t !
]2m~xW ,t !

]xa]xb
.

~7!

This is an exact relation for the fieldm(xW ,t). The OJK equa-
tion is highly nonlinear due to the dependence of the vec
nW on the fieldm through Eq.~3!. The OJKapproximation@8#
consists in replacing the factornanb by its spatial average

Dab~ t ![^na~xW ,t !nb~xW ,t !&. ~8!

Note that theelongationmatrix Dab must satisfy the obvious
sum rule

(
a51

d

Daa~ t !51. ~9!

In the isotropic case (uW 50) the elongation matrix is jus
Dab5dab /d by symmetry, and the OJK equation reduces
a simple diffusion equation with diffusion constant equal
(d21)/d. On the other hand, when a shear flow is pres
the matrixDab must encode the anisotropy induced by t
shear and it must therefore depend on time, as the ave
shape of the domains does. The system of equations we
to solve is therefore

]m~xW ,t !

]t
1 (

a51

d

ua

]m~xW ,t !

]xa

5¹2m~xW ,t !2 (
a,b51

d

Dab~ t !
]2m~xW ,t !

]xa]xb
, ~10!

Dab~ t !5K ]am~xW ,t !]bm~xW ,t !

(
c

@]cm~xW ,t !#2 L . ~11!

In this paper we will consider a space-uniform shear in thy
direction, with flow in thex direction. The velocity profile is
therefore given by

uW 5gyeW x , ~12!

whereg is the shear rate andeW x is the unit vector in the flow
direction. In the present section we will consider the case
a time-independent shear rateg. A straightforward generali-
zation of the calculation to the periodic case will be given
Sec. V.

By going into Fourier space we can rewrite Eq.~10! as
r

o

t

ge
ve

f

]m~kW ,t !

]t
2gkx

]m~kW ,t !

]ky

5S 2 (
a51

d

ka
21 (

a,b51

d

Dab~ t !kakbDm~kW ,t !.

~13!

Note that a naive scaling analysis of the left-hand side of
equation would give

Lx~ t !;gtLy~ t !, ~14!

whereLx andLy are the characteristic domain sizes in thex
andy directions, respectively. If we assume that the dom
growth in the directions transverse to the flow is not mo
fied by the shear, we obtain from Eq.~14! the results

Lx~ t !;gt3/2, ~15!

Ly~ t !;t1/2,

whereLy now represents any transverse direction. This is
simple scaling we mentioned in the Introduction. As we sh
see, result~15! holds only in three dimensions, while a com
pletely different situation occurs ford52.

In order to solve Eq.~13! we perform the change of vari
ables

qx5kx ,

qy5ky1gkxt,

qa5ka , ;a>3 ~16!

t5t,

introducing the fieldm(qW ,t)[m(kW ,t). The corresponding
equation form reads

] ln m~qW ,t!

]t
52qx

22~qy2gqxt!22 (
a53

d

qa
21D11~t!qx

2

12D12~t!qx~qy2gqxt!1D22~t!

3~qy2gqxt!21 (
a,b53

d

Dab~t!qaqb. ~17!

The original OJK equation~7!, with a shear flow given by
Eq. ~12!, is invariant under any transformation that preserv
the sign of the productxy. In order to keep this symmetry, i
is necessary for the elongation matrixDab to have the fol-
lowing block-diagonal form:

D1a~ t !5D2a~ t !50, Dab~ t !5D33~ t !dab , ;a,b>3,
~18!

where, to simplify the notation, we have usedD33(t) to de-
note all the diagonal elements fora>3. Equation~17! can
now be integrated to give

m~qW ,t!5m~qW ,0!expS 2
1

4 (
ab

qaRab~t!qbD , ~19!
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with

R11~t!54E
0

t

dt8$@12D11~t8!#12gt8D12~t8!

1g2t82@12D22~t8!#%,

R12~t!54E
0

t

dt8$2D12~t8!2gt8@12D22~t8!#%,

R22~t!54E
0

t

dt8@12D22~t8!#, ~20!

R1a~t!5R2a~t!50, ;a>3,

Rab~t!54dabE
0

t

dt8@12D33~t8!#

[R33~t!dab , ;a,b>3.

We can now go back to the original fieldm(kW ,t), via the
relation

m~kW ,t !5m~kx ,ky1gkxt,k3 , . . . ,kd ,t !, ~21!

to obtain

m~kW ,t !5m~kx ,ky1gkxt,k3 , . . . ,kd,0!

3expS 2
1

4 (
ab

kaMab~ t !kbD , ~22!

with

M11~ t !5R11~ t !12gtR12~ t !1g2t2R22~ t !,

M12~ t !5R12~ t !1gtR22~ t !,

M22~ t !5R22~ t !, ~23!

M1a~ t !5M2a~ t !50, ;a>3,

Mab~ t !5R33~ t !dab[M33~ t !dab , ;a,b>3.

Relation~22! can be better understood in real space: due
the shear flow, the fieldm at point (x,y, . . . ) attime t is the
propagation of the initial condition at point (x
2gyt,y, . . . ). Note that, if we assume a Gaussian distrib
tion for m(kW ,0) ~disordered initial condition!, the field main-
tains a Gaussian distribution at all the times, due to the
earity of Eq.~10!. In order to get the correlation ofm(xW ,t) in
real space we have to average over the initial conditions
o

-

-

^m~kW ,0!m~kW8,0!&5ADd~kW1kW8!. ~24!

The equal-time pair-correlation function ofm is therefore

Cm~xW ,xW8;t ![^m~xW ,t !m~xW8,t !&

5A~2p!d/2D

detM ~ t !
expS 2

1

2 (
ab

r a@M 21#ab~ t !r bD ,

~25!

where r a5xa2xa8 . All the information on the domain
growth is contained in thecorrelation matrix Mab(t). In-
deed, the eigenvectors ofMab(t) give the principal elonga-
tion axes of the domains and the square roots of its eig
values give the domain sizes along these axes.

The correlation matrix is connected to the elongation m
trix by Eqs.~20! and ~23!. In order to close the problem w
thus have to write another set of equations, relatingMab(t)
andDab(t), by exploiting relation~11!. If we introduce the
field wa(xW ,t)[]am(xW ,t), we can write

Dab~ t !5E DP~w!
wa~xW ,t !wb~xW ,t !

(
c

wc~xW ,t !2

5
1

2E0

`

dyE DP~w!e2y(cwc(xW ,t)2/2wa~xW ,t !wb~xW ,t !,

~26!

and we thus have to work out the probability distributio
DP(w). The fieldw is Gaussian and therefore we just ne
to compute its correlator. From Eq.~25! we have

^wa~xW ,t !wb~xW ,t !&5k@M 21#ab~ t !, k5A~2p!d/2D

detM ~ t !
,

~27!

and therefore

DP~w!5
1

Z
expS 2

1

2k (
ab

wa~xW ,t !Mab~ t !wb~xW ,t ! DDw,

~28!

where the constantZ normalizes the distribution. By defining

Nab~y,t !5Mab~ t !1ydab , ~29!

and by performing the rescalingw→wAk, y→y/k, we can
write
Dab~ t !5
1

2E0

`

dy
E Dwe2( a8b8 wa8(xW ,t)Na8b8(y,t)wb8(xW ,t)/2wa~xW ,t !wb~xW ,t !

E Dwe2( a8b8 wa8(xW ,t)Ma8b8(t)wb8(xW ,t)/2

5
1

2
AdetM ~ t !E

0

`

dy
@N21#ab~y,t !

AdetN~y,t !
. ~30!

Let us introduce the following parameters in order to explicitly write the relation above:
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s~ t ![M11~ t !M22~ t !2M12~ t !25R11~ t !R22~ t !2R12~ t !2, t~ t ![M11~ t !1M22~ t !. ~31!

The first equation is a particular case of the more general relation detM5detR, a consequence of the fact that Eq.~16! is an
orthogonal transformation. We can finally write

D11
22~ t !5

1

2
As~ t !M33~ t !d22E

0

`

dy
M22

11~ t !1y

@y21t~ t !y1s~ t !#3/2@M33~ t !1y# (d22)/2
,

2D12~ t !5
1

2
As~ t !M33~ t !d22E

0

`

dy
M12~ t !

@y21t~ t !y1s~ t !#3/2@M33~ t !1y# (d22)/2
, ~32!

D33~ t !5
1

2
As~ t !M33~ t !d22E

0

`

dy
1

@y21t~ t !y1s~ t !#1/2@M33~ t !1y#d/2
.
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Relations~20!, ~23!, and~32! form a closed set of equation
for the correlation matrixMab(t), or, equivalently, for the
elongation matrixDab(t). Before attempting to solve them,
is helpful to use physical considerations as a guide to
expected asymptotic form of the elongation matrix in t
limit of very large times. To this end, we will consider th
case of a time-independent shear rate.

III. PHYSICAL CONSIDERATIONS FOR THE
ELONGATION MATRIX

When a time-independent shear flow in thex direction is
present, the domains will be highly elongated along this
rection and therefore most of the surface of the domains
tend to become parallel to thex direction for very large
times. We thus expect the following relation to hold:

D11~ t !5^nxnx&→0, t→`. ~33!

In the two-dimensional case, due to the sum rule~9!, this
relation implies

D22~ t !5^nyny&→1, t→`, d52, ~34!

while in dimensionsd>3 it is not a priori clear whether
both D22 andD33 remain nonzero or not. The only thing w
can write is

D22~ t !1~d22!D33~ t !→1, t→`, d>3. ~35!

With regard to the off-diagonal elements of the elongat
matrix, it is not hard to convince oneself that the only no
zero ones areD12(t)5D21(t)5^nxny& @see Eq.~18!#: in-
deed, due to the shear, the domains are elongated along
main axes which arenot the (xy) axes, unlesst5`. There-
fore, the submatrixDab

(xy)(t) cannot be diagonal for any finit
time. On the other hand, fort→` the two elongation axes
become coincident with (xy) and thus we expect that

D12~ t !→0, t→`. ~36!

It is finally clear that no qualitative difference can exist b
tweend53 andd.3. Indeed, in this paper we will explic
itly state the results only ford52 andd53.
e

i-
ill

n
-

wo

-

A useful exercise is to approximate a domain with
ellipsoid and compute the asymptotic value ofDab(t) as a
function of the main axes. We will do this explicitly in two
dimensions and we will just quote the main results ford
53. Let us callL i andL' the largest and smallest axes of
two-dimensional ellipse. In addition, letu be the tilt angle,
that is, the angle between thex axis and theL i axis ~see Fig.
1!. When a time-independent shear is applied, it is natura
assume fort→`

u→0, L i@L' , ~37!

as an expression of the extreme elongation of the domai
the direction of the flow. We can now parametrize the tilt
ellipse in the following way:

x~v!5
1

2
L i cosv2

1

2
uL' sinv,

y~v!5
1

2
uL i cosv1

1

2
L' sinv, ~38!

with vP@0,2p# and where we have used the fact thatu is
very small. The average of any quantityA along the perim-
eter of the ellipse can now be calculated as

FIG. 1. A two-dimensional domain in the elliptic approxima
tion.
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^A&5

E
0

2p

dvm~v!A~v!

E
0

2p

dvm~v!

, ~39!

with the metricm given by

m~v!5
1

2
~L i

2 sin2 v1L'
2 cos2 v!1/2. ~40!

It is useful to compute explicitly the normalizing factor
Eq. ~39!, i.e., the asymptotic perimeter of the ellipse,

E
0

2p

dvm~v!5
1

2
L i E

0

2p

dvS sin2 v1
L'

2

L i
2

cos2 v D 1/2

;2L i1
L'

2

L i
lnS L i

L'
D , ~41!

where we have used the relationL i@L' . The asymptotic
perimeter divided by the total area,L iL' , is the interfacial
densityr of the domains, which must be proportional to t
energy densityE of the system. In the elliptic approximatio
we therefore have

E;r;
2

L'

1
L'

L i
2

lnS L i

L'
D . ~42!

It will be interesting to compare this simple result with th
one obtained from the OJK calculation in the next sectio

The vector normal to the interface can easily be found
imposing its orthogonality with the tangent vect
(]vx,]vy). This gives

nx~v!5
2uL i sinv1L' cosv

m~v!
,

ny~v!5
L i sinv1uL' cosv

m~v!
. ~43!

We can now use the relations above to compute the elo
tion matrix of the ellipse,Dab5^nanb&. By doing this we get

D11~ t !;u21
L'

2

L i
2

lnS L i

L'
D→0,

D12~ t !;2u→0. ~44!

Note thata priori we cannot say which one of the two piec
of D11 is going to dominate in the limitt→`.

In dimensiond53 it is possible to perform a simila
analysis, by introducing a third axisLz orthogonal to the
(xy) plane. The result is

D11~ t !;u21
L'

2

L i
2
→0,

D12~ t !;2u→0. ~45!
y

a-

It is also possible to show that, if the ratioL' /Lz remains
constant fort→`, then bothD22 andD33 are nonzero in this
limit, and

D22~ t !5g2~L' /Lz!,

D33~ t !5g3~L' /Lz!, ~46!

where the two scaling functions must satisfy the relation

g2~x!1g3~x!51. ~47!

The results of this section confirm our expectation of t
behavior of the elongation matrix and also give us some h
of the relation between the elongation matrix and the dom
sizes, whose determination is, of course, our final goal.

IV. TIME-INDEPENDENT SHEAR IN TWO DIMENSIONS

Finding a solution of the set of equations~20!, ~23!, and
~32! is, even in two dimensions and with a time-independ
shear rate, not entirely straightforward. Therefore, we w
first try to exploit a naive scaling analysis to find a suitab
ansatz for the elongation matrix, and eventually we w
modify our initial guess in such a way as to self-consisten
satisfy all our equations.

First, note that in two dimensions it is relatively simple
compute the integrals in Eq.~32!. We obtain

D11
22~ t !5

t~ t !M22
11~ t !22s~ t !2As~ t !@2M22

11~ t !2t~ t !#

t~ t !224s~ t !
,

~48!

D12~ t !52M12~ t !
t~ t !22As~ t !

t~ t !224s~ t !
,

where it is easy to check that sum rule~9! is satisfied. Note
that, of course, Eqs.~48! are valid also for a time-dependen
rate g(t) and we will therefore use them also in the ne
section in the case of an oscillatory shear.

A crucial task is now to understand which terms domin
in the limit t→` in the equations above. A useful startin
point is the correlation function in Eq~25!: if we assume that
there are just two length scalesLx(t) and Ly(t), a naive
consequence we can draw is the following:

M11~ t !;Lx~ t !2,

M12~ t !;Lx~ t !Ly~ t !, ~49!

M22~ t !;Ly~ t !2.

Moreover, the physics of the system suggests that

Lx~ t !@Ly~ t !. ~50!

Note thatLx andLy do not in general coincide withL i and
L' , as defined in the last section. Indeed, this is the m
difference between the naive approach and the final full
lution in two dimensions. Relation~50! implies that

M11~ t !@M12~ t !@M22~ t !, ~51!
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and thus

t~ t !;M11~ t !, s~ t !!M11~ t !2. ~52!

In order to find the asymptotic behavior of Eqs.~48! we need
an extra relation. From definition~31!, it seems natural to
assume thats(t);M11(t)M22(t), and therefore, from Eq
~51!, that

s~ t !@M22~ t !2. ~53!

What we are~naively! assuming is that there are no canc
lations ins(t). This assumption will fail in the final solution
but it will only logarithmically fail, such that relation~53!
will still be true. By using relations~52! and ~53! in Eqs.
~48!, we finally obtain

D11~ t !5
As~ t !

M11~ t !
, ~54!

D12~ t !52
M12~ t !

M11~ t !
, ~55!

at leading order fort→`. Substituting relations~49! into
Eqs. ~54! and ~55!, and using the naive scaling relatio
Lx(t);gtLy(t) obtained in Sec. II, we get

D11~ t !5
Ly~ t !

Lx~ t !
;

1

gt
, ~56!

D12~ t !52
Ly~ t !

Lx~ t !
;2

1

gt
, ~57!

where again we have assumed thats(t);M11(t)M22(t). If
we now use this asymptotic form of the elongation matrix
relations~20! and ~23!, we obtain

M11~ t !5g2t2R22~ t !,

M12~ t !5gtR22~ t !, ~58!

M22~ t !5R22~ t !,

and

s~ t !5R11~ t !R22~ t !, ~59!

with

R11~ t !54g2E
0

t

dt8t82D11~ t8!,

R22~ t !54E
0

t

dt8D11~ t8! ~60!

always at leading order. Relations~58! are consistent with
Eq. ~51!, and by substituting Eq.~58! into Eq. ~55! we find
self-consistently the asymptotic formD12(t);21/gt. More-
over, by assuming once again thats(t);M11(t)M22(t) and
by substituting Eq.~58! into Eq. ~54! we getD11(t);1/gt
and all our assumptions seem thus to be self-consistent.
fortunately, this is not the case and it is not hard to und
stand that something is going wrong. Indeed, if we now s
-

n-
r-
-

stitute into Eq.~54! the form ofs(t) coming from Eq.~59!,
rather than the naive assumptions(t);M11(t)M22(t), we
get the following self-consistent equation forD11(t):

D11~ t !5
AR11~ t !R22~ t !

g2t2R22~ t !
5

1

gt2S E
0

t

dt8t82D11~ t8!

E
0

t

dt8D11~ t8!
D 1/2

.

~61!

If we insert into the right-hand side of this equation t
asymptotic form ofD11 found above, we find an unpleasa
surprise, that is,

D11~ t !5
a

gtAln gt
, ~62!

with a51/A2, in contradiction with Eq.~56!. However, the
situation is far from being desperate, because if we try t
very form of D11 in Eq. ~61! we fortunately find self-
consistency witha51/2. Our initial result~56! only failed to
capture a logarithmic correction and it is possible to che
that, with this new form ofD11, we recover all the relevan
relations of this section, namely, Eqs.~60!, ~59!, ~58!, ~55!,
~54!, ~53!, ~52!, and~51!, but not ~56!.

Summarizing, the correct final form of the elongation m
trix in the two-dimensional case is therefore~always at lead-
ing order fort→`)

D11~ t !5
1

2gtAln gt
,

D12~ t !52
1

gt
, ~63!

D22~ t !512D11~ t !,

while Eq. ~56! is not correct. From Eq.~60! we have

R11~ t !5
gt2

Aln gt
, ~64!

R22~ t !5
4Aln gt

g
,

whereas, from Eq.~58!, the correlation matrix is

M11~ t !54gt2Aln gt,

M12~ t !54tAln gt, ~65!

M22~ t !5
4Aln gt

g
,

s~ t !54t2.

It is possible to see now that the critical assumption that w
wrong in our initial analysis wass(t);M11(t)M22(t). In-
deed, from Eqs.~65! we see thats(t) is smaller than this,
because there are some nontrivial cancellations in the de
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minant of Mab . For this same reason, one should not
misled by the fact that apparently in Eqs.~65! the determi-
nant ofMab is null: we did not write the subleading contr
butions to the correlation matrix, which makes(t);t2

!t2 ln t.
In order to obtain the domain size along the princip

elongation axesL i(t) andL'(t), we have to find the eigen
valuesl1(t) and l2(t) of Mab(t). This is easily done by
recalling that the characteristic polynomial is justl22tl
1s, where t and s are the trace and the determinant
Mab(t), respectively@cf. Eq. ~31!#. The final result for the
two-dimensional case is

L i~ t !5Al1~ t !5At~ t !52Agt~ ln gt !1/4,

L'~ t !5Al2~ t !5As~ t !

t~ t !
5

1

Ag~ ln gt !1/4
. ~66!

Note how striking is the effect of the shear in two dime
sions: the size of the domains along the minor axis shrink
zero, even though very slowly, fort→`. The asymptotic
effect of this unlimited narrowing of the domains for ve
large times is still unclear to us. However, we do expect
approach to break down whenL'(t) becomes of the sam
order as the interface thicknessj, when Eq.~2! ceases to be
valid. This happens after a very large time, of the ord
exp(1/g2j4). What we can say is that, if a steady state exis
it can be reached only when the thickness of the doma
becomes comparable with the interface width.

An important feature of the solution we have found is t
failure of standard (x,y) scaling. In order to appreciate th
fact, we have to remember that, even thoughL i andL' are
the natural domain sizes along the eigenaxes of the cor
tion matrix, other length scales can be defined, as show
Fig. 2.

First of all, we haveLx and Ly : from the correlation
function ~25!, it follows that

Lx~ t !5
1

A@M 21#11

,

Ly~ t !5
1

A@M 21#22

, ~67!

and from Eqs.~65! we get

Lx~ t !5
Agt

~ ln gt !1/4
,

FIG. 2. The length scalesLx , Ly , Hx , andHy .
e

l

to

r

r
,
s

la-
in

Ly~ t !5
1

Ag~ ln gt !1/4
. ~68!

Secondly, we can defineHx andHy as the maximum exten
sion of the domain in thex andy directions, that is,

Hx5L i cosu,

Hy5L i sinu, ~69!

whereu is the usual tilt angle~see Fig. 1!, which can easily
be computed from the eigenvectors ofM. These are

eW i5S 1,
1

gt D , eW'5S 2
1

gt
,1D , ~70!

and therefore

u5
1

gt
. ~71!

In this way we have

Hx~ t !52Agt~ ln gt !1/4,

Hy~ t !5
2~ ln gt !1/4

Ag
. ~72!

In the absence of shear all these length scales would
incide, that is we would haveL i5Lx5Hx and L'5Ly
5Hy . With the shear this is no longer true, simply becau
M12Þ0. Still, we would expect these length scales to dif
only by some constant factors, such that they would all be
the same order asymptotically in time. If this situation he
we would have a standard (x,y) scaling, even though with
anisotropic domains. However, in two dimensions the sit
tion is very different, because the length scales above di
by logarithmic corrections. More precisely, we have

L i~ t !;Aln gtLx~ t !;Hx~ t !,

L'~ t !;Ly~ t !;
1

Aln gt
Hy~ t !. ~73!

The fact thatL iÞLx , and therefore the emergence of a no
standard dynamical scaling, is closely related to the van
ing of the determinant ofM at the leading order, and it
consequence is that (x,y) are not the correct scaling axe
We shall see that this does not happen in three dimensi
In order to obtain the right scaling, we have to refer to t
eigenvectors of the correlation matrixM, from which we can
finally write the scaling form of the two-point correlatio
function in two dimensions,

C~x,y;t !5 f S s

L i~ t !
,

u

L'~ t ! D , ~74!

with

s5x1y/gt,
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u5y2x/gt. ~75!

In the expression above,f is a scaling function, whiles andu
are coordinates along the main scaling axes of the doma
Note that byx andy we actually meanr x and r y .

Furthermore, note that the elongation matrix can be w
ten as

D11~ t !5
L'

L i
,

D12~ t !52u, ~76!

to be compared with the result forDab obtained with the
elliptic approximation@Eq. ~44!#.

An interesting quantity that can easily be computed is
interfacial densityr(t), defined as

r~ t !5^d„m~xW ,t !…u¹W m~xW ,t !u&

5E DP~m,w!d„m~xW ,t !…uwW ~xW ,t !u, ~77!

where, as in Sec. II, we have putwa(xW ,t)5]am(xW ,t). The
calculation is easy to do because the Gaussian fieldsm andw
are uncorrelated. From relations~25! and ~28! we have

r~ t !5
s~ t !1/2

~2p!3/2E Dwe2waMabwb/2uwW ~xW ,t !u. ~78!

By using the formula

uwW u5
E

0

`

~dy/y3/2!~e2w2y21!

E
0

`

~dy/y3/2!~e2y21!

5
1

GS 2
1

2D E0

` dy

y3/2
~e2w2y21!, ~79!

we can perform the Gaussian integral overw in Eq. ~78! and,
by proceeding as at the end of Sec. II, we get

r~ t !5
A2

GS 2
1

2D ~2p!3/2
E

0

` dy

y3/2S 1

~11yt/s1y2/s!1/2
21D

;At

s
1

1

t
As

t
lnS t2

s D;
1

L'

1
L'

L i
2

lnS L i

L'
D , ~80!

where we have used the asymptotic expressions~65! for t(t)
ands(t), together with relations~66!. Remarkably, this for-
mula for the interfacial density has the same asymptotic fo
as the one we have obtained in the context of the ellip
description of domains@see Eq.~42!#. In addition, we note an
important point:r(t) is proportional to the energy density o
the system and therefore, given thatL'(t) decreases with
time @Eq. ~66!#, Eq. ~80! means that the energy in the two
dimensional caseincreaseswith time,
s.

t-

e

c

E~ t !;
1

L'~ t !
;Ag~ ln gt !1/4, ~81!

where we have subtracted the trivial ground-state contri
tion. This may seem a surprising result, but we have to
member that due to the shear the system is not isolated,
therefore the dynamics is not a simple gradient descent~in
other words, no Lyapunov functional exists!. A simple ex-
ample can make this point clearer. Imagine we prepar
two-dimensional system between two boundaries in a stri
configuration~see Fig. 2!, with the stripesorthogonalto the
boundaries~assume fixed boundary conditions according
the stripes!. This configuration is stable atT50. If we now
shear this system, by moving the boundaries in opposite
rections, the stripes will be stretched and the interfac
length per unit area will increase~see Fig. 3!. Thus, in this
simple case, the energy of the system increases unde
application of a shear. This example shows that there is
general reason why the energy of a sheared system ca
increase with time. Of course, it is important to test Eq.~80!,
together with all our predictions, in a numerical simulatio
or even better in a real experiment~see Sec. VIII!.

The OJK theory also gives an explicit expression for t
scaling form of the correlation function@8#, which simply
follows from Eq.~25! and from the scaling relations above

COJK~x,y;t !5
2

p
sin21S ^m~1!m~2!&

^m~1!2&1/2^m~2!2&1/2D
5

2

p
sin21H expF2

1

2 S s2

L i
2

1
u2

L'
2 D G J . ~82!

It has been noted in@15# that in an unsheared but anisotrop
system the OJK form of the correlation function fits the n
merical data very well. Note, however, that in the pres
case, unlike in@15#, the scaling laws along the two mai
directions are radically different due to the shear, and the
fore it is nota priori clear to what extent Eq.~82! is a good
approximation to the scaling functionf in Eq. ~74!. On the
other hand, we believe that the scaling form we find in E
~74! has a general validity. Finally, let us note the ellipt
symmetry of the OJK correlation function, which could e

FIG. 3. Increasing the energy of a system by shearing it.
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plain the partially correct results we obtained by approxim
ing the domains with ellipses. The same will be true in th
dimensions.

An important property of the result we have found is th
the scale area of a domainA(t) satisfies the following rela-
tion:

A~ t !5L iL'52t, ~83!

as in the case where no shear is present. As we are goin
explain, there are topological reasons why in two dimensi
relation ~83! must be satisfied either with or without shea
Equation~83! is thus a necessary condition fulfilled by o
result, which, by itself, clearly shows that the transve
growth must be depressed if the longitudinal growth is
hanced.

Let us consider an isolated domain in two dimensions
the absence of shear. The rate of variation of the area
closed in the loop is

dA~ t !

dt
5 R dlv52 R dl¹W •nW , ~84!

wherev is the velocity of the interface and¹W •nW is the local
curvature@see Eq.~2!#. By virtue of the Gauss-Bonnet theo
rem, the right-hand side of Eq.~84! is in two dimensions a
topological invariant, and therefore independent of the sh
of the domain.

When a shear is present, we have to add to the velo
due to the curvature the flow velocityuW in the direction or-
thogonal to the interface. The right-hand side of Eq.~84! is
thus corrected by the term

R dlnW •uW 5E d2x¹W •uW 50, ~85!

the final equality holding for any divergence-free shear flo
Equation~83!, therefore, holds in two dimensions irrespe
tive of the presence of the shear. It is interesting that the O
approximation, in the self-consistent anisotropic version
have presented here, is able to capture this essential topo
cal feature of phase ordering in two dimensions. Note a
that the constant 2 in relation~83! is exactly the same as on
would obtain from the domain size in the absence of sh
We will find the same constant in the case of an oscillat
shear, as a further confirmation of the validity of our meth

V. OSCILLATORY SHEAR IN TWO DIMENSIONS

The rather surprising results we have obtained in two
mensions could raise the question whether the OJK met
in the modified form we are using here, is actually suita
for studying the physics of a sheared system. Indeed,
skeptical reader may very well think that the shrinking of t
transverse domain size, with the consequent increase in
total energy of the system, could be an artifact of the te
nique, rather than a genuine property of the model. On
other hand, as we have seen at the end of the last section
two-dimensional result satisfies the highly nontrivial top
logical relation on the growth of the scale area, Eq.~83!,
supporting the validity of our findings. Therefore, to che
how robust our method is, we test its compatibility with t
t-
e

t
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two-dimensional topological constraint in a completely d
ferent situation. To this end we study in this section t
effect of anoscillatory shear on phase ordering in two d
mensions.

It must be said that the case of oscillatory shear is in
esting in itself. Indeed, a realistic experimental situation
very unlikely to involve an indefinite time-independe
shear. More reasonably, a shear flow periodically depend
on time, typically with some random modulation, is what w
expect. Of course, real experiments with time-independ
shearcan be performed~and we propose one in Sec. VIII!:
what we are saying is that a generalization of our calculat
to a time-dependent oscillatory shear can shed some ligh
a more natural experimental setup.

We consider a sheared system with a velocity pro
given by

uW 5gyG~ t !eW x , ~86!

where the only assumption we make on the shear func
G(t) is that it is a periodic function with fundamental fre
quencyv and zero time average. One of the interesting
pects of the following calculation is that the results are to
great extentindependentof the explicit form ofG(t). The
derivation of the OJK equation is completely analogous
the one in Sec. II, and it follows simply from the obviou
substitution

gkx

]m~kW ,t !

]ky
→gG~ t !kx

]m~kW ,t !

]ky
. ~87!

In order to solve the equations we have therefore to perfo
the change of variables@compare with Eqs.~16!#

qy5ky1
g

v
g~ t !kx ~88!

with

g~ t ![vE
0

t

dt8G~ t8!. ~89!

Of course, forG(t)51 we reproduce the time-independe
shear case. All the equations of Sec. II can now be gene
ized to the oscillatory shear case by means of the triv
substitution

gt→ g

v
g~ t !. ~90!

A critical issue to understand concerns the regime of
parameters, in particular time, that we have to consider. F
of all, we cannot afford to have too high a frequency, oth
wise there would be a delay in the response of the system
the shear. This means we must take the shearing frequenv
much smaller than the shear rateg. On the other hand, we
need to observe the system on time scales much larger th
period. Therefore, we will consider the regime

1

g
!

1

v
!t, ~91!
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which implies

a[
g

v
@1. ~92!

Note that, in this way, we cannot recover from our fin
results thev→0 case, nor can we extrapolate to thev→`
limit. On the other hand, the large parametera will be useful
for extracting the leading terms from our results.

Before going further, let us explain our general strate
Due to the periodic shear, all our quantities will exhibit o
cillations: some of them, likeD11, which is positive definite,
will oscillate around a nonzero value, while others, likeD12,
will oscillate around zero, due to the oscillation in the orie
tation of the domains. Given that all these quantities enter
time integrals in Eqs.~20!, a natural approach, for time
much longer than the period, is to exploit their time avera
if B(t) is an oscillatory quantity we write, to leading ord
for t→`,

E
0

t

dt8B~ t8!t8n;B̄tn11, ~93!

with

B̄5
v

2pE0

2p/v

dt8B~ t8!. ~94!

In this way from Eqs.~20! we get

R11~ t !54t~12D1112agD121a2g2D11!,

R12~ t !54t~2D122agD11!, ~95!

R22~ t !54tD11.

Note the striking difference from the time-independent sh
case: due to the oscillations the whole matrixRab is now of
ordert, as it would be in the absence of shear. As mentio
above, we expectD12 to oscillate around zero with the sam
period asg. Thus, in the equations above we can disreg

terms likeD12 andgD11, whose time average is zero. As
consequence, we have

R12~ t !50, ~96!

that is, the isotropy is restored at the level of the matrixRab .

On the other hand, we have to keep mixed terms likegD12,
because their time average will be nonzero. Using Eqs.~23!
we can now write

M11~ t !54t~12D1112agD121a2g2D111a2g2~ t !D11!,

M12~ t !54tag~ t !D11, ~97!

M22~ t !54tD11.

First of all note that, apart from the oscillation induced
the explicit presence ofg(t), the correlation matrixMab is of
order t, strongly suggesting that we will end up with at1/2
l

.
-

-
e

:

r

d

d

growth. On the other hand,M12Þ0, meaning that the system
is still anisotropic, even though the anisotropy has zero ti
average.

From relation ~92! and from Eqs.~97!, we have that
M11@M12@M22, and therefore the self-consistent equatio
~48! become

D11~ t !5
M22~ t !1As~ t !

M11~ t !
,

D12~ t !52
M12~ t !

M11~ t !
. ~98!

As usual, we need a starting point to break into these eq
tions and some physical considerations may help here. F
note that naivelyM12;LxLy;t, from the topological rela-
tion ~83!. The second of Eqs.~97! then suggests thatD11
;1/a. Secondly, from the form of the velocity profile, w
have another naive relation, that is,x;ayg(t). Thus we
expect that2D12;u;y/x;1/a. We therefore make the fol
lowing ansatz:

D11~ t !5
1

a
f ~ t !,

2D12~ t !5
1

a
h~ t !, ~99!

with f (t)>0, while we expecth to oscillate around zero
Both f and h must now be determined self-consistently. I
serting this ansatz into Eqs.~97! and considering only the
leading terms ina, we have

M11~ t !54ta@u1rg2~ t !#,

M12~ t !54tg~ t !r ,

M22~ t !54t
r

a
, ~100!

s~ t !516t2ru, ~101!

with the two constantsu and r given by

r[ f̄ , u[g2f . ~102!

By inserting this form ofMab into Eqs.~98!, we find that the
powers ofa balance and we obtain two equations for t
functionsf andh,

f ~ t !5
Aru

u1rg2~ t !
, ~103!

h~ t !5
rg~ t !

u1rg2~ t !
.

Averaging the first equation, we get

Aru5V~r /u!, ~104!

with
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V~x!5S 1

11xg2~ t !
D . ~105!

On the other hand, by multiplying the same equation
g2(t) and averaging again, we have

Aru512V~r /u!, ~106!

and therefore

Aru5V~r /u!51/2. ~107!

In order to compute the domain sizes we can use the s
formulas as in Sec. IV, because we still havet2.M11

2 @s.
We obtain

L i~ t !5At52t1/2Ag

v
Au1rg2~ t !, ~108!

L'~ t !5As

t
52t1/2Av

g

Aru

Au1rg2~ t !
, ~109!

and, happily, we find for the scale area

A~ t !5L i~ t !L'~ t !54tAru52t, ~110!

independentof the explicit form of the shear functionG(t).
Note also that the factor 2 in this formula is exactly the sa
as in the time-independent shear case and in the unshe
case. This is an important result, supporting the validity
our method for the study of the effect of shear in this type
system.

As expected, apart from the oscillations, the growth f
lows a t1/2 law. The interesting thing is that bothL i andL'

oscillate in time, but, as expected, with an opposite pha
when g(t) has its maximum~i.e., at the maximum shea
displacement!, L i is maximum and of courseL' is mini-
mum, because this is the point of maximum elongation of
domains. On the other hand, forg(t)50 ~i.e., zero shear
displacement!, L i is minimum andL' maximum, but always
with L i@L' . We want to stress that this oscillatory dynam
ics is only deceptively simple. To better appreciate this f
we have to computeLx and Ly @see Fig. 2 and Eq.~67!#.
These quantities read

Lx~ t !52t1/2Ag

v
Au, ~111!

Ly~ t !52t1/2Av

g

Aru

Au1rg2~ t !
. ~112!

First of all, note thatLx , unlike Ly , doesnot oscillate in
time, and this was to be expected from its very definiti
~see Fig. 2!. Secondly, note that forg(t)50 we haveLx
5L i@Ly5L' : at the points of zero shear displacement
domains are very flat and large. In addition, we can comp
the tilt angleu from the eigenvectors ofM, thus obtaining

tanu5
v

g

rg~ t !

u1rg2~ t !
. ~113!
y

e

e
red
f
f
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e:

e

t

e
te

We can see thatu is zero at the zero displacement poi
@g(t)50# and increases with increasing displacement, up
a maximum, whose value decreases with increasing s
rate g. This fact may seem counterintuitive, especially b
cause in the case of a time-independent shear rate we
seen that the tilt angle wasdecreasingwith time, while here
it is increasing. However, there is no contradiction: the ke
point is that atg(t)50 the domains arealready very elon-
gated, that is,Lx@Ly , as an effect of the shear experienc
in the former periods. We can better understand what h
pens by using the simple case of a linearly sheared ell
~no growth!, with initial axesLx andLy , andLx@Ly . The
ellipse is described by the parametric equation

x5Lx cosf1gyt,

y5Ly sinf, ~114!

with fP@0,2p#. We can estimate the tilt angle by compu
ing the ratioy/x at the point where thex displacement is
maximum. This gives

tanu5
gt

g2t21Lx
2/Ly

2
. ~115!

This function has a maximum at

tmax5
1

g

Lx

Ly
~116!

and decreases asymptotically as 1/gt for t→`. In the case of
a time-independent shear rate, the initial conditiont50 has
Lx /Ly;1, and therefore the maximum ofu is quickly
reached attmax;1/g, which is much smaller than the time
we consider,t@1/g. For this reason, in the time region o
interest the tilt angle monotonically decreases. In the os
latory shear case, on the other hand, at the zero displace
pointg50, we haveLx /Ly;g/v and thustmax;1/v: the tilt
angle therefore increases during the period of the osc
tions, and this explains the apparent contradiction betw
the two cases.

From the tilt angle~113! we can compute the additiona
length scalesHx andHy by using definition~69!. We have

Hx~ t !52t1/2Ag

v
Au1rg2~ t !, ~117!

Hy~ t !52t1/2Av

g

rg~ t !

Au1rg2~ t !
. ~118!

Note thatHy(t) is the only length scale to vanish at the ze
displacement point. After the discussion above, the rea
for this should now be clear.

In order to computer andu, we need to know the explici
form of g(t), and therefore ofG(t). However, these are jus
numerical constants and the time evolution of the dom
sizes is not affected by them. For the particularly simple c
where

G~ t !5 cosvt, ~119!
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the constants are

r 5
A3

2
, u5

1

2A3
. ~120!

VI. TIME-INDEPENDENT SHEAR IN THREE
DIMENSIONS

In dimension larger than 2 it becomes very difficult
explicitly compute the integrals in Eqs.~32!. Notwithstand-
ing this, if we formulate a suitable ansatz for the elongat
matrix Dab(t), we can then findMab(t) from Eqs.~20! and
~23!, and finally obtain a self-consistent relation forDab(t)
by an asymptotic evaluation for large times of the integr
in Eqs. ~32!. In the present section we will carry out th
program for a time-independent shear rate.

First of all, we note that many of the terms in Eqs.~20!
can be estimated by means of the following reasonable
satz:

D11~ t !→0, t→`,

D12~ t !;2
1

gt
. ~121!

Both these relations are also obtained in any dimension
the calculation of Sec. III. By inspection of Eqs.~20! it is
now clear that the key quantity needed to evaluateRab(t),
and thusMab(t), is @12D22(t)#. We might be tempted to try
an ansatz similar to the cased52, by taking @12D22(t)#
n

s

n-

y

;(ln gt)a1/ta2→0, for t→`. However, a careful analysis o
the equations shows that this ansatz is not consistent. Th
fore, the most natural thing to do is to assume thatboth
D22(t) andD33(t) remain nonzero fort→`, that is~accord-
ing to the usual sum rule!,

D22~ t !→12K, ~122!

D33~ t !→K,

and to fix self-consistently the value of the constantK. From
Eqs.~20!, ~23!, ~31!, and~122! we have

M11~ t !5
4

3
Kg2t3,

M12~ t !52Kgt2,

M22~ t !54Kt, ~123!

M33~ t !54~12K !t,

s~ t !5
4

3
K2g2t4,

at leading order fort→`. Note that the explicit forms of
D11(t) and D12(t) do not enter inMab(t). Using relations
~123! it is now possible to evaluate the asymptotic value
the integrals in Eqs.~32! and get an equation for the consta
K. In three dimensions Eqs.~32! read
D22~ t !5
1

2
As~ t !M33~ t !E

0

`

dy
y21M11~ t !y1M11~ t !M33~ t !

$y31M11~ t !y21@M11~ t !M33~ t !1s~ t !#y1s~ t !M33~ t !%3/2
,

D33~ t !5
1

2
As~ t !M33~ t !E

0

`

dy
y21M11~ t !y1s~ t !

$y31M11~ t !y21@M11~ t !M33~ t !1s~ t !#y1s~ t !M33~ t !%3/2
,

ht-

e-
ck
where we have used the relationM11(t)@M22(t);M33(t),
according to Eqs.~123!. By performing the rescalingy→ty
and by using relations~123! in the two integrals above, it is
possible to see that in the limitt→` we can disregard the
termsy2 in the numerator andy3 in the denominator. In this
way we obtain

D22~ t !5
Aa

2 E
0

`

dy
y112b

~y21y1a!3/2
,

D33~ t !5
Aa

2 E
0

`

dy
y1b

~y21y1a!3/2
, ~124!

with

a5
4K~12K !

~423K !2
,

b5
K

423K
. ~125!

The fact that there is no time dependence left in the rig
hand sides of Eqs.~124! shows that ansatz~121! and ~122!
give rise to a self-consistent solution for the thre
dimensional case. Moreover, it is straightforward to che
that sum rule~9! is satisfied. The integrals in Eqs.~124! can
now be easily performed and, by using relations~122!, after
some algebra we find

K51/5. ~126!

A similar treatment of the integrals in Eqs.~32! for D11(t)
andD12(t) shows that

D11~ t !;
ln~gt !

g2t2
,
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D12~ t !;2
1

gt
,

consistent with ansatz~121!. Let us note that relations~121!,
~122!, and ~123! are self-consistent in any dimensiond>3,
as can be easily verified by using these relations in Eqs.~32!
and rescalingy→ty in the integrals. Our final result wil
therefore be qualitatively the same for any dimensiond>3
@for d.3 only numerical factors, such as the values ofK and
the amplitudes in Eqs.~127! below, are changed#.

We can now compute the eigenvalues of the correla
matrix Mab(t), in order to find the sizes of the domain
along the principal elongation axes. From Eqs.~123! and
~126!, we have

L uu~ t !5
2

A15
gt3/2,

L'~ t !5
1

A5
t1/2, ~127!

Lz~ t !5
4

A5
t1/2,

whose corresponding eigenvectors are

eW i5S 1,
3

2gt
,0D , eW'5S 2

3

2gt
,1,0D , eW z5~0,0,1!,

~128!

where we recall thatL uu and L' are the larger and smalle
orthogonal axes of the domain in the (xy) plane, whereasLz
is the axis of the domain in thez direction @or any direction
orthogonal to the (xy) plane, if d.3]. The domain growth
in dimensiond>3 is therefore the one we would expect o
the basis of the simple scaling arguments given in Sec
@see Eqs.~15!#: the growth exponent along the flow directio
is augmented by 1, whereas the others are left unchan
Unlike the two-dimensional case, there are no topolog
restrictions on the product of the domain sizes, because
integral over the domain surface of the local curvature is n
in dÞ2, a topological invariant.

As already anticipated, ford53 standard scaling holds
Indeed, one can immediately check that

L i~ t !;Lx~ t !;Hx~ t !,

L'~ t !;Ly~ t !;Hy~ t !. ~129!

There is therefore no real difference between growth al
the principal axes of the domains and growth in the (xyz)
directions, and the correlation function displays the sim
asymptotic scaling form,

C~x,y,z;t !5 f S x

L i
,

y

L'

,
z

Lz
D . ~130!

According to the OJK theory@8#, we have, fort→`,
n

II

d.
l

he
t,

g

e

COJK~x,y,z;t !5
2

p
sin21H expF2

1

2 S ~x13y/2gt !2

L i
2

1
~y23x/2gt !2

L'
2

1
z2

Lz
2D G J . ~131!

In the scaling limit, wherex,y,z,t→` with x/L i , y/L' , and
z/Lz fixed, the term 3y/2gt can be dropped, but the term
3x/2gt cannot, and the OJK scaling function has ellipsoid
symmetry as expected.

As in two dimensions, we can compute the interfac
density by applying Eq.~77!. The final result is

r~ t !;
1

L'

1
L'

L i
2

, ~132!

which shows that the energy density in the three-dimensio
case decreases in the standard way,

E~ t !;t21/2. ~133!

VII. NUMERICAL SIMULATIONS IN TWO DIMENSIONS

In the present section we will present some numeri
simulations for a two-dimensional system subject to a tim
independent uniform shear. We have considered a syste
Ising spins on a lattice, governed by zero-temperature Mo
Carlo dynamics. As in the rest of this paper, the shear flow
applied in thex direction, according to the profile given b
Eq. ~12!. From a practical point of view, we have sheared t
system by shifting each row of spins by an amount prop
tional to they coordinate and to the timet̂ ~measured in
Monte Carlo steps!,

Dx~y, t̂ !5yns~ t̂ !, ~134!

wherens( t̂ ) is the number of discrete shear steps up to ti
t̂ . Of course, the discrete nature of the system is reflecte
the discrete nature of the shearing process. To simula
shear rateg ~defined byDxcontinuous5gy t̂) we requirens( t̂ )
5 int(g t̂ ): After each 1/g Monte Carlo steps a discrete she
process, where each row moves one lattice spacing rela
to the row below it, is applied. In the large-time limit, whe
t̂@1/g, the system’s behavior should not be very differe
from that of a continuously sheared system.

We have to be careful in choosing the boundary con
tions for a sheared system, because normal periodic bo
ary conditions would clearly be wrong. The idea is to rep
cate the original system infinitely many times on the (x,y)
plane and to shear each subsystem with respect to the ot
In other words, if (x,y) are the coordinates on the infinit
plane, and (i , j ) are the coordinates on our numerical syste
we have

i 5modNx
@x1yns~ t̂ !#,

j 5modNy
~y!, ~135!
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whereNx andNy are the sizes of the numerical system in t
x andy directions, and the function modN(z) is just the value
of z moduloN. Clearly, for t̂50 Eqs.~135! reduce to stan-
dard periodic boundary conditions.

One of the main difficulties in simulating a system subje
to a shear is that the domains grow very quickly in the
rection of the flow, soon reaching a size comparable with
size of the system. On the other hand, as we have seen
expect the growth to be highly depressed in the transv
direction. Thus, the most reasonable thing to do is to t
Nx@Ny , in order to reduce finite size effects as much
possible. In all our simulations we have takenNx520 000
andNy5100. As we shall see, even for our longest times,
domains are much smaller than the size of the system in
directions. A possible proposal in order to reduce the fin
size effects due to the shear-induced elongation of the
mains is to work at very lowg. However, all our results hold
in the limit Lx@Ly : if we decrease the shear we will have
wait for a longer time to enter the asymptotic regime
interest, and thus we will still have the problem of long d
mains compared to the system size. There is, therefore
easy way out of this situation and we had to tune our par
eters to take this problem into consideration. For this rea
we run our simulations for only one value of the shear ra
namely,g51/4: in order to study the dependence of all t
observables on the shear rate we would have to cons
values ofg far from the suitable numerical domain.

The first thing we want to check is the behavior of t
length scalesLx(t) andLy(t). As we have seen,x andy are
not the correct scaling axes, but we want to test our pre
tion for Lx andLy against the naive expectation of Eq.~15!.
Indeed, it must be remembered that this naive scaling is
the one found in the case of conserved dynamics in the l
of infinite dimension of the field@9#. We recall our analytic
prediction

Lx~ t !;
Agt

~ ln gt !1/4
,

Ly~ t !;
1

Ag~ ln gt !1/4
;L'~ t !. ~136!

Note thatLy is, at the leading order, equal toL' , and there-
fore we can limit ourselves to measuring the former. This
important, because a numerical measure ofL' would be very
difficult: the domain size in the perpendicular direction
very small and for long times this direction passes throu
very few lattice sites, such that there are essentially no po
where the correlation function is different from zero. Th
problem does not exist for the correlation in thex, y, and
parallel directions. In order to extract the the domain scal
a given time we have performed a fit of the correlation fun
tion to the OJK form and have located the point where the
is equal to 1/e. We have checked that the behavior of t
domain size with time is almost entirely insensitive to t
particular fit we use. Numerically, we do not expect to
able to detect the logarithmic corrections in Eqs.~136!, so
our goal is to check the leading behaviorLx;t and Ly
;O(1). Our results are shown in Fig. 4.
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As we can see,Lx is definitely not growing liket3/2. A
power-law fit gives

Lx~ t !;t1.02. ~137!

Furthermore,Ly is, on this scale, compatible with a constan
and is certainly not growing liket1/2. Both Lx(t) andLy(t)
have the expected behavior, apart from the logarithmic c
rections, and the naive exponents 3/2 and 1/2 are clearly
correct.

The value ofLy is very small, and in order to have a bett
idea of the fast decay of the correlation in they direction we
plot in Fig. 5 the correlation function and the OJK fit for
given fixed value of the time. Note that actually the corre
tion vanishes on average after six lattice spacings.

The next important quantity we want to measure is
energy. From relation~81! we can see thatE(t) is a direct

FIG. 4. The domain sizes in thex andy directions as a function
of time. The full line is a power-law fit givingLx;t1.02. The dashed
line is Lx

naive;t3/2, and the dotted line isLy
naive;t1/2, for comparison.

In both cases, the data are averaged over five samples.

FIG. 5. Correlation function in they direction as a function ofy,

for t̂5144. The symbols are the numerical data for five samp
the full line is the OJK fit.
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measure ofL'(t). Note that the relation betweenE andL'

is, at leading order, completely independent on the OJK
proximation we are using: indeed, the simple assump
L i@L' is sufficient to conclude that, at leading order,E
;1/L' . However, we stress that the conditionL i@L' is
satisfied only for large times~see Fig. 4!. In Fig. 6 we plot
the energy as a function of time, for both the sheared and
unsheared cases. We see that, after an initial drop in the
regime where we do not expect relation~81! to hold, the
energy becomes compatible from a constant on this sc
The difference from the unsheared case is striking. In
inset of this figure we show a magnification of the last part
the curve for the sheared case: it is encouraging to see
despite the significantly large error bars, an increase in
energy for very large times is clearly visible, compatib
with our analytic prediction

E~ t !;Ag~ ln gt !1/4. ~138!

However, we stress that longer simulation times and lar
system sizes are necessary to test this prediction~in particu-
lar, the power of the logarithm! more carefully.

The last quantity we measure isL i(t), whose form~66!
differs from that ofLx(t) only by a logarithmic correction. In
Fig. 7 we plotL i as a function of the time. Even if slightly
faster, the growth of the domains in the parallel direction
compatible witht. Indeed, a power-law fit gives

L i~ t !;t1.14. ~139!

Not surprisingly, at a simulation level we are unable to det
any significant difference between the growth ofLx andL i .

Summarizing, we can say that, up to the simulation tim
we were able to reach, numerical data are largely compa
with our theoretical results. In particular, the nontrivial lea
ing behavior ofLx(t), Ly(t), and L i(t) is correctly repro-
duced, while the naive expectation for the domain growth
sharply ruled out by the simulations. Note that, of course

FIG. 6. The energy as a function of time in the sheared c
(g51/4), averaged over 41 samples, and the unsheared casg
50) averaged over five samples. The full line is a power-law fit
the unsheared case, givingEun;t20.51. The horizontal broken line
is a guide to the eye. Inset: energy in the sheared case as a fun
of time ~magnification!.
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longer simulation time would be desirable, especially
check whether the curve of the energy develops a well
fined minimum and eventually starts increasing as (lnt)1/4.
Unfortunately, as we have seen, the high values ofLx andL i
make this impossible with the system sizes we were abl
reach, otherwise finite size effects would come heavily in
play. For this reason also, in the next section we propos
real experimental test of our analytical results.

VIII. AN EXPERIMENTAL TEST OF THE
TWO-DIMENSIONAL RESULTS

Theoretical and numerical results on nonconserved t
dimensional coarsening dynamics can be experiment
tested by means of thin films of uniaxial twisted nema
liquid crystal ~TNLC! subjected to rapid thermal quenche
Since the classic experiments of Orihara and co-work
@10#, showing that a dynamical scaling compatible with t
law L(t);t1/2 actually takes place in this system@16#, many
other workers have successfully tested numerical and th
retical results on nonconserved coarsening in TNLC’s@11#.
In particular, let us note that this kind of system seems to
particularly suitable for testing our analytic calculation: i
deed, it has been shown in@10# that the scaling function
describing the two-dimensional coarsening dynamics
TNLC’s is very well approximated by the analytic expre
sion given by the OJK theory@8#. Moreover, it has been
explicitly checked@10# that the Allen-Cahn equation~2!, de-
scribing the motion of an interface due to its curvature, ho
to a very good degree of accuracy for TNLC’s. Our aim is
describe in this section the basic experimental setup
TNLC’s and to propose a shear experiment on such syste
in order to test our nonstandard two-dimensional results
the case of simple, time-independent shear.

A typical TNLC cell is obtained by confining the samp
of nematic liquid crystal between two glass plates, pre
ously prepared by rubbing them in two mutually perpendic
lar directions. In this way the orientations of the crystal m
ecules belonging to the two layers close to the plates ha
relative rotation ofp/2. At high temperature, in the isotropi
phase, the boundary conditions affect only the system c

e
(

r

ion

FIG. 7. Domain sizeL i as a function of time, averaged over 1
samples. The full line is a power-law fit, givingL i(t);t1.14.
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to the boundaries, but when the crystal is quenched be
the transition temperature~also called theclearing point!,
deep into the nematic phase, the alignment of the molec
with the boundary conditions on the plates extends into
bulk. In this way two differentstatesappear, correspondin
to the possibility of the molecules rotating between the
rections imposed by the two boundary plates in eithe
clockwise or an anticlockwise sense. In other words, after
quench the TNLC cell develops two equivalent states, wh
we may call left handed and right handed. Domains of
two states are separated bydisclination lines@10#, defined as
the points where the sense of rotation changes sign.
system is effectively two dimensional and the dynamics
the left- and right-handed domains is very well described
nonconserved coarsening dynamics.

In order to reproduce the situation studied in the pres
paper, it is necessary to shear the TNLC cell in a such a
that the shear direction isparallel to the two plates~the flow
direction is, of course, parallel to them!, namely, the mutua
orientation of the two plates must not be changed in
experiment, while the orthogonal walls must be moved
order to create the shear. In this way our (xy) plane will be
parallel to the rubbed glass plates.

Given that a vital condition for testing our asymptot
results, in the case of time-independent shear, is the poss
ity of shearing the system for a long time, it seems to us t
a linear geometry is probably unsuitable for such an exp
ment. On the contrary, a circular setup may be more con
nient: by taking two circular glass plates, rubbed tangentia
and radially, it is possible to create a cell whose wall,
thogonal to the plates, can now be rotated indefinitely.
order to create the shear it is necessary to place a fixed
inder at the center of the system. In this way the materia
contact with this cylinder is stationary, while the layers clo
to the outer walls move with a given tangential velocityu0,
creating a velocity profile given by

u~r !5
u0R0

R0
22Rc

2 S r 2
Rc

2

r D , Rc,r ,R0 , ~140!

whereR0 andRc are the radius of the cell and of the intern
cylinder, respectively. IfRc2R0!R0, it is possible to pro-
duce a flow identical to the one studied in the present w
and to study the long-time dynamics of the domains un
shear. Indeed, by settingr 5Rc1y, we have

u~y!5
2u0R0

R0
22Rc

2
y, y!Rc , ~141!

to be compared with relation~12!.
Finally, testing our results in the case of oscillatory sh

should be easier from the experimental point of view, sin
the periodicity of the shear function allows for the simp
linear geometry. As we have seen, the main growth follow
t1/2 law, modulated by some oscillations in the longitudin
direction. In particular, it should not be difficult to te
whether the ratio of perpendicular and parallel domain si
satisfies the relation

L'

L i
;

v

g
~142!

in the regime whereg@v.
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IX. CONCLUSIONS

In this paper we have analytically studied the effect o
shear flow on phase ordering, for a statistical system w
nonconserved scalar order parameter. We have develop
self-consistent anisotropic version of the OJK approxim
tion, by means of which we have calculated the growth
ponents for time-independent shear in two and three dim
sions @relations ~66! and ~127!#, and we have found the
scaling form of the equal-time two-point correlation functio
in both cases@relations~74!, ~75!, and ~130!#. While for d
53 our results are consistent with some simple scaling
guments and with the results obtained for conserved dyn
ics in the limit of large dimensionN of the order parameter
in d52 we find that domain growth is so heavily affected
the shear that the domains experience a narrowing whic
principle makes their thickness vanish in the limitt→`.
However, as we have pointed out, our calculation is likely
break down for very long times, when the interface and
domain thickness are of the same order. What happens
yond this stage is still unclear to us: it is possible tha
time-dependent steady state develops, with very narrow
mains coalescing and giving rise to new thicker domai
which start narrowing again. Another possible scenario
that when L';j domains start breaking and stretchin
again, giving rise to a steady state like the one depicted
@5#. Further work is needed to clarify this point and it is to b
hoped that experiments on twisted nematic liquid crystals
described in the last section, will lead to a deeper und
standing of this problem.

We have also studied the case of an oscillatory shea
two dimensions, finding a standardt1/2 growth, modulated by
periodic oscillations which occur with opposite phase for t
parallel and perpendicular directions. Interestingly enou
all our results in this case are largely independent of
particular form of the shear rate oscillations.

It is important to note that, in two dimensions, our resu
satisfy the topological constraint on the growth of the sc
area, in both the time-independent and oscillatory cases.
fact, together with the results of our numerical simulatio
strongly supports the validity of our method in the study
coarsening systems under shear.

Of course, it would be very interesting to know wheth
some of our results~in particular in dimension 2! are pre-
served for conserved dynamics, which is the relevant case
describing spinodal decomposition in binary fluids. Unfort
nately, the OJK approximation cannot be used in this ca
since the very starting point, the Allen-Cahn equation for
interface motion, does not hold when the order paramete
conserved. It is therefore still unclear how to go beyond
large-N limit in the context of spinodal decomposition und
shear.
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