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Ohta-Jasnow-Kawasaki approximation for nonconserved coarsening under shear
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We analytically study coarsening dynamics in a system with nonconserved scalar order parameter, when a
uniform time-independent shear flow is present. We use an anisotropic version of the Ohta-Jasnow-Kawasaki
approximation to calculate the growth exponents in two and three dimensiorts=f®ithe exponents we find
are the same as expected on the basis of simple scaling arguments, that is, 3/2 in the flow direction and 1/2 in
all the other directions, while fod=2 we find an unusual behavior, in that the domains experience an
unlimited narrowing for very large times and a nontrivial dynamical scaling appears. In addition, we consider
the case where an oscillatory shear is applied to a two-dimensional system, finding in this case a standard
growth, modulated by periodic oscillations. We support our two-dimensional results by means of numerical
simulations and we propose to test our predictions by experiments on twisted nematic liquid crystals.

PACS numbes): 82.20.Mj, 64.75+g, 05.70.Ln

I. INTRODUCTION is anisotropic and therefore the dynamical evolution is de-
scribed by more than one exponent. The determination of the
When a statistical system in its homogeneous disordereshear exponents is, of course, of the utmost importance. Sec-
phase is suddenly quenched below the critical temperaturendly, it is not clear whether the shear causes an interruption
deep into a multiphase coexistence region, a dynamical praf coarsening, the dynamical balance between growth and
cess known agoarsening or phase orderingresults: do- deformation giving rise to a stationary stas argued in
mains of the different ordered phases are formed and conj5)), or, on the contrary, whether domain growth continues
pete with each other in the attempt to break the symmetryndefinitely. Experimental, numerical, and theoretical evi-
and project the system onto one single equilibrium dthte  dence concerning both these points is still very tentdje
An equivalent phenomenon occurs in the case of binary flu- In the present work we perform a theoretical investigation
ids: a system at the critical concentration tries to phase sepaf the coarsening dynamics in a statistical system with non-
rate after the quench, by forming domains of the two differ-conserved scalar order paramei®@odel A, in the classifica-
ent componentgspinodal decomposition An interesting  tion of Hohenberg and Halperii7]), when a shear flow uni-
problem is the analysis of the dynamical evolution of theseform in space is present. If, on one hand, such a model is
domains, and in particular the determination of their growthunsuitable for describing spinodal decomposition in binary
rate. In this aim a property shared by many statistical sysfluids, on the other hand it allows us to compute the growth
tems, calleddynamical scalingstating that space and time exponents in any spatial dimension, in the context of a suit-
scale homogeneously in the equal-time two-point correlatiorably modified version of the classic Ohta-Jasnow-Kawasaki
function C(r,t)=f(r/L(t)), proves very useful. It is then (OJK) approximatior{8]. When considering the relevance of
natural to identify the length scalg(t) as the typical size of nonconserved dynamics for advancing our understanding of
the domains during coarsening. This length scale has genetomain growth in the presence of a shear, we must take into
ally a power-law dependence on time(t) ~t*?, sometimes  account the fact that the only existing analytic calculations of
with logarithmic corrections. The determination of the expo-the growth exponents for spinodal decompositioonserved
nent z for many different statistical systems has been thedynamics, or model Bhave been performed in the limit of
object of much effort in recent years and we can say thainfinite dimensionN of the order parametdi9], where no
ordinary coarsening is now quite well understdadl saturation of coarsening is found. However, in that case the
A related topic, which is now attracting growing attention, very concept of domains is meaningless and thus a calcula-
is the problem of phase ordering when the system is subjecion that takes into account the more physical case of a scalar
to an external shear. Apart from the great technological relerder parameter is desirable. Besides, an understanding of
evance of such a problem, especially in the case of spinodahe effect of shear on nonconserved coarsening is by itself an
decomposition, the basic theoretical understanding of thénteresting problem, from both the theoretical and experi-
phenomena involved is far from being well establishedmental points of view. Indeed, experiments have been per-
[2—4]. When a shear is present, domain growth is heavilyfformed in the past on twisted nematic liquid crystgl)],
affected by the presence of the induced flow and the dynamshowing that these systems are a perfect test for analytical
cal scaling behavior is drastically different from the case ofresults in statistical models with nonconserved order param-
ordinary coarsening. In particular, two main points are wor-eter. Many results, from growth laws to persistence expo-
thy of careful investigation: First, the growth of the domainsnents, have been successfully tested on twisted nematic lig-
uid crystals [11] and we therefore propose a shear
experiment on such systems to check the results of our cal-
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*Email address: rui@a13.ph.man.ac.uk shear uniform in time is applied and the behavior of the
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system is analyzed asymptotically for very large times. In the Il. THE OJK APPROACH

second case, we consider a shear flow that is periodically The time evolution of a statistical system with noncon-

oscillating in time and study the properties of the model for q | q St is d ibed by th
times much longer than the period of the oscillation. TheS€fV€d scaiar order parameté(x,t) is described by the

primary effect of the shear flow is naturally to stretch thenme-dependent Ginzburg-Landau equatias]
domains in the direction of the flow, such that they can be J(R.1)
roughly represented as highly elongated ellipsoids, with the !
growth taking place along the main axes. Two natural length at
scales therefore aris¢, andL, , the size of the domain . . .
along the largest and the smallest axes, respectively. Tr}whereV(q&) is a double-well potential. Under the hypothesis

L Rat the thicknesg of the interface separating different do-
determination of the growth laws for these two length Scale?nains is much smaller than the sikeof the domains. it is
is the main objective of this work. '

In th f a time-ind q h | ossible to write an equation for the motion of the interface
n the case of a time-independent shear, our results afgqif assumed to be well localized in space. This is the

nontrivial and, especially in two_dimensi?/gs, quli/'ie UNeX- Allen-Cahn equatiofil4], asserting that the velocity of the
pected. Fod=2 our calculation gives. |~y t(Int)™"and  jnterface is proportional to the local curvature,
L, ~y YqInt)"** where y is the shear rate, while fod

=3 we findLj~yt¥2 and L, ~t"2 The three-dimensional v(X,t)=—V-n(x.t), )
exponents are the same as one would expect on the basis of
simple scaling arguments and are compatible with calculagsheren(x,t) is the unit vector normal to the interface and

tions for conserved dynamics in the layelimit [9]: the  §.5(x 1) is the curvature. The normal vector can be written
growth along the flow is enhanced by a factdr while the i, general as

transverse growth is unaffected by the shear. On the other

hand, the two-dimensional result comes as quite a surprise: . Vm(x,t)
the short size of the domaiihs goes asymptotically to zero nx,t)=————,
for very large times, while the scale area grows as in the [Vm(x,0)|

unsheared casé, L, ~t. As we shall show, there are topo- - . . .
=L b herem(x,t) can be any field that is zero at the interface of

logical arguments supportlng. this last rpsult. As long as ou e domain, defined by the vanishing of the order parameter
approach is valid, we do not find any evidence of the onset of .

a stationary state giving rise to an interruption of the coars®(X,t). Given that this is the only restriction on the field
ening process. However, in two dimensions our calculatiorm(X,t), it is convenientnot to use the order parameter itself
breaks down when the thickness of the domains becomes order to describe the motion of the interface via E2),
comparable with the interfacial width. We cannot say whatout a smoother fielf8]. Indeed, as we shall see, the principal
happens when this stage is reached, but it is possible th&ffect of the OJK approximation is to produce a Gaussian
some kind of stationary state occurs in this regime. In thedistribution for the fieldm(x,t), which would be particularly
case of an oscillatory shear flow in two dimensions, we findunsuitable for the highly non-Gaussian, double-peaked dis-
L~t"2/ylwf|(t) and L, ~t*2Jw/yf (1), wherew is the  tribution of the order parameteh(x,t).

frequency of the periodic flow: both length scales grow like EFrom Egs.(2) and(3) we have

tY2, but are modulated by oscillatory functiorfg(t) and

=V2¢(x,t)—V'(), (1)

()

f, (t) with the same period as the flow and with mutually d v

L X ) y - d [ dm(x,t)
opposite phases. In this case also, therefore, we do not find  v(x,t)=— vl ATy
any stationary state. a=1 PXa | [Vm(x,t)|

The structure of the paper is the following. In Sec. Il we
introduce the OJK approximation, with the appropriate

V2m(>2,t)+ 4 g.m(x,t)dpm(x,t)

modifications due to the presence of the shear. We end Sec. IVm(x,t)| ab=1 |Vm(x,t)|?

Il by formulating some self-consistency equations for the R

matrix encoding the anisotropy of the domaitise elonga- FadpM(X,t)

tion matrix). Given the technical difficulty of such equations, |§m(>2,t)| ' )

in Sec. lll we present some simple geometric arguments use-

ful to achieve a better understanding of the asymptotic begy considering a frame comoving with the interface, we can
havior of the many quantities involved in the calculation. yite

The explicit solution of the equations in two dimensions,

together with the calculation of the growth exponents, is car- dm(x,t) am(x,t)
ried out in Sec. IV for a time-independent shear rate and in 0= =

Sec. V for an oscillatory shear rate, while in Sec. VI we dt at
solve the time-independent problem in three dimensions. Ir|1f h flow i t it be taken int tb
Sec. VIl we present some numerical simulations in two di-, a s_ear. OW IS presen " : ﬁcan € a_ en nto accoun_ y
mensions, supporting our results, and in Sec. VIl we discus&cluding in the total velocity o, of the interface a contri-

a possible experimental test in the context of twisted nematibution due to the velocity field induced by the shear:

liquid crystals. Finally, we draw our conclusions in Sec. IX. _ o

A shorter account of part of this work can be found 12]. Vit=vn+tu, (6)

>

+ Uor- V(X 1), (5)
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where vn is the curvature driven velocity, with direction am(k,t) am(k,t)
orthogonal to the interface and modulus given by @&g. By g YKy 7k
y

substituting relation4) into Eq. (5) and noting than-Vm
=|Vm|, we finally get the OJK equation

d
a=

d
k2+ X Dap(t)kakp |mM(K,1).
1 a,b=1

amxt) & amxb)
+ 2 Uy
gt & YT

d

= 2 v —_ v v
V2m(x,t) abﬁzl NL(X, 1) Ny(X,t) Txain L) »

@)

(13

) Note that a naive scaling analysis of the left-hand side of this
a?m(x,t) equation would give

whereL, andL, are the characteristic domain sizes in the
andy directions, respectively. If we assume that the domain
rowth in the directions transverse to the flow is not modi-
ed by the shear, we obtain from E@{.4) the results

This is an exact relation for the fiehi(i,t). The OJK equa-
tion is highly nonlinear due to the dependence of the vectoﬁ
n on the fieldm through Eq(3). The OJKapproximation 8]

consists in replacing the factogn, by its spatial average L (t)~yt32 (15

Dap()=(Na(X,HNp(X,1)). ® Ly(H)~t"2,

whereL, now represents any transverse direction. This is the

Note that theelongationmatrix D ,,, must satisfy the obvious " g ; ) )
g ab bt simple scaling we mentioned in the Introduction. As we shall

sum rule see, result15) holds only in three dimensions, while a com-
d pletely different situation occurs fat=2.

> Daa(h)=1. (9) In order to solve Eq(13) we perform the change of vari-
a=1 ables

In the isotropic casef(zO) the elongation matrix is just 0= Ky

Dap= 6ap/d by symmetry, and the OJK equation reduces to

a simple diffusion equation with diffusion constant equal to Oy =ky+ vkit,

(d—l)/d_. On the other hand, When_ a shear_ flow is present Gu=k,, Va=3 (16)

the matrixD,, must encode the anisotropy induced by the

shear and it must therefore depend on time, as the average =t

shape of the domains does. The system of equations we have

to solve is therefore introducing the fieldu(q,7)=m(k,t). The corresponding

equation foru reads

- d -
am(x,t) am(x,t)
AT, ICE , < )
) g =G (A Y= 2, it Du(7)a
=V2m(x,t Ed‘, D t—azm(x't) 10 }
=VimeG = 2 DaV7 -5 (10 + 2D/ 7) GGy ¥Gy7) + Dol 7)
d
9aM(X,t) dpm(X,t) X (Ay= yUx7)?+ 2 Dap(1Ualp.  (17)
Dap(t)= . (11 ab=3
Z 112
2 [dem(x,1)] The original OJK equatiolt7), with a shear flow given by

Eq. (12), is invariant under any transformation that preserves

In this paper we will consider a space-uniform shear inythe the sign of the producty. In order to keep this symmetry, it

direction, with flow in thex direction. The velocity profile is 1S necessary for the elongation matid, to have the fol-
therefore given by lowing block-diagonal form:

1] e D1a(t)=Dya(t)=0, D,p(t)=D3s(t)8,,, Va,b=3,
u=-vyye,, (12) 13( ) Za( ) ab( ) 33( ) ab a (18)

wherey is the shear rate argj, is the unit vector in the flow Where, to simplify the notation, we have usbd(t) to de-
direction. In the present section we will consider the case ofote all the diagonal elements fee=3. Equation(17) can
a time-independent shear rage A straightforward generali- NOw be integrated to give

zation of the calculation to the periodic case will be given in

se¢. V. M(ﬁ,r):p«(ﬁ,o)exrﬂ( -

R , 19
By going into Fourier space we can rewrite Efj0) as GaRan( )b 19

Al

ab
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with
R11<r>=4f07dr'{[1—D11(7'>]+2w'D12<r'>
+ Y27 1-Dyy( )]},

R12(7'):4f07d7"{_D12(7")_?’T’[l_Dzz(T,)]},

Ros7)=4 | dr/[1-Dod)) (20

Ria(7)=Rya(7)=0, Va=3,

Ras(7) =43 | d7'[1- Do)}
ER33( T) 5ab1 Va,ng

We can now go back to the original fiehti(lz,t), via the
relation

m(K,t) = w(ky Ky YKet Kg, - - - Kg, 1), (21)
to obtain
m(K,t) =m(ky,ky+ vkt Kg, - . . Kg,0)
><exp( - % % KaM ap(t)Kp |, (22)
with
M 12() =Ry3(t) + 29tRyp(t) + ¥Ry t),

M 1o(t) =Rya(t) + ytRyH(1),
M (1) =Rp(1), (23
M () =M, (1)=0, Va=3,

Mab(t)=R33(t)5abEM Va,b>3.

33(t) Gap,

Relation(22) can be better understood in real space: due to

the shear flow, the fielch at point (x,y, ...) attimetis the
propagation of the initial condition at

—yyty, ..

OHTA-JASNOW-KAWASAKI APPROXIMATION FOR . ..

point x (
.). Note that, if we assume a Gaussian distribu-
tion for m(IZ,O) (disordered initial conditiop the field main-

4705

(m(k,00m(k’,0))= VA S(k+k'). (24)

The equal-time pair-correlation function of is therefore

Cm(XX ;1) =(m(X,H)m(x’,t))
[(27)92A
~ VdetM(1) exp( "3

where r,=x,—x};. All the information on the domain
growth is contained in theorrelation matrix M ,(t). In-
deed, the eigenvectors & ,,(t) give the principal elonga-
tion axes of the domains and the square roots of its eigen-
values give the domain sizes along these axes.

The correlation matrix is connected to the elongation ma-
trix by Egs.(20) and(23). In order to close the problem we
thus have to write another set of equations, relatihg,(t)
and D (1), by exploiting relation(11). If we introduce the

field @a(f,t)zaam(i,t), we can write

ra[M _l]ab(t)rb )

(25

Pa(X, ) @p(X,1)

Dab(t)ZfDP(ﬁD) 5
‘Pc()zvt)z

1 (= ) . )
= Efo dyJ’ DP((p)e*yEcqvc(x,t)z/nga(X,t)(Pb(x,t),
(26)

and we thus have to work out the probability distribution
DP(¢). The field ¢ is Gaussian and therefore we just need
to compute its correlator. From E5) we have

(27)92A
detM(t)’
(27)

<(pa()zit)(Pb()_()vt)>:K[Mil]ab(t), K=

and therefore

Do,
(28)

1 1 - N
DP(¢)= Zex% 5k % Pa(X, ) Map(t) ep(X,t)

where the constart normalizes the distribution. By defining

Nap(Y,1) =Mgp(t) +Yap, (29

tains a Gaussian distribution at all the times, due to the lin-

earity of Eq.(10). In order to get the correlation ofi(x,t) in

and by performing the rescaling— ¢+/x, y—Yy/x, we can

real space we have to average over the initial conditions, write

| DoeZew @a’“””a'b'W'“%'(i*)’?@a(i,t)<pb<>2,t)

1 (>
D)=y

j D(pefEarbr Par(XMarp (D @y (X,1)/2

N ]ab(y t)
\/detM(t f W (30

Let us introduce the following parameters in order to explicitly write the relation above:
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(1) =M () Mi(t) = M1x(1) 2= Ry () Ryp(t) = Ryo(1)?, 7(t)=Myy(t) +Mpy(t). (31

The first equation is a particular case of the more general relatidd gatetR, a consequence of the fact that Ef6) is an
orthogonal transformation. We can finally write

Maa(t) +y
[y2+ 7(t)y+ o (1) ¥ Mgq(t) +y] -2

1 o
DI~y M0 2 dy

1 o M 1o(t
~Dilt) =5V (Mg )2 fo dy ! (32

[y2+ 7()y+o(1) ¥ Mag(t) +y]@- 272

1
Iy w0y + o ()] A Ma(0) +y 1%

1 ©
D33(t):§VU(t)M33(t) _zfo d

Relations(20), (23), and(32) form a closed set of equations A useful exercise is to approximate a domain with an
for the correlation matrixM 4,(t), or, equivalently, for the ellipsoid and compute the asymptotic value®f,(t) as a
elongation matribD ,,(t). Before attempting to solve them, it function of the main axes. We will do this explicitly in two
is helpful to use physical considerations as a guide to thelimensions and we will just quote the main results for
expected asymptotic form of the elongation matrix in the=3. Let us callLj andL, the largest and smallest axes of a
limit of very large times. To this end, we will consider the two-dimensional ellipse. In addition, le&t be the tilt angle,

case of a time-independent shear rate. that is, the angle between tieaxis and the. | axis (see Fig.
1). When a time-independent shear is applied, it is natural to
I1l. PHYSICAL CONSIDERATIONS FOR THE assume fot— o

ELONGATION MATRIX

When a time-independent shear flow in thdirection is 6—0, Lp>L,, (37
present, the domains will be highly elongated along this di-

rection and therefore most of the surface of the domains will _ _ L
tend to become parallel to the direction for very large &S @n expression of the extreme elongation of the domain in

times. We thus expect the following relation to hold: the direction of the flow. We can now parametrize the tilted
ellipse in the following way:

D4 (t)={(nyn,)—0, t—oo. (33
In th_e tv'vo—d'imensional case, due to the sum r@g this X(w)= E'—H COSw— EHLL sinw,
relation implies 2 2
Dy(t)=(nyny)—1, t—ex, d=2, (34 L L
while in dimensionsd=3 it is not a priori clear whether y(w)= S 0Ljcoso+ L, sinw, (38)

both D5, and D 33 remain nonzero or not. The only thing we
can write is
with w €[0,27] and where we have used the fact tlfais
D,y(t)+(d—2)Dsy(t)—1, t—o, d=3. (35 very small. The average of any quantidyalong the perim-
eter of the ellipse can now be calculated as
With regard to the off-diagonal elements of the elongation
matrix, it is not hard to convince oneself that the only non- o y
zero ones areD 5(t) =Dy (t)=(n,n,) [see Eq.(18)]: in- flow direction
deed, due to the shear, the domains are elongated along twi
main axes which areot the (xy) axes, unless=cc. There- LIl
fore, the submatri® ) (t) cannot be diagonal for any finite L1

time. On the other hand, fdr—« the two elongation axes "
become coincident withxy) and thus we expect that 6

It is finally clear that no qualitative difference can exist be-
tweend=3 andd>3. Indeed, in this paper we will explic- FIG. 1. A two-dimensional domain in the elliptic approxima-
itly state the results only fod=2 andd=3. tion.
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It is also possible to show that, if the ratig /L, remains

2
. dou(w)A(w) constant fot— o, then bothD,, andD 35 are nonzero in this
(Ay= - , (39 limit, and
o don(@) DaAt) =Ga(L, /L),
with the metricu given by Das(t)=gs(L, /L), (46)
1 where the two scaling functions must satisfy the relation
M(w)=§(Lfsin2w+ L? cog w)Y2. (40)

g2(x) +93(x)=1. (47)

E IS ggef_ul to r::ompute explicitly the no;mﬁlmﬂ_g factor i the results of this section confirm our expectation of the
q.(39), i.e., the asymptotic perimeter of the ellipse, behavior of the elongation matrix and also give us some hint
2 1/2 of the relation between the elongation matrix and the domain
zwdw#(w): ELJZde( Si? w+ L—LCOSZ © sizes, whose determination is, of course, our final goal.
0 2o Lﬁ
IV. TIME-INDEPENDENT SHEAR IN TWO DIMENSIONS

L2 (L
~2L+ L—lln(L—”) (41 Finding a solution of the set of equatiof®0), (23), and
I + (32) is, even in two dimensions and with a time-independent

where we have used the relatitn=L, . The asymptotic shear rate, not entirely straightforward. Therefore, we will
perimeter divided by the total arehyL, , is the interfacial first try to exploit a naive scaling analysis to find a suitable
densityp of the domains, which must be proportional to the @1saiz for the elongation matrix, and eventually we will
energy densitE of the system. In the elliptic approximation modify our initial guess in such a way as to self-consistently

we therefore have satisfy all our equations.
First, note that in two dimensions it is relatively simple to
L. (L compute the integrals in E¢32). We obtain
E’Vp’VL—‘F—z' (L_) (42)
oL 070 T(OM3(t) —20(t) = o ([ 2M (1) — 7(1)]
It will be interesting to compare this simple result with the H 7(t)2—4o(t)
one obtained from the OJK calculation in the next section. (48
The vector normal to the interface can easily be found by
imposing its orthogonality with the tangent vector 7(t) —2\o(t)
(9,%,d,Y). This gives D1a(t) = = Maa(t) (12— 4o (t)
n(w)= —OLsino+L, cosw where it is easy to check that sum ry® is satisfied. Note
m(w) ’ that, of course, Eqg48) are valid also for a time-dependent
rate y(t) and we will therefore use them also in the next
Lysino+ 6L, cosw section in the case of an oscillatory shear.
ny(w)= (43 A crucial task is now to understand which terms dominate

m(w)
in the limit t—o in the equations above. A useful starting

We can now use the relations above to compute the elonggoint is the correlation function in E@5): if we assume that
tion matrix of the ellipseD ,,=(n,ny). By doing this we get there are just two length scalés(t) and L,(t), a naive
consequence we can draw is the following:

Dyy(t)~ 6%+ ﬁ|n(ﬂ)—>o M (1) ~Ly(t)?
11 Lﬁ LL ' 11 X )
M o(t) ~Ly(t)Ly(t), (49

. . . M oo(t)~Ly ()%
Note thata priori we cannot say which one of the two pieces

of Dy, is going to dominate in the limit— oo. Moreover, the physics of the system suggests that
In dimensiond=3 it is possible to perform a similar
analysis, by introducing a third axis, orthogonal to the Ly(t)>Ly(1). (50)

(xy) plane. The result is ) o .
Note thatL, andL, do notin general coincide with.| and

2 L, , as defined in the last section. Indeed, this is the main
D4 (t)~ 6?+ ——0, difference between the naive approach and the final full so-
I lution in two dimensions. Relatiofb0) implies that

Dy (t)~—6—0. (45) M11(1)>M (1) >My(1), (51
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and thus

() ~Mp(t), o()<Myy(t)% (52)

In order to find the asymptotic behavior of E¢48) we need
an extra relation. From definitiof81), it seems natural to
assume thatr(t)~M,(t)M,,(t), and therefore, from Eq.
(51), that

What we argnaively) assuming is that there are no cancel-

lations ino(t). This assumption will fail in the final solution,
but it will only logarithmically fail, such that relation(53)
will still be true. By using relationg52) and (53) in Egs.
(48), we finally obtain

vo(t
Du(t)= —Mtlrl((t)) : (54)
Mot
DAt) =~ th; , (55

at leading order fot—oo. Substituting relationg49) into
Egs. (54) and (55), and using the naive scaling relation
Ly(t)~ ytL(t) obtained in Sec. Il, we get

L(t) 1
Dyy(t)= —Lﬁti ~ (56)
__ L 1
Daot) Lo (57)

where again we have assumed th§t) ~ M 11(t) M, (t). If

we now use this asymptotic form of the elongation matrix in

relations(20) and(23), we obtain

My1(t) = Y*t?Roa(1),

M 1o(t) = ytRxo(t), (58)
Maa(t) = Raa(t),
and
o(t) = Ryy(t)Ra(t), (59
with
Ra(t) :43’2J:dt't'2|311(t'),
Rzz(t)=4JOtdt'D11(t') (60

always at leading order. RelatioriS8) are consistent with
Eqg. (51), and by substituting Eq58) into Eqg. (55) we find
self-consistently the asymptotic forbh(t) ~ —1/yt. More-
over, by assuming once again thatt) ~M ;(t) M ,,(t) and
by substituting Eq(58) into Eq. (54) we getDq4(t)~1/yt
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stitute into Eq.(54) the form ofo(t) coming from Eq.(59),
rather than the naive assumptier{t) ~M (t)M, (1), we
get the following self-consistent equation f0r(t):

t 12
dt’t’2D,4(t’
VRu(ORAt) 1 fo 1t

212 = t
yt RZZ(t) Jdt,Dll(t,)
0

Day(t)= Ve

(61)

If we insert into the right-hand side of this equation the
asymptotic form ofD,; found above, we find an unpleasant
surprise, that is,

a
Du(t)= —yt ot (62

with a=1/\/2, in contradiction with Eq(56). However, the
situation is far from being desperate, because if we try this
very form of Dy, in Eq. (61) we fortunately find self-
consistency witta=1/2. Our initial result(56) only failed to
capture a logarithmic correction and it is possible to check
that, with this new form oD, we recover all the relevant
relations of this section, namely, Eq$€0), (59), (58), (55),
(54), (53), (52), and(51), but not (56).

Summarizing, the correct final form of the elongation ma-
trix in the two-dimensional case is therefdadways at lead-
ing order fort— o)

1
Dyy(t)= ———,
(! 29tyIn yt

1
Dift)y=——,

- (63
Doy(t) =1—Dq4(1),
while Eqg. (56) is not correct. From Eq(60) we have
Ryt = (64
1 Vin yt ’
4\In yt
Roi(t) = ,
Y
whereas, from Eq(58), the correlation matrix is
M 1(t) =4yt2\In 4t,
Mlz(t):4t \/In 'yt, (65)
4\/In yt
Moy(t) = .
Y
o(t)=4t2.

It is possible to see now that the critical assumption that was

and all our assumptions seem thus to be self-consistent. Umvrong in our initial analysis wagr(t) ~M 1(t)M,,(t). In-
fortunately, this is not the case and it is not hard to underdeed, from Eqs(65) we see thair(t) is smaller than this,
stand that something is going wrong. Indeed, if we now subbecause there are some nontrivial cancellations in the deter-
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flow direction
—_—

Ly(t)z W (68

Secondly, we can defind, andH, as the maximum exten-
sion of the domain in th& andy directions, that is,

Hy

H
X Hy=L, cosd,

FIG. 2. The length scalés,, L,, H,, andH,.
Hy= LH sinég, (69)
minant of M,,. For this same reason, one should not be _ ) _ ) )
misled by the fact that apparently in Eq§5) the determi- where 6 is the usual tilt a}nglésee Fig. 1, which can easily
nant of M, is null: we did not write the subleading contri- °€ computed from the eigenvectorsMf These are
butions to the correlation matrix, which make(t)~t?
<t?Int. &=
In order to obtain the domain size along the principal
elongation axeg |(t) andL, (t), we have to find the eigen-
valuesh(t) and A,(t) of My(t). This is easily done by
recalling that the characteristic polynomial is just— 7a 1
+ 0, where 7 and o are the trace and the determinant of o=—. (71)
M (1), respectively{cf. Eq. (31)]. The final result for the "
two-dimensional case is

i) el
1,5, e = _ﬁ,l, (70)

and therefore

In this way we have

Lj(t)= VA1 (t) = Vr(t) =2 /yt(In yt) 4 H, (1) =27t(In yt)¥4
o(t) 1 2(In ,yt)1/4

Li(D)=VAp(t)=

(66) Hy(t)= (72)

(1) Jy(in yt)H4 Vy

Note how striking is the effect of the shear in two dimen- In the absence of shear all these length scales would co-
sions: the size of the domains along the minor axis shrinks téncide, that is we would have =L,=H, and L, =L,
zero, even though very slowly, far—o. The asymptotic =H,. With the shear this is no longer true, simply because
effect of this unlimited narrowing of the domains for very M,# 0. Still, we would expect these length scales to differ
large times is still unclear to us. However, we do expect ouonly by some constant factors, such that they would all be of
approach to break down whdn, (t) becomes of the same the same order asymptotically in time. If this situation held,
order as the interface thicknegswhen Eq.(2) ceases to be we would have a standar,fy) scaling, even though with
valid. This happens after a very large time, of the orderanisotropic domains. However, in two dimensions the situa-
exp(1h2£%). What we can say is that, if a steady state existstion is very different, because the length scales above differ
it can be reached only when the thickness of the domainBy logarithmic corrections. More precisely, we have
becomes comparable with the interface width.

An important feature of the solution we have found is the Lj(t)~ VIn ytL, (1) ~Hy (1),
failure of standardX,y) scaling. In order to appreciate this
fact, we have to remember that, even tholghandL, are

the natural domain sizes along the eigenaxes of the correla- L (t)~Ly(t)~ ﬁHy(t)- (73
tion matrix, other length scales can be defined, as shown in 4
Fig. 2.

The fact that. | #L,, and therefore the emergence of a non-
standard dynamical scaling, is closely related to the vanish-
ing of the determinant oM at the leading order, and its
consequence is thak(y) are not the correct scaling axes.
L(t)= We shall see that this QOes not_happen in three dimensions.
X M1, In order to obtain the right scaling, we have to refer to the

eigenvectors of the correlation matiig from which we can

finally write the scaling form of the two-point correlation
(67) function in two dimensions,

First of all, we haveL, andL,: from the correlation
function (25), it follows that

1
BRI

s u
and from Eqs(65) we get C(X’y't)Zf(L_(t)’ ) (74

L, ()
\/§t with

L(t)y= ——F,
A (Inyt)4 s=x+y/t,
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u=y—x/yt. (75)

In the expression abovéis a scaling function, whils andu

are coordinates along the main scaling axes of the domains.

Note that byx andy we actually meam, andr,, .

Furthermore, note that the elongation matrix can be writ-

ten as

L,
Dya(t) =+,
Ly

Dlz(t):_e, (76)

to be compared with the result fd@,, obtained with the

elliptic approximation Eq. (44)].

An interesting quantity that can easily be computed is the

interfacial densityp(t), defined as

p(H)=(8(m(x,t))| Vm(x,t)[)
= f DP(m, ) S(m(x,t))|¢(X,1)], (77)

where, as in Sec. I, we have put(x,t)=d,m(x,t). The

calculation is easy to do because the Gaussian fielasd ¢

are uncorrelated. From relatio(5) and (28) we have
O_(t)1/2

p(t)= —(277)3’2

J Dee™ ¢aMavt?g(x,t)].  (78)
By using the formula

f “(dyly*?) (e~ ¥Y—1)
0

lol=—
fo (dyly*? (e ¥-1)

1 =dy
=711, e -1), (79
T

2

we can perform the Gaussian integral ogein Eq. (78) and,
by proceeding as at the end of Sec. Il, we get

V2 = dy

1 0 v312
_ = 3270y
F( 2)(277)

T 1 Jo 72
~\/—+—\/—In| —
o 7 V71 o

where we have used the asymptotic expressiéBsfor 7(t)

p(t)=

1
-1
(1+yrlo+y?o)t? )

~i+i|n(ﬂ) (80
L, Lﬁ L)’
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FIG. 3. Increasing the energy of a system by shearing it.

1
E(t)~ Lo~ y(InyH)Y4, (81)

where we have subtracted the trivial ground-state contribu-
tion. This may seem a surprising result, but we have to re-
member that due to the shear the system is not isolated, and
therefore the dynamics is not a simple gradient des@ant
other words, no Lyapunov functional exist®\ simple ex-
ample can make this point clearer. Imagine we prepare a
two-dimensional system between two boundaries in a striped
configuration(see Fig. 2 with the stripesorthogonalto the
boundariegassume fixed boundary conditions according to
the stripes This configuration is stable dt=0. If we now
shear this system, by moving the boundaries in opposite di-
rections, the stripes will be stretched and the interfacial
length per unit area will increagsee Fig. 3. Thus, in this
simple case, the energy of the system increases under the
application of a shear. This example shows that there is no
general reason why the energy of a sheared system cannot
increase with time. Of course, it is important to test E8f),
together with all our predictions, in a numerical simulation
or even better in a real experimeisee Sec. VII).

The OJK theory also gives an explicit expression for the
scaling form of the correlation functiof8], which simply
follows from Eq.(25) and from the scaling relations above,

(m(1Hm(2)) )
<m(1)2>l/2< m(2)2>1/2

2 1(s* u?
=—sin i exg -5 L_ﬁ+E . (82

It has been noted ifL5] that in an unsheared but anisotropic
system the OJK form of the correlation function fits the nu-

2 1
Coak(x,yit)=—sin

ando(t), together with relation$66). Remarkably, this for- merical data very well. Note, however, that in the present
mula for the interfacial density has the same asymptotic forntase, unlike in[15], the scaling laws along the two main
as the one we have obtained in the context of the elliptiairections are radically different due to the shear, and there-
description of domaingsee Eq(42)]. In addition, we note an fore it is nota priori clear to what extent Eq82) is a good
important point:p(t) is proportional to the energy density of approximation to the scaling functidnin Eq. (74). On the

the system and therefore, given tHat(t) decreases with other hand, we believe that the scaling form we find in Eq.
time [Eq. (66)], Eq. (80) means that the energy in the two- (74) has a general validity. Finally, let us note the elliptic
dimensional caséncreaseswith time, symmetry of the OJK correlation function, which could ex-
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plain the partially correct results we obtained by approximattwo-dimensional topological constraint in a completely dif-
ing the domains with ellipses. The same will be true in thregerent situation. To this end we study in this section the

dimensions. effect of anoscillatory shear on phase ordering in two di-
An important property of the result we have found is thatmensions.
the scale area of a domak(t) satisfies the following rela- It must be said that the case of oscillatory shear is inter-
tion: esting in itself. Indeed, a realistic experimental situation is
very unlikely to involve an indefinite time-independent
A()=LL =2t (83 shear. More reasonably, a shear flow periodically depending

n time, typically with some random modulation, is what we

asin 'the case where no §hear Is present. As We are going 9<pect. Of course, real experiments with time-independent
explgln, there are tODOIOQ'C.al reasons vyhy In two dmensmngheaman be performedand we propose one in Sec. Vjtll

relatlo_n (83) m.USt be satisfied either W"Fh or W't_hOUt shear. what we are saying is that a generalization of our calculation
Equation(83) is thus a necessary condition fulfilled by our to a time-dependent oscillatory shear can shed some light on

result, which, by itself, clearly shows that the transverse,  ore natural experimental setup.

growth must be depressed if the longitudinal growth is en- We consider a sheared system with a velocity profile

hanced. .
. . .. . ) . given b
Let us consider an isolated domain in two dimensions mg y

the absence of shear. The rate of variation of the area en- > >
closed in the loop is u=yyG(t)e, (86)

dA(t) where the only assumption we make on the shear function
—_— = fﬁ dlv=— % div-n, (84) G(t) is that it is a periodic function with fundamental fre-
dt quencyw and zero time average. One of the interesting as-
) ) ) . pects of the following calculation is that the results are to a
wherev is the velocity of the interface and- n is the local great extenindependenbf the explicit form of G(t). The
curvature[see Eq/(2)]. By virtue of the Gauss-Bonnet theo- derivation of the OJK equation is completely analogous to

rem, the right-hand side of E¢84) is in two dimensions a  the one in Sec. II, and it follows simply from the obvious
topological invariant, and therefore independent of the shapgpstitution

of the domain.

When a shear is present, we have to add to the velocity om(K,t) om(Kk,1)
due to the curvature the flow velociﬁ/in the direction or- ?’kxT—W t)Ky P (87
thogonal to the interface. The right-hand side of EB#) is Y Y
thus corrected by the term In order to solve the equations we have therefore to perform

the change of variabldggompare with Eqs(16)]
3€d|ﬁ.6:f d?xV-u=0, (85 )
Qyzky+ Zg(t)kx (88)
the final equality holding for any divergence-free shear flow.
Equation(83), therefore, holds in two dimensions irrespec- ith
tive of the presence of the shear. It is interesting that the OJI%V
approximation, in the self-consistent anisotropic version we t
have presented here, is able to capture this essential topologi- g(t)wa dt’' G(t"). (89
cal feature of phase ordering in two dimensions. Note also 0
that the constant 2 in relatiq®3) is exactly the same as one _ . .
would obtain from the domain size in the absence of shear.orfe(;c;ugzgé foptﬂrt\)e_el uﬁ%;ﬁsrgfdggi tnisrﬁ;\?vdggeldnee?;b
We will find the same constant in the case of an oscillatory.S ' q : 9

shear, as a further confirmation of the validity of our method.'szuegstti?uttigﬁ oscillatory shear case by means of the trivial

V. OSCILLATORY SHEAR IN TWO DIMENSIONS

t—Lgt) (90
The rather surprising results we have obtained in two di- 4 wg '

mensions could raise the question whether the OJK method,

in the modified form we are using here, is actually suitable® critical issue to understand concerns the regime of the
for studying the physics of a sheared system. Indeed, thearameters, in particular time, that we have to consider. First
skeptical reader may very well think that the shrinking of theof all, we cannot afford to have too high a frequency, other-
transverse domain size, with the consequent increase in th@se there would be a delay in the response of the system to
total energy of the system, could be an artifact of the techthe shear. This means we must take the shearing frequency
nique, rather than a genuine property of the model. On th&uch smaller than the shear rage On the other hand, we
other hand, as we have seen at the end of the last section, diged to observe the system on time scales much larger than a
two-dimensional result satisfies the highly nontrivial topo-period. Therefore, we will consider the regime

logical relation on the growth of the scale area, E8R),

supporting the validity of our findings. Therefore, to check £<£<t 91)

how robust our method is, we test its compatibility with the vy o
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which implies growth. On the other handf ;,# 0, meaning that the system
is still anisotropic, even though the anisotropy has zero time
average.

From relation (92) and from Eqgs.(97), we have that
M.>M 1,>M,,, and therefore the self-consistent equations
Note that, in this way, we cannot recover from our final (48) become
results thew— 0 case, nor can we extrapolate to the»«

>1. (92

_ 7
a=—
()

limit. On the other hand, the large parametewill be useful Dr(t)= Mao(t) + Vor(t)
for extracting the leading terms from our results. u(t)= M 14(t) '
Before going further, let us explain our general strategy.
Due to the periodic shear, all our quantities will exhibit os- M 15(t)
cillations: some of them, lik®,, which is positive definite, Do) =— m (98)

will oscillate around a nonzero value, while others, likg,,

will oscillate around zero, due to the oscillation in the orien-As usual, we need a starting point to break into these equa-
tation of the domains. Given that all these quantities enter théons and some physical considerations may help here. First,
time integrals in Eqs(20), a natural approach, for times note that naivelyM,~L,L,~t, from the topological rela-
much longer than the period, is to exploit their time averagetion (83). The second of Eq997) then suggests thdd,;

if B(t) is an oscillatory quantity we write, to leading order ~1/a. Secondly, from the form of the velocity profile, we

for t—oo, have another naive relation, that & ayg(t). Thus we
expect that- D 1o~ 6~ y/x~ 1/a. We therefore make the fol-
ftdt/B(t/)trnwgthrl (93) lowing ansatz:
0
with D11(t)—; (v,
. w (27w , , 1
:Efo dUB(t). (04 ~Dyt)=_h(1), (99
In this way from Eqs(20) we get with f(t)=0, while we expecth to oscillate around zero.
L Both f andh must now be determined self-consistently. In-
Ri(t)=4t(1— D+ 2agDy,+ a?g?Dyy), serting this ansatz into Eq$97) and considering only the

leading terms iy, we have

Rist)=4t(~ D1z~ agDu), 99 Mys(t) = ata[u+rg(t)],

Rox(t) =4tD ;. M () =4tg(t)r,

Note the striking difference from the time-independent shear r
case: due to the oscillations the whole maffy, is now of Moo(t) =4t —, (100
ordert, as it would be in the absence of shear. As mentioned @
above, we expedD,, to oscillate around zero with the same

period asg. Thus, in the equations above we can disregard

terms IikeD_lz andgD,;, whose time average is zero. As a with the two constants andr given by
consequence, we have

o(t)=16tru, (102

f, u=g?f. (102)

r
Rix(1)=0, (96)

By inserting this form oM ,,, into Egs.(98), we find that the
that is, the isotropy is restored at the level of the majx.  powers ofa balance and we obtain two equations for the
On the other hand, we have to keep mixed terms ¢jkg,, ~ functionsf andh,
because their time average will be nonzero. Using E2{3.

we can now write (1) = \/m (103
o o u+rgd(t)’
My4(t)=4t(1—Dy;+2agDyy+ a’g®D g+ a’g?(t)Dyy),
— _ g
M (1) =4tag(t)Dyy, 97 = utrg(t)’
Moo(t) =4tDy;. Averaging the first equation, we get
First of all note that, apart from the oscillation induced by ﬂzQ(r/u), (104

the explicit presence af(t), the correlation matrit 5, is of
ordert, strongly suggesting that we will end up witht#  with
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We can see that is zero at the zero displacement point
. (105 [g(t)=0] and increases with increasing displacement, up to
a maximum, whose value decreases with increasing shear
o ) rate y. This fact may seem counterintuitive, especially be-
Ozn the other hand, by multiplying the same equation by.gse in the case of a time-independent shear rate we have
9°(t) and averaging again, we have seen that the tilt angle watecreasingwith time, while here

Q(x)=

1+ xg?(t)

_ it is increasing However, there is no contradiction: the key
Jru=1-0(r/u), (108 point is that atg(t)=0 the domains aralready very elon-
and therefore gated, that isL,>L,, as an effect of the shear experienced
in the former periods. We can better understand what hap-
Jru=Q(r/u)=1/2. (107 pens by using the simple case of a linearly sheared ellipse

(no growth, with initial axesL, andL,, andL,>L,. The
In order to compute the domain sizes we can use the sanwlipse is described by the parametric equation
formulas as in Sec. IV, because we still harfe=MZ%,> o

We obtain x=L, cos¢+ yyt,
=L,sin¢, 11
L(t)=+r= 2t1’2\/g\/u+rg2(t), (109 y=Lysing (119
with ¢ €[0,277]. We can estimate the tilt angle by comput-
o w  \ru ing the ratioy/x at the point where th& displacement is
L,(t)= \ﬁ: 22 [ ——— | (109 maximum. This gives
u T Y \/u+rgz(t)
and, happily, we find for the scale area tang= L (1195
YL/
A =Ly(t)L, (t)=4t\ru=2t, (110
This function has a maximum at
independentf the explicit form of the shear functioG(t).
Note also that the factor 2 in this formula is exactly the same 1Ly
as in the time-independent shear case and in the unsheared tmax:; |__y (116

case. This is an important result, supporting the validity of
our method for the study of the effect of shear in this type ofand decreases asymptotically agtlfor t— . In the case of
system. o a time-independent shear rate, the initial conditierD has

As expected, apart from the oscillations, the growth f0|'LX/Ly~1, and therefore the maximum of is quickly
lows at'’?law. The interesting thing is that bothy andL,  reached atya~1/y, which is much smaller than the times
oscillate in time, but, as expected, with an opposite phasgjye considert>1/y. For this reason, in the time region of
when g(t) has its maximum(i.e., at the maximum shear interest the tilt angle monotonically decreases. In the oscil-
displacement L is maximum and of course, is mini- |atory shear case, on the other hand, at the zero displacement
mum, because this is the point of maximum elongation of thﬁpointgzo, we havel, /L,~ y/w and thus ..~ 1/w: the tilt
domains. On the other hand, fg(t)=0 (i.e., zero shear angle therefore increases during the period of the oscilla-
displacement L is minimum and., maximum, but always tions, and this explains the apparent contradiction between
with L >L, . We want to stress that this oscillatory dynam- the two cases.
ics is only deceptively simple. To better appreciate this fact From the tilt angle(113) we can compute the additional

we have to computé, and L [see Fig. 2 and Eq67)].  length scale$d, andH, by using definition(69). We have
These quantities read

—2tl2 y 2
Lx<t)=2t1’2\/%¢ﬁ, (11D Hy(t) =2t \[wWHrg (1), (117

r — 1/2\ﬁ rg(t) _
e e T WO e ™

Note thatH,(t) is the only length scale to vanish at the zero

First of all, note thatL,, unlike L,, doesnot oscillate in . . . .
X y displacement point. After the discussion above, the reason

time, and this was to be expected from its very definitionf this should be cl
(see Fig. 2. Secondly, note that fog(t)=0 we havel, Orl 'Sds 0;' now te Cedar. ok " -
=Lj>Ly=L, : at the points of zero shear displacement the N order to computé andu, we need 1o know the explici

domains are very flat and large. In addition, we can Computéorm ?:c g(lt), in? trﬂereféetﬁe(t?r)ﬁ HO\\//velwar,nthefs?har%jlﬁt in
the tilt angled from the eigenvectors d¥l, thus obtaining umerical constants a € lime evoluion of the coma

sizes is not affected by them. For the particularly simple case

o rg(t) where
tanf=— ————. (113
Y u+rg?(t) G(t)= coswt, (119
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the constants are ~ (In ®)2/t2—0, for t—. However, a careful analysis of
the equations shows that this ansatz is not consistent. There-
J3 1 fore, the most natural thing to do is to assume thath
r=—» u= 203 (120 p_4t) andD(t) remain nonzero fot— o, that is(accord-
ing to the usual sum ruje
VI. TIME-INDEPENDENT SHEAR IN THREE Doy(t)—1—K, (122)
DIMENSIONS
D33(t)—>K,

In dimension larger than 2 it becomes very difficult to
gxpltir?_itly_fomr;ute trllet integrzilsbiln Eq&f). fNoE\r/]vithsltand-t_ and to fix self-consistently the value of the consténtrom
ing this, if we formulate a suitable ansatz for the elongatio
matrix D 4,(t), we can then findV 4,(t) from Egs.(20) and nEqs.(ZO), (29, (31), and(122) we have
(23), and finally obtain a self-consistent relation g(t) 4
by an asymptotic evaluation for large times of the integrals M4(1) = §Ky2t3,
in Egs. (32). In the present section we will carry out this
program for a time-independent shear rate.

First of all, we note that many of the terms in E¢480)
can be estimated by means of the following reasonable an-

M15(t) = 2K yt?,

satz: M (1) = 4Kt, (123
D1a(t)—0, t—eo, Mag(t)=4(1—K)t,
1 4
Dit)~— . (121) a(t)= K=yt

Both these relations are also obtained in any dimension bgt leading order foit—oo. Note that the explicit forms of
the calculation of Sec. Ill. By inspection of EqR0) it is  Dq;(t) and D,(t) do not enter inM ,(t). Using relations
now clear that the key quantity needed to evaluRig(t), (123 it is now possible to evaluate the asymptotic value of
and thusM ,,,(t), is[1—D,5(t) ]. We might be tempted to try the integrals in Eq9.32) and get an equation for the constant
an ansatz similar to the caske=2, by taking[ 1—Djy(t)] K. In three dimensions Eq$32) read

1 o Y2+ Myg()y+Myy(t)Mgy(t)
D) ==\ o(OMaD) | d ,
2N Jo Y PP MDY+ [M (DM D) + o (D ]y + (D) Mg )} 72

y Y2+ My (t)y+o(t)
{3+ M () y?+[M (Mgt + o () ]y + o () M g3(1)} 32’

1 o
D345 oM | d

where we have used the relatid;(t)>Moo(t) ~M35(t), K
according to Eqgs(123). By performing the rescaling—ty B= 713k (125
and by using relation§l23) in the two integrals above, it is

possiblze_to see that in the ””3]“_—"’" we can disregard the The fact that there is no time dependence left in the right-
termsy< in the numerator ang® in the denominator. In this  hand sides of Eq9124) shows that ansat121) and (122

way we obtain give rise to a self-consistent solution for the three-
dimensional case. Moreover, it is straightforward to check
D t)—ﬁ °°d y+1-p8 that sum rulg9) is satisfied. The integrals in Eg&.24) can
2A)= 2 Jo y(y2+y+ )32’ now be easily perfqrmed and, by using relatioh22), after
some algebra we find
Ve [= y+8 _
D t:—f dy— 1B 12 K=1/5. (126
33(t) 2 1o y(y2+y+a)3/2 (124
A similar treatment of the integrals in Eg&2) for Dq4(t)
with andD 15(t) shows that
4K(1-K) In(yt)

= : Dy(t)~ ——,
=32 0~
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1 2 1 [ (x+3y/2yt)?
_ A
D1At) yt’ COJK(nyaZ,t)_;Sln [exr{_i T
consistent with ansatd 21). Let us note that relationd 21), (y—=3x/29t)2 22
(122, and (123 are self-consistent in any dimensidee 3, Tt . (131
as can be easily verified by using these relations in Bf. LT L;

and rescalingy—ty in the integrals. Our final result will o )

therefore be qualitatively the same for any dimengien3 N the scaling limit, wherex,y,z,t—oo with x/L, y/L, , and

[for d>3 only numerical factors, such as the valuekafnd ~ Z/L. fixed, the term §/2yt can be dropped, but the term

the amplitudes in Eq€127) below, are changdd 3x/2yt cannot, and the OJK scaling function has ellipsoidal
We can now compute the eigenvalues of the correlatiofymmetry as expected. _ .

matrix M 4,(t), in order to find the sizes of the domains AS in two dimensions, we can compute the interfacial

along the principal elongation axes. From E¢23 and  density by applying Eq(77). The final result is

(126), we have

(t) b (132
p ~ T Y 1
L — i 3/2 LJ— Lf
() \/1—5)4 ,
which shows that the energy density in the three-dimensional
1 case decreases in the standard way,
L, (t)=—=t¥2 12
L(t) J5 (127 E(t)~t 12 (133
L ()= 4 (15 VII. NUMERICAL SIMULATIONS IN TWO DIMENSIONS
z - T = y
V5 In the present section we will present some numerical
] ) simulations for a two-dimensional system subject to a time-
whose corresponding eigenvectors are independent uniform shear. We have considered a system of
Ising spins on a lattice, governed by zero-temperature Monte
o= 11 0 - i 10 6,=(0,0,1) Carlo dynamics. As in the rest of this paper, the shear flow is
I 2yt LY S A Y applied in thex direction, according to the profile given by

(128 Eq.(12). From a practical point of view, we have sheared the
system by shifting each row of spins by an amount propor-

where we recall that andL, are the larger and smaller tjona| to they coordinate and to the timé (measured in
orthogonal axes of the domain in they) plane, whereak, Monte Carlo steps
is the axis of the domain in thedirection[or any direction
orthogonal to the Xy) plane, ifd>3]. The domain growth
in dimensiond=3 is therefore the one we would expect on
the basis of the simple scaling arguments given in Sec. I . i _
[see Eqs(15)]: the growth exponent along the flow direction Yvherens(t) is the number of discrete shear steps up to time
is augmented by 1, whereas the others are left unchangetl. Of course, the discrete nature of the system is reflected in
Unlike the two-dimensional case, there are no topologicathe discrete nature of the shearing process. To simulate a
restrlctlons on the product of the domain sizes, becaqse thehear ratey (defined byAXconinuous YYt) We requireng(t)
integral over the domain surface of the local curvature is not_ int(y1): After each 14 Monte Carlo steps a discrete shear

in d+2, a topological invariant. _ process, where each row moves one lattice spacing relative
As already anticipated, fod=3 standard scaling holds. {5 the row below it, is applied. In the large-time limit, where

Indeed, one can immediately check that t>1/y, the system’s behavior should not be very different
from that of a continuously sheared system.

We have to be careful in choosing the boundary condi-
tions for a sheared system, because normal periodic bound-

L (1) ~Ly(D~Hy(D). (129 ary conditions would clearly be wrong. The idea is to repli-
. . cate the original system infinitely many times on they)

There is therefore no real difference between growth alongane and to shear each subsystem with respect to the others.
the principal axes of the domains and growth in thg%) | other words, if &,y) are the coordinates on the infinite

directions_, and _the correlation function displays the simplemane' andi(j) are the coordinates on our numerical system,
asymptotic scaling form, we have

Ax(y,t)=yng(1), (134

L||(t)~ Ly(t)~H,(1),

C(x,y,z;t)=f(§,%,é>. (130 i=mod [x+yn(t)],

According to the OJK theor8], we have, fort— o, j=mody (y), (139
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whereN, andN, are the sizes of the numerical system in the 1000 - - '
x andy directions, and the function mg(iz) is just the value

of zmoduloN. Clearly, fort=0 Egs.(135) reduce to stan-
dard periodic boundary conditions.

One of the main difficulties in simulating a system subject
to a shear is that the domains grow very quickly in the di-
rection of the flow, soon reaching a size comparable with the&
size of the system. On the other hand, as we have seen, wg
expect the growth to be highly depressed in the transverStg
direction. Thus, the most reasonable thing to do is to take 10 b
N,>Ny, in order to reduce finite size effects as much as
possible. In all our simulations we have takiig=20 000
andN,=100. As we shall see, even for our longest times, the
domains are much smaller than the size of the system in botl
directions. A possible proposal in order to reduce the finite 1 m %0 590 o000
size effects due to the shear-induced elongation of the do
mains is to work at very lowy. However, all our results hold
in the limit L,>L, : if we decrease the shear we will have to  FIG. 4. The domain sizes in theandy directions as a function
wait for a longer time to enter the asymptotic regime ofof time. The full line is a power-law fit giving.,~t*%% The dashed
interest, and thus we will still have the problem of long do-ine is L;***~t¥% and the dotted line isy*"*~t'*2, for comparison.
mains compared to the system size. There is, therefore, rlf Poth cases, the data are averaged over five samples.
easy way out of this situation and we had to tune our param- ] o ] e
eters to take this problem into consideration. For this reason AS We can seel., is definitely not growing liket>=. A
we run our simulations for only one value of the shear ratePoWer-law fit gives
namely, y=1/4: in order to study the dependence of all the 1.02
observables on the shear rate we would have to consider L)~ (137)
values ofy far from the suitable numerical domain.

100 |

The first thing we want to check is the behavior of the Furthermore_l_y IS, on thls_scalg, fgmpat'ble with a constant,
and is certainly not growing like*'<. Both L,(t) andL(t)

length scaled.,(t) andL(t). As we have seerx andy are . AN
not the correct scaling axes, but we want to test our predichave the expected behavior, apart from the logarithmic cor-

tion for L, andL, against the naive expectation of E45). rections, and the naive exponents 3/2 and 1/2 are clearly not

Indeed, it must be remembered that this naive scaling is als%orrect. . .
g t The value ofL, is very small, and in order to have a better

the one found in the case of conserved dynamics in the limi S e
y idea of the fast decay of the correlation in thdirection we

of infinite dimension of the field9]. We recall our analytic - . . .
o do] Y plot in Fig. 5 the correlation function and the OJK fit for a
prediction . ) .
given fixed value of the time. Note that actually the correla-
tion vanishes on average after six lattice spacings.
L (1)~ \/;t The next important quantity we want to measure is the
X (In yt)l"" energy. From relatiori81) we can see thaE(t) is a direct

1 T T T

+ Numerical data
(136 OJK fit

0.8 i

1
Ly(t)’v W’VLL(U.

Note thatl , is, at the leading order, equal kg , and there-

fore we can limit ourselves to measuring the former. This is §
important, because a numerical measurk ofvould be very ‘5’ 0.6
difficult: the domain size in the perpendicular direction is ¢
very small and for long times this direction passes through&
very few lattice sites, such that there are essentially no pointsg 04 T
where the correlation function is different from zero. This ©
problem does not exist for the correlation in tkey, and
parallel directions. In order to extract the the domain scale at 02 T
a given time we have performed a fit of the correlation func-
tion to the OJK form and have located the point where the fit
is equal to 1. We have checked that the behavior of the 0 0 2 "1 4 4
domain size with time is almost entirely insensitive to the v

particular fit we use. Numerically, we do not expect to be

able to detect the logarithmic corrections in E¢k36), so FIG. 5. Correlation function in thg direction as a function of,

our goal is to check the leading behavibg~t and L,  for t=144. The symbols are the numerical data for five samples;
~QO(1). Ourresults are shown in Fig. 4. the full line is the OJK fit.

[e]
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FIG. 6. The energy as a function of time in the sheared case FIG. 7. Domain sizd| as a function of time, averaged over 10

(y=1/4), averaged over 41 samples, and the unsheared gase samples. The full line is a power-law fit, givirg(t) ~t**
=0) averaged over five samples. The full line is a power-law fit for
the unsheared case, givifig,,~t~*°% The horizontal broken line  |onger simulation time would be desirable, especially to
is a guide to the eye. Inset: energy in the sheared case as a functigheck whether the curve of the energy develops a well de-
of time (magnification. fined minimum and eventually starts increasing ast)ff

_ Unfortunately, as we have seen, the high valuels,cindL
measure oL (t). Note that the relation betwedhandL,  make this impossible with the system sizes we were able to
is, at leading order, completely independent on the OJK apreach, otherwise finite size effects would come heavily into
proximation we are using: indeed, the simple assumptiomlay. For this reason also, in the next section we propose a
L>L, is sufficient to conclude that, at leading ord&, real experimental test of our analytical results.
~1/L, . However, we stress that the conditibp>L, is

satisfied only for Iarg_e time@see Fig. 4. In Fig. 6 we plot VIIl. AN EXPERIMENTAL TEST OF THE

the energy as a function of time, for both. thg sheargd and Fhe TWO-DIMENSIONAL RESULTS

unsheared cases. We see that, after an initial drop in the time

regime where we do not expect relati¢dl) to hold, the Theoretical and numerical results on nonconserved two-

energy becomes compatible from a constant on this scal€limensional coarsening dynamics can be experimentally
The difference from the unsheared case is striking. In théested by means of thin films of uniaxial twisted nematic
inset of this figure we show a magnification of the last part ofliquid crystal (TNLC) subjected to rapid thermal quenches.
the curve for the sheared case: it is encouraging to see thdjnce the classic experiments of Orihara and co-workers
despite the significantly large error bars, an increase in thgLO], showing that a dynamical scaling compatible with the
energy for very large times is clearly visible, compatiblelaw L(t)~t*? actually takes place in this systeih6], many

with our analytic prediction other workers have successfully tested numerical and theo-
_ 14 retical results on nonconserved coarsening in TNL@H].
E() \/;(In YO (138 In particular, let us note that this kind of system seems to be

However, we stress that longer simulation times and |argeparticularly suitable for testing our analytic calculation: in-

system sizes are necessary to test this predi¢tioparticu- geed,_bi'_t hashbeen szpwn [r_10] '?hat the sm_:aling funct_ion .
lar, the power of the logarithimore carefully. escribing the two-dimensional coarsening dynamics in

. : TNLC's is very well approximated by the analytic expres-
The last quantity we measure lis(t), whose form(66) , ; )
differs from that ofL,(t) only by a logarithmic correction. In sion given by the OJK theorj8]. Moreover, it has been

Fig. 7 we plotL as a function of the time. Even if slightly explipitly checke_c[lO] that_ the AIIen-Cahn_equatio(riZ), de-
faster, the growth of the domains in the parallel direction isScrlblng the motion of an interface due to its ,curvatur_e, hOIdS
compatible witht. Indeed, a power-law fit gives to avery 900d .degree_ of accuracy.for TNL? s. Qur aim is to
describe in this section the basic experimental setup for
|_H(t)~t1-14_ (139  TNLC's and to propose a shear experiment on such systems,
in order to test our nonstandard two-dimensional results in
Not surprisingly, at a simulation level we are unable to detecthe case of simple, time-independent shear.
any significant difference between the growthLgfandL . A typical TNLC cell is obtained by confining the sample
Summarizing, we can say that, up to the simulation timef nematic liquid crystal between two glass plates, previ-
we were able to reach, numerical data are largely compatibleusly prepared by rubbing them in two mutually perpendicu-
with our theoretical results. In particular, the nontrivial lead-lar directions. In this way the orientations of the crystal mol-
ing behavior ofL,(t), L,(t), andL(t) is correctly repro- ecules belonging to the two layers close to the plates have a
duced, while the naive expectation for the domain growth igelative rotation ofr/2. At high temperature, in the isotropic
sharply ruled out by the simulations. Note that, of course, ghase, the boundary conditions affect only the system close
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to the boundaries, but when the crystal is quenched below IX. CONCLUSIONS

the transition temperatur@lso called theclearing poinj, . . .

deep into the nematic phase, the alignment of the molecules !N tis paper we have analytically studied the effect of a
with the boundary conditions on the plates extends into théhear flow on phase ordering, for a statistical system with
bulk. In this way two differenstatesappear, corresponding Nnonconserved scalar order parameter. We have developed a
to the possibility of the molecules rotating between the di-self-consistent anisotropic version of the OJK approxima-
rections imposed by the two boundary plates in either dion, by means of which we have calculated the growth ex-
clockwise or an anticlockwise sense. In other words, after thgonents for time-independent shear in two and three dimen-
qguench the TNLC cell develops two equivalent states, whiclsions [relations (66) and (127)], and we have found the
we may call left handed and right handed. Domains of thescaling form of the equal-time two-point correlation function
two states are separated thgclination lineg10], defined as  in both casegrelations(74), (75), and (130)]. While for d

the points where the sense of rotation changes sign. The 3 our results are consistent with some simple scaling ar-
system is effectively two dimensional and the dynamics ofguments and with the results obtained for conserved dynam-
the left- and right-handed domains is very well described bycs in the limit of large dimensiol of the order parameter,
nonconserved coarsening dynamics. in d=2 we find that domain growth is so heavily affected by

In order to reproduce the situation studied in the presenfyq shear that the domains experience a narrowing which in
paper, it is necessary to shear the TNLC cell in a such a Wa¥rinciple makes their thickness vanish in the liritsoo.

that the shear direction parallel to the two platesthe flow However, as we have pointed out, our calculation is likely to

d”.eC“OF‘ is, of course, parallel to thgmmamely, the mut_ual break down for very long times, when the interface and the
orientation of the two plates must not be changed in the

experiment, while the orthogonal walls must be moved indomam thickness are of the same order. What happens be-

order to create the shear. In this way ouy) plane will be yond this stage is still unclear to us: it is possible that a
parallel to the rubbed glass plates time-dependent steady state develops, with very narrow do-

Given that a vital condition for testing our asymptotic Mains coalescing and giving rise to new thicker domains,
results, in the case of time-independent shear, is the possibifthich start narrowing again. Another possible scenario is
ity of shearing the system for a long time, it seems to us thathat whenL, ~& domains start breaking and stretching
a linear geometry is probably unsuitable for such an experidgdain, giving rise to a steady state like the one depicted in
ment. On the contrary, a circular setup may be more convd>]- Further work is needed to clarify this point and it is to be
nient: by taking two circular glass plates, rubbed tangentialljhoped that experiments on twisted nematic liquid crystals, as
and radially, it is possible to create a cell whose wall, or-described in the last section, will lead to a deeper under-
thogonal to the plates, can now be rotated indefinitely. Instanding of this problem.
order to create the shear it is necessary to place a fixed cyl- We have also studied the case of an oscillatory shear in
inder at the center of the system. In this way the material inwo dimensions, finding a standart growth, modulated by
contact with this cylinder is stationary, while the layers closeperiodic oscillations which occur with opposite phase for the
to the outer walls move with a given tangential veloaity  parallel and perpendicular directions. Interestingly enough,

creating a velocity profile given by all our results in this case are largely independent of the
UoRo g particular form of the shear rate oscillations.
u(r)= o\ T ) Re<r<Ro, (140 It is important to note that, in two dimensions, our results
0~ Nc

] ] satisfy the topological constraint on the growth of the scale
whereR, andR. are the radius of the cell and of the internal 4rea 'in both the time-independent and oscillatory cases. This
cylinder, respectively. IR.—Ro<Ry, it is possible 10 pro-  ¢,ct together with the results of our numerical simulations,
duce a flow identical to the one stgd|ed in the present Worl%trongly supports the validity of our method in the study of
and to study the Iong?tlme dynamics of the domains undeanrsening systems under shear.

shear. Indeed, by setting=R.+y, we have Of course, it would be very interesting to know whether
some of our resultgin particular in dimension Rare pre-

2ugR
uly)=— 0 Ozy, y<R;, (141 served for conserved dynamics, which is the relevant case for
Ro—Re describing spinodal decomposition in binary fluids. Unfortu-
to be compared with relatiofL2). nately, the OJK approximation cannot be used in this case,

Finally, testing our results in the case of oscillatory sheaince the very starting point, the Allen-Cahn equation for the
should be easier from the experimental point of view, sincdnterface motion, does not hold when the order parameter is
the periodicity of the shear function allows for the simpler conserved. Itis therefore still unclear how to go beyond the
linear geometry. As we have seen, the main growth follows a&rgeN limit in the context of spinodal decomposition under
t¥2 Jaw, modulated by some oscillations in the longitudinal Shear-
direction. In particular, it should not be difficult to test
whether the ratio of perpendicular and parallel domain sizes

satisfies the relation ACKNOWLEDGMENTS
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