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Entropy and Wigner functions
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The properties of an alternative definition of quantum entropy, based on Wigner functions, are discussed.
Such a definition emerges naturally from the Wigner representation of quantum mechanics, and can easily
quantify the amount of entanglement of a quantum state. It is shown that smoothing of the Wigner function
induces an increase in entropy. This fact is used to derive some simple rules to construct positive-definite
probability distributions which are also admissible Wigner functions.
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I. INTRODUCTION

Entropy is the central concept of thermodynamics and
tistical mechanics. It was introduced by Clausius in the m
19th century as a phenomenological variable that quant
the intrinsic irreversibility of thermodynamic processes.
was Boltzmann who recognized the link between entro
and the lack of information about a system, defined as
numberG of microstates which have the same macrosco
properties. The celebrated formula

SB5kB ln G, ~1!

wherekB is the Boltzmann constant, establishes such a
in a mathematically rigorous manner~in the rest of this pape
we shall use units for whichkB51: with this prescription,
entropy becomes a dimensionless quantity!. Boltzmann, of
course, derived this formula in the context of classical sta
tical mechanics. In classical physics, microstates are defi
as points in a continuous 2D-dimensional phase space (D is
the number of degrees of freedom of the system under c
sideration!, and cannot be ‘‘counted’’ in any meaningfu
sense. Therefore, Boltzmann took as the numberG of mi-
crostates the available volume in phase spaceV divided by
the volume of a unit cell~unspecified at the time when Bol
zmann published his work, but which will turn out to b
Planck’s constant, raised to the appropriate power,hD): G
5V/hD. In quantum mechanics, a microstate is described
a wave function, which contains all the information about t
state of the system. In contrast to the classical case,
there is no ambiguity, since quantum states are discret
principle. Hence, although the macrostate has a huge num
of possible microstates consistent with it, this number,G, is
nevertheless definite and finite.

The most general quantum system is described by a
sity matrix, i.e., a positive-definite, Hermitian operator, w
unit trace. In terms of the density matrixr, the entropy can
be expressed in the following way, due to Von Neumann@1#:

SVN52Tr r ln r. ~2!
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This is the standard definition of entropy, which generaliz
Boltzmann’s expression to quantum mechanics. Althou
unambiguously defined, however,SVN can be extremely dif-
ficult to compute in practice, since one would need to dia
onalizer in order to compute the trace of its logarithm. Vo
Neumann’s entropy~VN! has a number of good propertie
which will be detailed in the following sections. Here w
note that, ifa i>0 are the eigenvalues of the density mat
(( ia i51), the VN entropy becomesSVN52( ia i ln ai .
Therefore,SVN>0, and the equality holds only if we hav
complete information, i.e., if only one of the eigenvalues
different from zero: in this case, the system is in the pu
state corresponding to this eigenvalue. Another crucial pr
erty of SVN is that it is conserved asr evolves according to
the quantum Liouville equation

i\
]r

]t
5Hr2rH, ~3!

whereH is the Hamiltonian. Indeed, the trace of any fun
tional F of the density matrix TrF(r) is also conserved. This
fact can be used to define other entropylike quantities.
all of these quantities are equivalent, however, and we
show in the following section that only one of them is pa
ticularly adapted to the Wigner representation of quant
mechanics.

The classical limit~CL! of the Von Neumann entropy, Eq
~2!, is obtained by replacing the density matrix with th
phase-space probability distributionf (x,p) ~for simplicity,
we will consider systems with only one degree of freedo
D51), and the trace with the integral in phase space. O
obtains the following expression, due to Gibbs:

SCL52E f ln~ f h!dx dp, ~4!

and the probability distribution is positive and normalized
unity. Note that the classical entropy is defined up to
additive constant, which means that the constanth in the
argument of the logarithm in Eq.~4! can be chosen arbi
trarily, although it seems reasonable to use Planck’s cons
h52p\. Indeed, iff is constant inside a certain phase-spa
volumeV and zero elsewhere~i.e., at thermodynamic equi
librium!, thenSCL5 ln(V/h), in agreement with Boltzmann’s
4665 ©2000 The American Physical Society
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4666 PRE 62G. MANFREDI AND M. R. FEIX
original definition, Eq.~1!. We also stress thatSCL can take
negative values, in contrast withSVN , which is always non-
negative. From the previous discussion, it is easy to conc
thatSCL will be negative whenV,h. This means that we ar
trying to localize a particle on a phase-space region sma
than Planck’s constant, and therefore violate the uncerta
principle. For probability distributions that satisfy the unce
tainty principle, the classical entropy is positive. Similarly
the quantum-mechanical case, the classical entropy is
served for a Hamiltonian process, i.e., when the probab
distribution evolves according to the classical Liouvi
equation. Again, the phase-space integral of any functio
F( f ) is also conserved~indeed,f itself is conserved, since i
is just transported along the classical trajectories!.

In this paper, we discuss the properties of an alterna
definition of quantum entropy, based on Wigner functio
Although this entropy has already been known for some t
~generally expressed in terms of the density matrix!, we feel
that its properties are not fully appreciated. In particular
will be shown that such a definition of entropy emerges na
rally from the Wigner representation of quantum mechan
It has therefore a privileged status compared to the m
other definitions proposed in the literature, and deserve
be studied in some depth.

The Wigner representation@2# is a useful tool to expres
quantum mechanics in a phase-space formalism~for reviews,
see@3,4#!. Although it was derived by Wigner for technica
purposes, this approach has recently attracted much inte
since it is well-suited to analyze the transition from classi
to quantum dynamics. The Wigner representation can d
with both pure and mixed quantum states, and is comple
equivalent to the more usual picture based on the den
matrix. In this representation, a quantum state is describe
a Wigner function ~i.e. a function of the phase-spac
variables—see the next section!, and the Wigner equation
provides an evolution equation for the state which is equi
lent to the quantum Liouville equation~3!. It will be shown
that, if one tries to define an entropy functional in the fram
work of Wigner’s representation, only one ‘‘reasonable
choice is possible, and this is discussed in the next sec
Subsequently, we will discuss the properties of such an
tropy ~Sec. III!, and present some examples of its applic
tions in Secs. IV and V.

II. QUANTUM ENTROPY

The quantum distribution functionW(x,p) is defined in
terms of the density matrixr(x,y) for a quantum mixed
state,

W~x,p!5
1

2p\E rS x2
l

2
,x1

l

2DexpS ipl

\ Ddl, ~5!

or in terms of the wave functionc(x) for a pure state,

W~x,p!5
1

2p\E cS x2
l

2Dc* S x1
l

2DexpS ipl

\ Ddl.

~6!

The functionW(x,p) possesses many of the properties o
phase-space probability distribution: it is real, normalized
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unity, and, when integrated overx or p, gives the correct
marginal distribution, e.g.,*W dp5r(x,x)5 spatial density.
Furthermore, it can be used to compute averages of any
namical variableA(x,p): ^A&5*WA dx dp. Note, however,
that, since some terms inA(x,p) may not commute, it is
necessary to establish a nonambiguous correspondenc
tween classical variables and quantum operators~Weyl’s
rule! @4#. Despite these good properties, the Wigner funct
cannot be interpreted as a probability distribution, since
can assume negative values. The only pure state wh
Wigner function is positive definite is given by the minimu
uncertainty packet~i.e., a Gaussian wave function!.

The evolution ofW(x,p,t) is governed by the Wigne
equation, which replaces the classical Liouville equation:

]W

]t
1

p

m

]W

]x
5

i

2p\2E FFS x2
z

2D2FS x1
z

2D G
3expS 2

i

\
~p2p8!zDW~x,p8,t !dz dp8,

~7!

whereF(x) is the potential. The Wigner equation is equiv
lent to the quantum Liouville equation~3!, and can describe
the evolution of both pure states and mixtures. However
the present work, we shall favor the Wigner formalism ov
the density matrix one, since it is easier to represent in
classical phase space, and it allows a more straightforw
treatment of the semiclassical limit.

We would like to define an entropy functional in terms
Wigner functions. The classical choice, Eq.~4!, obviously
cannot work, sinceW can assume negative values. It is ea
to show the existence of two simple functionals ofW that are
invariant under Eq.~7!: the first is the total probability
*W dx dp51; the second invariant is*W2 dx dp, which
has no obvious physical meaning. We stress that this
property of Eq.~7!, and does not depend on whetherW rep-
resents a pure state, a mixture, or even a state which vio
the uncertainty principle. However, the fact that the lat
expression is indeed invariant suggests that we introduce
following definition of entropy:

S2512~2p\!DE W2 dx dp, ~8!

whereD is the number of degrees of freedom: except wh
otherwise stated, we will always work with systems f
which D51.

The S2 entropy can be expressed in terms of the den
matrix r

S2512Tr r2, ~9!

a result which follows from the fact thatW is related to the
Fourier transform ofr. Equation~9! has been used in th
literature as an entropylike quantity@5#, and is sometimes
referred to as the linear entropy. Its relevance to Wig
functions has been noticed by some authors@6#, but its full
implications have not, to our knowledge, been apprecia
and developed. We first notice that this is the only express
of entropy having the same functional form when expres
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PRE 62 4667ENTROPY AND WIGNER FUNCTIONS
in terms of eitherW or r ~for example,*W4 is not simply
related to Trr4). Second, and most importantly, the ve
structure of Wigner’s equation selects the functionalS2 as a
special candidate for a definition of entropy. It is therefo
important to study its properties and implications.

When W is an admissible Wigner function~i.e., when it
represents either a pure or a mixed quantum state!, the pre-
vious entropy satisfies the relation 0<S2<1, and S250
holds for a pure state, which is a reasonable result, since
states contain the maximum information available. Indeed
is possible to definequantum informationas the complemen
of S2 to unity, I 512S2. Note thatS2 can become negativ
only for states that violate the uncertainty principle, as w
be explained in Sec. III. We point out thatS250 is a neces-
sary, but definitely not sufficient, condition for the corr
sponding Wigner function to represent a pure state@3#. This
can be shown by finding a counterexample. Let us define
Wigner function asW5( i 51

3 a iWi , where theWi are or-
thogonal pure states, anda15a25 2

3 , a352 1
3 . Even though

the coefficientsa i sum up to unity,W does not represent a
admissible Wigner function, since one of the coefficie
~which represent probabilities! is negative. However, it is
simple to prove thatS2@W#50. Incidentally, this example
has shown the existence of phase-space functions which
resent neither pure states nor mixtures. This point will
discussed in more detail in the next section.

This entropy is related to a formula proposed by Tsa
@7#, which has stimulated much work in the past decade~see,
for example,@8# and references therein!. If $a i% is a set of
probabilities adding up to unity, Tsallis entropy is defined

Sq5

12(
i

a i
q

q21
, ~10!

whereq is a real, not necessarily positive, number, and
standard entropy is recovered forq→1. Tsallis entropy is a
possible, and indeed useful, way to generalize
Boltzmann–Von Neumann expression, and has been
ployed by several authors to study the thermodynamics
strongly correlated systems, such as self-gravitating ga
and inviscid fluids@8#.

Equation~8! is the continuous counterpart of the discre
Tsallis entropy withq52. The continuous formula can b
recovered by the following heuristic argument. Let us co
the phase space with cells of sizeDxDp. The discrete prob-
abilities are thena i5W(xi ,pi)DxDp, and the discrete en
tropy becomes

S2512DxDp(
i

W2~xi ,pi !DxDp. ~11!

The sum in Eq.~11! gives the integral*W2 dx dp. However,
we cannot let the factorDxDp in front of the sum go to zero
since this would violate the uncertainty relation. Indeed,
obtain the correct continuous formula@Eq. ~8! with D51]
by taking forDxDp the smallest value allowed by quantu
mechanics, i.e., Planck’s constanth52p\.

Another way to go from the continuous to the discre
formula is to consider a Wigner function that is the sum oN
orthogonal pure statesW(x,p)5( i 51

N a iWi(x,p). Of course,
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W represents a quantum mixture. We recall the followi
useful relation, valid for orthogonal pure states:

E WiWj dx dp5d i j /2p\, ~12!

whered i j is the Kronecker delta. By developingW in terms
of the Wi in Eq. ~8!, and making use of Eq.~12!, we obtain
Tsallis discrete entropyS2512( i 51

N a i
2 . We stress again

that the above properties are valid for the quadratic entr
S2, but do not hold for other functionals involving highe
powers ofW.

It is interesting to show that a local entropys and an
entropy fluxJS can also be defined:

s~x,t !5E W dp22p\E W2 dp,

JS~x,t !5E p

m
W dp22p\E p

m
W2 dp. ~13!

Of course, one hasS25*s dx. By multiplying Eq.~7! by W
and integrating over momentum space, one can prove
the local entropy obeys a continuity equation:

]s

]t
1

]JS

]x
50, ~14!

which shows that entropy can be transfered from one spa
location to another, but is globally conserved. The physi
meaning ofs is easier to grasp if we express it in terms
the density matrix in the position representation. With t
help of Eq.~5! one finds~we drop the time dependence!

s~x!5r~x,x!2E ur~x2l/2,x1l/2!u2dl. ~15!

Equation ~15! shows that entropy is closely related to th
off-diagonal terms of the density matrix. For a pure sta
r(x,y)5c(x)c!(y) (c is the wave function!, and the local
entropy can be expressed in terms of the spatial den
n(x)5uc(x)u25r(x,x),

s~x!5n~x!2E nS x2
l

2DnS x1
l

2Ddl[n~x!2i~x!,

~16!

where we have defined thelocal quantum informationi(x)
so thatI 5*i dx. It appears thati(x) is a density autocorre
lation function, which shows that, in quantum mechani
information and spatial correlations are intimately close c
cepts.

III. PROPERTIES OF QUANTUM ENTROPY

The expression given in Eq.~8! has proven to be a fruitfu
tool to quantify some key properties of quantum system
such as nonlocal correlations. In order to be an appropr
definition of entropy, it should nevertheless satisfy so
standard properties@9#, among which concavity and additiv
ity are particularly fundamental. Some of these propert
were previously studied by Tsallis@7# for the discrete case.
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4668 PRE 62G. MANFREDI AND M. R. FEIX
1. Concavity. This means that, ifW5( i 51
N a iWi ~where

the Wi are not necessarily pure orthogonal states!, then the
following inequality holds:

S2@W#>(
i 51

N

a iS2@Wi #. ~17!

The proof is obtained by direct calculation forN52, and is
then easily extended to higherN by recursive arguments.

Note that we can also prove an upper bound forS2,

S2@W#<(
i 51

N

a i
2S2@Wi #112(

i 51

N

a i
2 , ~18!

which holds forWi representing both pure states or mixture
The term 12( ia i

2 represents the so-called mixing entrop
The proof of Eq.~18! relies on the following inequality@3#:

E WiWj dx dp>0, ~19!

which is valid for all admissible Wigner functions, pure
mixed states~see Sec. IV for a definition of admissibility!.
When theWi represent pure states, thenS2@Wi #50, and Eq.
~18! becomes

S2@W#<12(
i 51

N

a i
2 . ~20!

The equality sign holds when theWi are also orthogonal, a
was shown in Sec. II.

2. Additivity.Let us consider two independent subsyste
A andB. The Wigner functionW describing the total system
AøB is simply given by the product of the Wigner function
WA andWB for the two subsystems,

W~xA ,pA ,xB ,pB!5WA~xA ,pA!WB~xB ,pB!. ~21!

It is easy to show that both the classical entropy, Eq.~4!, and
the Von Neumann entropy, Eq.~2!, are additive@9#, i.e.,
S@W#5S@WA#1S@WB#. This is a key property, since it en
ables one to identify the statistical entropy with the therm
dynamical entropy, which is also additive.

By contrast, our definition of entropy is not additive in th
usual sense. Let us first notice that, whereas the numbe
degrees of freedom of each subsystem isD51, the total
system hasD52. Therefore, the information is defined a
I @WA,B#5h*WA,B

2 for each subsystem andI @W#5h2*W2

for the total system. With this in mind, it is easy to establ
the following expression for the quantum information:

I @W#5I @WA#I @WB#, ~22!

which shows that, sinceI ,1, the information contained in
the total system is smaller than the information of each s
system, except for pure states, for whichI 51. In terms of
the entropyS2512I , Eq. ~22! becomes

S2@W#5S2@WA#1S2@WB#2S2@WA#S2@WB#. ~23!

The total entropy is therefore smaller than the sum of
partial entropies, but larger than each of them. Note t
.
.

s

-

of

-

e
t

when the subsystems are ‘‘almost pure’’ quantum sta
then S2@WA,B#!1, and the nonadditive correction to E
~23! becomes of higher order. In this case, approximate
ditivity is recovered.

It is also interesting to note that Eq.~23! is formally iden-
tical to the expression for the probability of the union of tw
subsetsA andB, which reads

prob~AøB!5prob~A!1prob~B!2prob~AùB!, ~24!

and prob(AùB)5prob(A) prob(B) for statistically inde-
pendent systems. The analogy ofS2 as probability is also
consistent with the normalization 0<S2<1.

3. Subadditivity.If the subsystemsA andB are not inde-
pendent, the Wigner function cannot be factored as in
~21!. The Wigner function of each subsystem is then defin
by integrating over the other system’s variables, for insta

WA~xA ,pA!5E W~xA ,pA ,xB ,pB!dxB dpB , ~25!

and similarly for WB . For the Boltzmann–Von Neuman
entropy, one can prove thatS@W#<S@WA#1S@WB#, and the
equality sign holds when the two subsystems are indep
dent @9#. This means that the total systemAøB contains
more information than the sum of its parts, which is natur
since the two subsystems are correlated. However, no s
relation can be proven forS2: this entropy is therefore no
subadditive. Note that this fact is consistent with the analo
of S2 as probability given by Eq.~24!. Indeed, when the
subsetsA andB are not independent, the probability of the
intersection prob(AùB) can be either smaller or larger tha
the product prob(A) prob(B), corresponding to either nega
tive or positive correlation.

4. Microcanonical ensemble. We want to extremize the
entropy S2 with the constraint *W dx dp51. Using
Lagrange multipliers, it is easy to show that the entropy
maximum whenW5const5V21 within a phase-space re
gion of volume~area! equal toV, andW50 elsewhere. In
this case the entropy is

S2512
h

V
, ~h52p\!. ~26!

This is the analog of Boltzmann’s formula, Eq.~1!, when the
appropriate additive constant is used, i.e.,SB5 ln(V/h). For
both expressions,S50 whenV5h ~minimum uncertainty!,
and the entropy becomes negative whenV,h, i.e., when the
uncertainty relation is violated. In the limitV→`, S2 is
bounded, and tends to unity~least information!. With this
notation, informationI 512S2 is just the inverse of the
number of available microstatesV/h.

5. Canonical ensemble. We now extremizeS2 with the
constraints *W dx dp51 and *WE dx dp5U, where
E(x,p)5p2/2m1F(x), andU is the average energy. Agai
using Lagrange multipliers, we find the following equilib
rium distribution:
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PRE 62 4669ENTROPY AND WIGNER FUNCTIONS
Weq~x,p!5Z21@12bE~x,p!#, bE,1,
~27!

Weq~x,p!50, bE>1,

whereb is the Lagrange multiplier corresponding to the e
ergy constraint, and can be interpreted in the usual fashio
the inverse temperatureb51/T; Z is a normalization con-
stant. For energies such thatbE!1, Eq.~27! becomes iden-
tical with the standard exponential Boltzmann fac
exp(2bE). SinceWeq is a linear function of the energy, w
have been forced to introduce a cutoff, otherwiseWeq would
diverge for large values ofE. Physically, this means tha
states with energyE.T are forbidden at equilibrium. Note
the difference with standard thermodynamics, where s
states are highly improbable~because Boltzmann’s factor de
creases exponentially!, but not forbidden in principle.

An interesting fact is that Eq.~27! is a stationary solution
of the Wigner equation~7!—indeed, we are aware of n
other stationary solution that is also a function of the ene
E(x,p) alone. This is easy to prove when the right-hand s
of Eq. ~7! is written as

(
n50

`

cn

]2n11F

]x2n11

]2n11W

]p2n11
,

where thecn are constants. Then50 term yields the classi
cal part of Wigner’s equation, whereas all other terms do
provide any contribution, sinceWeq is quadratic inp. More-
over, sinceWeq is a function of the energy alone, it is
stationary solution of the classical Liouville equation, so th
we have finally]Weq/]t50. The fact that maximizing the
entropyS2 naturally yields a Wigner function which is bot
stationary and a function of the energy alone is in itself
markable. At the present stage, it is premature to make
statement about the role ofWeq, but the subject certainly
deserves further attention. For example, it would be inter
ing to know if, and under what constraints,Weq can act as an
attractor in a relaxation process.

IV. SMOOTHED WIGNER FUNCTIONS

The Wigner function cannot be interpreted as a genu
probability distribution because it almost always takes ne
tive values. The only pure state whose Wigner function
positive is given by the minimum uncertainty Gaussian wa
packet:

c~x!5~2p!21/4s21/2exp~2x2/4s2!, ~28!

whose Wigner function is also Gaussian,

G~x,p!5
1

p\
expS 2

x2

2s2
2

2p2s2

\2 D . ~29!

A possible way to obtain a positive distribution is to smoo
a pure Wigner functionW(x,p) using a kernelK(x,p) which
is itself a Wigner function corresponding to a pure state@10#.
The smoothing operation is represented mathematically b
convolution in phase space. The smoothed Wigner func
W̄(x,p),
-
as

r
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e
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W̄~x,p!5E W~x8,p8!K~x2x8,p2p8!dx8dp8[W+K,

~30!

is then positive and normalized to unity, so that it can
interpreted as a probability distribution.

In the past, the most common choice of the smooth
kernel has been the minimum uncertainty GaussianG(x,p),
as given in Eq.~29! @10#. The resulting smoothed Wigne
function is sometimes referred to as the Husimi functio
This choice is, however, quite arbitrary, and no argument
ever been proposed, to our knowledge, in order to justify
privileged status. We shall now prove that smoothing with
Gaussian kerneldoes have some special properties, an
should therefore be regarded as the correct way to ob
positive smoothed Wigner functions. In particular, it will b
shown that, when the smoothing is performed with a Gau
ian kernel,the result is still an admissible Wigner function.

First of all, we need a precise definition of an admissib
Wigner function. Of course, not all functions of the phas
space variables are admissible: for example, those funct
which violate the uncertainty principle are clearly not adm
sible. Functions that can be constructed by summing
thogonal pure states, such asW5( ia iWi , are not admissible
if some of thea i are negative: this was the example analyz
in Sec. IV. Our definition of an admissible Wigner functio
is rather standard@4#, and is based on the density-matr
formalism. According to standard quantum theory, a den
matrix r must satisfy three properties in order to describ
quantum mixed state:~i! it must have unit trace Trr51; ~ii !
it must be Hermitianr(x,y)5r* (y,x); and~iii ! its eigenval-
ues must be non-negative. While the first two properties
easy to verify, the third is much harder to test, since o
would need to diagonalizer in order to compute its eigen
values. Property~iii ! can also be expressed in the followin
way:

E c~x!r~x,y!c* ~y!dx dy>0, ; c, ~31!

where the inequality must hold forall wave functionsc.
This makes it even more apparent that property~iii ! cannot
be used as an operational test.

Now, the previous properties can be transposed to Wig
functions by making use of the definition, Eq.~5!. In particu-
lar, we would like to know whether thesmoothedWigner
functionW̄ is in general admissible or not. Properties~i! and
~ii ! simply require thatW̄ be real and normalized to unity
Property~iii ! can be written in the following form@4#:

E W̄~x,p!F~x,p!dx dp>0, ; F~x,p!5pure state.

~32!

The equivalence between Eqs.~31! and ~32! can be verified
by noting thatW̄ andF are the Wigner transform of, respec
tively, r andc, as defined in Eqs.~5! and~6!. It is clear that,
in order to check the admissibilty ofW̄(x,p), one should
perform an infinite number of integrals involving test Wign
functions F(x,p) that represent pure states. However, E
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~32! can be used to prove that smoothing with a Gauss
kernel yields a smoothed Wigner function which is its
admissible.

In order to do so, let us plug Eq.~30! into the left-hand
side of Eq.~32!. We obtain (W is the original Wigner func-
tion, K is the smoothing kernel, andF is the test function: all
three represent pure states!

E W~x2x8,p2p8!F~x,p!K~x8,p8!dx8dp8dx dp

5E K~x8,p8!dx8dp8

3E W1~x2x8,p2p8!F~x,p!dx dp

5E K~x8,p8!@W1+F#~x8,p8!dx8dp8, ~33!

whereW1(x,p)5W(2x,2p) is the Wigner function corre-
sponding to the wave functionc(2x) @whereasW corre-
sponds toc(x)]. The termW1+F is certainly a positive func-
tion, since it is the convolution product of two Wigne
functions. It follows that a sufficient condition for Eq.~32! to
be satisfied is thatK(x,p) be positive. But the only pure stat
Wigner function which is also positive is the Gaussi
G(x,p) @Eq. ~29!#. This proves that, when the smoothin
kernel is Gaussian, the inequality given in Eq.~32! is veri-
fied, and the smoothed Wigner functionW̄(x,p) is therefore
admissible. In this case, the density matrixr̄ corresponding
to W̄ can be written as

r̄~x,y!5
1

A2ps
E W~q,p!expS 2

~x2q!2

4s2
1

ipx

\ D
3expS 2

~y2q!2

4s2
2

ipy

\ D dq dp. ~34!

The previous result can be easily checked by computing
Wigner functionW̄ associated tor̄ via Eq.~5!, and realizing
that it can be written asW̄5W+G. Equation~34! expresses
the density matrix as a continuous sum of localized state
phase space~‘‘coherent states’’@11#!. Note that the coeffi-
cients in this sum@i.e., W(x,p) itself# are not necessarily
positive numbers. The reason for this is that the set of co
ent states is ‘‘overcomplete,’’ meaning that the represen
tion of an arbitrary quantum state in terms of coherent sta
is not unique. However, thanks to the previous theorem,
know that a diagonal representation ofr̄ with non-negative
coefficients does exist, although we are not generally abl
construct it explicitly.

So far we have proven that smoothing with a Gauss
kernel yields a functionW̄ which is itself an admissible
Wigner function. Nothing definite can be said when t
smoothing is performed using a different kernel. Howev
we are able to produce a counterexample, i.e., a pure
Wigner function which, after smoothing with a non-Gauss
kernel, does not satisfy Eq.~32!, and is therefore not admis
sible. Let us consider the wave function
n

e

in

r-
a-
s
e

to

n

,
te

n

c~x!52~2/p!1/4x exp~2x2!, ~35!

and callW(x,p) its Wigner transform. Now we smoothW
using as a kernelW itself:

W̄5W+W. ~36!

In order to be an admissible Wigner function,W̄ must satisfy
Eq. ~32! for every test functionF. Let us use as a test func
tion once againW itself, and compute the integral in Eq
~32!. We obtain~details are in the Appendix!

E W̄~x,p!W~x,p!dx dp52
1

27p\
,0. ~37!

This result shows that not all ways of smoothing Wign
functions are equivalent: only by smoothing with a Gauss
kernel are we certain to obtain a function that is positive a
also represents an admissible quantum state~i.e., a state de-
fined by a density matrix with real non-negative eigenv
ues!.

Furthermore, Eq.~33! suggests another way to construc
phase-space distribution which is both positive and adm
sible @satisfying Eq.~32!#. Let us take forW(x,p) an arbi-
trary positive function of phase-space variables, and smo
it with a Gaussian kernelG(x,p): W̄5W+G. We want to
prove thatW̄ is admissible. Equation~32! yields ~using the
fact thatG is even!

E W~x2x8,p2p8!F~x,p!G~x8,p8!dx8dp8dx dp

5E W~x8,p8!dx8dp8E G~x82x,p82p!

3F~x,p!dx dp

5E W~x8,p8!@G+F#~x8,p8!dx8dp8.0. ~38!

The result follows from the fact that the convolution produ
is positive, since bothF andG are pure state Wigner func
tions, andW.0 because we chose it to be so. This prov
that W̄(x,p) is an admissible Wigner function, and is als
positive, since it is the convolution product of two positiv
functions. The density matrix corresponding toW̄ is againr̄,
as given by Eq.~34!. Physically, the smoothed functionW̄
5W+G can be interpreted as the admissible quantum s
that best approximates the classical stateW for a given value
of \.

To conclude this section, we restate the two main res
that have been obtained here. We have shown two poss
ways to construct a phase-space distribution that is both p
tive and an admissible quantum state. This can be perfor
~a! by smoothing a pure state Wigner function with a Gau
ian kernel, or~b! by smoothing an arbitrary~but positive!
function of phase-space variables, again with a Gaussian
nel. Therefore, the Gaussian functionG(x,p) given in Eq.
~29! has a privileged status as a smoothing kernel. No
however, thatG is not unique, since it depends on the p
rameters.
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PRE 62 4671ENTROPY AND WIGNER FUNCTIONS
Although such results were derived for a pure st
Wigner function, they can easily be generalized to mixtur
It follows that, when smoothing several times with a Gau
ian kernel, we still remain within the class of admissib
Wigner functions. This class is therefore closed with resp
to this particular operation.

V. ENTROPY AND SMOOTHED WIGNER FUNCTIONS

The smoothing operation has the effect of erasing som
the correlations in the phase space. We expect therefore
smoothing should increase the entropy. This is not diffic
to prove. In order to do this, we need to define the dou
Fourier transform of a Wigner functionW(x,p),

W~k,l!5E E W~x,p!exp~2 ikx2 ilp!dx dp. ~39!

By means of Eqs.~6! and ~39!, one obtains for a pure state

W~k,l!5E cS x2
l\

2 Dc* S x1
l\

2 Dexp~2 ikx!dx.

~40!

We can then easily prove the following lemma:

uW~k,l!u2<E UcS x2
l\

2 D U2

dxE Uc* S x1
l\

2 D U2

dx51,

~41!

where use has been made of Schwartz’s inequality.
Now, let us take an arbitrary Wigner functionW(x,p) and

smooth it with a kernelK(x,p) which is a pure state
W̄(x,p)5W(x,p)+K(x,p). In Fourier space we hav
W̄(k,l)5W(k,l)K(k,l). The quantum informationI @W̄#

52p\*W̄2 dx dp relative toW̄ satisfies the inequalities

I @W̄#5
\

2pE uW̄~k,l!u2 dk dl

5
\

2pE uW~k,l!u2uK~k,l!u2dk dl

<maxuK~k,l!u2
\

2pE uW~k,l!u2 dk dl

5maxuK~k,l!u22p\E W2 dx dp

<2p\E W2 dx dp5I @W#, ~42!

where we have used the previous lemma@Eq. ~41!# for K, as
well as Parseval’s identity in the form

E W2~x,p!dx dp5
1

4p2E uW~k,l!u2 dk dl. ~43!

Equation~42! implies that

S2@W̄#>S2@W#, ~44!
e
.
-

ct

of
hat
lt
e

i.e., the smoothing operation has increased the entropy. N
that, in order to obtain this result, the smoothing kernel ne
not be a Gaussian.

Now we turn to the case where the smoothing kerne
indeed Gaussian. In this case, a relatively simple expres
for I @W̄# can be obtained. The double Fourier transform
the Gaussian defined in Eq.~29! is

G~k,l!5expS 2
k2s2

2
2

l2\2

8s2 D . ~45!

The Fourier transform of the Wigner functionW to be
smoothed is given by Eq.~40!. Let us compute the informa
tion:

I @W̄#52p\E W̄2 dx dp

5
\

2pE uW~k,l!u2uG~k,l!u2 dk dl. ~46!

ExpressingW and G by means of Eqs.~40! and ~45! one
obtains, after some algebra,

I @W̄#5
1

2sAp
E cS x2

l

2Dc* S x1
l

2DcS x81
l

2D
3c* S x82

l

2DexpS 2
l21~x2x8!2

4s2 D dx dx8dl.

~47!

We now change the integration variables, using the follo
ing unitary transformation:

x5
1

2
w1

1

2
y1

1

2
z,

x85
1

2
w2

1

2
y2

1

2
z, ~48!

l52y1z.

After some algebra, the following result is obtained:

I @W̄#5
1

sAp
E dwU E c~w1y!c~w2y!expS 2

y2

2s2DdyU2

,

~49!

which expresses the quantum information in terms of
wave functionc corresponding to the unsmoothed Wign
function W. Equation ~49! may be usefully employed to
monitor the time evolution of the entropy in a numeric
simulation:c(x,t) would then evolve according to the time
dependent Schro¨dinger equation.

Finally, we show that a more stringent bound than the o
expressed by Eq.~44! can be obtained when the smoothin
kernel is Gaussian. By using again Schwartz’s inequality,
have from Eq.~49!
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I @W̄#<
1

sAp
E dwE dy

3expS 2
y2

s2D E dy8uc~w1y8!c~w2y8!u2

5E dwE dy8uc~w1y8!c~w2y8!u25 1
2 . ~50!

In terms of the entropy, this becomes

S2@W̄#> 1
2 , ~51!

a result that is valid when smoothing a pure Wigner funct
with a Gaussian kernel. Note that we still have some freed
in the choice of the kernel, since the widths of the Gaussian
in Eq. ~29! is still unspecified. It would be interesting, fo
example, to know which value ofs minimizes the entropy
S2@W̄#, within the bounds given by Eq.~51!. We have not
been able to obtain a general result, but some indication
be obtained from the following example. Let us suppose t
the functionW to be smoothed is also a Gaussian, as in
~29!, but with spatial variancem instead ofs. The smoothed
Wigner function is then

W̄~x,p!5W+G5
1

2pSxSp
expS 2

x2

2Sx
2

2
p2

2Sp
2D , ~52!

with

Sx
25s21m2, Sp

25
\2

4 S 1

s2 1
1

m2D .

The information corresponding toW̄ is

I @W̄#52p\E W̄2 dx dp5
\

2SxSp
. ~53!

After some algebra, one obtains the following expression

I @W̄#5I ~z!5
z

11z2
, ~54!

wherez5s/m. The functionI (z) attains its maximum for
z51, i.e., whens5m, and the kernel has the same varian
as the Wigner function to be smoothed. In this case,S2@W̄#
5 1

2 , which represents the lower bound of Eq.~51!. We could
conjecture, although we do not have a formal proof, that
is the general result: the minimum entropy increase due
smoothing with a Gaussian kernel is attained when the w
of the kernel is close to the width of the function to b
smoothed.

Another interesting example is provided by the harmo
oscillator, whose Hamiltonian is

H~x,p!5
p2

2m
1mv2

x2

2
. ~55!

The eigenstates can be expressed in terms of Hermite p
nomialsHn(j) (H051, H152j, H254j222, . . . )

cn~x!5~2nn! !21/2S mv

\p D 1/4

expS 2
mvx2

2\ DHn~xAmv/\!.

~56!
n
m

an
at
.

e

is
to
th
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The corresponding Wigner functions are@3#

Wn~x,p!5
~21!n

p\
expS 2

2H

\v DLnS 4H

\v D , ~57!

whereH(x,p) is the Hamiltonian, and theLn(j) are Leg-
endre polynomials (L051, L1512j, L25122j
1j2/2, . . . ). We nowsmooth such Wigner functions with
Gaussian kernel, and find@3#

W̄n~x,p!5~2p\n! !21~H/\v!n exp~2H/\v!. ~58!

Note that this relatively simple result forW̄n is obtained only
in the case when the square variance of the smoothing ke
@see Eq. ~29!# is s25\/2mv; in all other cases, the
smoothed Wigner function is not a function of the ener
only. We are now in a position to compute the informati
I @W̄n#[ Ī n52p\*W̄n

2 dx dp. Let us first change to pola
coordinates (r ,u) in the phase space,

p2

m
1mv2x25\vr 2, dx dp5\r dr du. ~59!

One obtains, after integration overu,

Ī n5~n! !22E
0

`

~r 2/2!2n exp~2r 2!r dr , ~60!

and finally, changing variable againz5r 2/2,

Ī n5~n! !22E
0

`

z2n exp~22z!dz5
~2n!!

22n11~n! !2
. ~61!

We first note thatĪ 05 1
2 , in agreement with previous result

since the ground state of the harmonic oscillator is a Gau
ian, and we are smoothing with another Gaussian of ident
width. It can also be shown thatĪ n is a decreasing function
of n. The asymptotic expansion~for n@1) is obtained by
taking the logarithm of Eq.~61! and making use of Stirling’s
formula,

ln X!;X ln X2X1 1
2 ln X ~X@1!,

which yields

Ī n;n21/2. ~62!

In terms of the entropy, we have in summary

S2@W̄0#5 1
2 ,

S2@W̄n11#.S2@W̄n#, ~63!

lim
n→`

S2@W̄n#51.

The latter results mean that the entropy increase is la
when smoothing a semiclassical state. Asymptotically,
entropy of the smoothed Wigner function approaches un
On the other hand, when smoothing a ‘‘fully quantum’’ sta
~i.e., a state with small quantum numbers!, the entropy in-
crease is moderate. Although these results were obtaine
the special case of the harmonic oscillator, we are confid
that they remain qualitatively correct for other~classically
integrable! Hamiltonians.
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VI. DISCUSSION

In this paper we have presented several results related
new definition of quantum entropy, denotedS2. Although it
has already been used in the past in the framework of
density-matrix formalism, such entropy becomes particula
interesting when applied to Wigner functions. It is then po
sible to show thatS2 possesses a number of interesti
properties—most importantly, for example, it is an invaria
for the Wigner equation, which governs the evolution
Wigner functions.S2 is related to the Tsallis entropy, a
though the latter is usually defined for a discrete set of pr
abilities, rather than for a continuous distribution. An adva
tage of this entropy, compared to the quantum Von Neum
entropy, is that the Wigner function is all that one needs
computeS2. No knowledge of the density matrix is require
nor does it need to be diagonalized, as is the case for the
Neumann entropy.

The standard properties of entropy~concavity, additivity,
subadditivity! have been examined. This has revealed so
interesting facts, which would require further investigatio
For instance, it has been proven thatS2 ~unlike ordinary
entropy! behaves like a probability with respect to additivi
properties, which is also consistent with the normalizat
0<S2<1. Second, the analysis of the canonical ensem
has enabled us to derive a Wigner functionWeq that maxi-
mizes the entropy under certain constraints.Weq turns out to
be both a function of the energy alone and a stationary s
tion of the Wigner equation. The relevance ofWeq is still
unclear, but one could reasonably conjecture that it play
role in some relaxation processes. Numerical experime
could clarify this point.

An ‘‘unpleasant’’ property ofS2 is that, keeping the
Wigner function fixed, and letting Planck’s constant go
zero, one obtainsS251. Thus it would seem that all classic
states have unit entropy. The point is that this is not
correct procedure to obtain a classical state: indeed, if
original Wigner function is negative somewhere, we wou
obtain a classical state with a nonpositive probability dis
bution, which is of course meaningless. The correct pro
dure is instead to smooth the Wigner functionW with an
appropriate kernel, which must also be a Wigner function
order to ensure positivity. A crucial point, however, is th
the smoothed Wigner functionW̄ should be itself anadmis-
siblequantum state, i.e., one that can be described by a
sity matrix with non-negative eigenvalues. We have be
able to prove that, when smoothing with a minimum unc
tainty Gaussian packet, the result is always admissible,
though this isnot necessarily the case when smoothing w
another Wigner function. This is, to our knowledge, the fi
rigorous argument showing that Gaussian smoothing p
sesses some privileged status.

It has also been proven that smoothing increases the
tropy: in particular, when smoothing a pure state with
Gaussian kernel, one hasS2@W̄#> 1

2 . It would be interesting
to know how to minimizeS2@W̄#. This could be done by
varying the widths of the Gaussian kernel, which is still
free parameter. Although we are not able to derive a rigor
result, we have conjectured~and shown explicitly on a par
ticular example! that S2@W̄# is minimum when the width of
o a
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the Gaussian kernel is close to the width of the Wigner fu
tion to be smoothed. This would not be unreasonable fr
the information point of view: it would mean that we ca
minimize the entropy increase if we have some prior kno
edge of the function to be smoothed.

As a further example, we have computed the entropy
the ~smoothed! stationary states of the harmonic oscillator.
was shown thatS2 increases with quantum number, therefo
semiclassical states yield a larger entropy increase. Ag
we have conjectured that this behavior is universal~at least
for confining and classically integrable Hamiltonians!, and
not specific to the harmonic oscillator. We are rather con
dent that our conjecture is correct since the larger entr
increase for semiclassical states is mainly due to the fact
their Wigner function displays short-wavelength oscillatio
in the phase space, which are easily erased by the smoo
procedure.

It would be interesting to know how the previous resu
generalize to classically nonintegrable Hamiltonians. For
harmonic oscillator, it was found that the information of th
smoothed stationary states behaves asĪ n;n21/2. Although
the exponent2 1

2 might be specific to the harmonic oscilla
tor, a polynomial law may be universal for the class of in
grable Hamiltonians. On the other hand, one could con
ture that, for nonintegrable Hamiltonians, the decrease
faster, perhaps exponential.

From the physical point of view, this result means th
semiclassical states are highly unstable under generic pe
bations ~among which smoothing is a relevant exampl!.
This is reminiscent of the so-called ‘‘predictability sieve,’’
concept introduced by Zurek and co-workers@5# in the more
general framework of decoherence@12,13#. Zurek et al. @5#
construct a model for the interaction of a quantum syst
with an environment at thermodynamic equilibrium, a
compute the rate at which initially pure states deteriorate i
mixtures by coupling with the environment. This process
known as decoherence. Subsequently, they look for the s
states which are least prone to deterioration, and find
such states are those which yield the minimum entropy
crease. By estimating the entropy production, they obt
that the minimum-entropy increase is attained for the grou
state of the harmonic oscillator, i.e., a minimum uncertai
Gaussian wave packet. This coincides with our results
Sec. V.

The main difference from our approach is that Zurek a
co-workers@5# analyze adynamicalsituation, while in our
case the entropy-producing effect is the smoothing, whic
a static process. Since both cases appear to give the s
result, it is reasonable to conjecture that smoothing may r
resent a~simplified! model for the interaction of a quantum
system with an open environment. The price to pay for o
approach is that we do not have a first-principle based d
vation of such an interaction. The advantage is that
model is simple enough to obtain a number of rigorous
sults.

These considerations may shed some new light on
semiclassical limit. We distinguish two kinds of pure qua
tum states: fully quantum~FQ! statesWFQ ~with low quan-
tum numbers!, and semiclassical~SC! statesWSC ~with large
quantum numbers!. For both S250, i.e., they contain the
same amount of information. However, after the smoothi
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one obtains S2@W̄FQ#. 1
2 and S2@W̄SC#→1, i.e., the

smoothed FQ state containsmore information than the
smoothed SC state. In other words, although both orig
states contain the same information, this is of differe
‘‘quality:’’ robust for the FQ state and highly prone to det
rioration for the SC state. It is not surprising, therefore, t
coupling to an environment has the effect of erasing s
information less easily in the former case than in the lat
These results could open new avenues for further resea
particularly with computer experiments@14#, to investigate
the dynamical behavior of the entropy defined in this pap
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APPENDIX

We want to prove the result of Eq.~37!. Let us use the
identity

E f ~x,p!g~x,p!dx dp5
1

4p2E f ~k,l!g* ~k,l!dk dl,

with f 5W̄ and g5W. Since W̄(x,p)5W+W, the double
Fourier transform ofW̄ is W2(k,l). In addition, it will turn
out thatW(k,l) is real for the case under consideration he
Therefore, by making use of the previous identity, the le
hand side of Eq.~37! becomes

E W̄~x,p!W~x,p!dx dp5
1

4p2E W3~k,l!dk dl.

The double Fourier transformW(k,l) is given by Eq.~40!.
For our example, the wave function is the one of Eq.~35!,
and we obtain

W~k,l!54A2/p exp~2l2\2/2!E S x22
l2\2

4 D
3exp~22x2!exp~2 ikx!dx.
-

,

al
t

t
h
r.
ch,

r.

f

.
-

Now, by using the integrals

E exp~22x2!exp~2 ikx!dx5Ap

2
exp~2k2/8!,

E x2 exp~22x2!exp~2 ikx!dx

5Ap

8 S 12
k2

4 Dexp~2k2/8!,

we obtain, after some straightforward algebra,

W~k,l!5S 12
k2

4
2l2\2DexpS 2

l2\2

2
2

k2

8 D .

We are now ready to compute the integral*W3 dk dl. Let
us change integration variables (k,l)→(r ,w)

r 25
k2

4
1l2\2, r dr dw5

\

2
dl dk.

After integration overw, one obtains

E
2`

` E
2`

`

W3 dk dl5
4p

\ E
0

`

~12r 2!3 expS 2
3

2
r 2D r dr .

Changing the integration variable toy5r 2 and using inte-
grals of the type

E
0

`

yn exp~2ay!dy5
n!

an11
,

we obtain

E
2`

` E
2`

`

W3 dk dl5
2p

\ E
0

`

~12y!3 expS 2
3

2
yDdy

52
4p

27\
,

which, once divided by 4p2, yields the result of Eq.~37!.
,
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