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Entropy and Wigner functions
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The properties of an alternative definition of quantum entropy, based on Wigner functions, are discussed.
Such a definition emerges naturally from the Wigner representation of quantum mechanics, and can easily
quantify the amount of entanglement of a quantum state. It is shown that smoothing of the Wigner function
induces an increase in entropy. This fact is used to derive some simple rules to construct positive-definite
probability distributions which are also admissible Wigner functions.

PACS numbe(s): 05.30—-d, 03.65-w

I. INTRODUCTION This is the standard definition of entropy, which generalizes
Boltzmann’s expression to quantum mechanics. Although
Entropy is the central concept of thermodynamics and stannambiguously defined, howeve, can be extremely dif-
tistical mechanics. It was introduced by Clausius in the mid{icult to compute in practice, since one would need to diag-
19th century as a phenomenological variable that quantifiesnalizep in order to compute the trace of its logarithm. Von
the intrinsic irreversibility of thermodynamic processes. ItNeumann's entropyVN) has a number of good properties,
was Boltzmann who recognized the link between entropywhich will be detailed in the following sections. Here we
and the lack of information about a system, defined as theote that, ifo;=0 are the eigenvalues of the density matrix
numberl’ of microstates which have the same macroscopid>;a;=1), the VN entropy becomeS$,y=—2=ia; In ;.

properties. The celebrated formula Therefore,S,y=0, and the equality holds only if we have
complete information, i.e., if only one of the eigenvalues is
Sg=kg InT (1) different from zero: in this case, the system is in the pure

state corresponding to this eigenvalue. Another crucial prop-

. _ . erty of Sy is that it is conserved gs evolves according to
wherekg is the Boltzmann constant, establishes such a "”lihe quantum Liouville equation

in a mathematically rigorous manng@n the rest of this paper

we shall use units for whiclkg=1: with this prescription, ap

entropy becomes a dimensionless quaptiBoltzmann, of iﬁEZHp—pH, 3
course, derived this formula in the context of classical statis-

tical mechanics. In classical physics, microstates are deﬁne\ﬁhereH is the Hamiltonian. Indeed, the trace of any func-
ahs pomtsbm afcgntlnuousl?f-dm;nsmr;alhphase spac@dQs tional F of the density matrix T (p) is also conserved. This
t.g number Od egrees Ob r?e om Od,,t 1e system un_erfclor}éct can be used to define other entropylike quantities. Not
sideration, and cannot be “counted” in any meaningiul 1 of these guantities are equivalent, however, and we will

sense. Therefore, Boltzmann took as the numbest mi- g, i the following section that only one of them is par-
crostates the available volume in phase spcdivided by yjojarly adapted to the Wigner representation of quantum
the volume of a unit celfunspecified at the time when Bolt- mechanics.

zmann published his_ work, but which will turn out to be The classical limi{CL) of the Von Neumann entropy, Eq.
Iilancsz constant, raised to the appropriate powé); I (2), is obtained by replacing the density matrix with the
=Q/h". In quantum mechanl_cs, a microstate |s_descr|bed b}Shase-space probability distributidifx,p) (for simplicity,

a wave function, which contains all the information about thewe will consider systems with only one degree of freedom

state of the system. In contrast to the classical case, ”Oﬂzl) and the trace with the integral in phase space. One
there is no ambiguity, since quantum states are discrete iBbtainé the following expression, due to Gibbs:
principle. Hence, although the macrostate has a huge number ’

of possible microstates consistent with it, this numlbgris
nevertheless definite and finite. ScL = —f fIn(fh)dx dp, (4)
The most general quantum system is described by a den-

sity matrix, i.e., a positive-definite, Hermitian operator, with 54 the probability distribution is positive and normalized to
unit trace. In terms of the density matrix the entropy can ity Note that the classical entropy is defined up to an
be expressed in the following way, due to Von Neumglin  qgitive constant, which means that the constain the
argument of the logarithm in Eq4) can be chosen arbi-
Sin=—Trplnp. (2 trarily, although it seems reasonable to use Planck’s constant
h=2=#. Indeed, iff is constant inside a certain phase-space
volume () and zero elsewherg.e., at thermodynamic equi-
*Electronic address: giovanni.manfredi@Ipmi.uhp-nancy.fr librium), thenSg =In(Q/h), in agreement with Boltzmann'’s

1063-651X/2000/6@)/466510)/$15.00 PRE 62 4665 ©2000 The American Physical Society



4666 G. MANFREDI AND M. R. FEIX PRE 62

original definition, Eq.(1). We also stress th&., can take Unity, and, when integrated overor p, gives the correct
negative values, in contrast wih,, which is always non- marginal distribution, e.gfW dp=p(x,x) = spatial density.
negative. From the previous discussion, it is easy to concludeurthermore, it can be used to compute averages of any dy-
thatSc, will be negative wherf) <h. This means that we are hamical variableA(x,p): (A)= WA dx dp Note, however,
trying to localize a particle on a phase-space region smallghat, since some terms iA(x,p) may not commute, it is
than Planck’s constant, and therefore violate the uncertaintjecessary to establish a nonambiguous correspondence be-
principle. For probability distributions that satisfy the uncer-tween classical variables and quantum operatoveyl's
tainty principle, the classical entropy is positive. Similarly to rule) [4]. Despite these good properties, the Wigner function
the quantum-mechanical case, the classical entropy is cogannot be interpreted as a probability distribution, since it
served for a Hamiltonian process, i.e., when the probabilitcan assume negative values. The only pure state whose
distribution evolves according to the classical Liouville Wigner function is positive definite is given by the minimum
equation. Again, the phase-space integral of any functionancertainty packeti.e., a Gaussian wave functipn
F(f) is also conservetindeedf itself is conserved, since it ~ The evolution of W(x,p,t) is governed by the Wigner
is just transported along the classical trajectories equation, which replaces the classical Liouville equation:

In this paper, we discuss the properties of an alternative
definition of quantum entropy, based on Wigner functions. dW p dW i
Although this entropy has already been known for some time gt + moox 277ﬁ2f
(generally expressed in terms of the density matrve feel
that its properties are not fully appreciated. In particular, it i
will be shown that such a definition of entropy emerges natu- X ex;{ - g(p_ p’)z) W(x,p",t)dz dp,
rally from the Wigner representation of quantum mechanics.
It has therefore a privileged status compared to the many )

g;hg,[u%?;glit;loggnﬁ) gogg;;d in the literature, and deserves t\c/)vhereCID(x) is the potential. The Wigner equation is equiva-

The Wigner representatidi2] is a useful tool to express lent to the quantum Liouville equatiaf3), and can describe

quantum mechanics in a phase-space formaffemreviews, the evolution of both pure states and mixtures. However, in
see[3,4]). Although it was derived by Wigner for technical the present work_, we sha_II favpr.the Wigner formalism over
purposes, this approach has recently attracted much intereé?e dgnsﬂy matrix one, since Itis easier to represent in the
since it is well-suited to analyze the transition from classical’ assical phase space, angl I a_lllo_ws a more straightforward
to quantum dynamics. The Wigner representation can deéieatment (?;tlhke serglcfl_assmal limit. f ional i f
with both pure and mixed quantum states, and is completeI\/N.We wfou like to he m;a an er;trohpy unctiona tl)n .tern?s 0
equivalent to the more usual picture based on the densitgg{Igner unctions. The classical choice, Ed), obviously

z
X+ =

2 2

ofx-3)-0

matrix. In this representation, a quantum state is described b nnot work, s'mceN can assume negaﬂvg values. It is easy
a Wigner function (i.e. a function of the phase-space . shpw the existence of two s_lmpl_e functionalsAsthat are
variables—see the next sectiorand the Wigner equation invariant under Eq.(7): the first is the total probability

. - . . 2 .
provides an evolution equation for the state which is equiva%w dx d%: 1 thehsepor;d mva_nantvgw tdx d?h Vght'ﬁ.h .
lent to the quantum Liouville equatiaid). It will be shown as no obvious physical meaning. We stress that this 1s a

that, if one tries to define an entropy functional in the frame-ProPeMy of Eq(7), and dqes not depend on Whethrrep_-
work of Wigner's representation, only one “reasonable” resents a pure state, a mixture, or even a state which violates

choice is possible, and this is discussed in the next sectioﬁhe uncertainty principle. However, the fact that the latter

Subsequently, we will discuss the properties of such an er‘%%@?ﬁéogéﬁr:g%iegf'g\r’]?rrc')?)r;t_ suggests that we introduce the

tropy (Sec. lll), and present some examples of its applica-
tions in Secs. IV and V.
sz=1—(2wﬁ)DfW2 dx dp, )
IIl. QUANTUM ENTROPY
whereD is the number of degrees of freedom: except where
otherwise stated, we will always work with systems for
whichD=1.

The S, entropy can be expressed in terms of the density

1 N A ipA matrix p
W(X,p)zm pl X— = X+ =|ex dn, (5

The quantum distribution functiokV(x,p) is defined in
terms of the density matriy(x,y) for a quantum mixed
State,

277" 2 h S,=1-Trp? 9
or in terms of the wave functiog(x) for a pure state, a result which follows from the fact thaw is related to the
Fourier transform ofp. Equation(9) has been used in the
1 A A ipA literature as an entropylike quantif$], and is sometimes
—_ _ * _ m y
W(x,p)= 2mh ¢<X 2)¢ X+ 2 exy{ f )d)" referred to as the linear entropy. Its relevance to Wigner

functions has been noticed by some autH@éis but its full

implications have not, to our knowledge, been appreciated
The functionW(x,p) possesses many of the properties of aand developed. We first notice that this is the only expression
phase-space probability distribution: it is real, normalized toof entropy having the same functional form when expressed
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in terms of eithetW or p (for example,f/W* is not simply W represents a quantum mixture. We recall the following
related to Trp%). Second, and most importantly, the very useful relation, valid for orthogonal pure states:

structure of Wigner’s equation selects the functioBaks a

;pemal candidate f_or a defln!tlon of t'entrqpy.. It is therefore f WiW; dx dp=6,;/2mh, (12)
important to study its properties and implications.

WhenW is an admissible Wigner functioti.e., when it ) S

vious entropy satisfies the relation<®,<1, andS,=0  Of theW; in Eq. (8), and making use gf Ed12), we obtain

holds for a pure state, which is a reasonable result, since puresallis discrete entropys,=1—2;_,ai. We stress again

states contain the maximum information available. Indeed, ithat the above properties are valid for the quadratic entropy

is possible to definquantum informatioras the complement Sz, but do not hold for other functionals involving higher

of S, to unity, | =1—S,. Note thatS, can become negative Powers ofWw.

only for states that violate the uncertainty principle, as will It is interesting to show that a local entropy and an

be explained in Sec. Ill. We point out th8=0 is a neces- entropy fluxJs can also be defined:

sary, but definitely not sufficient, condition for the corre-

sponding Wigner function to represent a pure sfafeThis O'(X,t)=J W dp—ZWﬁJ W2 dp,

can be shown by finding a counterexample. Let us define the

Wigner function asW=2i3=1aiWi, where theW; are or-

thogonal pure states, and = a,=%, as=—3. Even though JS(th):f Pw dp—thf P2 dp. (13)

the coefficientsy; sum up to unity W does not represent an m m

admissible Wigner function, since one of the coefficients o

(which represent probabilitigss negative. However, it is Of course, one haS,= [ o dx. By multiplying Eq.(7) by W

simple to prove thaS,[W]=0. Incidentally, this example and integrating over momentum space, one can prove that

has shown the existence of phase-space functions which refi€ local entropy obeys a continuity equation:

resent neither pure states nor mixtures. This point will be o 93

discussed in more detail in the next section. TS ,
This entropy is related to a formula proposed by Tsallis SN

[7], which has stimulated much work in the past decage,

for example,[8] and references therginif {«;} is a set of

probabilities adding up to unity, Tsallis entropy is defined by

(14)

which shows that entropy can be transfered from one spatial
location to another, but is globally conserved. The physical
meaning ofo is easier to grasp if we express it in terms of
the density matrix in the position representation. With the
1_2 a help of Eq.(5) one finds(we drop the time dependence
Sq—q_—l, (10
a(x):p(x,x)—f [p(Xx—=N/2x+N/2)]?d\. (15
whereq is a real, not necessarily positive, number, and the
standard entropy is recovered fgr-1. Tsallis entropy is @  Equation (15) shows that entropy is closely related to the
possible, and indeed useful, way to generalize the giagonal terms of the density matrix. For a pure state,
Boltzmann—Von Neumann expression, and has been eMsix,y) = () #*(y) (4 is the wave functiop and the local

ployed by several authors to study the thermodynamics oéntropy can be expressed in terms of the spatial density
strongly correlated systems, such as self-gravitating 93 x) =| Y(x) |2= p(x,X)

and inviscid fluidg8].

Equation(8) is the continuous counterpart of the discrete Y Y
Tsallis entropy withg=2. The continuous formula can be U(X)ZH(X)—J n(x— E)” X+ 5 dA=n(x) = u(X),
recovered by the following heuristic argument. Let us cover (16)
the phase space with cells of siz&xAp. The discrete prob-
abilities are thena;=W(x;,p;)AxAp, and the discrete en- where we have defined tHecal quantum information(x)

tropy becomes so thatl = [« dx. It appears that(x) is a density autocorre-
lation function, which shows that, in quantum mechanics,
S,=1—AXApY, WA(x;,pi)AXAp. (11  information and spatial correlations are intimately close con-
i cepts.

The sum in Eq(11) gives the integral W? dx dp. However,
we cannot let the factakxA p in front of the sum go to zero,
since this would violate the uncertainty relation. Indeed, we The expression given in E¢8) has proven to be a fruitful
obtain the correct continuous formul&qg. (8) with D=1]  tool to quantify some key properties of quantum systems,
by taking for AxAp the smallest value allowed by quantum such as nonlocal correlations. In order to be an appropriate
mechanics, i.e., Planck’s constdnt 27 . definition of entropy, it should nevertheless satisfy some
Another way to go from the continuous to the discretestandard propertig®], among which concavity and additiv-
formula is to consider a Wigner function that is the suniNof ity are particularly fundamental. Some of these properties
orthogonal pure state&/(x,p) ==, a;W,(x,p). Of course, were previously studied by Tsall[§] for the discrete case.

IIl. PROPERTIES OF QUANTUM ENTROPY
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1. Concavity This means that, iW=3,;W, (where ~when the subsystems are “almost pure” quantum states,
the W, are not necessarily pure orthogonal statéisen the then S[W, g]<1, and the nonadditive correction to Eq.
following inequality holds: (23) becomes of higher order. In this case, approximate ad-
ditivity is recovered.

It is also interesting to note that E@®3) is formally iden-
SZ[W]Bgl @ Sp[ Wi]. (17 tical to the expression for the probability of the union of two

subsetsA and B, which reads

N

The proof is obtained by direct calculation fr=2, and is

then easily extended to highbrby recursive arguments. AUB)= A)+ B)— ANB 24
Note that we can also prove an upper boundSgr Prot(AUB) =prob(A) + prob(B) — prok ). (29

N " and probANB)=prob(A) prob(B) for statistically inde-
SZ[W]ggl aiZSZ[Wi]”Ll_;l af, (18) pendgnt s(i/ster)ns.loThef a)mglog;&?j as probabilityyis also
consistent with the normalization<0S,<1.
which holds forW; representing both pure states or mixtures. 3. Subadditivitylf the subsystem# andB are not inde-
The term + 3,7 represents the so-called mixing entropy. Pendent, the Wigner function cannot be factored as in Eq.

The proof of Eq(18) relies on the fo”owing inequa"tm]: (21) The Wigner function of each Subsystem is then defined
by integrating over the other system’s variables, for instance

J W;W; dx dp=0, (19
Wx,:fo,,x,dxd, 25
which is valid for all admissible Wigner functions, pure or AXa Pa) (Xa:PaXaPe)dxg dPg (29
mixed stategsee Sec. IV for a definition of admissibiljty

When theW; represent pure states, th8s] W;]=0, and Eq.

(18) becomes and similarly for Wg. For the Boltzmann—Von Neumann

entropy, one can prove th& W]<= S W,]+ S Wg], and the
N equality sign holds when the two subsystems are indepen-
SIW]<1-> o?. (200  dent[9]. This means that the total systeAlJB contains
i=1 moreinformation than the sum of its parts, which is natural,
o since the two subsystems are correlated. However, no such
The equality sign holds when thW) are also orthogonal, as gjation can be proven fo8,: this entropy is therefore not
was shown in Sec. II. , _ subadditive. Note that this fact is consistent with the analogy
2. Additivity. Let us cons_|der two |n.d(_apendent subsystemsy¢ S, as probability given by Eq(24). Indeed, when the
AandB. The Wigner functiorW describing the total system g hsetsn andB are not independent, the probability of their
AUB is simply given by the product of the Wigner functions jntersection prob&NB) can be either smaller or larger than
W, and Wy for the two subsystems, the product probf) prob(B), corresponding to either nega-

_ tive or positive correlation.
W(Xa.Pa - Xg ,PB) =Wa(Xa,PaA)We(Xg,Pe).  (2D) 4. Microcanonical ensemhléNe want to extremize the

It is easy to show that both the classical entropy, @g.and ~ €Ntropy S, with the constraint fW dxdp=1. Using
the Von Neumann entropy, EG2), are additive[9], i.e., Lagr.ange multipliers, it is ea§31/ to. show that the entropy is
W] =S[W,]+S[Wg]. This is a key property, since it en- Maximum whenW=const )™~ within a phase-space re-
ables one to identify the statistical entropy with the thermo-gion of volume(area equal to{), andW=0 elsewhere. In
dynamical entropy, which is also additive. this case the entropy is
By contrast, our definition of entropy is not additive in the
usual sense. Let us first notice that, whereas the number of h
degrees of freedom of each subsystenDis 1, the total 82:1—5, (h=27h). (26)
system hadD =2. Therefore, the information is defined as
I[Wagl=hfW3 g for each subsystem andW]=h2W?
for the total system. With this in mind, it is easy to establishThis is the analog of Boltzmann’s formula, Ed), when the
the following expression for the quantum information: appropriate additive constant is used, i®;=In({)/h). For
both expressionsS=0 when{=h (minimum uncertainty,
I[W]=1[WaJl[Ws], (22) and the entropy becomes negative wlieaih, i.e., when the
uncertainty relation is violated. In the limi2—«, S, is
bounded, and tends to unifyeast information With this
notation, informationl=1-S, is just the inverse of the
number of available microstatés/h.
5. Canonical ensemhléVe now extremizeS, with the
S[W]=S[Wa]+ S Wg]—S)[WA]S,[Wg]. (23  constraints f[W dxdp=1 and fWEdxdp=U, where
E(x,p) =p?/2m+®(x), andU is the average energy. Again
The total entropy is therefore smaller than the sum of theusing Lagrange multipliers, we find the following equilib-
partial entropies, but larger than each of them. Note thatium distribution:

which shows that, since<1, the information contained in
the total system is smaller than the information of each sub
system, except for pure states, for which 1. In terms of
the entropyS,=1—1, Eq. (22) becomes
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_ 711 _ _
Weq(xlp) Z [1 BE(X!D)]! IBE<11 (27) W(X,p):jW(X/,p/)K(X_X/’p_p/)dxldp/EWoK,

WedX,p)=0, BE=1, (30)

whereg is the Lagrange multiplier corresponding to the en-is then positive and normalized to unity, so that it can be
ergy constraint, and can be interpreted in the usual fashion asterpreted as a probability distribution.
the inverse temperatur8=1/T; Z is a normalization con- In the past, the most common choice of the smoothing
stant. For energies such th@E<1, Eq.(27) becomes iden- kernel has been the minimum uncertainty Gaus§4g,p),
tical with the standard exponential Boltzmann factoras given in Eq.(29) [10]. The resulting smoothed Wigner
exp(—BE). SinceW, is a linear function of the energy, we function is sometimes referred to as the Husimi function.
have been forced to introduce a cutoff, otherwi#g, would  This choice is, however, quite arbitrary, and no argument has
diverge for large values oE. Physically, this means that ever been proposed, to our knowledge, in order to justify its
states with energ¥e>T are forbidden at equilibrium. Note privileged status. We shall now prove that smoothing with a
the difference with standard thermodynamics, where sucksaussian kerneboes have some special properties, and
states are highly improbab{because Boltzmann'’s factor de- should therefore be regarded as the correct way to obtain
creases exponentiajlybut not forbidden in principle. positive smoothed Wigner functions. In particular, it will be
An interesting fact is that Eq27) is a stationary solution shown that, when the smoothing is performed with a Gauss-
of the Wigner equation(7)—indeed, we are aware of no ian kernelthe result is still an admissible Wigner function
other stationary solution that is also a function of the energy First of all, we need a precise definition of an admissible
E(x,p) alone. This is easy to prove when the right-hand sideVigner function. Of course, not all functions of the phase-

of Eq. (7) is written as space variables are admissible: for example, those functions
which violate the uncertainty principle are clearly not admis-
* PPNt lp g2ntiyw sible. Functions that can be constructed by summing or-
n§=:o CnW W, thogonal pure states, such\&s=X;a;W; , are not admissible

if some of thew; are negative: this was the example analyzed
. . in Sec. IV. Our definition of an admissible Wigner function
where thec, are c9nstant§. The=0 term yields the classi- is rather standard4], and is based on the density-matrix
cal p_art of ngner_s e_quatlc_)n, whe_reas all ot_he_r terms do no#ormalism. According to standard quantum theory, a density
prowde_ any con.tr|but|on, ;cheq IS quadratic inp. Mqre_- matrix p must satisfy three properties in order to describe a
Over, smceWeq_ls a function (.)f the_ energy aloqe, itis a quantum mixed statdi) it must have unit trace Tp=1; (ii)
stationary solution of the classical Liouville equation, so that . o Hermitiarp(x,y) = p* (y,x): and(iii ) its eigenval-

Wet have flnally&\lll\/eq/.atlgo. -\5\?’6 fac:c thatt. max'r:T“f"r.‘g t:hfh ues must be non-negative. While the first two properties are
entropyS, naturally yields a Wigner function which is bo easy to verify, the third is much harder to test, since one

rsrgztrll(():&;y i?otlh?e furr:ac;(laonrl (S)Iathee ie'[nizrg)r/eii(;ﬁrést:)n rlrgzeklé ;e'would need to diagonalizg in order to compute its eigen-
: P g€, P alues. Propertyiii) can also be expressed in the following

statement about the role &W,,, but the subject certainly way:
deserves further attention. For example, it would be interest- "
ing to know if, and under what constrain¥/,, can act as an

attractor in a relaxation process. f P(X)p(X,y)* (y)dx dy=0, ¥ o, (31

IV. SMOOTHED WIGNER FUNCTIONS where the inequality must hold faall wave functionsi.

The Wigner function cannot be interpreted as a genuind his makes it even more apparent that propgiity cannot
probability distribution because it almost always takes negab® used as an operational test. _
tive values. The only pure state whose Wigner function is NOW, the previous properties can be transposed to Wigner

positive is given by the minimum uncertainty Gaussian waveunctions by making use of the definition, ). In particu-
packet: lar, we would like to know whether themoothedwWigner

Vi1 A functionW is in general admissible or not. Properti@sand
P(x)=(2m)" o Cexp(—x1407), (28 (i) simply require thaW be real and normalized to unity.

) o _ Property(iii) can be written in the following fornp4]:
whose Wigner function is also Gaussian,

1 x?  2p20? J W(x,p)F(x,p)dxdp=0, V F(x,p)=pure state.
G(x,p)= Eex - 27'2 - rea ) (29 @2
A possible way to obtain a positive distribution is to smooth The equivalence between Edq81) and(32) can be verified

a pure Wigner functioV(x,p) using a kerneK(x,p) which by noting thatw andF are the Wigner transform of, respec-
is itself a Wigner function corresponding to a pure sfa@. tively, p and, as defined in Eqg5) and(6). It is clear that,
The smoothing operation is represented mathematically by @& order to check the admissibilty oM(x,p), one should
convolution in phase space. The smoothed Wigner functiomerform an infinite number of integrals involving test Wigner
W(x,p), functions F(x,p) that represent pure states. However, Eq.
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(32 can be used to prove that smoothing with a Gaussian Y(x)=2(2/7)Y* exp( —x?), (35)
kernel yields a smoothed Wigner function which is itself
admissible. and callW(x,p) its Wigner transform. Now we smootW/

In order to do so, let us plug E@30) into the left-hand using as a kernelV itself:
side of Eq.(32). We obtain (V is the original Wigner func- o
tion, K is the smoothing kernel, arféis the test function: all W=WoW. (36)
three represent pure states .
In order to be an admissible Wigner functidil,must satisfy
Ny "y’ A/ Eq. (32) for every test functiorf-. Let us use as a test func-
j WOX=x',p=pT)FOCPIK(X',pT)dx'dpdx dp tion once againW itself, and compute the integral in Eq.
(32). We obtain(details are in the Appendix
=J K(x",p")dx'dp’ 1
j W(X,p)W(x,p)dx dp= 271-rﬁ<0' (37)
><f W (x=x",p—p")F(x,p)dx dp
This result shows that not all ways of smoothing Wigner
functions are equivalent: only by smoothing with a Gaussian
= f K(X",p")[WeF](x",p")dx"dp’, (33)  kernel are we certain to obtain a function that is positive and
also represents an admissible quantum diae a state de-
whereW, (x,p) =W(—x,—p) is the Wigner function corre- fined by a density matrix with real non-negative eigenval-
sponding to the wave functiogs(—x) [whereasW corre-  U€s.
sponds ta/(x)]. The termW;°F is certainly a positive func- Furthermore, Eq(33) suggests another way to construct a
tion, since it is the convolution product of two Wigner phase-space distribution which is both positive and admis-
functions. It follows that a sufficient condition for E@@2) to  sible [satisfying Eq.(32)]. Let us take fotW(x,p) an arbi-
be satisfied is that (x,p) be positive. But the only pure state trary positive function of phase-space variables, and smooth
Wigner function which is also positive is the Gaussianit with a Gaussian kerneG(x,p): W=W-G. We want to
G(x,p) [Eq. (29)]. This proves that, when the smoothing prove thatw is admissible. Equatiof32) yields (using the
kernel is Gaussian, the inequality given in E82) is veri-  fact thatG is even

fied, and the smoothed Wigner functiﬁ_\i{x,p) is therefore

adrlissible. In this case, the density maipixcorresponding f W(x—x',p—p")F(x,p)G(x’,p’)dx'dp’dx dp
to W can be written as ' , '

(x—q)° ip_x) =fW<x',p'>dx'dp'J G(X'=x,p'=p)

— 1
P(X,y)Z—f W(q,p)exp(——2+ 7
\/ZU 4o XF(x,p)dxdp

(y-a)® ipy
XeXP(_ 102 ‘T)dqdp (34 =jW(x’,p’)[GoF](x’,p’)dx’dp’>0. (39)

The previous result can be easily checked by computing thghe result follows from the fact that the convolution product
Wigner functionW associated t@ via Eq.(5), and realizing is positive, since botlir and G are pure state Wigner func-
that it can be written a¥V=W-G. Equation(34) expresses tions, andW>0 because we chose it to be so. This proves
the density matrix as a continuous sum of localized states ithat W(x,p) is an admissible Wigner function, and is also
phase spac€‘coherent states”[11]). Note that the coeffi- positive, since it is the convolution product of two positive

cients in this sunfi.e., W(x,p) itself] are not necessarily functions. The density matrix correspondingvbis againp,

positive numbers. The reason for this is that the set of cohersg given by Eq(34). Physically, the smoothed functio

ent states is “overcomplete,” meaning that the representa- \ ;. can be interpreted as the admissible quantum state

tion of an arbitrary quantum state in terms of coherent stateg, o+ pest approximates the classical statéor a given value
is not unique. However, thanks to the previous theorem, wes 7

know that a diagonal representation mfwith non-negative To conclude this section, we restate the two main results
coefficients does exist, although we are not generally able tghat have been obtained here. We have shown two possible
construct it explicitly. ways to construct a phase-space distribution that is both posi-

So far we have proven that smoothing with a Gaussianive and an admissible quantum state. This can be performed
kernel yields a functionW which is itself an admissible (a) by smoothing a pure state Wigner function with a Gauss-
Wigner function. Nothing definite can be said when theian kernel, or(b) by smoothing an arbitrarybut positive
smoothing is performed using a different kernel. However function of phase-space variables, again with a Gaussian ker-
we are able to produce a counterexample, i.e., a pure stateel. Therefore, the Gaussian functi@(x,p) given in Eg.
Wigner function which, after smoothing with a non-Gaussian(29) has a privileged status as a smoothing kernel. Note,
kernel, does not satisfy E32), and is therefore not admis- however, thaiG is not unique, since it depends on the pa-
sible. Let us consider the wave function rametero.
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Although such results were derived for a pure state.e., the smoothing operation has increased the entropy. Note
Wigner function, they can easily be generalized to mixturesthat, in order to obtain this result, the smoothing kernel need
It follows that, when smoothing several times with a Gausshot be a Gaussian.
ian kernel, we still remain within the class of admissible Now we turn to the case where the smoothing kernel is
Wigner functions. This class is therefore closed with respecindeed Gaussian. In this case, a relatively simple expression

to this particular operation. for I[W] can be obtained. The double Fourier transform of
the Gaussian defined in ER9) is
V. ENTROPY AND SMOOTHED WIGNER FUNCTIONS
2 2 22
The smoothing operation has the effect of erasing some of G(k,)\)zex,{ - Ko A f ) . (45)
the correlations in the phase space. We expect therefore that 2 807

smoothing should increase the entropy. This is not difficult
to prove. In order to do this, we need to define the doublerhe Fourier transform of the Wigner functiow to be

Fourier transform of a Wigner functiow(x,p), smoothed is given by Eq40). Let us compute the informa-
tion:

W(k,)\)=f fW(x,p)exq—ikx—i)\p)dx dp. (39 _ _
I[W]=277hf W2 dx dp
By means of Egs(6) and(39), one obtains for a pure state 5
:ZJ Wk ) 2IG(k|? dk k. (46)
exp( —ikx)dx.

(40) ExpressingW and G by means of Eqs(40) and (45) one
obtains, after some algebra,

LM
T

N\
W(k,)\)=f l/I(X— 7) Y

We can then easily prove the following lemma:
_ 1 A
INATE INATE ITW]= f (x——)*
|W(k,)\)|2sf¢(x—7) de‘zﬂ* x+—|| dx=1, (W] 20\ Nxz)¥
41

A A2+ (x—x")?
_ _ X | x'— = |exp — —
where use has been made of Schwartz’s inequality. 2 4o
Now, let us take an arbitrary Wigner functid(x,p) and (47)
smooth it with a kernelK(x,p) which is a pure state:
W(x,p)=W(x,p)°K(x,p). In Fourier space we have We now change the integration variables, using the follow-
W(k,\)=W(k,\)K(k,\). The quantum information[W]  ing unitary transformation:

=27h[W? dx dp relative toW satisfies the inequalities

A
X'+ =

R
XT3 2

2110

dx dx'dA.

11
I[W]= ﬁJv_ka 2 dk dn Tt
1 1 1
h X'=sW—5y— 52, (48)
:—J IW(k,\) 2K (k,\)|?dk dn 2- 27 2
2
A=—y+z

< maxK (K x)|2£f Wk V)2 dk d
2 After some algebra, the following result is obtained:

_ 1 y2
I[W]:U—\/;f dwf 1//(w+y)z//(w—y)exp<—ﬁ>dy
sthJ W2 dx dp=I[W], (42) (49)

=ma>4K(k,)\)|227-rhf W2 dx dp 2

which expresses the quantum information in terms of the
wave functiony corresponding to the unsmoothed Wigner
function W. Equation (49) may be usefully employed to
1 monitor the time evolution of the entropy in a numerical
f W2(x,p)dx dp= _f IW(k,\)|? dkdh. (43 simulation:y(x,t) would then evolve according to the time-
472 dependent Schdinger equation.
Finally, we show that a more stringent bound than the one
Equation(42) implies that expressed by Eq44) can be obtained when the smoothing
. kernel is Gaussian. By using again Schwartz’s inequality, we
S,[W]=S,[W], (44)  have from Eq(49)

where we have used the previous lemlig. (41)] for K, as
well as Parseval’s identity in the form
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The corresponding Wigner functions di&

— 1
, Wn(X,p)— wh ex _%) I—n % ’ (57)
Xexp( —%) f dy’|g(w+y" ) g(w—y")|? where H(x,p) is the Hamiltonian, and the(¢) are Leg-

endre polynomials Ly=1, Li;=1-¢, L,=1-2¢
) , 21 +&2/2, ...). We nowsmooth such Wigner functions with a
:f de dy'[p(w+y ) gp(w=y")|*=5. (50  Gaussian kernel, and fif@]

In terms of the entropy, this becomes W, (x,p)=(27An!) "Y(H/Aw)" exp—H/fiw). (58)

S[W]=3, (51)  Note that this relatively simple result fo, is obtained only
a result that is valid when smoothing a pure Wigner functionin the case when the square variance of the smoothing kernel

. 2_ . -
with a Gaussian kernel. Note that we still have some freedoris€€ Ed. (29)] is o°=#/2mw; in all other cases, the
in the choice of the kernel, since the widthof the Gaussian SMoothed Wigner function is not a function of the energy
in Eq. (29) is still unspecified. It would be interesting, for Only- We are now_|r21 a position to compute the information
example, to know which value af minimizes the entropy [W,]=1,=27% W dxdp. Let us first change to polar

S,[W], within the bounds given by Eq51). We have not coordinates(, ) in the phase space,

been able to obtain a general result, but some indication can 2

be obtained from the following example. Let us suppose that —+mo?x?=hor?, dxdp=Ardrdé. (59
the functionW to be smoothed is also a Gaussian, as in Eq.

(29), but with spatial variancg instead ofo. The smoothed  One obtains, after integration oveér

Wigner function is then

2 P I_nz(n!)‘zf:(rz/Z)2n exp(—r)rdr, (60)

_ 1
W(X,p)=WeG=-——— exp( —-——— —) , (52
2w 23% 237 and finally, changing variable agair+r?/2,

with _ oo [*oan (2n)!
. . 7201 1 [,=(n!) foz exp( Zz)dz—m. (61
EX=0' +u, Epzj(?—'—ﬁ . o
. We first note that o= 3, in agreement with previous results,
The information corresponding W/ is since the ground state of the harmonic oscillator is a Gauss-
5 ian, and we are smoothing with another Gaussian of identical
|[v\/]=277ﬁf W2 dx dp= 33 (530  width. It can also be shown théa}, is a decreasing function
x<p of n. The asymptotic expansioffor n>1) is obtained by
After some algebra, one obtains the following expression: taking the logarithm of Eq(61) and making use of Stirling’s
formula,
I[W]=1(2)= (59) In X! ~XInX—X+3InX (X>1),

1+2%
wherez=o/u. The functionl(z) attains its maximum for Which yields
z=1, i.e., wheno= u, and the kernel has the same variance

as the Wigner function to be smoothed. In this c&gW]

—1 H
=2 which represents the lower bound of E§1). We could _In terms of the entropy, we have in summary
conjecture, although we do not have a formal proof, that this

1,~n"12 (62)

is the general result: the minimum entropy increase due to Sz[V_Vo]Z%.
smoothing with a Gaussian kernel is attained when the width - o
of the kernel is close to the width of the function to be ST Wi 11> S I W, ], (63)
smoothed. -
Another interesting example is provided by the harmonic lim S,[W,]=1.
oscillator, whose Hamiltonian is n—o
B p? 2x2 The latter results mean that the entropy increase is larger
H(X’p)_ﬁJ“m“’ o 59 when smoothing a semiclassical state. Asymptotically, the

entropy of the smoothed Wigner function approaches unity.
The eigenstates can be expressed in terms of Hermite polydn the other hand, when smoothing a “fully quantum” state

nomialsH,(¢) (Ho=1, H;=2¢&, H,=4&2—2,...) (i.e., a state with small quantum numberthe entropy in-
1a ) crease is moderate. Although these results were obtained for
Mo MwX i i i 1
_ (onnpy -2 Me . 7 the special case of the harmonic oscillator, we are confident
Yn(X)=(2"n1) (ﬁw) exp{ 2h )H”(X Ma/#). that they remain qualitatively correct for othésiassically

(56) integrable Hamiltonians.
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VI. DISCUSSION the Gaussian kernel is close to the width of the Wigner func-

. tion to be smoothed. This would not be unreasonable from
In this paper we have presented several results related to ﬁ . . . L
the information point of view: it would mean that we can

new definition of quantum entropy, denot8g¢l Although it A . X .
has already been used in the past in the framework of thgnnlmlze the entropy increase if we have some prior know-
: . : . dge of the function to be smoothed.
_densny-_matrlx formal|§m, SUCh. entropy b_ecomes_ particularly As a further example, we have computed the entropy of
mterestmg when applied to Wigner functions. It 1S then POSthe (smoothedl stationary states of the harmonic oscillator. It
sible to show thatS, possesses a number of interesting,yas shown thas, increases with quantum number, therefore
properties—most importantly, for example, it is an invariantsemiclassical states yield a larger entropy increase. Again,
for the Wigner equation, which governs the evolution of e have conjectured that this behavior is universalleast
Wigner functions.S, is related to the Tsallis entropy, al- for confining and classically integrable Hamiltonianand
though the latter is usually defined for a discrete set of probnot specific to the harmonic oscillator. We are rather confi-
abilities, rather than for a continuous distribution. An advan-dent that our conjecture is correct since the larger entropy
tage of this entropy, compared to the quantum Von Neumanincrease for semiclassical states is mainly due to the fact that
entropy, is that the Wigner function is all that one needs taheir Wigner function displays short-wavelength oscillations
computeS,. No knowledge of the density matrix is required, in the phase space, which are easily erased by the smoothing
nor does it need to be diagonalized, as is the case for the Vaprocedure.
Neumann entropy. It would be interesting to know how the previous results
The standard properties of entrofisoncavity, additivity, — generalize to classically nonintegrable Hamiltonians. For the
subadditivity have been examined. This has revealed som&armonic oscillator, it was found that the information of the
interesting facts, which would require further investigations.smoothed stationary states behaved asn™~ 2 Although
For instance, it has been proven tigt (unlike ordinary the exponent- 3 might be specific to the harmonic oscilla-
entropy behaves like a probability with respect to additivity tor, a polynomial law may be universal for the class of inte-
properties, which is also consistent with the normalizationgrable Hamiltonians. On the other hand, one could conjec-
0=<S,=<1. Second, the analysis of the canonical ensembléure that, for nonintegrable Hamiltonians, the decrease is
has enabled us to derive a Wigner functdfy, that maxi- ~ faster, perhaps exponential.

mizes the entropy under certain constraiiftg, turns out to From the physical point of view, this result means that
be both a function of the energy alone and a stationary soluseémiclassical states are highly unstable under generic pertur-
tion of the Wigner equation. The relevance b, is still  bations (among which smoothing is a relevant example

unclear, but one could reasonably conjecture that it plays &his is reminiscent of the so-called “predictability sieve,” a
role in some relaxation processes. Numerical experimentgoncept introduced by Zurek and co-workgs$in the more
could clarify this point. general framework of decoherengk2,13. Zureket al. [5]

An “unpleasant” property ofS, is that, keeping the construct a model for the interaction of a quantum system
Wigner function fixed, and letting Planck’s constant go towith an environment at thermodynamic equilibrium, and
zero, one obtainS,= 1. Thus it would seem that all classical cOmpute the rate at which initially pure states deteriorate into
states have unit entropy. The point is that this is not themixtures by coupling with the environment. This process is
correct procedure to obtain a classical state: indeed, if thknown as decoherence. Subsequently, they look for the set of
original Wigner function is negative somewhere, we wouldstates which are least prone to deterioration, and find that
obtain a classical state with a nonpositive probability distri-Such states are those which yield the minimum entropy in-
bution, which is of course meaningless. The correct procecréase. By estimating the entropy production, they obtain
dure is instead to smooth the Wigner functighwith an  that the minimum-entropy increase is attained for the ground
appropriate kernel, which must also be a Wigner function inState o_f the harmonic oscHIator, i.e., @ minimum uncertainty
order to ensure positivity. A crucial point, however, is thatGaussian wave packet. This coincides with our results of

the smoothed Wigner functiow should be itself amdmis- Se_cI:_.hV. o i . His that Zurek and
sible quantum state, i.e., one that can be described by a den- € main difierence from our approach Is that zurek an

sity matrix with non-negative eigenvalues. We have beer?o-workers[S] analyze adynamicalsituation, while in our

able to prove that, when smoothing with a minimum uncer-case the entropy-producing effect is the smoothing, which is

tainty Gaussian packet, the result is always admissible, alf statu; Process. Since bOth. cases appear to give the same
though this isnot necessarily the case when smoothing Withresult, it is reasonable to conjecture that smoothing may rep-

another Wigner function. This is, to our knowledge, the ﬁrstresent asimplified model for the interaction of a quantum

rigorous argument showing that Gaussian smoothing poss_ystem Vr\]"Fh t?]n topendenthorl;nment. ]Ihf price tlo pk;ay fgrdou_r
sesses some privileged status. approach is that we do not have a first-principle based deri-

It has also been proven that smoothing increases the eN?t'gnl .Of .SUCT an mtehratcnogt. _The adv%ntag;a IS that the
tropy: in particular, when smoothing a pure state with amodel IS simple enough o obtain a humber of rigorous re-

Gaussian kernel, one hS@[W]_B%. It would be interesting These considerations may shed some new light on the
to know how to minimizeS,[W]. This could be done by semiclassical limit. We distinguish two kinds of pure quan-
varying the widtho of the Gaussian kernel, which is still a tum states: fully quantuniFQ) statesWeq (with low quan-
free parameter. Although we are not able to derive a rigorougym numbers and semiclassicd5C) statesWsgc (with large
result, we have conjecturddnd shown explicitly on a par- quantum numbeys For both S,=0, i.e., they contain the
ticular examplg that S,[ W] is minimum when the width of same amount of information. However, after the smoothing,
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one obtains S,[Wgol=3% and S[Wsd—1, ie., the
smoothed FQ state containmore information than the

smoothed SC state. In other words, although both original
states contain the same information, this is of different
“quality:” robust for the FQ state and highly prone to dete-
rioration for the SC state. It is not surprising, therefore, that
coupling to an environment has the effect of erasing such
information less easily in the former case than in the latter.
These results could open new avenues for further research,

particularly with computer experimenfd4], to investigate

G. MANFREDI AND M. R. FEIX
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Now, by using the integrals
o
J exp( — 2x2)exp —ikx)dx= \/; exp(—k?/8),

f x2 exp( — 2x2)exp — ikx)dx

k2
1- Z) exp(—k?/8),

the dynamical behavior of the entropy defined in this paper.
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APPENDIX

We want to prove the result of E§37). Let us use the
identity
1
f f(x,p)g(x,p)dx dp= Ff f(k,N)g* (k,N)dk dn,
aa

with f=W and g=W. Since W(x,p)=WeW, the double
Fourier transform ofV is W2(k,\). In addition, it will turn

out thatW(k,\) is real for the case under consideration here.

we obtain, after some straightforward algebra,

k2 N?h2 K2
AR ]

Wk M={1=7 > 8

We are now ready to compute the integfa\/® dk di. Let
us change integration variablek, {)— (r, ¢)

2

r2=—+\%#2,

h
7 rdrdgozEd)\dk.

After integration overp, one obtains
o [ 4 (= 3
f W3dkd)\=—J' (1-r?3exp — =r?|rdr.
Y B f Jo 2

Changing the integration variable to=r? and using inte-

Therefore, by making use of the previous identity, the left-9rals of the type

hand side of Eq(37) becomes

_ 1
_ 3
fW(x,p)W(x,p)dxdp 4WZJW(k,)\)dkd)\.

The double Fourier transform/(k,\) is given by Eq.(40).
For our example, the wave function is the one of E2p),
and we obtain
\2h?
o]

W(k,\)=4\2/7 exp(—xzhz/z)f (xz—

X exp( — 2x?)exp( —ikx)dx.

o n!
JO y" exp(—ay)dy= ryey

we obtain
© (oo 2 (= 3
f W3dkd)\=—f (1—y)3exp(——y)dy
—owJ —o ﬁ 0 2
B 4
2Th!

which, once divided by 42, yields the result of Eq(37).
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