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Unstable dimension variability and synchronization of chaotic systems
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The nonhyperbolic structure of synchronization dynamics is investigated in this work. We argue analytically
and confirm numerically that the chaotic dynamics on the synchronization manifold exhibits an unstable
dimension variability, which is an extreme form of nonhyperbolicity. We analyze the dynamics in the syn-
chronization manifold and in its transversal direction, where a tonguelike structure is formed, through a system
of two coupled chaotic maps. The unstable dimension variability is revealed in the statistical distribution of the
finite-time transversal Lyapunov exponent, having both negative and positive values. We also point out that
unstable dimension variability is a cause of severe modeling difficulty.

PACS number~s!: 05.45.Xt, 05.45.Pq
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I. INTRODUCTION

We often classify dynamical systems into determinis
and stochastic ones. Deterministic systems are characte
by a set of prescribed mathematical rules which evolve
dynamical variables in time. For these kinds of models
can numerically generate trajectories over reasonably l
periods of time. Stochastic systems are based on some s
random process. They may occur when extrinsic noise
present. For these systems, only statistical information
be extracted, like averages or fluctuations of physical qu
tities, over trajectories of reasonable length.

In this paper we consider a new example of a third kind
dynamical system~pseudodeterministic!, which—in spite of
being deterministic—yields only statistical relevant inform
tion over trajectories of reasonable length. The problem w
those systems is not related to the correctness and exact
of the dynamical equations, but rather to a mathematical
thology calledunstable dimension variability@1,2#.

Unstable dimension variability was introduced by Abr
ham and Smale through a two-dimensional continuou
differentiable map@3#. A feature associated with unstab
dimension variability is the oscillating behavior of a finit
time Lyapunov exponent about zero. This occurs beca
typical trajectories present arbitrarily long~but finite-time!
segments for which the orbit on the average is repelling
one of the dimensions, and other segments for which i
attracting in the same dimension. This behavior was foun
a four-dimensional invertible map describing a kick
double rotor@4#.

Recently a noninvertible two-dimensional map was p
posed as a simple dynamical system exhibiting unstable
mension variability@2#. Moreover, it has been shown@5# that
a lattice of diffusively coupled He´non maps presents un
stable dimension variability for any nonzero couplin
strength. In this paper, we argue that unstable dimen
variability occurs in the context of synchronization of ch
otic orbits of two similar maps with nonlinear coupling. B
changing variables such that one of them is in the synch
nization manifold of the coupled system and the other
transversal to it, we obtain a map that was first studied in
PRE 621063-651X/2000/62~1!/462~7!/$15.00
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context of superpersistent chaotic transients and crises@6#.
We identify the mechanism that brings unstable dimens
variability to the chaotic invariant set of this system, name
a saddle-repeller bifurcation which was formerly related
the boundary crisis mechanism@7#. It produces a structure
composed of supernarrow tongues through which trajecto
on a chaotic saddle may escape after very long transi
before they are reinjected. A chaotic saddle is an invari
compact setC that is both attracting and repelling, and co
tains a chaotic trajectory which is dense inC. This structure
is similar to that observed in the context of the so-cal
riddling bifurcations @8#. The fluctuating behavior of the
transversal finite-time Lyapunov exponent is described
this example, and statistical information about its distributi
is presented.

The goodness of deterministic models is determined
two well-known paradigms:~i! the model must be based o
sound theoretical framework, e.g., correctly applied phys
laws; and~ii ! the trajectories produced by the model shou
reproduce correctly, in some sense, the actual behavior
served in Nature. This motivated the introduction of t
model shadowabilityconcept @1,5#: let A and B be two
closely related dynamical models of a physical system,
with some difference, which could be related to a sm
change in one of the system parameter values, or a slig
different external influence on each model, or a differe
noise realization. The latter cause is restricted to arbitra
small time dependent and bounded perturbations, which
cludes Gaussian white noise, for example.

We say that model shadowability occurs if trajectories
modelA stay close to trajectories of modelB. This is neces-
sary, but not sufficient, for either model to reproduce a
predict correctly the time evolution of the system which t
model is intended to describe. In other words, if there is
model shadowability neitherA or B would generate trajecto
ries that are physically realized, since if no trajectory ofA is
close to any trajectory ofB, it is unlikely that either model
would give a trajectory that stays close to any real traject
produced by Nature.

The difficulties that obstruct model shadowability ha
been divided into three classes: minor, moderate, and se
462 ©2000 The American Physical Society
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PRE 62 463UNSTABLE DIMENSION VARIABILITY AND . . .
@5,9#. Minor modeling difficulties occur for hyperbolic cha
otic systems, since they present sensitive dependence o
tial conditions. If A and B are hyperbolic chaotic system
trajectories ofA can always be closely followed, or sha
owed, by trajectories ofB for an infinite time@10#. A chaotic
set is hyperbolic if, at each point of a trajectory on this s
the local phase space can be split into unstable and s
subspaces, and the angle between them is bounded
from zero. The unstable~stable! subspace evolves into th
unstable~stable! one along the trajectory. However, chao
nonhyperbolic systems are much more common in phys
applications—they may present nonhyperbolic~homoclinic!
tangencies of the unstable and stable subspaces. For
systems we say there is a moderate modeling difficulty
cause trajectories ofA are shadowed by trajectories ofB for
a long, yet finite, amount of time@11#. However, if this shad-
owability time is long enough, both models are still use
for describing the physical phenomena being modeled.

Finally, pseudodeterministic models present severe m
eling difficulties, since they are chaotic nonhyperbolic s
tems presenting unstable dimension variability: the unsta
and stable subspaces along a chaotic invariant set hav
tangencies, but the dimension of the unstable subspace v
from point to point. For this case the shadowability time
short, and no useful information could be extracted fro
single trajectories over a reasonable time span, but ra
statistical information based on a probability distribution@1#.

This paper is organized as follows: in Sec. II we introdu
the coupled chaotic map system, and analyze its synchr
zation manifold and the corresponding noninvertible map
a torus. Sections III and IV are devoted to a description
the saddle-repeller bifurcation, the average transient lifeti
and the birth of unstable-dimension variability. Section
deals with the distribution of finite-time transvers
Lyapunov exponent and the relative fraction of its posit
values. Section VI contains our conclusions.

II. COUPLED CHAOTIC MAPS

Coupled dynamical systems are susceptible to the s
chronization of their trajectories, by which they under
closely related motions, even when they are chaotic. In
latter case, even if two identical systems are started w
different initial conditions, if the coupling is strong enoug
their states are asymptotically equal as the time evolves@12#.
This is a quite different behavior, compared to that expec
from uncoupled yet identical chaotic systems, since if th
are started with approximately equal but different initial co
ditions, sensitive dependence will cause the two system
have completely uncorrelated motion after some time@13#.

We consider two piecewise maps of the formxn115kxn
~mod 1), wherek.1. For almost all trajectories of each ma
the ~infinite time! Lyapunov exponentl5 ln k is positive. By
almost all we mean that all orbits generated from this m
are chaotic, except for a set of zero Lebesgue measure
taining countably infinite periodic points@13#. We can write
k511a/2, which is greater than one provideda.0, and
change the variable range from@0,1) to @0,2p), without al-
tering the chaotic nature of the map orbits.

Let us introduce a nonlinear coupling of two such chao
maps, yielding a nonlinear coupled system on a torusT2:
ini-
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un115S 11
a

2 Dun1U~un ,wn! ~mod 2p!, ~1!

wn115S 11
a

2 Dwn1W~un ,wn! ~mod 2p!, ~2!

whereU andW are given by

U~un ,wn!5S 12
a

2 Dwn1
1

2
~un2wn!21

b

2
cos~un1wn!,

~3!

W~un ,wn!5S 12
a

2 Dun2
1

2
~un2wn!22

b

2
cos~un1wn!,

~4!

whereb.0.
For coupled dynamical systems like this one, we can

tain the synchronization state, which is given byun5wn .
Geometrically, this state defines a synchronization manif
S, which is a one-dimensional subset of the phase spaceT2

5@0,2p)3@0,2p). If we represent this torus on a squa
with periodic boundaries, the synchronization manifold is
straight line with unitary slope. In order to describe the d
namics in the synchronization manifold and in the directi
transversal to it, we make a coordinate transformationu5u
1w, z5u2w. There results a two-dimensional noninve
ible map on a torus:

un1152un ~mod 2p!, ~5!

zn115azn1zn
21b cosun ~22p,z<12p!. ~6!

Here the synchronization manifoldS is simply the axisz
50. If b50, the system decouples into two independe
maps inu andz, so that an initial condition in the synchro
nization manifold will generate a chaotic orbit$un%n50

` with
zn50 for all times—it will never escape fromS. HenceS is
an invariant manifold only forb50. An invariant manifold
is typically related to the existence of some kind of symm
try in the system, so we may callb a symmetry-breaking
parameter. For nonzerob, a chaotic orbit of the system is no
restricted to the synchronization manifold, and can occup
larger portion of the phase space along the transversal d
tion z.

The system in Eqs.~5! and ~6! was introduced, in a
slightly different form@6#, to describe a kind of crises cha
acterized by long-lived, or superpersistent, chaotic transie
The z part of the system was allowed to have any real va
in (2`,1`). For some parameter values, likea50.7 and
b50.02, that system, like ours given by Eqs.~5! and ~6!,
exhibited a chaotic attractor near thez50 line ~Fig. 1!. A
crude argument that can be used to justify the chaotic na
of this attractor consists on linearizing the map in Eq.~6!
aboutz50, settingz5bz, wherez is a small quantity. We
obtain the mapzn115azn1cosun , that would give a cha-
otic attractor foruau,1, as proved by Kaplan and York
@14#. In addition to this chaotic attractor, it was shown@6#
that there is another chaotic set which is a chaotic saddl~a
nonattracting chaotic invariant set! located where the fracta
basin boundary is.
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III. SADDLE-REPELLER BIFURCATION

The mechanism whereby the chaotic attractor of the m
in Eqs. ~5! and ~6! loses hyperbolicity through unstable d
mension variability is basically an unstable-unstable pair
furcation. As a result, the chaotic attractor may collide w
the chaotic saddle, and disappear into a larger chaotic sa
from which trajectories may escape, through a comp
structure of supernarrow tongues. This is also called sad
repeller bifurcation@7#, and it has been found to be the cau
of other strange behavior in chaotic systems, like riddling
basins of attraction@8# and boundary crises@6#.

A linear stability analysis can show the basic features
this transition. The period-1 fixed points of the map of E
~5! and ~6! are

ū50, z̄5 1
2 ~12a6A~12a!224b!. ~7!

Defining z* 5(12a)/2 andb* 5z
*
2 , these fixed points are

written as (u50, zb5z* 1Ab* 2b) and (u50, zc5z*
2Ab* 2b). Let us fix our attention to the case depicted
Fig. 1, i.e.,a50.7 andb50.02,b* 50.0225. It turns out
thatzc lies in the upper point~i.e., the point with the highes
value of z) of the chaotic attractor, whereaszb is in the
lowest point of the chaotic saddle.

The Jacobian matrix of the map has eigenvalues given
j152 and j25a12zn . So theu direction is always un-
stable, as it should be due to the existence of the cha
attractor. The eigenvalue related to the transversal direc
evaluated at the fixed points, gives

j2~zb,c!5162Ab* 2b, ~8!

so that, forb,b* , zb is a repeller, since it has an unstab
dimension of dimension 2, and no stable subspace at all.zc is
a saddle point, since both stable and unstable subspaces
dimensions equal to 1@Fig. 2~a!#. If b5b* the fixed points

FIG. 1. Phase portrait of the map@Eqs.~5! and ~6!# for a50.7
andb50.02,b* 50.0225. The dark region contains points whi
are driven to higherz values, but are eventually reinjected to neg
tive z values due to thez dynamics being in@22p,12p). The
chaotic saddle is the boundary between the dark and light g
region. The chaotic attractor is embedded in the light gray regi
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zc andzb coalesce atz5z* @Fig. 2~b!#. Since the eigenvalue
is equal to 1 at this point, linear stability analysis fails
determine its stability, and we have a saddle-repeller bif
cation with eigenvalue11 at b5b* . For b.b* the fixed
points no longer exist, and we have a different dynami
behavior@Fig. 2~c!#.

When the fixed points coalesce atb5b* , the chaotic
attractor collides with the chaotic saddle, and it become
chaotic transientthrough a boundary crisis~since the attrac-
tor has collided with an unstable periodic orbit! @7#. Trajec-
tories arising from initial conditions belonging to the form
basin of the chaotic attractor will typically approach its rem
nant, that is now a part of a larger chaotic saddle, and
bounce around it in an irregular fashion. However, af
some~typically very long! time this trajectory will stay near
the region where the fixed points have coalesced, and
leave the chaotic saddle, being eventually reinjected to
vicinity of the saddle due to thez dynamics being in
@22p,12p#.

At the location where the fixed points coalesced (z5z* ),
a tongue opens up, allowing the trajectories near the cha
saddle to escape forb.b* . Simultaneously, each preimag
of z* also develops a tongue. Since these preimages
dense in the chaotic saddle, an infinite number of th
tongues opens up simultaneously whenb5b* . Actually,
these tongues will develop at those points whereu
52pm/2k, with m and k positive integers. For our map
however, these tongues are very narrow, since th
widths decrease geometrically, and are extremely diffic
to find numerically, with exception of the main tongu
opened up atz* .

IV. BEHAVIOR OF CHAOTIC TRANSIENTS

To understand how chaotic transients are formed after
saddle-repeller bifurcation, let us consider thez part of the
map of Eq. ~6! at u50 ~from where the main tongue
grows up!,

zn115azn1zn
21b, ~9!

whose fixed pointszb and zc are the intersections betwee
the parabolic function and the first bisectorzn115zn @Fig.
3~a!#. As b approaches its critical valueb* , these points
approach each other and eventually coalesce whenb5b* at

-

y
.

FIG. 2. Fixed points for the map@Eqs. ~5! and ~6!# and their
stability for ~a! b,b* , ~b! b5b* , and~c! b.b* .



ne
nd
w

l
ic
ta
e
e
as

o
ti

rs

,
e

om
ot

at
r
in
d

-
i-
f

e
as

e

l

e

ove
ing

ry
e
ce
he
g

lts

e
10

s in
nt

PRE 62 465UNSTABLE DIMENSION VARIABILITY AND . . .
z5z* , where the map function is tangent to the 45° li
@Fig. 3~b!#. For b.b* the parabola has moved upward, a
does not intercept the bisector, leaving no fixed points. Ho
ever, providedb is not very far fromb* , a narrow channe
forms between the parabola and the 45° line, through wh
passes the trajectory resulting from the map iterations, s
ing there a very long time, and eventually escaping to largz
values@Fig. 3~c!#. Becausez is in a torus, map iterates ar
reinjected and enter again in the channel. This is the b
mechanism of type-I Intermittency@15#, but since theu di-
rection is unstable, the slow motion through the channel d
not imply a laminar behavior. Rather, it is related to a chao
transient, that is characterized by an irregular wandering
the trajectory over a limitedu range.

The chaotic transient decays when the trajectory ente
tongue, escaping toward largerz values, before it is rein-
jected. The main tongue is formed about theu50 line, so let
us focus our attention at this spot. Forb values greater than
b* , a tongue intercepts the synchronization manifoldz50
in an aperture of widthl nearu50, through which the tra-
jectory can escape. Once having entered the aperture
trajectory stays in it a numberT of iterates before leaving th
region y<yc . Although yc must be less than 2p, its exact
value does not affect our results in a significant way. Fr
now on, we setyc52.0. The trajectory, however, does n
immediately stays close tou50, since theu direction is
highly unstable~its eigenvalue isj252.1, pulling back the
trajectory into the vicinity of the chaotic saddle!.

Let l be the distance between the orbit andu50 at a given
time. After T iterates this distance increases to (j2)Tl . How-
ever, since theu excursion is bounded, we expect th
(j2)Tl ,k1, wherek1 is anO(1) constant. Now we conside
what happens with a large number of trajectories aris
from randomly chosen initial conditions. Due to the ergo

FIG. 3. First return map for Eq.~6! with u50 anda50.7 for
~a! b50.01,b* 50.0225, ~b! b5b* 50.0225, and~c! b50.04
.b* .
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icity of the u motion, we expect that almost any initial con
dition u0 will generate an orbit which has a uniform distr
bution over@0,2p) for large times. Hence the probability o
un11 falling into the aperture@2 l /2,1 l /2#, if un is not in
this interval, is equal to the interval widthl. So we can esti-
mate the average lifetimêt& of the chaotic transient as th
inverse of this probability. Taking our previous estimate
an upper bound for the distance alongu direction at timeT,
we have@7#

^t&5k~j2!T5k2T, ~10!

wherek51/k1.
In order to computeT, we assume that, forb slightly

greater thanb* the aperture widthl is very small, so that we
may approximateu by 0 and use Eq.~9! again. The differ-
encezn112zn has a local minimum atz* , so we describe
the dynamics within the narrow channel by usingdn5zn
2z* . This difference evolves with time according to th
map

dn115dn1dn
21~b2b* !, ~11!

and, sincedn11 is very close todn , we can approximate the
differencedn112dn as a differential and write a differentia
equation ford, now a continuous function of timet,

dd

dt
5d21~b2b* !, ~12!

which can be integrated from22p to 12p, to give an
estimate for the timeT it takes for the trajectory to escap
once it has fallen in the aperture:

T5
2

Ab2b*
arctanS 2p

Ab2b*
D . ~13!

Inserting Eq.~13! into Eq. ~10!, and taking logarithms, we
have

log10̂ t&5 log10k12 log102~b2b* !21/2

3arctan„2p~b2b* !21/2
…. ~14!

To check the validity of the hypotheses made in the ab
derivation, we have made a numerical experiment, choos
Nu0

initial conditions randomly distributed over@0,2p), and
computing the transient exit time once a given trajecto
crosses the liney5yc52.0. The average transient lifetim
^t& was then computed for many values of the differen
(b2b* )21/2, the results being depicted in Fig. 4, where t
parameterk in the theoretical prediction above is a fittin
parameter.

The fitting is asymptotic though, since numerical resu
are best fitted by Eq.~14! when we approachb* , i.e., in the
neighborhood of the saddle-repeller bifurcation. The lifetim
of the transients can be very large, for instance up to8

transients, even though we are as far fromb* as 44%. This
occurs because the trajectory has to stay many iteration
the narrow aperture of widthl. Therefore, a better agreeme
between the theoretical prediction~14! and the numerical
result only occurs forb closer tob* . Far from b* , the
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466 PRE 62RICARDO L. VIANA AND CELSO GREBOGI
theoretical estimate we made ceases to be valid, but rem
useful as a lower bound for the exit time of transients.

V. FINITE-TIME LYAPUNOV EXPONENTS

We have seen that, at the saddle-repeller bifurcationb
5b* , an infinite number of points, dense on the chao
attractor, become repellers~unstable dimension 2!, and an
infinite number of supernarrow tongues crop up as resul
the collision between the attractor and the chaotic sad
However, there remains a dense set of saddle points~un-
stable dimension one! in the invariant set, and since thes
two different sets are densely intertwined, unstable dim
sion variability does occur in the chaotic invariant set fo
large range of parameter values of the map.

Yet, another signature of unstable dimension variabil
as stated in Sec. I, is the fluctuating behavior of the fin
time Lyapunov exponents about zero. Consider
d-dimensional mapx°f(x), wherex is ad-dimensional vec-
tor andf is a d-dimensional vector field. Letn be a positive
integer, and letDf n(x0) denote the Jacobian matrix off n

~then-times iterated map function! evaluated at the pointx0.
The eigenvalues of the Jacobian matrixDf n(x0) are

s1~x0 ,n!>s2~x0 ,n!>•••>sd~x0 ,n!>0. ~15!

We define thekth time-n Lyapunov exponent associate
with the initial conditionx0 as @2#

lk~x0 ,n!5
1

n
ln zuDf n~x0!ukuz, ~16!

whereuk is the eigenvector corresponding to the eigenva
sk . Note that the usual infinite-time Lyapunov exponent

lk5 lim
n→`

lk~x0 ,n! ~17!

has the same value for almost every initial pointx0 with
respect to the Lebesgue measure in the basin of attracti

FIG. 4. Base-10 logarithm of the average exit time of transie
^t& of the map@Eqs.~5! and ~6!# with a50.7 andb* 50.0225, as
a function of (b2b* )21/2. Circles: numerical experiment; full line
theoretical prediction given by Eq.~14! with a fitting parameterk
50.0027.
ins

c

f
e.

-

,
-
a

e
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For our map on a two-torus,xn5(un ,zn)T, the Jacobian
matrix of the n-times iterated map has eigenvaluess1
5(j1)n52n, and

s25)
i 51

n

~a12zi !, ~18!

so that the second~transverse! finite-time Lyapunov expo-
nent is given by

l2~x0 ,n!5
1

n (
i 51

n

ln ua12zi u, ~19!

the first exponent being simply ln 2.
The possibility of fluctuations between positive and neg

tive values for this exponent makes it useful to define a d
tribution function for it. LetP„l2(x0 ,n),n… denote the prob-
ability density function of the second time-n Lyapunov
exponent, whenx0 is chosen at random according to th
Lebesgue measure. In other words,P„l2(x0 ,n),n…dl2 is the
probability that the exponent value lies betweenl2 and l2
1dl2. If F(l2) is any function of the time-n Lyapunov
exponent, its average over the invariant measure of the
tractor is given by

^F~l2~x0 ,n!&5E
2`

1`

F„l2~x0 ,n!…P„l2~x0 ,n!,n…dl2 .

~20!

To obtain the distributionP(l2) numerically, we picked up
many randomly chosen initial conditions uniformly distrib
uted over@0,2p), and iterate each initial conditionx0 a large
number of times. Everyn510 steps we compute the time-1
exponent according to Eq.~19!. Actually, we use the recur
rency of dynamics, and follow a single trajectory a lar
number of steps, say two million iterates. The timen510
exponents are then computed from 23105 consecutive and
nonoverlapping length-10 sections of the trajectory. Fr
these exponents we compute a frequency histogram
convenient normalization, so that

E
2`

1`

P~l2~x0 ,n!,n!dl251. ~21!

In Fig. 5~a!, we show a distribution fora50.7 and b
50.04, which is'78% away from the critical valueb*
50.0225. In this case we can observe a distribution wh
has asymmetric tails. The negative tail has a sharp cu
whereas the positive tail decreases smoothly. Only 0.26%
the second finite-time exponents is positive, indicating t
almost all trajectory sections are transversally contracti
This is consistent with the trajectory behavior in the narr
channel that occurs nearb* , but the noteworthy feature her
is the relatively small number of positive exponents. Figu
5~b! depicts the same situation, but forb50.07, which is
about three times the previous deviation away from the c
cal value. This time the distribution has also a sharp cu
for negative exponents, while there is a long flat tail of po
tive exponents (11.4% of their total number!. The maximum
of the distribution, however, appears not to have moved
ther toward less negative or positive values ofl2(10), hav-

s
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FIG. 5. Probability distribution for the transverse time-10 Lyapunov exponents fora50.7 and~a! b50.04, ~b! b50.07, and~c! b
50.15.
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ing approximately the same value of20.35 in both cases
The fate of the probability distribution, as we increase f
ther the symmetry-breaking parameterb, is illustrated in Fig.
5~c!, where we useb50.15. The same general character
tics of Fig. 5~b! are still here, even though we are now ve
far ~almost six times! from the critical value. The negativ
peak still exists at approximately the same location, but
distribution has broadened in that place. The interesting
pect is the emergence of a second peak in the positive
We note that the fraction of positive exponents has increa
to 47.3%.

The fraction of positive time-n exponents,

f ~n!5E
0

`

P„l2~x0 ,n!,n…dl2 , ~22!

has been computed for various values ofb, the results being
depicted in Fig. 6, showing the correct monotonic increase
-

-

e
s-
il.

ed

f

this fraction, indicating that forb'0.20 about half of the
exponents are positive. However, this number increase
the map of Eqs.~5! and ~6! due to the emergence of th
second peak in the positive tail of the distribution. The sha
of the curve in Fig. 6 strongly suggests a kind of integra
probability distribution. We have thus computed the cum
lative histogram

Q~l2 ,n!5E
2`

l2
P~l28 ,n!dl28512E

l2

`

P~l28 ,n!dl28 ,

~23!

where we have used Eq.~21!, andP(l2) is supposed to be
Gaussian. In this caseQ(l2→2`)50 and Q(l2→1`)
51. In Fig. 7, we show a cumulative histogram related to
distribution depicted in Fig. 5~c!, i.e., forb50.15. In fact, if
we compare it with the previous figure, qualitatively they a
very similar, since for positive exponents it deviates from
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integral of a Gaussian shaped function. Using Eq.~23!, it is
easy to show thatf (n)512Q(0,n).

The presence of tails in distributions of finite-tim
Lyapunov exponents was also reported in a recent pa
@16#, and it has been found for some dynamical systems
hibiting crisis-induced intermittency, which is a situatio
very similar to that considered in this paper.

VI. CONCLUSIONS

In summary, this work analyzes the theoretical mec
nism for the existence of unstable dimension variability
synchronized coupled chaotic systems. The analysis is
roborated by numerical computations of finite-tim
Lyapunov exponents.

For invariant sets of a dynamical system, unstable dim
sion variability can be a strong obstacle to mathemat
modeling of physical phenomena, since there is little pr

FIG. 6. Fraction of positive transverse time-10 Lyapunov ex
nentsf (n510) as a function ofb, for a50.7 andb* 50.0225.
e,

s
r,

st

ni

v.
er
x-

-

r-

n-
l
-

ability that a real chaotic trajectory is shadowed for mod
ately long times by a trajectory of a model. This puts so
serious doubts on the deterministic model itself, not beca
it is intrinsically bad, but rather because the dynamics
such a pathology that prevents adequate model shadow
ity. The consequence is that, although the model is determ
istic, we expect to make only relevant statistical predictio
like averages or fluctuations, based on it for reasona
length of times.
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- FIG. 7. Cumulative histogram for the transverse time-
Lyapunov exponents fora50.7 andb50.15.
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