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The nonhyperbolic structure of synchronization dynamics is investigated in this work. We argue analytically
and confirm numerically that the chaotic dynamics on the synchronization manifold exhibits an unstable
dimension variability, which is an extreme form of nonhyperbolicity. We analyze the dynamics in the syn-
chronization manifold and in its transversal direction, where a tonguelike structure is formed, through a system
of two coupled chaotic maps. The unstable dimension variability is revealed in the statistical distribution of the
finite-time transversal Lyapunov exponent, having both negative and positive values. We also point out that
unstable dimension variability is a cause of severe modeling difficulty.

PACS numbes): 05.45.Xt, 05.45.Pq

[. INTRODUCTION context of superpersistent chaotic transients and cfi8es
We identify the mechanism that brings unstable dimension
We often classify dynamical systems into deterministicvariability to the chaotic invariant set of this system, namely,
and stochastic ones. Deterministic systems are characterizadsaddle-repeller bifurcation which was formerly related to
by a set of prescribed mathematical rules which evolve théhe boundary crisis mechanisfi]. It produces a structure
dynamical variables in time. For these kinds of models wecomposed of supernarrow tongues through which trajectories
can numerically generate trajectories over reasonably longn a chaotic saddle may escape after very long transients
periods of time. Stochastic systems are based on some sortloéfore they are reinjected. A chaotic saddle is an invariant
random process. They may occur when extrinsic noise isompact set that is both attracting and repelling, and con-
present. For these systems, only statistical information catains a chaotic trajectory which is densednThis structure
be extracted, like averages or fluctuations of physical quanis similar to that observed in the context of the so-called
tities, over trajectories of reasonable length. riddling bifurcations[8]. The fluctuating behavior of the
In this paper we consider a new example of a third kind oftransversal finite-time Lyapunov exponent is described for
dynamical systentpseudodeterministicwhich—in spite of  this example, and statistical information about its distribution
being deterministic—yields only statistical relevant informa-is presented.
tion over trajectories of reasonable length. The problem with The goodness of deterministic models is determined by
those systems is not related to the correctness and exactitutieo well-known paradigms(i) the model must be based on
of the dynamical equations, but rather to a mathematical pasound theoretical framework, e.g., correctly applied physical
thology calledunstable dimension variability1,2]. laws; and(ii) the trajectories produced by the model should
Unstable dimension variability was introduced by Abra-reproduce correctly, in some sense, the actual behavior ob-
ham and Smale through a two-dimensional continuoushserved in Nature. This motivated the introduction of the
differentiable map[3]. A feature associated with unstable model shadowabilityconcept[1,5]: let A and B be two
dimension variability is the oscillating behavior of a finite- closely related dynamical models of a physical system, but
time Lyapunov exponent about zero. This occurs becauseith some difference, which could be related to a small
typical trajectories present arbitrarily lorgut finite-time change in one of the system parameter values, or a slightly
segments for which the orbit on the average is repelling irdifferent external influence on each model, or a different
one of the dimensions, and other segments for which it is1oise realization. The latter cause is restricted to arbitrarily
attracting in the same dimension. This behavior was found ismall time dependent and bounded perturbations, which ex-
a four-dimensional invertible map describing a kickedcludes Gaussian white noise, for example.
double rotor{4]. We say that model shadowability occurs if trajectories of
Recently a noninvertible two-dimensional map was pro-modelA stay close to trajectories of mod8! This is neces-
posed as a simple dynamical system exhibiting unstable dsary, but not sufficient, for either model to reproduce and
mension variabilityf 2]. Moreover, it has been show] that  predict correctly the time evolution of the system which the
a lattice of diffusively coupled Heon maps presents un- model is intended to describe. In other words, if there is no
stable dimension variability for any nonzero coupling model shadowability neithek or B would generate trajecto-
strength. In this paper, we argue that unstable dimensiories that are physically realized, since if no trajectoryAds
variability occurs in the context of synchronization of cha-close to any trajectory 0B, it is unlikely that either model
otic orbits of two similar maps with nonlinear coupling. By would give a trajectory that stays close to any real trajectory
changing variables such that one of them is in the synchroproduced by Nature.
nization manifold of the coupled system and the other is The difficulties that obstruct model shadowability have
transversal to it, we obtain a map that was first studied in thédeen divided into three classes: minor, moderate, and severe

1063-651X/2000/6@)/462(7)/$15.00 PRE 62 462 ©2000 The American Physical Society



PRE 62 UNSTABLE DIMENSION VARIABILITY AND . .. 463

[5,9]. Minor modeling difficulties occur for hyperbolic cha-

otic systems, since they present sensitive dependence on ini- Upt1=
tial conditions. If A and B are hyperbolic chaotic systems,

trajectories ofA can always be closely followed, or shad- o
owed, by trajectories d8 for an infinite time[10]. A chaotic W= ( 1+ =
set is hyperbolic if, at each point of a trajectory on this set, 2
the local phase space can be split into unstable and stab\lﬁh
subspaces, and the angle between them is bounded away
from zero. The unstabléstable subspace evolves into the

1+%)un+u(un,wn) (mod 2m), (1)

w,+W(u,,w,) (mod 2m), (2)

erel{ andW are given by

unstable(stable one along the trajectory. However, chaotic U(u,,w,)= ( 1—% W, + %(un—wn)2+ gcos(un+wn),
nonhyperbolic systems are much more common in physical 3
applications—they may present nonhyperbghomoclinig

tangencies of the unstable and stable subspaces. For these o 1 B

systems we say there is a moderate modeling difficulty be- A(u, an):(l_ E)u”_ E(un_wn)z_ ECOS{un+Wn)’

cause trajectories &k are shadowed by trajectories Bffor
a long, yet finite, amount of timgl1]. However, if this shad-
owability time is long enough, both models are still Usefmwhereﬁ>0.

for describing the physical phenomena being modeled. For coupled dynamical systems like this one, we can ob-
_Finally, pseudodeterministic models present severe modyjn the synchronization state, which is given by=w,,.
eling difficulties, since they are chaotic nonhyperbolic Sys-geometrically, this state defines a synchronization manifold
tems presenting unstable dimension \_/ar_|ab|I|_ty: the unstablg-, which is a one-dimensional subset of the phase space
and stak_)le subspace_s alor_1g a chaotic invariant set have 190 27r)x[0,2). If we represent this torus on a square
tangencies, but the dimension of the unstable subspace variggy, heriodic boundaries, the synchronization manifold is a
from point to point. For this case the shadowability time iS gy iont |ine with unitary slope. In order to describe the dy-

short, and no useful information could be extracted frompamics in the synchronization manifold and in the direction

single trajectories over a reasonable time span, but rathgf,qersal to it, we make a coordinate transformatieru
statistical information based on a probability distributjdmh +W. z=u—w. There results a two-dimensional noninvert-

This paper is organized as follows: in Sec. Il we mtroduce-lble map on a torus:

the coupled chaotic map system, and analyze its synchroni-

4

zation manifold and the corresponding noninvertible map on 0,.1=26, (mod 2m), (5)
a torus. Sections Ill and IV are devoted to a description of
the saddle-repeller bifurcation, the average transient lifetime, Zn 1= az,+ 22+ Bcosh, (—2m<z=<+2m). (6)

and the birth of unstable-dimension variability. Section V
deals with the distribution of finite-time transversal Here the synchronization manifold is simply the axisz
Lyapunov exponent and the relative fraction of its positive=0. |f g=0, the system decouples into two independent
values. Section VI contains our conclusions. maps in# andz, so that an initial condition in the synchro-
nization manifold will generate a chaotic orljif,},_, with
z,=0 for all times—it will never escape froi§. HenceS is
an invariant manifold only fo3=0. An invariant manifold
Coupled dynamical systems are susceptible to the syris typically related to the existence of some kind of symme-
chronization of their trajectories, by which they undergotry in the system, so we may cat a symmetry-breaking
closely related motions, even when they are chaotic. In th@arameter. For nonzeg®, a chaotic orbit of the system is not
latter case, even if two identical systems are started withiestricted to the synchronization manifold, and can occupy a
different initial conditions, if the coupling is strong enough larger portion of the phase space along the transversal direc-
their states are asymptotically equal as the time evdli¥8s  tion z
This is a quite different behavior, compared to that expected The system in Egs(5) and (6) was introduced, in a
from uncoupled yet identical chaotic systems, since if theyslightly different form[6], to describe a kind of crises char-
are started with approximately equal but different initial con-acterized by long-lived, or superpersistent, chaotic transients.
ditions, sensitive dependence will cause the two systems tdhe z part of the system was allowed to have any real value
have completely uncorrelated motion after some tji@. in (—o,+®). For some parameter values, like=0.7 and
We consider two piecewise maps of the foxm, ; =kx, B=0.02, that system, like ours given by Ed5) and (6),
(mod 1), wherek>1. For almost all trajectories of each map exhibited a chaotic attractor near tke0 line (Fig. 1). A
the (infinite time) Lyapunov exponert =Ink is positive. By  crude argument that can be used to justify the chaotic nature
almost allwe mean that all orbits generated from this mapof this attractor consists on linearizing the map in [Eg).
are chaotic, except for a set of zero Lebesgue measure coaboutz=0, settingz= B¢, where( is a small quantity. We
taining countably infinite periodic poinfd3]. We can write  obtain the magp;,, 1= a{,+cosé,, that would give a cha-
k=1+a/2, which is greater than one provided>0, and otic attractor for|a|<1, as proved by Kaplan and Yorke
change the variable range frgm,1) to[0,27), without al-  [14]. In addition to this chaotic attractor, it was sho\si
tering the chaotic nature of the map orbits. that there is another chaotic set which is a chaotic sa@dle
Let us introduce a nonlinear coupling of two such chaoticnonattracting chaotic invariant $dbcated where the fractal
maps, yielding a nonlinear coupled system on a tdris basin boundary is.

Il. COUPLED CHAOQOTIC MAPS
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FIG. 2. Fixed points for the mafEgs. (5) and (6)] and their
} 0 stability for (a) 8<gB, , (b) B=8, , and(c) B>, .
-0.1 .
0 ' Z. andz, coalesce at=z, [Fig. 2(b)]. Since the eigenvalue

is equal to 1 at this point, linear stability analysis fails to

FIG. 1. Phase portrait of the mdgqgs.(5) and(6)] for «=0.7  determine its stability, and we have a saddle-repeller bifur-
and 8=0.02< g, =0.0225. The dark region contains points which cation with eigenvaluer 1 at 3= g, . For 3> g, the fixed
are driven to higher values, but are eventually reinjected to nega- points no longer exist, and we have a different dynamical
tive z values due to the dynamics being i —2m,+2m). The  pehavior[Fig. 2(c)].
chaotic saddle is the boundary between the dark and light gray \when the fixed points coalesce gt=g4, , the chaotic
region. The chaotic attractor is embedded in the light gray region. -attractor collides with the chaotic saddle, and it becomes a
chaotic transienthrough a boundary crisisince the attrac-
tor has collided with an unstable periodic ojdif]. Trajec-

The mechanism whereby the chaotic attractor of the magories arising from initial conditions belonging to the former
in Egs.(5) and (6) loses hyperbolicity through unstable di- basin of the chaotic attractor will typically approach its rem-
mension variability is basically an unstable-unstable pair binant, that is now a part of a larger chaotic saddle, and will
furcation. As a result, the chaotic attractor may collide withbounce around it in an irregular fashion. However, after
the chaotic saddle, and disappear into a larger chaotic sadds@me(typically very long time this trajectory will stay near
from which trajectories may escape, through a Comple)lhe region where the fixed points have coalesced, and will
structure of supernarrow tongues. This is also called saddldéeave the chaotic saddle, being eventually reinjected to the
repeller bifurcatio 7], and it has been found to be the causevicinity of the saddle due to the dynamics being in
of other strange behavior in chaotic systems, like riddling off — 2, +27].
basins of attractiofi8] and boundary cris€s]. At the location where the fixed points coalescee-¢, ),

A linear stability analysis can show the basic features ofa tongue opens up, allowing the trajectories near the chaotic
this transition. The period-1 fixed points of the map of Egs.saddle to escape f@g> 3, . Simultaneously, each preimage

Ill. SADDLE-REPELLER BIFURCATION

(5) and(6) are of z, also develops a tongue. Since these preimages are
. . dense in the chaotic saddle, an infinite number of these
6=0, z=3i(1l-a*\(1-a)’-4p). (7)  tongues opens up simultaneously whger B, . Actually,

these tongues will develop at those points whefe
Definingz, =(1—«)/2 and B, =z§ , these fixed points are =27m/2¥, with m and k positive integers. For our map,
written as @=0, z,=z, +B8,—B) and (=0, z.=z,  however, these tongues are very narrow, since their
_ m)_ Let us fix our attention to the case depicted inWidths decrease geometrically, and are extremely difficult
Fig. 1, i.e.,=0.7 and3=0.02< B8, =0.0225. It turns out o find numerically, with exception of the main tongue
thatz lies in the upper poini.e., the point with the highest opened up a, .

value of z) of the chaotic attractor, whereag is in the

lowest point of the chaotic saddle. IV. BEHAVIOR OF CHAOTIC TRANSIENTS
The Jacobian matrix of the map has eigenvalues given by ) ,
£,=2 and &=a+22,. So thed direction is always un- To understand how chaotic transients are formed after the

stable, as it should be due to the existence of the chaotié@ddle-repeller bifurcation, let us consider thpart of the
attractor. The eigenvalue related to the transversal dlrectlor‘i“ap of Eq.(6) at #=0 (from where the main tongue
evaluated at the fixed points, gives ws up,

£x(2p ) =128, — B, (8) Zy11= azy+ Zo+ B, (9)

so that, forB< g, , z, is a repeller, since it has an unstable whose fixed pointg, and z. are the intersections between
dimension of dimension 2, and no stable subspace at.af. the parabolic function and the first bisecty, , =z, [Fig.

a saddle point, since both stable and unstable subspaces ha&(a)]. As 8 approaches its critical valug, , these points
dimensions equal to fIFig. 2(a)]. If 8= g, the fixed points approach each other and eventually coalesce @, at
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icity of the # motion, we expect that almost any initial con-
(@) dition 6, will generate an orbit which has a uniform distri-
bution over[0,27) for large times. Hence the probability of
0.+ falling into the aperturd —1/2,+1/2], if 6, is not in
this interval, is equal to the interval width So we can esti-
mate the average lifetimgr) of the chaotic transient as the
inverse of this probability. Taking our previous estimate as
an upper bound for the distance aloaglirection at timeT,
we have[7]

(T)=k(&)T=k2T, (10)

wherexk=1/k;.

In order to computel, we assume that, foB slightly
greater tharB, the aperture widtl is very small, so that we
may approximate? by 0 and use Eq9) again. The differ-
encez, . 1—z, has a local minimum at, , so we describe
the dynamics within the narrow channel by usidg=z,
—z, . This difference evolves with time according to the
map

Sni1= Ont St (B—By), (11)

and, sinced, , ; is very close tad,, we can approximate the
differences, . 1— 8, as a differential and write a differential
equation ford, now a continuous function of time,

FIG. 3. First return map for Eq6) with =0 anda=0.7 for
(8 B=0.01<B, =0.0225, (b) B=pB,=0.0225, and(c) B=0.04
>B, -

z=z, , where the map function is tangent to the 45° line I 8%+ (B~ By, (12
[Fig. 3(b)]. For 8> B, the parabola has moved upward, and

does not intercept the bisector, leaving no fixed points. Howyhich can be integrated from- 27 to + 2, to give an

ever, provideds is not very far fromg, , a narrow channel  estimate for the timd it takes for the trajectory to escape
forms between the parabola and the 45° line, through whiclynce it has fallen in the aperture:

passes the trajectory resulting from the map iterations, stay-

ing there a very long time, and eventually escaping to large 2 2
values[Fig. 3(c)]. Becausez is in a torus, map iterates are T= ———=arctan ——|. (13
reinjected and enter again in the channel. This is the basic VB~ By VB~ By
mechanism of type-I Intermittendyl5], but since thed di- . . . .
rection is unstable, the slow motion through the channel doe:s?asfétmg Eq.(13 into Eq. (10), and taking logarithms, we
not imply a laminar behavior. Rather, it is related to a chaotic
transient, that is characterized by an irregular wandering of l0gyo{ 7) = l0gox+ 2 logy 2(B— B, )~ 2
the trajectory over a limited range. *
The chaotic transient decays when the trajectory enters a X arctar2m(8— B, ) ). (19

tongue, escaping toward largervalues, before it is rein-

jected. The main tongue is formed about the0 line, so let  To check the validity of the hypotheses made in the above
us focus our attention at this spot. F8values greater than derivation, we have made a numerical experiment, choosing
B* , a tongue intercepts the Synchronization manifot0 N(’O initial conditions randOmly distributed OV§O,27T), and

in an aperture of width near#=0, through which the tra- computing the transient exit time once a given trajectory
jectory can escape. Once having entered the aperture, tleeosses the ling=y.=2.0. The average transient lifetime
trajectory stays in it a numb@&rof iterates before leaving the (7) was then computed for many values of the difference
regiony<y,. Althoughy. must be less than, its exact (B8—B,) Y2 the results being depicted in Fig. 4, where the
value does not affect our results in a significant way. Fromparameterx in the theoretical prediction above is a fitting
now on, we sely.=2.0. The trajectory, however, does not parameter.

immediately stays close t6=0, since theé direction is The fitting is asymptotic though, since numerical results
highly unstabl€(its eigenvalue i§,=2>1, pulling back the are best fitted by Eq14) when we approacp, , i.e., in the
trajectory into the vicinity of the chaotic saddle neighborhood of the saddle-repeller bifurcation. The lifetime

Let| be the distance between the orbit ahd0 at a given  of the transients can be very large, for instance up t 10
time. After T iterates this distance increases #)(1. How-  transients, even though we are as far fregnas 44%. This
ever, since thef excursion is bounded, we expect that occurs because the trajectory has to stay many iterations in
(&) TI<k,, wherek, is anO(1) constant. Now we consider the narrow aperture of width Therefore, a better agreement
what happens with a large number of trajectories arisindetween the theoretical predictidi4) and the numerical
from randomly chosen initial conditions. Due to the ergod-result only occurs forB closer toB, . Far from g3, , the
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For our map on a two-torus,=(6,,z,)", the Jacobian
matrix of the n-times iterated map has eigenvalues
=(£)"=2", and

n

o=]1 (a+22z),

i=1

(18

so that the secondransversg finite-time Lyapunov expo-
nent is given by

1 n
Na(Xo) = 2 Inla+2z], (19

the first exponent being simply In 2.
The possibility of fluctuations between positive and nega-
tive values for this exponent makes it useful to define a dis-

FIG. 4. Base-10 logarithm of the average exit time of transientsrihytion function for it. LetP (X 5(xo,n),n) denote the prob-

(7) of the map[Egs.(5) and(6)] with «=0.7 andB, =0.0225, as
a function of 8— B, ) ~*2 Circles: numerical experiment; full line:
theoretical prediction given by Eq14) with a fitting parametek
=0.0027.

theoretical estimate we made ceases to be valid, but remai
useful as a lower bound for the exit time of transients.

V. FINITE-TIME LYAPUNOV EXPONENTS

We have seen that, at the saddle-repeller bifurcafion

=B, , an infinite number of points, dense on the chaotic

attractor, become repellefsinstable dimension)2and an

N 0
infinite number of supernarrow tongues crop up as result oﬁ1
the collision between the attractor and the chaotic saddleht

However, there remains a dense set of saddle pdimis
stable dimension onen the invariant set, and since these

two different sets are densely intertwined, unstable dimen
sion variability does occur in the chaotic invariant set for a

large range of parameter values of the map.

Yet, another signature of unstable dimension variability,

as stated in Sec. |, is the fluctuating behavior of the finite
time Lyapunov exponents about zero. Consider
d-dimensional map—f(x), wherex is ad-dimensional vec-
tor andf is ad-dimensional vector field. Let be a positive
integer, and letDf "(x,) denote the Jacobian matrix 6f
(the n-times iterated map functigrevaluated at the poind,.
The eigenvalues of the Jacobian maitbk"(x,) are
Ul(XO,n)ZUz(Xo,n)>~--EUd(Xo,n)EO. (15)

We define thekth timen Lyapunov exponent associated
with the initial conditionx, as[2]

1
AN(Xp,n)= ﬁln |IDf "(xo) ull, (16)

whereu, is the eigenvector corresponding to the eigenvalu
o . Note that the usual infinite-time Lyapunov exponent
A= lim A (%o,n) 17

n—oo

has the same value for almost every initial poxgt with
respect to the Lebesgue measure in the basin of attraction

a

ability density function of the second time-Lyapunov
exponent, wherx, is chosen at random according to the
Lebesgue measure. In other worB$h »(Xy,n),n)d\, is the
probability that the exponent value lies betweenand \ ,
+dN,. If F(\y) is any function of the time+ Lyapunov

r(1,§<ponent, its average over the invariant measure of the at-

tractor is given by

(F(Na(%g,n))= J::Fo\z(xo,n))P()\z(XOan),n)d)\z-
(20

obtain the distributiorP(A,) numerically, we picked up
any randomly chosen initial conditions uniformly distrib-
ed ovel 0,27), and iterate each initial conditior, a large
number of times. Everm= 10 steps we compute the time-10
exponent according to Eq19). Actually, we use the recur-
rency of dynamics, and follow a single trajectory a large
number of steps, say two million iterates. The time 10
exponents are then computed fronx 20° consecutive and

nonoverlapping length-10 sections of the trajectory. From

these exponents we compute a frequency histogram with
convenient normalization, so that

“+ 00

f P(N\y(Xg,n),n)d\,=1.

In Fig. 5@, we show a distribution fora=0.7 and B
=0.04, which is=78% away from the critical value,
=0.0225. In this case we can observe a distribution which
has asymmetric tails. The negative tail has a sharp cutoff,
whereas the positive tail decreases smoothly. Only 0.26% of
the second finite-time exponents is positive, indicating that
almost all trajectory sections are transversally contracting.
This is consistent with the trajectory behavior in the narrow
channel that occurs neg, , but the noteworthy feature here

(21)

é's the relatively small number of positive exponents. Figure

5(b) depicts the same situation, but f@=0.07, which is
about three times the previous deviation away from the criti-
cal value. This time the distribution has also a sharp cutoff
for negative exponents, while there is a long flat tail of posi-
tive exponents (11.4% of their total numleFhe maximum
of the distribution, however, appears not to have moved ei-
ther toward less negative or positive values\g{10), hav-
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FIG. 5. Probability distribution for the transverse time-10 Lyapunov exponenta$00.7 and(a) 8=0.04, (b) 8=0.07, and(c) B
=0.15.

ing approximately the same value ef0.35 in both cases. this fraction, indicating that fo3~0.20 about half of the
The fate of the probability distribution, as we increase fur-exponents are positive. However, this number increases in
ther the symmetry-breaking parameggris illustrated in Fig. the map of Egs(5) and (6) due to the emergence of the
5(c), where we usg8=0.15. The same general characteris-second peak in the positive tail of the distribution. The shape
tics of Fig. §b) are still here, even though we are now very of the curve in Fig. 6 strongly suggests a kind of integrated
far (almost six timey from the critical value. The negative probability distribution. We have thus computed the cumu-
peak still exists at approximately the same location, but thdative histogram

distribution has broadened in that place. The interesting as- R

pect is the emergence of a second peak in the positive tail. _|"? / P , /

We note that the fraction of positive exponents has increased QMAz.n)= wap()\z MdA;=1 szp()\z’n)d)\z’

to 47.3%. (23

The fraction of positive timer exponents, )
where we have used EQ1), andP(\,) is supposed to be

* Gaussian. In this cas®(A,— —)=0 and Q(\,— +x)
f(n)= fo P(\2(Xo,n).madX,, (22) =1.InFig. 7, we show a cumulative histogram related to the

distribution depicted in Fig.(®), i.e., for 3=0.15. In fact, if
has been computed for various valuesBotthe results being we compare it with the previous figure, qualitatively they are
depicted in Fig. 6, showing the correct monotonic increase o¥ery similar, since for positive exponents it deviates from an
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FIG. 6. Fraction of positive transverse time-10 Lyapunov expo-  FIG. 7. Cumulative histogram for the transverse time-10
nentsf(n=10) as a function of3, for «=0.7 andg, =0.0225. Lyapunov exponents fot=0.7 and8=0.15.

integral of a Gaussian shaped function. Using &), itis  ability that a real chaotic trajectory is shadowed for moder-
easy to show that(n)=1—Q(0,n). ately long times by a trajectory of a model. This puts some
The presence of tails in distributions of finite-time serious doubts on the deterministic model itself, not because
Lyapunov exponents was also reported in a recent papér is intrinsically bad, but rather because the dynamics has
[16], and it has been found for some dynamical systems exsuch a pathology that prevents adequate model shadowabil-
hibiting crisis-induced intermittency, which is a situation ity. The consequence is that, although the model is determin-

very similar to that considered in this paper. istic, we expect to make only relevant statistical predictions,
like averages or fluctuations, based on it for reasonable
VI. CONCLUSIONS length of times.

In summary, this work analyzes the theoretical mecha-
nism for the existence of unstable dimension variability in
synchronized coupled chaotic systems. The analysis is cor- This work was made possible by partial financial support
roborated by numerical computations of finite-time from National Science Foundatigbivision of International
Lyapunov exponents. Programg and CNPq(Conselho Nacional de Desenvolvi-

For invariant sets of a dynamical system, unstable dimenmento Cienfico e Tecnolgico)—Brazil, through a joint re-
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