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Calculation of ground-state entropies of highly frustrated systems on fractal lattices
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The extensive ground-state entropy of frustrated systems on fractal lattices is investigated. Two methods of
calculation are proposed, namely, recursive and factorization approaches. In the recursive approach the calcu-
lation is based on exact recursion relations for the total number of ground states. The latter procedure, which
is in principle an approximation, is proposed as an alternative for dealing with complicated systeoases
where the recursive approach may become impractigatleh as randomly frustrated models; it consists of
factorizing the total number of ground states in terms of the number of ground states at each hierarchy level.
Some examples of antiferromagnetic Ising models on different fractal lattices are considered, for which both
procedures are applied. It is shown that the factorization approach may lead, in some cases, to the exact
ground-state entropy, whereas in other cases it yields very acdaftiteugh slightly lower estimates.

PACS numbds): 05.50+q, 64.60.Ak, 65.50tm

. INTRODUCTION O0<h<log2, since the maximum number of states is
2N=expNlog 2)]. In the thermodynamic limit, one obtains
Frustrated magnetic modél$] represent one of the most thath=s,, wheres, denotes the residual entrofiyerein we
interesting classes of systems _in statistical mechanic$york in units of kg=1). The prototype of fully frustrated
Roughly speaking, the frustratid@] is a result of the com-  ,q4es is the antiferromagnetic Ising model on a triangular

petition between interactions, in such a way that the minimiygyice for which the residual entropy has been calculated
z_atlon qf the energy occurs with some interactions unsat'séxactly[g] $,=0.323066. For randomly frustrated systems
fied. Since one can usually vary the set of broken f '

. X : — . like spin glasses, one has to deal with the average number of
interactions, frustration leads to a multiplicity of states with ping 9

the same energy. At low temperatures the frustration effect(s;i S’_[('j\IGS]tJ \;\;}here[ I r_epresen;sb an a\t/errlg\gte do:/e:hthchéls-
play a crucial role in such a way that the physics of frustrated 9" UE 0 ehaveraglhng grgc % PO rela eA boh €
systems may present many new features quite different frofiNIfOPY, but rather, to the GS complex[t}0]. A behavior

those of nonfrustrated models. In particular, the possiblgimilar to that of Eq.(1.1) holds for[Ngsl, in the infinite-
presence of a nonzero ground-stéES) entropy per particle 'ange-interaction Ising spin glagdl], with h~0.20[12].
(usually composed of residual entropynakes the frustrated The average number of GS'’s has been calculated for short-
systems exceptions to the third law of thermodynamics. ~ range Ising spin glasses on diamond hierarchical lattices,
Many real systems display frustration, such as fitg ~ With different probability distributions for the coupling3]:
spin glasse$3-5|, and diluted antiferromagne{$,7]. For ~ one finds a zero GS complexity per particle in the case of
spin glasses, frustration is combined with disorder in such &ontinuous probability distributions, whereas for a bimodal
way that the existence of many low-temperature states leadst J) distribution an exponential increase[iNgg]; has been
to a very slow dynamics, associated with the phenomenon oferified, on lattices of fractal dimensiok<d<5 (where
aging, with the system remaining out of equilibrium even ond,~2.58 represents the respective spin-glass lower-critical
macroscopic time scal¢s]. dimension, with h varying roughly from 0.16for d=d,) to
Theoretical investigations on models characterized byy 27 (for d=5). However, an outstanding question concerns
frustration has attracted the attention of many workérs5].  the average numbers of GS'’s in nearest-neighbor-interaction
A large diversity of uniform(with no randomnegs fully spin glasses defined on Bravais latti¢6

frustrated models has been considdrgll for such systems, The study of magnetic models on fractal lattidds),
the total number of GS’s\gs, usually increases exponen- pesides serving in practice to model natural materials such as
tially with the number of sites, porous rocks, aerogels, sponges, etc., has provided useful
results that contribute to our comprehension of the corre-
Nes~exphN), (1. sponding systems on Bravais lattices. In particular, hierarchi-

cal lattices (HL's)—generated through recursive
whereh is some positive finite numbdfor Ising systems, procedures—are much easier to harjdieder the real-space
renormalization groupRG)], in such a way that exact results
may be obtained for short-range systefi§,17. For pure
*Corresponding author. Email address: nobre@dfte.ufrn.br systems defined on Bravais lattices, one may obtain RG
"Email address: eme@chbpf.br equations through a spin-decimation process; in the corre-
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sponding HL, such a procedure is exact for discrete classica t'
spin variables if, within a few RG steps one obtains nonpro- 1
liferated RG equations connecting two successive hierarchy
levels. Some particular HL's have been very successful in

mimicking Bravais lattice$17], e.g., providing exact critical 0.5

temperatures and exponents of magnetic models on th

square lattice. 0 t
In the present work we present two methods for calculat- /

ing the GS degeneracy of frustrated systems defined or

HL's. In the first method, herein called the recursive ap- - 0.5
proach(RA), one calculates the GS degeneracy through ex-

act recursion relations based on the recursive properties o (@)
the particular lattice. In the second method, the factorization -~ 1 1 05 0 0.5 1
approachFA), the total number of GS'’s at hierarchy level i i
is expressed as a product of a properly defined partial num t
ber of GS’s at hierarchy levels,n—1, ...,1[13]. As will Lr ‘
be seen below, both approaches lead to the exact GS dege
eracy only for very simple systems. The RA, which in prin-
ciple always yields the exact GS degeneracy, may becom
difficult to operationally implement in some cases; for com-
plicated systems, such as spin glasses, the FA appears as
simple and good approximation for the estimation of the GS
degeneracyl13]. The present paper is organized as follows.
In Sec. Il we discuss the RG transformation at zero tempera. o5
ture. In Sec. lll we present the methods for calculating the
GS degeneracies. In Sec. IV we apply both methods to anti: (b)
ferromagnetic Ising models defined on some HL's. Finally, -1
in Sec. V we present our conclusions.

0.5

-1 -05 0 0.5 1

FIG. 1. Plots of the renormalized transmissivityvs the origi-

Il. THE RENORMALIZATION AT ZERO TEMPERATURE nal transmissivityt (t=tant{J/(kgT)]) for the Ising model on HL's
composed of unit cells(a) The b=3 Wheatstone-bridge-like cell

The most common real-space RG recjfé] consists of [see Fig. 2a)]. (b) Theb=2 Wheatstone-bridge nonplanar deiée
summing over some spin variables of the system, a proce=ig. 2(c)]. The zero-temperature point=—1) is given bya
dure known as a partial trace. As a result of such an opera=lim;_,t'(T)=—1/3 in case(a), anda=5/9 in caseb). For the
tion, one obtains an effectiver renormalizedl interaction  cells of Figs. 2b) and Zd), one obtains plots similar to the one
between the remaining spins, with a relation between thahown in (b), with a=1 and a= 3(14—83)~0.0718, respec-
renormalized and original interactions. In a HL, a partialtively.
trace over the spins of thah hierarchy leads to an effective
interaction among the spins of thk-{ 1)th hierarchy level, Fig. 1(b) a bond is replaced by the nonplanar Wheatstone-
and to a corresponding recursive relation between the inteibridge cell shown in Fig. @).
actions in successive hierarchy levels. In the case of discrete Let us now consider, in such systems, the zero-
classical spin variables, the RG procedure may lead to atemperature limit,T—0. If the interactions at the last hier-
exact recursion relation for a HL, in the case of pure systemsarchy level (say thenth hierarchy are ferromagnetic X
if no proliferation of RG equations occuf$6,17]; one says >0), there are no frustrations, and the system is dominated
that the space of parameters is closed under the RG process: the zero-temperature fixed poitit=t=1, with positive

Herein we shall restrict ourselves to Ising spin systemsinite effective interactions between the spins at the lowest
defined in terms of the Hamiltonian, hierarchy levelghierarchiem—1, . ..,1,0).However, if the
interactions at thenth hierarchy are antiferromagnetid (
<0), there are frustrations in the system, in such a way that
the examples exhibited in Fig. 1 present no typical zero-
temperature point, i.e., far=—1 one obtains lim_ot'(T)
where the sunk ;;, is restricted to nearest-neighbor pairs of =a, wherea is a constantg+ +1). Such a behavior has
spins on a given HL. For pure systefhere the coupling also been observed in other systems, like the antiferromag-
constants{J;;}=J (Vpairgij))], one may obtain exact re- netic three-state Potts model on diamond H[19]. One
cursion relations’ = f(t) for the thermal transmittivitiegL7] ~ obtain that the effective interactions between the spins at the
t=tanHJ/(ksT)] of two successive hierarchy levets,[hier- ~ (n—1)th hierarchy level,
archy level k—1)] andt (hierarchy levek). Such recursion
relations lead to plots’ versust, like the ones exhibited in J' = limkgT tanh [t'(T)], (2.2
Fig. 1. In fact, Fig. 1a) refers to a HL generated in such a -0
way that at each step a single bond is replaced by the planar
b=3 Wheatstone-bridge-like cell of Fig(&, whereas for aredriven to zerg at the first renormalization step, &+

’Hz—(% JiSS (S==1), (2.1
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(a)

FIG. 2. The basic unit cells that define the
HL's considered. () The b=3 planar
Wheatstone-bridge-like celfb) Theb=2 planar
Wheatstone-bridge celic) Theb=2 non-planar
Wheatstone-bridge celld) The b=2 Sierpinski
gasket cell. The spins at the terminal sitempty
circles, denoted by letterdelong to previous hi-
erarchy levels and are connected to other spins of
i i the lattice; the spins at the internal sitddack
circles, denoted by numbegrsare decimated
throughout the renormalization process. In all
cases the basic unit cells correspond to the HL at
its hierarchy levek=1.

(b)

—_
N

i i

+1. Therefore, further RG stepierarchy levelsn—1,n Let us now fix the terminal spins of each unit cell; for an
—2,...,0)become trivial, with no interactions between the Ising system, there are”2ways of doing this for a single
spins. cell. For each fixed configuration of terminal spins in a unit
Such a curious zero-temperature behavior implies that theell, one may have a certain number of GS’s associated with
spins belonging to hierarchy levels—1n—2,...,0 are the internal spins of the cell. We shall denote {my,} the
completely uncorrelatedas in a high-temperature phase possible set of GS degeneracies associated with a unit cell of
contributing the maximum number of states to the GS degerthe HL; the labelwx, which refers to configurations of termi-
eracy. This is a crucial point for the calculation of the GSnal spins of the cell presenting different values of degenera-
degeneracy of some frustrated HL'’s, as will be seen belowcies, may vary, in principle, from 1 to™2? (since time-
reversed states contribute to the same GS degeneralcies
ll. METHODS OF CALCULATION what follows, we introduce two different methods for the

) i ) . calculation of GS degeneracies of frustrated HL's.
Let us consider a HL defined in such a way that at hier-

archy level 0 one hadl(® sites connected bi{” bonds.
The lattice is generated through a given recursive rule: in
Fig. 2 we represent typical cells corresponding to the hierar- The RA is based on the recursive properties of the par-
chy level 1 of some HL's; such cells will be considered asticular HL; the central idea is to express GS degeneracies at
the basic unit cells for the lattice at a givéth hierarchy a given hierarchy level in terms of those of the previous
level. For the cells shown in Figs.(@-2(c), one has hierarchy. By fixing the spins of the zeroth hierarchy level,
N©=2 (sitesi andj) and ijo)=1; the HL is generated in one has a set c{ng‘)} possible degeneracies at an arbitrary
such a way that, at each step, a single bond is replaced byhaerarchy levek, in such a way that for each value @fone

unit cell. In Fig. Zd) one has the unit cell of a Sierpinski has a recursion relation

gasket[15] with a scaling facto=2, for which N(®¥=3 © (ko) (k1)

(sitesi, j, andk) andN{?)=3; the Sierpinski gasket is gen- G/ =Wu(Gy 7,6y 7, ... (3.1
erated by removing, at each step, one-fourth of the gihea

gray triangular part of Fig. @)] from each triangle of the Since one may compute easily the set of degeneracies at
lattice. A given HL, at itskth hierarchy level, will be com- hierarchy level ¥G{"}={g,}, the recursion relations in Eq.
posed ofN{ unit cells, each of them witP terminal spins  (3.1) may be followed up to any desired hierarchy level. The
(due to the recursive rule for the generation of the lattice, on¢otal number of GS’s of the HL at itsth hierarchy level is

has thatP=N(©). expressed as

A. Recursive approach
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Next we apply our methods to four examples of frustrated
N{R=2 a,G, (3.2 HL's; we show that in two of them, the FA vyields the exact
“ residual entropy in the thermodynamic limit, whereas for the
where the coefficienta, count how many different configu- other Fwo, the FA provides a lower estimate for the number
ra(ti())ns of the spins at the zeroth level contribute to the sam@f GS's.
G
If one succeeds in obtaining the recursion relations in Eq. IV. APPLICATIONS
(3.1 exactly, the RA yields the exact number of GS's of the | ¢ ;5 consider the antiferromagnetic Ising model defined
H_L_at its nth _hlerarchy level. _Howeve_r, this turns out to be 8 through the Hamiltonian in E42.1) [with the coupling con-
d|ff|<_;ult task in some cases, like for disordered systems. Nexétants{Jij}=J<0 (Vpairgij))], on HL’s composed of the
we |r.1trodu.ce a much S|mpler. method, as an alterngtlve ,fo[mit cells shown in Fig. 2. For the cells in Figsia2-2(c)
working with systems for V\_/h|ch the recursion relations N (which belong to the family of Wheatstone-bridge cé13])
Eq. (3.1) are difficult to obtain. the corresponding HL'’s are generated in such a way that at
each step, a single bond is replaced by a unit cell. The scal-
B. Factorization approach ing factor isb=3 for the cell of Fig. 2a), whereas=2 for
An alternative form of this method was already employedthose in Figs. @) and Zc); the fractal dimensions of the
for the calculation of GS degeneracies of Ising spin glasseispective HL's ared= (log 18/log 3y=2.631 [cell in Fig.
on diamond HL'Y13]; herein we shall define the FA for the 2(@)], d=(log5/log 2)=2.322 [cell in Fig. 2b)], and d
simpler case of pure systems. Let us consider a given HL aft (109 12/log 2y=3.585[cell in Fig. Ac)]. In Fig. 2d) one
its nth hierarchy level; one may partially count the numberhas the unit cell of & =2 Sierpinski gaskgtl5]; since each
of GS’s of the HL by fixing the terminal spins of each unit triangle at hierarchy leveé{is replaced by three new triangles
cell. We shall denote the number representing this partialvith a half of the side at levek+1, i.e., each triangle will
counting byl'™. In a HL all unit cells present terminal spins generate three new sitgsites 1, 2, and 3 in Fig.(@)], the
belonging to lowest-level hierarchies; under the RG procefractal dimension of such a HL = (log 3/log 2=1.585. In
dure, each terminal spin will become an internal one at itgvhat follows, we shall apply both methods described above
respective hierarchy level. Therefore, one may write to such systems.

Ngg:r(n)r(n_l)r(n_z)' - TA, (3.3 A. b=3 planar Wheatstone-bridge-like HL

where the factoA corresponds to the number of states asso- L€t us now consider the antiferromagnetic Ising model on
ciated with hierarchy level 0. It is important to mention that the HL composed of the unit cells shown in FigaR At an
the total number of GS's, as written in E(8.2), may be arbitrary hierarchy levelk, one has the total number of bonds
factorized in the form of Eq(3.9 only for very particular ~&nd unit cells given, respectively, by
types of the recursion relatior(_g.l);. in most of thg cases, NO— 18 NO—1g-1
Eq. (3.3 represents an approximation fil) . Typical ex- b v e :
amples for which the FA may be considered as a useful : . #1(K)
approximation are randomly frustrated systems, like Ising[mgetr;g? rt]hemBg?;esrgssgffhgioﬁ%r_]g to lekieN™, and
spin glasses on hierarchical lattidds3]. u : '

One may see easily that, for an arbitrary hierarchy |&yel 8
the partial counting may be written as NW=gN® —~ NW=2+ 1—7(18k—1). (4.2

4.9

ro=11 (ga)N%, (3.4 It is important to remember that the RG transformation for
“ the present HL leads to the plot versust shown in Fig.
1(a), where in the zero-temperature limit= —1) one ob-
Ytains a=limy_qt'(T)=—1/3. According to Eq.(2.2), the
interactions become zero after the first RG step; therefore,
for a HL at thenth hierarchy level, the interactions are to be
considered as antiferromagneticlkatn and zero fork=n

whereN{") denotes the number of unit cells with degenerac
g, in the HL at itskth hierarchy levelobviously, the total
number of cells at théth hierarchy level N, may be

obtained fromz ,N%,=N¥). In simple systemsN®), may

Ne,a

be calculated exactly, whereas in more complicated prob-_1 ,_» 0
lems one may replacd{, with the average valuf13] Let us now apply the RA for the present system; we shall
first consider the case=1. Since the terminal spinsg(and
pW=NOFW > =N (3.5) S belong to the zeroth hierarchy level, the effective inter-
a action between them is zero. Therefore, the GS degeneracies

® - o _ of the cell in Fig. 2a) may be easily calculated, by consid-
whereF,” represents the probability of finding a unit cell of ering all possible states for the terminal spins, as shown be-
type « at hierarchy levek [14]. Such a procedure leads to an |ow.
average estimate (i) Terminal spins parallel §=S;)—there are two GS
configurations §,=2), given by four broken bonds each:
r®,, =11 (gawg“)_ (3.6) either one breaks the set of bondd;,Ji3,dj6.Jjs} OF
a 1Ji2:Jia9j5,9j7}-
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(if) Terminal spins antiparallel§+ S;)—there are also different degeneracies, bu the total number of ground states
two GS configurationsd,=g,=2), given by four broken may be expressed as a single product of powers of such
bonds each: either one breaks the set of bondgegeneracies.

1Ji1.diz.djs. 957k or {Jiz,Jdia Jdj6 s} It should be mentioned that it is straightfoward to show
Sinceg,=g;, for the total number of GS’s at hierarchy that the FA also leads to the exact residual entropy for the
level 1[see Eq(3.2] one may write cases where the unit cells present different degeneracies, but
the total number of ground states may be expressed as a
N&l%: a0, (4.3 single product of powers of such degeneracies.

wherea; =4, i.e,N{2=8.
The casen=2 may also be worked out easily, by consid- B. b=2 planar Wheatstone-bridge HL
ering antiferromagnetic interactions fer=2 and zero inter- In this example, we consider the antiferromagnetic Ising
actions fork=1 and 0. Since each bond of hierarchy level 1 mqdel on the HL defined through the unit cell exhibited in
will generate a unit cell with degenera@y at hierarchy  rig a(b). The RG transformation for the present HL leads to
level 2, one obtains a plott’ versust similar to the one shown in Fig(l), but in
2)_ ) 2)_ 18 the zero-temperature Ilimit t€—1) one gets a

Nes=a:Gy7,  Gy7'=256g1, (4.4 =lim_ot'(T)=1. This leads to ferromagnetic interactions
where the factors =256 anda,=4 come from the sums JUst after the first RG step; for a HL at tith hierarchy
over the spins of hierarchy levels 1 and 0, respectively. Théevel, the interactions are to be considered as antiferromag-

procedure may be carried for tii¢h hierarchy level: nectic atk=n and ferromagnetic fok=n—-1,n-2,...,0.
In order to minimize the energy of a given cell, its termi-

N =a,G{", G{M=256G{""b) (4.5  nal spins(which belong to a hierarchy levik:n) should be
parallel to one anothefS=S; in the cell of Fig. 2b)].

Using the fact thatG(11)=gl=2, one may obtain the GS Clearly, one sees that there is a single ground-state configu-
entropy per spin in the thermodynamic limit, ration, characterized by the breaking of its central bond
(J1,). Since this is valid for all cells of the HL, both meth-
ods(RA and FA yield the trivial result for the total number

of ground states\N{"2=2. Although the HL composed of the
cells of Fig. Zb) appears to be, at first glance, a fully frus-

which represents about 17.36% of the maximum possibldated system, it indeed corresponds to a simple model with

=i 1| N = 25| 2=0.12033 4.6
So= mWog 6s=124092=0. ..., (4.9

n—o

entropy per spin. no resid_ual entropy; this is a consequence of the fact. that
Let us now apply the FA for this system. In E.3), one each pair of triangular plaquettes in a unit cell share a single
has that common bond.
In the next two examples, one will get more complicated
F(n):(gl)Ng"), (K =Nk (k=12,...n—1), recursion relations _for the total number_of GS’s in such a
47 way that the FA will lead to an approximate estimate for
A=4. ' N{L: in fact, the FA result will be a lower estimate, as com-

pared to the exact value obtained through RA.
Substituting such results into E€3.3), and using the fact
that
C. b=2 nonplanar Wheatstone-bridge HL

n-1

2 N(k)zi(lgnfl_l), (4.9 We shall now investigate the antiferromagnetic Ising

k=1 17 model on the HL defined through the unit cell exhibited in
Fig. 2(c). The number of bonds, cells, sites belonging to

one may easily obtain the same residual entropy of &£@).  |eve| k, and total number of sites, at an arbitrary hierarchy
In this simple example, the FA yields the exact residualeye| k, are given respectively, by

entropy as well. This occurs because the degeneracies of the

unit cell of Fig. 2a) are the same in both situations of par- NR=12 NW=121 (4.10
allel and antiparallel terminal spins. In this case, E§5

may be written as

4
(n) NK) = aNK) (k) — _ _
Ngg:al-rr{k=l,2,...nfl}(gl)Ncn N®W=4N, NW=2+ 11(12k 1). (4.1

—ay (g

(80 The=12,...n-2d 49 The RG transformation yields the plot versust shown in
where Tr._1, ., 1 denotes a trace over all possible Fig. 1(b), with the zero-temperature limit given ky=—1
states of the spins belonging to hierarchies, 1,2 n—1. anda=Ilim;_ot’'(T)=5/9. As discussed above, this leads to
Comparing with Eq.(4.7), one recovers the product of Eq. independent spins right after the first RG step; therefore, for
(3.3), characteristic of the FA. It should be mentioned that ita HL at thenth hierarchy level, the interactions will be con-
is straightfoward to show that the FA also leads to the exacsidered as antiferromagnetic lat=n and zero for all other
residual entropy for the cases where the unit cells preseritierarchy levels.
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Let us now implement the RA, starting, as usual, with the - L
casen=1. The GS configurations and corresponding degen-  [0gN{2=|2+ —(12n —1) |log 2+ —12" log 3
eracies associated with the cell of FigicRare described

below. 1

(i) Terminal spins parallel%=S;)—there are three GS +512° Ylog 2, (4.16
configurations ¢;=3), given by four broken bonds each:
912,923,334, Ja1 OF {Jiz,Jiasdj2,dj4) OF {3i1,dis, )1, ;) and so, in the thermodynamic limit, the residual entropy be-

(i) Terminal spins antiparallel§+# S;)—there are two  comes
GS configurations d,=2), given by four broken bonds

each:{Jiz,Jis,Jj1,Jj3} or{Ji1,Jiz,Jdj2,Jja}- 19 11
For the total number of GS’s at hierarchy level 1, one may So= gg!09 2+ 55109 3=0.26308 . .., (4.17
write

(4.12 which yields a relative discrepancy of about 2.5% with re-
spect to the value computed iteratively from the RA.

The FA, which is much simpler to implement than the
RA, leads in this case to a slightly lower estimate for the
residual entropy, as may be seen in Table | and Fig). 3
Below, we give a proof that the FA should yield a lower
estimate than the RA, for any HL satisfying the following

Ng;s), a;0:taxdo,

wherea,=a,=2, i.e, N{4=10. The cas@=2 may also be
worked out easily; each of the 12 bonds of the celkinl

will generate a new cell presenting either one of the degen-
eraciesg; or g,, depending on its terminal spins. One ob-

tains requirements.
N(st): alG(12)+a2G(22), (4.133 (i) The unit cells exhibit two different GS degeneracies
(g, andgy). . . . .
G(Z):ng+ 4ggg4+4gegﬁ+7g498 (4.13H (ii) The interactions are antiferromagnetic in last hierar-
o 192 7 78182 - TE1E2 ' chy and zero for the lower hierarchy levels.
@) _ 4.8 (iii) The recursion relations are written as sums of prod-
GS¥=2g305+ 129595+ 29795 (4130 | ts of different powers ofj; andg, [like the ones in Egs.
For a HL at itsnth hierarchy level, (4.14] .
y In fact, Eqgs.(4.14) lead to the following form for the
N =a,G{M+a,G", (4.149  humber of GS’s:
Ggﬂ): (G(ln—l))12+ 4(G§Ln—1))8(G(2n—l))4 (G% E N(?{/’“}(QZ)N((:IB{/’“}, (418)
o

+4(Gg_n_1))6(G(2n_l))6+ 7(ng_l))4(G(2n_l))8,
(4.14h  WhereX , denotes a sum over all frustrated configurations up
to hlerarchyn 1, whereaN{" {41} denotes the number of
G =2(G" M)EGI D)4+ 12 G D)S(GI1)6 cells, of configurationu, with degeneracyg, (N{3{u}
+ N3 u}=N). One may also write

+2(G"D)AGI )8, (4.140
where G{Y=g,=3 and G{"=g,=2. The recursion rela- (n) N 91 e}
vhere &1 =0, 2 —gp=2. The . NE=(g)Ne > (4.19
tions in Eqs(4.14) may be iterated numerically; by doing so, »w \02

one may obtain the residual entropy for a HL at a given
hierarchy level, as shown in Table I. One observes a rapidince @;/9,)>1, the right-hand side of the equation above
convergence to the thermodynamic limit, in such a way thats a convex iunction, and using the general property
for n=7 we obtains,=0.269816(3), which represents 1/NX,;f(x;)=f(x) one obtains that
about 38.93% of the maximum possible entropy per spin.

We shall now treat the problem within the FA; one ob- (M= (gy) 4" (gy) * NG D=[T™M],, NIS D,

. _ NGs
tains thatA=4, whereas (4.20

F(")=(gl)N(Cl(gz)N(n) =28 (k=12,.. . n-1), where[T'(M],, is defined in Eq(3.6). Since the spins in the

(4.158  hierarchy levelk=n—1n-2, ...,0 aresubject to zero in-
teractions, the number of GS’s at tha<{1)th hierarchy
level, N(n 1 | factorizes in the FA form of Eq3.3). There-
fore, one obtains

with

n-1
- :_ -
g’l N (12“ b (4159 NO =T M), r-Dre=2...7WA (4.20)

Since one has zero COUD"”QS for hierarchlesn, F{"”  \yhere the left- and right-hand sides of the equation above
=F{"=1, and so we replactl) and N} by ¢{"=¢5"  represent the total number of GS’s of the HL calculated
lN(") [see Eq(3.5]. Using such results one obtains that throught the RA and FA methods, respectively.
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TABLE I. Residual entropys, of the antiferromagnetic Ising S0
model on HL's composed of unit cells in Figs(c2 and Zd), cal-
culated by two different methods, Réexac) and FA (approxi- 0.285 @)
mate, for typical lattice sizesr{ denotes the hierarchy leyelOne -
observes that the first two columfiig. 2(c), HL] exhibit a much
quicker convergence to the thermodynamic-limit valuesgfthan 0.280-
the other twg Fig. 2(d), HL].

a
n Fig. 2(c) HL Fig. 2(c) HL Fig. 2(d) HL  Fig. 2(d) HL 0.275
(RA) (FA) (RA) (FA) -
0.2701 . " n "
2 0.282369 0.276101 0.513020 0.511365
3 0.270853 0.264185 0.500154 0.498381
4 0.269888 0.263161 0.495447 0.493631 0.2651 a
5 0.269820 0.263076 0.493826 0.491995 o o o o
6 0.269817 0.263069 0.493280 0.491444 0.260
7 0.269816 0.263068 0.493098 0.491260 1L 2 3 4 5 6 7
11 0.493007 0.491169 n
14 0.493006 0.491168
15 0.493006 0.491167 Sy
0.515+ (b)
D. b=2 Sierpinski gasket :

Let us now consider the fully frustratdm=2 Sierpinski 0.510+
gasket, as defined abojsee cell in Fig. &d)]. It is important
to remember that the residual entropy of this system has 0.5051
already been calculated exactly, through other methods ’
[20,21); in such works, the basic unit of the HL was consid-
ered as a single trianglg.e., the system at its zeroth hier- 0.500+
achical level. Herein we shall keep the same convention
used in the previous applications, i.e., our unit cell will be .
the one shown in Fig.(®@), i.e., the HL at hierarchy leveX 0.4951 am,
=1. Therefore, the HL will be composed of unit cells with o : : : : : : : : :
three terminal spins, as well as three internal spins each; the 0.490 ——
number of cells, sites belonging to leveland total number 0 2 4 6 8 10 12 14 16
of sites, at an arbitrary hierarchy leviel are given, respec- n
tively, by

FIG. 3. The GS entropy per spiresidual entropyfor different
N((:k):3k—1, N® = 3N((:k) , hierarchy levels, as calculated by the Rfbvlack squargsand FA
(empty squaresfor HL's composed of unit cells(a) The b=2

non-planar Wheatstone-bridge celh) Theb=2 Sierpinski gasket

3 3
NM=3+ (3~ 1)=5(3"+1). (422  cel

i i . or {Jj3.Jk2,J12}. By permutation of the terminal spins, one
For this system, the RG yields a pldtversust similar tothe 5 ‘ohtain a total of six possible configurations with such a
one shown in Fig. (), with the zero-temperature lima  5g degeneracy, and $0=6.
=limr_ot'(T)=3(14-813)=0.072; therefore, the antifer- ~ one obtains an equation similar to Eé.12, leading to

roma_gnetic interactions of the Ia}sthierarchy level will lead toN(GlS):24_ The Sierpinski gasket at=2 is composed by
zero interactions for all lower hierarchy levels.

, X __three unit cells, which may present either one of degenera-
Let us now consider this system under the RA, startin

%iesg, or g, each. One obtains an equation similar to Eq.
with n=1. As described below, there are only two distinct (4_1% wit%z a a

GS degeneracies for the cell of Fig(d? depending on
whether the terminal spins at siteg, andk are all parallel,

2)_ 3 2 3

or one of them is antiparallel to the remaining ones. G{?=gi+3g.03+ 403, (4.233
(i) Terminal spins parallel§ = S;=S,)—there are four

GS configurations d;=4), given by three broken bonds G(22)=9§92+4919§+39§- (4.23h

each: {J;5,J23,J31} OF {Ji1,Jj1,d23f Or {Jiz,Jip, 13 OF
1Jj3:Jka,J12}- There are two possible configurations for ter-
minal spins parallel, and sa;,=2.

(i) One terminal spin different from the other twe;(
=S;# S)—there are three GS configuratiorg € 3), given
by three broken bonds eacfl;,,Jys,J1at O {Ji2,Jj3,J23} NE=a,G{" +a,G{", (4.243

The above results may be generalized for the Sierpinski gas-
ket at itsnth hierarchy level,
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G(ln):(G(ln—l))aJr 3G(1”‘1)(G(2“_1))2+ 4(G(2n—1))3’ ing the exact recursion relations, the recursion approach
(4.24pn  Yields the exact ground-state entropy. The factorization ap-
proach vyields, in principle, an approximate number of
GV =(G{" 26N V146" V(G V)2+3(GI V)3, ground states; however, it may lead to the exact ground-state
(4.240  entropy, in the thermodynamic limit, for some simple sys-
" i ) tems, presenting one of the following propertiés:systems
whereGy’'=g;=4 andG;’=g,=3. The residual entropy for which the unit cell presents the same ground-state degen-
may be obtained by iterating numerically the above recursiorracy for different configurations of its terminal spins; and
relations. In Table | we present the valuessgffor different  (ji) systems where the total number of ground states may be
hierarchy levels. Fon=15 we obtains,=0.493006 122),  expressed as a single product of powers of the degeneracies
which is in agreement, up to seven digits, with the vadge of the unit cell. For more complicated models, such as dis-

=0.49300610 ... [21]. ordered systems, the recursive approach becomes a difficult
Let us now consider the present system under the FA; ongisk; in such cases, the factorization method is very useful.
obtains thatA= 8, whereas We have shown that the factorization method, applied for
- - 0 pure systems characterized by a unit cell presenting two dis-
rW=(g,)Nei(gy)Nez, TW=2N (k=1,2,...n-1) tinct ground-state degeneracies, yields an estimate for the

(4.253  ground-state entropy per spin, which is always equdiro
case(ii) mentioned aboveor less than the exact value.
We have applied the above-mentioned methods to the an-
n-1 3 tiferromagnetic Ising model defined on four hierarchical lat-
> NKW=Z(3""1-1), (4.25H  tices containing triangular plaguettes. For all cases, we have
k=1 2 succeeded in calculating the exact residual entropy; in two of
ny . them (one of which is trivial, the factorization approach
As above, wenreplgce ead¥{), with the corresponding av-  hrovided the exact answer, whereas for the other two, such a
erage valuep” ; since one has zero couplings for hierar- method yielded a lower, although very accurate, estimate
chiesk<n, Eq. (3.9 gives ¢{"=iN{" and ¢{"=3N.  (the maximum relative discrepancy found was 2)5@hne of
Therefore, the systems considered is fully frustrated, namely, the Sier-
pinski gasket, with a scaling factér=2; the calculated re-
log 2+ §3n—1log 3, (4.26 sidual entropy was,=0.493, which should be compared
4 with the well known result for the antiferromagnetic Ising
model on the triangular lattid®], s,=0.323. The HLgen-
erated by the planar Wheatstone bridge with scaling factor
4 1 b=2 is shown as an example of an apparently fully frus-
So= §Iog 2+ glog 3=0.4911G ..., (4.27  trated system, but that in fact is a trivial case, with no effec-
tive frustration. For the Sierpinski gasket, our calculation is
representing a relative discrepancy of about 0.4% with rell full agreement W't_h previous works20,21]. As pom'ged
spect to the value computed iteratively from the RA. OUt. befo.re, the Sierpinksi gasket may be seen as a trlang_ular
The proof carried in Eqs4.18—(4.21) also holds for the Iatt|ce_ with holes; such holes, whlph cancel some of th_e in-
present case, in such a way that the total number of Gsieractions of the corresponding triangular lattice, contribute

calculated through the FA is always a lower estimate witht© ?_?1 mcreall_setl_n thef g}[rr]ound—statte de?r(]endera:ccy.th udv of
respect to that of the Rfsee Table | and Fig.(B)]. € appiication ot the present methods for the study o
other frustrated systems seems to be promising and may re-

veal interesting results on open problems.

and

log N = E3“+ 3
GS 3 2

and so, in the thermodynamic limit,

V. CONCLUSION

We have calculated the ground-state entropy of frustrated
Ising systems on hierarchical lattices. Two methods were
introduced: the recursive and factorization approaches. The We thank S. Coutinho for fruitful discussions. The partial
first one is based on exact recursion relations for the totdiinancial support of FAPERFunda@o de Apoio aPesquisa
number of ground states, whereas in the latter one writes thdo Estado do Rio de Janeir®CNPq and Pronex/MCTBra-
total number of ground states as a product of the number dfilian agencies are acknowledged. F.D.N. acknowledges
ground states at each hierarchy level by fixing the spins o€EBPF (Centro Brasileiro de Pesquisasieas for the warm
the lower-level hierarchies. Whenever one succeeds in findhospitality during a visit in which this work was developed.
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