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Gravitational phase transitions in a one-dimensional spherical system
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The behavior of gravitational phase transitions in a system of concentric, spherical, mass shells that interact
via their mutual and self gravitation is investigated. The nature of the transition in the microcanonical, canoni-
cal, and grand canonical ensembles is studied both theoretically in terms of the mean field limit and by
dynamical simulation. Transitions between a quasiuniform state and a centrally concentrated state are predicted
by mean field theory for the microcanonical and canonical ensembles, and this is supported by dynamical
simulation. For the grand canonical ensemble, mean field theory predicts that no transition takes place, and that
the thermodynamically stable state is always the uniform one. Again, this is supported by simulations under
various initial distributions of mass, even when the system is initialized in a collapsed state. In addition to
testing the predictions of the mean field theory and studying the effects of finite size scaling, dynamical
simulation allowed us to examine the behavior of temporal and positional correlations which are predicted to
vanish in the mean field limit.

PACS numbe(s): 45.05+x

I. INTRODUCTION tonov [6] studied the effects of limiting the radius of the
system by a reflecting spherical box and determined that the
The focus of this study is the behavior of phase transitionsystem lacks a globdland for low enough energy a logal
in gravitational systems. Gravitational phase transitions arentropy maximum. This leads to an instability in which the
characterized by a change in the distribution of mass of th@ystem may undergo a spontaneous collapse. Lynden-Bell
system, and have relevance in astrophysical phenomenand Wood[7], who referred to this instability as the “gra-
such as black hole and planet formatidn2]. Over the past vothermal catastrophe,” studied a system of point particles
several decades fundamental questions have been studieghtained in a spherical box, interacting only through their
concerning the existence and properties of gravitationagravitational attraction. They found that for a system with a
phase transitions: Are phase transitions possible for gravitahiegative total energy, if the radius of the box was restricted
ing systems? How do they differ from those in “normal” below a critical value, the system possessed a Itmal not
matter? How are they influenced by interactions with thegloba) entropy maximum. Local entropy maxima may give
environment? rise to long-lived metastable states, but no thermal equilib-
Obtaining answers to these questions is difficult becausgum state exists without a global maximum. Lynden-Bell
of the twofold complexity arising from the infinite range and and Wood found that if the radius of the box was above the
singularity of the gravitational force. In “normal” matter critical value, there was no local entropy maximum, and a
studied in laboratory systems, the forces between particlesentral core existed that would grow hotter and more dense
are of short range and, hence, the energy is an extensiwgithout bound. Later, Hertel and Thirriri@] investigated a
parameter. This is not the case in gravitating systems, andsystem of point fermions interacting by means of their mu-
standard thermodynamic analysis can prove intractable. Agial gravitation, and found that, unlike Lynden-Bell and
an approximation, the gravitating system can be considere@/ood’s classical particle system, a global entropy maxi-
in the Vlasov(or mean fieldl limit of an infinite number of  mum, a true equilibrium state, always exists. This suggested
particles,N—<, while holding the total mass and energy that when the singularity at the origin of the system was
constant. The system dynamics are represented as a flugtielded, the gravothermal catastrophe was avoided. Aronsen
flow in u(r,v) space, and is governed by the collisionlessand Hanseh9] shielded the singularity by considering a sys-
Boltzmann equatiofCBE) [3]. For dynamical equilibrium, tem of gravitating hard spheres in the mean field limit, and
in which the distribution of the mass does not change withfound that the gravothermal catastrophe was replaced by a
time, the time-independent CBE has an infinite number ophase transition from a uniform state to a state with a highly
stationary solutions. One class of such solutions is polyconcentrated core. Stahl, Kiessling, and Schind&r re-
tropes, in which the density as a function of radius is proporcently studied a similar hard sphere system for both isoener-
tional to thenth power of the potential energy of the system getic and isothermal conditions, and found that phase transi-
[3]. In 1911, Plummef4] showed that a polytrope of index tions occur in both systems.
n=5 showed a reasonably good fit to the observational data In related work, Kiessling10] investigated the complete
of some globular clusters. A few years earlier, Em{Bh N-body gravitating system in the canonical ensemble. He
showed that the special case of infinite polytropic index leadsoftened the potential, and studied the limit of the partition
to athermalequilibrium solution, which maximized the en- function as the softening is removed. He proved rigorously
tropy for the system. This solution had its own set of diffi- that a three-dimensional, nonrelativistic, isothermal system
culties; it does not have a finite radius and has infinite masawill collapse to a&function density distribution. He also
This situation was stagnant until the 1960s, when An-proved that a phase transition is possible in the isoenergetic
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system restricted to a spherical box, if the singularity of thementum, which avoids the gravothermal catastrophe de-
two-body interaction potential is regularized so that it re-scribed by Lynden-Bell and Wood. Here we describe our
mains bounded at=0. study of phase transitions in a similar system of concentric

Until now, none of these thermodynamic predictions of aspherical mass shells, with the difference that the shells have
phase transition was confirmed by studying the dynamicatero tangential velocity. With no angular momentum, the
evolution of a gravitational system. Simulation of realistic origin will not be shielded, and a gravothermal catastrophe
gravitating systems, such as globular clusters or galaxiesould occur. In order to investigate the existence of a phase
comes with its own set of problems. The singularity in thetransition, we shield the singularity by introducing an inner
gravitational force law, escape of stars from the system, bibarrier with which the shells can collide elastically. This al-
nary formation, and stellar evolution complicate the dynam4ows us to investigate the thermodynamic behavior of the
ics greatly[3]. Even when stellar evolution is ignored and system as the singularity at the origin is approached, by de-
each star is represented by a simple mass point in threereasing the radius of the inner barrier.
dimensional space, the amount of computing time required to An initial study of this system explored the phase space of
integrate the system’s equations of motion for many relaxthe two shell system to determine its ergodic properties, and
ation times is considerable. Recent advances in computingompared it with the system of planar, parallel, mass sheets
hardware, such as therAPE family of dedicated computers [22]. Reidl and Miller determined that the parallel sheet sys-
[11], are making it possible to study large-scale realistictem with populations of ten or less has at least one stable
gravitating systems, such as interacting galaxies, with greateyeriodic orbit, ruling out ergodicity23]. Froeschle and Sc-
precision. As another alternative, idealized models are creheideckef14] found that in a system with three mass sheets,
ated that make simulation feasible, while capturing a basionly 4% of the phase space was actually occupied by chaotic
property of the interaction. The ease of computation for oneerbits. In the system composed of two spherical shells, a
dimensional systems has made them a popular choice fonuch larger chaotic component was found when the energy
studying long term behavior. Typically, these models fallof the system was above the threshold enefghere the
into one of two classeg1) a system of parallel mass sheets fixed point of the system went from elliptic to hyperbdlic
[12-16, which has been suggested to have some similaritiesuggesting that the spherical shell system may reach equilib-
with the motion of stars perpendicular to the plane of arium more quickly than the sheet syst¢g®]. This was sup-
highly flattened galaxy17]; and(2) a system of concentric, ported by a study by Youngkins and Millg24], in which a
spherical mass shells, which are identified with the dynamicsystem consisting of concentric spherical shells reached
of a spherical globular clustdrl8—21. Simulations show equilibrium on a time scale almost two orders of magnitude
that if the parallel mass sheet system reaches equilibrium a&maller than the sheet system. This suggests that the spheri-
all, it takes a very long time. This casts into question itscal shell system may be a more useful model for testing
usefulness as a test model, and has stimulated a search fastrophysical theories concerning the evolution of stellar sys-
other systems which unambiguously relax to equilibrium. tems.

As a model for a spherically symmetric star cluster, In the present work we extend our study of the spherical
Henon[19] studied a system of concentric spherical massshell system to investigate the existence and behavior of
shells. Each shell represents a collection of stars with th@hase transitions, both theoretically and via dynamical simu-
same radius and radial velocity. The stars move on the sufation. We consider three types of interaction with the envi-
face of the shell with the same magnitude of tangential veronment: microcanonicalsystem is isolated from its envi-
locity but in different directions. The magnitude of angular ronmenj, canonical(system is in contact with a constant
momentum is the same for all stars on a single shell; theretemperature reservgjrand grand canonicalsystem is in
fore, the radial motion of each star is governed by the sameontact with a reservoir of constant temperature and chemi-
equation of motion. This allows the radial motion of all the cal potential. An abbreviated version of our preliminary re-
stars on a shell to be followed by numerically integrating asults appeared earli¢25].
single equation of motion. Angular momentum is conserved We first focus on the predictions of the mean field theory.
for each star, and since the radial motion of the shell is th&Ve constrain the system to a spherical box, and shield the
same as that of one of its constituent stars, the singularity airigin with a reflecting barrier. We find that in all three en-
the origin is shielded by the centripetal force. Henon foundsembles, there is a critical value of the inner barrier radius
an initial collapse of the system of 1000 shells and a finabelow which two phases are possible. The density profile for
state in a core halo configuration. A later study of a similareach phase is smooth, but one phase has a higher central
system by Yangurazova and Bisnotavyi-Kogan found similarconcentration of mass. In the microcanonical ensemble, the
results[21]; however, instead of integrating the equations ofmore uniform distribution is the thermodynamically stable
motion, the system was followed by determining the times asolution for higher energies, and the concentrated phase is
which the shells intersect. This resulted in a more accuratstable at lower energies. The two solutions coexist at the
and efficient simulation for the following reasons: computertransition point. A plot of the maximum entropy versus en-
roundoff error was introduced only at intersections, the trunergy has a discontinuous slope at the coexistence point, in-
cation error that is introduced by numerical integration meth-dicating a discontinuous change in the temperature, and the
ods was avoided, and less computer time was required tgystem undergoes a phase transition. Mean field theory pre-
simulate the system. dicts a similar transition for the canonical system; however,

In the studies of Refd[19] and[21], an evolution to a the transition results in a discontinuity in energy instead of
core-halo configuration is exhibited. Both systems shield theemperature. Also, the critical point occurs at different values
singularity at the origin by the conservation of angular mo-of the inner barrier radius for the two ensembles. These dif-
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ferences emphasize that the two ensembles cannot be usdg., the density of stateQ or the partition functionz)
interchangeably, as they can in normal matter in which theroves intractable. Instead, as an approximation, we consider
energy is an extensive parameter. In the grand canonical sytiie system in the mean field limit — o, while holding
tem, we study a special case where the average mass of thee total mass and energy constant. The shell system consid-
system is constant in order to be able to compare the resulesed here is represented by a simple fluid flow in a two-
to the other two ensembles. In this case, no phase transitiatimensionalu(r,») space with mass densifyr,»,t). The
is predicted; the equilibrium grand potential varies smoothly.evolution of the density function is given by
The concentrated phase is thermodynamically less stable for
all values of temperature and inner barrier radius. of ot dv, of

Phase transitions are predicted only for systems with in- FETINrTS ﬁzo' @

.

finite population[26]. It is well known that for finite sys-
tems, the jump in the order parameter is smoothed into a There are an infinite number of stationary solutions
rounded transition, the center of which is shifted from the(gf/gt=0) to the Vlasov equation; here we are interested in
value at which the transition occurs in the infinite system.the equilibrium stationary solution, the one which maximizes
The rounding and shifting of the transition depends on thehe entropy. The entropy extrema occurs wheis of the
population of the systen, asN~” andN~*, respectively  form [7]
[26]. In the following, we show that this is supported by
dynamical simulation, in which the number of particles is f:Ae—ﬁ[(l/Z)Vz—w(r)]:Ce—BVZ/Zp(r), 2)
finite. In both the microcanonical and canonical systems
phase transitions were observed, but the transition waghereA andC are normalization constant8=m/kT, mis
rounded over a range of energigsmperatures and shifted  the mass of a single shek,is Boltzmann’s constant, is the
from the transition point predicted by mean field theory. Bytemperature ang(r) is the linear mass density(r) is the
varying the number of particles in the simulation, we dem-gravitational potential, and
onstrated that the simulation results for the transition were
consistent with the rounding and shifting behavior predicted b o(r=r") 6(r'—r)
by finite size scaling. As predicted by mean field theory, the ~ ()= _GMJa dr’ p(r ){ T ©
grand canonical system showed no signs of a transition to the
more concentrated phase, even when the system was Prgnereg(r —r') is the Heaviside unit step function aMlis

pared in a highly condensed configuration. _ the total mass. In equilibrium, from Eqél) and (2), the
In addition to testing the predictions of mean field theory, hormalized linear mass density profijg(r) satisfies
we used dynamical simulation to study the behavior of fluc-

tuations in the gravitating shell system. It is well known from d[r?dp
critical phenomen&27] that long-range correlations in den- a[— a} =—-MGgp(r), (4)
sity fluctuations exist at the critical point. In normal matter, p
an attribute of systems that exhibit these correlations is Qubject to
critical “slowing down” where the relaxation time diverges
[28]. From dynamical simulationN=64), we found that
strong temporal and positional correlations do exist near and ap(r)
above the critical point; however, the relaxation time showed
no sign of divergence at any point in the transition plane for
the microcanonicalk,a) or the canonical ensemblg(a).

In the following sections, we present our methodology for b
studying the spherical shell system, and the results obtained J p(r)dr=1, (6)
for the three ensembles in the mean field approximation and a
by dynamical simulation. Section Il discusses the treatment - _ )
of the system in the Vlasogmean field limit and a method whe_rea andb are the rad_u qf the inner and outer reflecting
for determining equilibrium density profiles, which are usedParriers, respectively. It is important to note that although
to investigate the existence of phase transitions for the thre@imilar in form, this system of equations for the mass density
ensembles. Section Il describes the numerical simulation foff the one-dimensional shell system is not the same as that
the three different ensemblésicrocanonical, canonical, and for @ spherically symmetric three-dimensional system: i.e.,
grand canonica) and in Sec. IV a comparison between the ¥(r) is the radial velocity ancp(r) is the mass per unit
mean field approach and the simulation results is presentelf.”gth- ) ]
In Sec. V, the behavior of correlations in the system are TO Solve forp(r), Eq.(4) was decomposed into two first
explored by dynamical simulation. Conclusions are pre-order differential equations in the variablgg=dy, /dr and
sented in Sec. VI. y2=MGpBp:

2 2

dy; Y1 2y1 Y3 7

Il. DENSITY PROFILES PREDICTED ar oy, )
BY MEAN FIELD THEORY

For the shell system discussed in this paper, the exact %zy ®)
calculation of the appropriate thermodynamic quantities dr L
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These equations were then integrated numerically using the 10
Burlisch-Stoer numerical methd@8].
Since only one boundary condition is specifieg, (a) 8
=0], we may arbitrarily choose the other boundary condi-
tion, y,(a) and solve the system of equations, yielding > |
yo(r). From Eq.(6), integration of the functiory,(r) from % 6
the inner to outer boundary yielddGg, and p(r) (for the S 4l
specified boundary conditipis then known explicitly. From
p(r), all thermodynamic functions of interest can be com- 0 0
puted. 27TaA B z\
Ill. PHASE TRANSITIONS PREDICTED 0 01 2 3 45 6 7 8 910

BY MEAN FIELD THEORY

, , , _ pr=a
Using mean field theory, we explored the microcanonical, . . .
canonical and grand canonical ensemble. In the microcanoni- FIG. 1. Energy as a function of the density at the inner boundary
cal ensemb|8, the System is isolated from its environmenf_or inner barrier radiusa=0.001. All units are dimensionless. The
No exchange of energy or particles occurs at the outer barrigfotted line shows an energy value that has three corresponding
and the energy of the system is constant. For each solution §ensity values4, B, andC).

p(r) for a given energ, there is an associated entrofy s the equilibrium state, wherd is the potential energy of
the system ang is the chemical potential. We will demon-
strate that the three ensembles lead to different results by

1
S=—kN 28E/M=3In5-Inp(a) examining the properties of phase transitions in all three en-
sembles.
bp(r) In the microcanonical ensemble, for an inner barrier ra-
+'3MGJ'a r dr-+consy. ©) dius of say,a=0.1, there is a uniqup(r=a) for each en-

ergy. However, as the radius of the inner barrier is decreased
below a certain threshold, there is a range of energies that
'admits three possible solutiolisee Fig. 1 Figure 2 shows

. ; ) . . the corresponding density profiles for each of the three states.
lution with the maximum entropy is stable, and hence is thE\Both axesp are Ic?garithm);c? The density profile of state A

equilibrium solution when it exists. . . .
. corresponds to the smallest density value at the inner barrier,
In the canonical ensemble, the system can exchange ef-

. . and is almost uniform between the barriers. In contrast, state

ergy (but not particles with a thermal bath. The average ' : )
. . C has a density profile that corresponds to the largest density
temperature of the system will remain constant. The free

) . . i L value at the inner barrier. Note that almost all of the mass is
energy associated with each density projier), is given by concentrated near the center of the system. State B has a

density profile that lies between the two extremes of A and
C. The amount of mass concentrated near the center of the

Without loss of generality, we define units of distance, time
and mass for whiclh=G=M (total mass} 1. Only the so-

M1
F=E-TS=—-E+ — > In B+Inp(a)

B system varies from state to state even though the energy for
all three states is the same. To determine which state is the
—ﬁMGJb&dr—cons . (10 equilibrium distribL_Jtion for_a given ensemble, the appropri-
a I ate thermodynamic quantity, e.g., entropy, free energy or
grand potential, must be calculated.
In the canonical ensemble, the state with the minimum free 100 : . -
energy is the equilibrium statg27]. In chemical systems
where the energy is an extensive parameter, the microcanoni- 10 |
cal and canonical ensembles can be used interchangeably to
explore macroscopic behavid28]. However, in gravita- %’ 1
tional systems, where the energy is not extensive, this S
equivalence breaks down. One manifestation of this differ- © 041
ence occurs in the heat capacity of gravitational systems. It is
always positive for the canonical ensemble, but can become 0011 A
negative in the microcanonical ensemble near a phase tran-
sition [29]. 0.001 - : :
In the grand canonical ensemble, the system can exchange 0.0001  0.001 0.01 0.1 1
both energy and particles with the thermal bath. The state position

with the minimum grand potential _ _ _ _ o
FIG. 2. Density profile for density poin#s, B, andC in Fig. 1.

M All units are dimensionless. Sta# corresponds to the smallest
®d=U—-TS— uN=—[ap(a)—bo(b 11 density valueC corresponds to the largest, aBdies between the
" B [ap(a)~bp(b)] (D two extremegboth axes are logarithmic
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FIG. 3. Entropy vs energy for the microcanonical ensemble for
all density profiles for inner barrier radiua=0.001. All units are FIG. 4. Temperature Vs energy for the microcanonical ensemble
dimensionless. Note that there is a range of energies that has mubr system with an inner barrier radiua=0.001. All units are
tiple entropy values. dimensionless. The temperature changes discontinuousl at

) . . =2.7. Note that at energies below the transition point, the heat
For the microcanonical ensemble, plotting the entropycapacity (E/dT) is negative.

calculated for each of the states for an inner barrier radius
a=0.1(where the energy is single valuedelds a curve that changes as a function of energy. For high energies, the heat
is smooth with a one-to-one correspondence between entroapacity is positive, as it is in normal systems with short-
and energy; each point represents the maximum entropy stat@nge forces. This positive heat capacity exists for energies
for a given energy. Since the slope of this lin@S(9E),  down to E=2.7. At this point the temperature jumps to a
=1/T, is continuous at all points, the temperature change®igher value and as the energy decreases further, the heat
continuously, and no phase transition is expected at thi§apacity has a negative value.
value of inner barrier radius. As the inner barrier radius is A useful candidate for the order parameter of the system
decreased, however, this one-to-one correspondence vais-the virial ratio,VR=2T/|U|, whereT andU are the ki-
ishes, and there are a range of energy values that have thregtic and potential energies of the system. A significant jump
corresponding entropy valugsee Fig. 3. The equilibrium  occurs in the virial ratio at the phase transition poiit,
curve has two branches, with a “kink” in the curve where =2.7 for the microcanonical system with inner barrier ra-
the two branches intersect. The upggigher energybranch  dius,a=0.0001. We will examine the behavior of the order
consists of solutions with density profiles which resembleparameter from simulation results in Sec. V to see how the
that of state A shown in Fig. 2, with the mass almost evenlytime-averaged simulation results compare to mean-field
distributed between the barriers. The solutions on the lowetheory (MFT).
branch have densities which resemble those of stafigC The results shown above demonstrate the prediction of a
3) with most of the mass condensed at the center. At aphase transition in the mean field limit for an isoenergetic
energy value of 2.7 in our choice of units, the two branchesystem with a specific inner barrier radias=0.001. To
intersect. At this point, two states with differing mass distri- more fully understand the existence of phase transitions, it is
butions(one roughly evenly distributed and one with a cen-necessary to consider the full range of inner barrier radius
tral condensation of maggoexist. This coexistence differs values and determine which intervals produce phase transi-
from that at the phase transition point in chemical systemsijons. To do so, we systematically calculated the maximum
where both phases can be physically present at the san@@tropy curve for many inner barrier radius values, and de-
time, e.g., the system consists of both liquid and vapor. Fotermined if a kink occurred, and if so, the corresponding
gravitational phase transitions this is not the case; the systewalue of the energy. Figure 5 shows the results of this study
can be in only one of the two possible states. The slope ah the phase plane H,a). Above the critical pointa
the maximum entropyg, changes discontinuously at the co- >0.00187, the system did not experience a phase transition.
existence point signifying a first order gravitational phaseBelow the critical point, phase transitions occur and, as the
transition with a discontinuity in temperature. inner barrier radius decreases, the transition energy in-

In common with chemical systems, each branch has solwreases.
tions which continue past the transition point. This portion of ~ Similarly, in the canonical ensemble, phase transitions are
the curve consists of metastable states, where the solutiopsedicted by examining the minimum free energy curves.
are only locally stable. We will see in later sections that inFigure 6 shows the free energy as a functiorBoithen the
the dynamical simulation, under certain conditions, thesénner barrier radius.=0.001. The equilibrium curve consists
metastable states manifest themselves, and the average deftwo branches with different density profiles that meet at
sity profile of the simulation reflects that of the metastablethe transition poin{3=0.018. For lowg values(high tem-
state instead of the stable one. The portion of the curveerature, the density is quasiuniform between the inner and
which connects the two stable branches is thermodynamiuter barriers; states with highvalues have a mass concen-
cally unstablg 28]. tration at the center.

Figure 4 demonstrates how the temperature of the system Figure 7 shows how the temperature of the canonical sys-
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FIG. 5. Phase transition line for the microcanonical ensemble in
the (E,a) plane. All units are dimensionless. The critical point lies at
a=0.00187. Th? heat capac@_ IS negative for the cc_)ndensed_ FIG. 7. Temperature vs energy for the canonical ensemble for
phase and positive for the quasmnlf_orm phase_._As the inner barrle[he system with an inner barrier radius=0.001. All units are
radius decreases, the energy at which a transition occurs INCreaSetmensionless. Note that there is no area of negative heat capacity

suggesting that as the singularity at the origin is approached, MOt exists in the microcanonical ensemble. The energy changes
of the energy space is occupied by a negative heat capacity. discontinuously af =8

energy

tem changes as a function of energy. This behavior is mark; ;mper of particles in the system.
edly different from the microcanoncial systelsee Fig. 4, The above results demonstrate that a phase transition oc-
and demonstrates the breakdown of the equivalence in thg, s at one value of inner barrier radius for the isothermal
microcanonical and canonical ensembles for gravitation ystem. We examined a range of inner barrier radius values,
systems. In the canonical system, the temperature ChanggRy determined the value @ at which a phase transition
continuously;_it is the energy \.NhiCh exh?bits a discontinuity__ occurred, if one occurred at all. Figure 8 demonstrates the
The reverse is true for the microcanonical system. Also, ifypase transition line in the-a plane for the isothermal sys-
the canonical system, the slopd/dE is always positive, o The critical point lies aa=0.043. Below the critical
while the microcanonical system can exhibit negative Spepqint the transition temperature increases as the inner barrier
cific heat once the inner barrier radius decreases below the,is decreases. This trend suggests that for an isothermal
transition threshold. It is interesting to note, however, thalyysiem with no shielding of the singularity, a phase transition
the values for the specific heat are significantly different on, 4 only occur at an infinitely high temperature.
either side of the phase transition. At h_igh energies,_ the tem- |1, order to more easily compare the grand canonical en-
perature changes more rapidly for a given change in energysmpje with the others, we adjusted the chemical potential to
than occurs for lower energies below the transition point. - aintain the total mass equal to unity. Similar to the entropy
The mean field virial ratio was calculated for each state;;,q free energy, the grand potentialexhibits a one-to-one
along the minimum free energy curve and plotted vei8us ., resnondence witl for an inner barrier radiusa=0.1.
At B=0.125, the virial ratio jumps significantly. In Sec. V, However, as the radius of the inner barrier is decredBiegd
we will examine the results of the dynamical simulations ofg), there exists a range ¢ that has two corresponding val-
the isothermal system with varying valuesf@to see if this o5 5td. The minimum grand potential gives the equilib-
transition occurs, and how its appearance is affected by thg,m state; the lower portion of the curve is the stable solu-
tion. It is noteworthy that in the grand canonical case, unlike

100 ' ' T ' the other two ensembles, there is no discontinuity in the
0 T L T T
§ 100 | 04! Critical Point™">
o
GC.) -200 | 0.3 Condensed Phase
3 Q »
& -300 ¢+ 02t
-400 ¢ 01} Quasi-Uniform Phase
-500 : : . ‘ s 0 I . X
0 0.04 0.08 0.12 0 0.015 503 0045
B inner barrier radius
FIG. 6. Free energy v@ for the canonical ensemble for all FIG. 8. Phase transition line for the canonical ensemble in the

density profiles for an inner barrier radius=0.001. All units are  (B,a) plane. All units are dimensionless. The critical point lies at
dimensionless. Betweef=0.015 and 0.13, there is more than one a=0.043. As the inner barrier decreases, the temperature at which a
free energy value for a giveg. transition occurs increases.
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5 ; : : : gether that the finite precision of the computer prevents us
from distinguishing the shells’ positions, and their motion
4! ] cannot be followed. However, by varying the radius of the

inner barrier and allowing it to approach zero, we can gain
insight into the singularity’s influence. Similar shielding
could have been obtained by imparting angular momentum
to each shell, and a study of this rotational system is in
progress by the present auti&.N.M.).

As the system evolves, the shells can intersect and pass
through one another. When two shells cross, the amount of
mass contained within each shell radius changes in a discon-

: tinuous manner, i.e., one shell’s interior mass increases by
0 005 01 0.15 02 025 1/N while the other shell’'s interior mass decreases by. 1/
B This discontinuity in interior mass at a crossing gives rise to
a discontinuity in each shell's acceleration and energy.

FIG. 9. Grand potential v for the grand canonical ensemble ~ We have developed an algorithm that simulates the evo-
for an inner barrier radiusa=0.01. All units are dimensionless. lution of this system without numerically integrating the
Two different states exist for a range @fvalues; the minimum  equations of motion. From the conservation of individual
grand potential curve is the equilibrium solution. The slope of theshell energy between crossings, it is possible to solve for the
equilibrium curve exhibits no discontinuity, so no phase transitiontime that theith shell will reach a specified radius, given
occurs here. The chemical potential was adjusted to maintain a totghe initial time, ty;, the initial radiusrg;, and shell energy

grand potential
N

mass of 1. E;, by performing the integration
equilibrium curve, suggesting that no phase transition occurs N ]2
in this ensemble. The density of this equilibrium phase is ti—to,i=iJ0idr (2/m)| B+ — : (14

guasiuniform, resembling that of staen Fig. 3. In Sec. V,
we Wi!| show that these results are supported by a SimUIati.onhereai — —GnA(i—1/2). The appropriate sign is given by
L?]eW:r'](\:/?robr?r;heﬁfrtldes and energy can be exchanged WlttEhe direction in which the shell is travelling, i.€+) if the
' shell is moving away from the center, afid) if the motion
is toward the center. The solution of the integral can take one
of two forms, depending on the sign of the eneky
The event driven algorithm used in this study is based on

We considered a system df concentric spherical mass the ability to use the above equation to calculate the time a
shells of equal mass and uniform surface density. The shel@hell reaches a specific radius, given the shell’s initial radius
move in a purely radial direction under their mutual gravita-at an initial time and its individual energy. Three types of

tion and self-gravitation, with the acceleration of thieshell ~ €vents are possible for a shell: collision with the boundary,
given by turning point(only possible for a shell moving outward with

negative energy and intersection with another shell. Solving
aj=—Gm(i—3)/r?, (120  for the times of the first two types is straightforward; the

radius of the event is known explicitly. The positions of the
where the shells are numbered from innermost to outermoskflecting boundaries are fixed, and by setting a shell’s ve-
i=1,2,...N. This includes both the contribution from the |ocity » to zero in the equation for an individual shell’s en-
interior mass and the self-acceleration of a given sli&ls  ergy, the radius of the turning point can easily be calculated.
the universal gravitational constamh,is the mass of an in- However, the radius at which an intersection between two
dividual shell, and; is the radius of theth shell. For the shells occurs cannot be determined analytically. Since the
purposes of this study, we have chosen to use a system @ines at which the two shells reach an intersection are equal,
units whereG=1 andm= 1/N (the total mass of the system we use a numerical method to solve
is equal to 1. The total energy of the system is conserved,

and is given by ti(re.roj toiE)=tis1(rc.rojs1.toj+1,Ei+1), (15

N
E=>,
=1

IV. SYSTEM DESCRIPTION AND NUMERICAL
SIMULATION METHOD

for the crossing radius;, wheret; andt; , ; are given by the
previous equation. In this study, a combination of bisection
and the Newton-Raphson method, as described in the stan-
wherev; is the velocity of theith shell. The system is con- dard literature[30], was used to solve for the root of the
tained in a spherical box with reflecting boundaries. In addi-above equation using a tolerance ok 104,

tion, a reflecting inner barrier about the origin is added in The basic strategy for the algorithm is to determine the
order that we may study the influence of the singularity at thdimes at which these events occur for all shells, and then sort
origin on the behavior of the system. Numerical difficultiesthese times to find the next event. The appropriate initial
prevent one from simulating a system where the radii of theconditions are updated, and the process is repeated. This al-
shells decrease to exactly zero or to a very small value; thgorithm for following the evolution of the system has several
positions of the shells near the center become so close t@&dvantages over one that numerically integrates the equa-
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ergy, and the total kinetic energy is calculated from the dif-

ﬁ I ference of the total energy and the potential energy. The total
0t kinetic energy is then distributed equally among all particles
-1 with alternating signs of velocity. The first graph in Fig. 10
2 shows theu space(position, velocity for this configuration

for a system ofN=23200 shells. Due to the large number of

> 2 particles and their close proximity, the individual particle

'g 1 symbols coalesce into a single line. In Sec. V we will discuss
° Y the behavior of systems with the same energy but with dif-
> ; ferent initial conditions. These are selected by limiting the

interval where the shells are initially placed, e.g., using only
half of the region between the inner and outer barrier, result-
ing in different distributions of potential and kinetic energies

for the system.

The second and third graphs in Fig. 10 show the evolution
of the system at 10 and 14 time units. A convenient measure
of time is a crossing timé., which is the time it takes a
particle with no kinetic energy at the outer barrier to fall

FIG. 10. u spaceposition, velocity for theN= 3200 simulation ”T""ard to _the O”gm'tc is approximately two O].c our dlmen-_
at one time unit, 10 time units, and 14 time units. All units are sionless time units for the system of spherical shells dis-
dimensionless. Each shell's initial condition is represented by £Ussed in this paper. The spiral behavior shown in the second
point; the lines are due to the large number of particles and theigfaph can easily be understood. If there were no gravitational
proximity. potential in the system, the shells would travel back and forth
between the boundaries with a constant velocity. The time

tions of motion. First the efficiency of solving only for event that it would take a given shell to traverse the system would
times allows the system to be followed for a much longernot change regardless of the shell’s relative position, i.e.,
time. In addition, the truncation error associated with anyhOW many shells are located inside its radius. Since the shells
numerical integration algorithm is avoided. Cumulative com-are initialized with the same magnitude of velocity, they
puter roundoff error is reduced, since error is introduced onlyvould all have the same period, and they would all be in
at events instead of at every time increment, as is the cag#hase. Once the gravitational potential is considered, how-
with numerical integration methods. ever, even shells that are near to one another will have dif-

The action at the boundary can be varied in order to simuferent accelerations, causing their periods to vary, and they
late different ensembles of statistical mechanics. For the mibecome out of phase with one another. This effect, known as
crocanonical ensemble, the system is isolated and total syghase mixind3], causes the stream of particles to wind into
tem energy is conserved. In this type of simulation, collisions? tight spiral pattern, which continues until the particles lose
with the boundaries result in no change in the magnitude omemory of their initial distribution.
velocity of the shell. For the canonical ensemble, the system In Sec. Ill, we demonstrated a method for calculating the
is in thermal contact with a heat bath, and the average tenflensity of the system as a function of radius in the mean field
perature is constant. To simulate this type of system, we usePproximation of an infinite number of particles for a given
the outer barrier at=b as an isothermal wall for every energy and inner barrier radius. To compare MFT with the
hundredth collision. In such an event, detailed balance igesults of the simulation, we divided the interval between the
respected by returning the shell to the system with a kineti¢hner and outer barriers into 20 cells of equal probability,
energy determined by random]y Samp"ng the exponentiai|.e., the area under the mean field density curve is the same
distribution with meari. In the grand canonical ensemble, for each cell. The initial positions and velocities for the
the system can exchange both energy and particles with tHémulation were assigned according to the total energy and
bath. Dynamica| simulation was accompﬁshed by randomw.nner barrier radius specified for the mean field distribution.
introducing new shells at the outer boundary with a meanfhe system was sampled at equal time intervasery
creation rate\ that is determined by the temperature and0.03.), and the number of particles was accumulated in the
chemical potential of the reservoir we are simulating. Toappropriate cell according to the position of the shell. To
weaken the interaction with the virtual reservoir, the bound-determine when the density had reached its equilibrium dis-
ary was assumed to be “semipermeable.” To effect this, thdribution, a comparison was made between the current cell
creation rate was chosen to be one hundredth of the virtudlopulation and the cell population at half the current number
external flux striking the outer barrier. The velocity of the of samples. Dividing each by the total number of samples
newly introduced shell is determined by employing the saméormalized all cell populations. During a sampig = P;(t)
method as in the canonical case. To balance the flux of nei$ the current time-averagedormalized population of cell
particles entering at the boundary, every hundredth shell and P is the time-averagednormalized population of
striking the outer barrier was removed from the system. cell i at half the current number of samples, i.€;

To assign initial conditions of a given energy, the shells=P;(t/2). The simulation was stopped when the sum of the
are placed at equally spaced radii between the inner ansquare of deviations between the time-averaged current
outer barrier. This distribution determines the potential enpopulation and the midtime population,
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FIG. 11. The variance between the simulat{é# particles; the e . .
64 p FIG. 12. The average density distribution for the simulation of

total energy is—0.8 and the inner barrier radius is Pdnd MFT - ; . . .
oy ’ the microcanonical system with four, 16, and 64 particles. All units

prediction is plotted vs time. All units are dimensionless. Note that di ionl Th field density i d by a hori
in 800 time units, the fluctuations in variance have died out, and th&'€ dimensioniess. The mean fie ensity Is represented by a hori-

zonal line at cell population of 1. The mean field limit is ap-
proached as the population increases, with excellent agreement for
64 particles.

system has relaxed.

20
o?=> [P;—P!1?/20, (16)
i=1 cal simulations for the three ensembles and compare them to

the predictions of MFT.
fell below 1.0<10°8. The criteria we chose for terminating Figure 12 shows the equilibrium density of the simulated
the simulation guarantees that we are well past the pointicrocanonical system for an inner barrier radas 0.1
where the system has settled down, and thus provides agell above the critical value. The results for system popula-
upper bound for any reasonable choice of relaxation time. Ifions ofN=4, 16, and 64 are shown. The equilibrium density
Fig. 11, we replacd® with 1, the predicted mean field re- is determined by sampling the system at equal time intervals
sult, and plot the variance as a function of time for a 64-and determining, by its position, which cell each particle
particle simulation. It is apparent from the figure that theoccupies(see Sec. IY. When the simulation has reached
fluctuations gradually vanish, indicating the approach toequilibrium, the population of the cells are normalized so
equilibrium. It is important to note that the variance settlesthat a cell population of unity corresponds to the mean field
down to some finite, nonzero value. This is due to the dif-density distribution. Thus, compared with the MFT predic-
ference in density profiles, albeit small, between MFT and aion, the distribution for the four-particle system shows a
simulation of a system witiN=64. marked population deficiency in the inner cells and a surplus
in the outer cells. The 16-particle case shows a similar struc-
ture, but the difference is smaller. For 64 particles, the den-
sity distribution shows excellent agreement with the MFT
prediction. It is remarkable that a system with only 64 par-

Over the past few decades, several studies have predictéigles can so closely approximate a system with an infinite
the occurrence of phase transitions in gravitating systems bgopulation.
using MFT to study the thermodynamic equilibrium state for The relaxation time for the shell system is much shorter
various gravitational modelg2,8,9,29, as we did for the than that found in the system of parallel mass sheets studied
system of concentric mass shells in Sec. lll. However, untiby Reidl and Miller[32]. Figure 11 shows the variance be-
now, these predictions have not been verified by the dynamiween theN=64 simulation and the mean field distribution
cal evolution of the systems under consideration. Moreoveras the simulation is carried out. By 800 time units, the fluc-
in order to include the hard-sphere interaction in a Vlasovuations in variance have died out and the system has re-
mean field theory, they all employed some additiorsal, laxed. Close examination of Fig. 11 shows a small residual
hoc, assumptions. We have demonstrated the occurrence ofdifference between the simulation and MFT results even af-
gravitational phase transition by numerically simulating ater the simulation has relaxed (430 7). This residual dif-
system of spherical, concentric, mass shells which move urference increases with decreasing population with values of
der their mutual gravitational interaction. The three en-3.6x10 % and 4.1X10 2 for N=16 and 4, respectively.
sembles of statistical mechanics that were examined in th&his is as expected, since the MFT distribution reflects an
mean field limit in Sec. Ill were simulated by varying the infinite population.
interaction of the system with its environmedsee Sec. V. To investigate whether the system retains memory of its
In Sec. Ill, we showed that phase transitions were predictedhitial condition (which would suggest that equilibrium has
by MFT for both microcanonical and canonical systems. Innot been reachgdwe created three different initial condi-
the grand canonical ensemble, multiple states existed for tons for the same energy and inner boundary radius, with
given range of temperature; however, the equilibrium solu4initial virial ratios varying between 0.06 and 1.3. All three
tion showed no phase transition, under the constraint of conzases(four, 16, and 64 particlgeswere run with the new
stant mean mass. Here we discuss the results of the numeniitial conditions and the systems converged to final average

V. COMPARISON OF NUMERICAL SIMULATION
AND MEAN FIELD THEORY
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10¢ ' i ] increased td\N=64. Using linear regression, we calculated
[ the rounding and shifting exponents to be 0.97 and 0.74,
8r respectively, with a goodness of fit of 0.98 and 0.99. The
o 6 . canonical system showed similar results. When compared
= 1 with the MFT prediction, the results again agree; however,
= — the values for the shifting and rounding exponents are differ-
© 4 - . . .
B ] ent from the microcanonical case: 1.1 and 1.4, respectively.
> o F Mean field theory does not predict a phase transition for
i ] the grand canonical case. There is a range of temperatures
ol s . ] where both the concentrated state and the quasiuniform state
-2 0 2 4 exist, however, the quasiuniform state is the thermodynami-
cally stable solution for all temperatures. To test if simula-
energy tion bears this out, we conducted simulations in which the

initial configurations were varied. Some had highly concen-
FIG. 13. Virial ratio vs energy for the transition region of the trated distributions of mass; others were more uniform. All
microcanonical system fdd=16, 32, and 64. All units are dimen- ¢gses converged to the quasiuniform state, as predicted by
sionless. The predicted transition point from the MFTHs 2.7. MFT. This stability of the quasiuniform state, as predicted by
_Note th_at the rount_jing and shifting of the transition decreases Withy£T and validated by simulation, is a further demonstration
increasing population. of the distinction between ensembles in systems with long
e ) ) ) range forces.
density distributions which were nearly identical to the ones 1 test the robustness of the transitions, we started the
shown in Fig. 12. , simulations with both a concentrated and uniform distribu-
The same study was performed for the canonical systefion The system almost always adhered to the predictions of
above the critical poin@a>a., and the grand canonical sys- \eT and evolved to the thermodynamically stable state, re-
tem above the point where two states exast,a, (recall the  gardless of initial state. An interesting exception occurs in
grand canonical ensemble, under the constraint of constaile canonical simulations for temperatures above the transi-
mean mass, does not exhibit a phase transition and thus will,, temperature. For systems with> 16, if the simulation
not have a critical point Aimost identical results were found 55 begun with the system in the concentrated phase, we did
for both ensembles. At 64 particles, the system approachegh: opserve a transition to the more unifotand thermody-
the MFT distribution. In addition, for a given temperature namically stablg phase during the typical run time of the
and inner barrier radius, when the initial virial ratio was var- o, merical experiments. We believe this is a manifestation of
ied, the system relaxed to the same final density distributionye metastable state described in Sec. Ill. Posch, Narnhofer,
All three ensembles exhibited very similar behavior wheng,q Thirring[31] found a similar phenomenon in a simula-
the system was not in a region where multiple states exist fofio, of a two-dimensional system with an attractive force in
a given energy or temperature, and good agreement Witiontact with a thermal reservoir. When their systeh (
MFT was achleved7 for a population Bf=64 with variances  _ 137) \as started in a uniform state with the temperature of
on the order of 10°. o the reservoir below that at which a transition to a concen-
_As the phase transition region is approached, howevegaieq phase should have occurred, the system did not col-
differences between MFT and the simulation arise. Itis wellgnge |n contrast to the concentrated metastable state dem-
known that a system will exhibit a sharp transition only in ynsirated in the shell system fii> 16, the two-dimensional
the limit asN— o [26]. Finite size scaling theory predicts co|| system demonstrated a uniform metastable state. The
that systems with a finite number of particles will demon- 4 ;inors of Ref[31] did not study whether the existence of
strate a transition that is rounded and shifted compared to thg e metastable state depended on the number of particles in
MFT prediction[26]. The amount of rounding and shifting the simulation. For the shell system discussed here, however,

depends on the number of particles in the system, with thg,e metastable state was not observed for the system with
effect decreasing with increasing population. The range °Bopu|ationN>16.

energies over which the transition is broadened is given by

AE=C,N"7, (17) VI. RANGE OF CORRELATIONS

whereN is the number of particles in the syste@,, is a Developments in statistical physics have demonstrated an
proportionality constant, andg is the rounding exponent. intimate connection between the onset of a phase transition
Similarly, the center of this rounding region is shifted from and the size and evolution of fluctuatiof6]. In turn, the

the location of the MFT transition by the relationship behavior of fluctuations at the microscopic level is mirrored
in the space and time dependence of correlation functions.
E.(N)—E(2)=C,N~™, (18 These connections were rigorously established for the two-

dimensional Ising model some time ago, and are experimen-

Figure 13 shows the equilibrium virial ratios for the mi- tally manifested in the phenomena of critical opalescence. In
crocanonical system in the transition region for systems wittparticular, we know that near a thermodynamic critical point
16, 32, and 64 particles. The MFT transition occursEat fluctuations evolve slowly and grow in size. From the stand-
=2.7. As expected, the&N\=16 case shows the greatest point of theory, both the relaxation time and the two body
rounding and shifting, which decreases as the population isorrelation length diverge there. However, the fact that a
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phase transition cannot occur at finite temperature in a oneposition correlation
dimensional “chemical” system should prepare us for fur- 1
ther unusual behavior in this investigation.

In analogy with chemical systems, it is natural to expect
that near the gravitational critical point described in the pre-  0f
ceding sections the persistence of large fluctuations woul g5l
induce a marked increase in the time required for the syster ‘
to equilibrate. The methodology we employed for determin-
ing the relaxation time was described in Sec. IV. When the
variance between the time-averaged density computed bor
at timest andt/2 fell below 10 8, the system was consid-
ered relaxed. In all simulations we found little difference in 15 A
the relaxation time, suggesting the absence of critical point
“slow down” and indicating that the behavior of fluctua- FIG. 14. Pogi_tiona}l correlation function _for canon_ical sy;tem
tions in systems with long-range interactions may differ Sig_below the tran§|t|on I|n_e. Bet_eﬁ:0.15 and inner barrier radius,
nificantly from their chemical counterparts. a=0.01. All units are dimensionless.

In addition to exploring the predictions of mean field ) ) o
namical simulation allowed us to compute both spatial and’roaches zero for large the kinetic energies dtandt+ 7
temporal correlation directly. By varying the inner barrier become statistically independent.
radius we were able to determine the influence on correlation Striking differences are manifested between the two en-
of the singularity in the gravitational force in this one- Seémbles and within the ensembles themselves. The correla-
dimensional system. Here we describe our studies of the délon function dies out much more rapidly for the canonical
cay of fluctuations of the total system kinetic energy, and théystem than for the microcanonical system. It is likely that
extent of spatial correlation of density fluctuations. We will this is due to the temperature stabilization at the boundary in
see that the central features of the correlation spectra diffdh€ isothermal system. Although the interaction is weakened
both quantitatively and qualitatively from our usual expecta-Py changing the velocity of the striking particle only every
tions. 100 collisions, the kinetic energy is driven to its equilibrium

Figures 5 and 8 show the coexistence curves for the mivalue more rapidly than in the case where no external mecha-
crocanonical and canonical ensemble, respectively. We wisRiSm exists to stabilize the temperature. Within the microca-
to demonstrate how the range of correlations behaves at vafitonical system, the temporal correlations took longer to relax
ous points in these planes. Specifically, we selected point®r the system in the fluid phase>ac. In the canonical

below the phase transition line, at the phase transition lineSystem, the system at the critical point and in the fluid phase
above the phase transition |ine, at the critical pwatﬂ and exhibit this trend as We”, although the differences between

in the “ﬂuid” region a> ac, and examined the Corre'ations the CaS_eS are |eS_S marked. At and abOVe the Critica-l pOint,_ the

in kinetic energy as a function of time and correlations incorrelation function has not relaxed at 25 time units, while

density as a function of position. below the critical point, all correlation functions have died
out well before 25 time units.

A. Temporal correlations

We calculated the correlations in kinetic energy as a func- B. Spatial correlation

tion of time for the microcanonical and canonical ensembles, The previous subsection demonstrates how the fluctua-
tions in a single system parameter are correlated as the time
between measurements is varied. Spatial correlations were
C(r)=lim = > [En(t)— Exing [ Exin(t+ 7) = Euin, ], investigated for this system as well, i.e., how regions of the
e U1 system are correlated with respect to the distance between
(19 them. In Sec. IV, we described how the system was divided

. — . into 20 cells of equal probability, and how the population of
whereEyn(t) is the kinetic energy of the system at the SPECIeach cell was recorded at each time interval to determine

fied time ancEkmO is the mean kinetic energy at equilibrium. how the density of the system behaves over a long time
To constructC(7) for each of the simulations, we stored the gcale, To determine the spatial extent of fluctuations in den-

value of the kinetic energy of the system at equally spacedity, we calculated a correlation function between each pair
intervals At as the simulation was being carried out. After of cells,

the system had relaxed and the run was terminated, we used

Eqg. (19 with 7=nAt, n=1,2,3, etc. It is important to note 1Y _ _

that = cannot be on the order of the total time that the simu- Cij :t_’E [Pi(t)=PiI[P;(t)—Pjl/ ooy, (20
lation was run, because the number of terms in the correla- t=1

tion function will be greatly reduced, e.g.,4fis chosen to be

one-half the simulation time there will only be half as manywhere P; and P; are the populations of the celisand] at
terms in the correlation function, which could add mislead-time t and aiz and sz are the variances of the population in
ing fluctuations. For this reason, we have limited the value otellsi andj. Dividing by the variances normalizes the data so
7<100 time units. This proves sufficient, as all of the corre-that self-correlation terms are equal to 1.

t’
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position carrelation determine the effects of varying initial conditions of tem-

; A Wi ‘\/A\/A_\-/'\/ ) perature and energy.
‘ To study how interactions with the system’s environment
affected the behavior of phase transitions, we considered the
system in three different ensembles of statistical mechanics:
microcanonical, canonical, and grand canonical. In chemical
systems, where the energy is an extensive parameter, these
ensembles may be used interchangeably. However, one
would expect that the long-range nature of the gravitational
force would cause this correspondence to break down. We
indeed find this to be true in both the mean field and simu-
lation approaches; differences in the behavior of phase tran-
sitions between ensembles are significant. The results of
FIG. 15. Positional correlation function for canonical system atMFET and simulation are summarized in Table I.
the critical pointa;,. 8=0.425, and the inner barrier radius
=0.043. All units are dimensionless.

A. Microcanonical ensemble

The trends in positional correlation functions across the 114 thermodynamic state is determined by the total en-
system are similar for both ensembles. For values of INNELqy E and the inner barrier radiwa Equilibrium states are

barrier radius less than_the critical poiat<a,, regardles;_ states of maximum entrop$=S(E,a). In the mean field
of whether the system is above, at, or below the transitior

i h lati died Al he di b imit, we found that below the critical pointa<a,), for a
Ine, the correlations died out rapidly as the distance betweepg qin range of energies, there were multiple states with the
cells increasedsee Fig. 14 However, when the system is at

" . . o J same value of energfg. Each of these states had a corre-
the critical point,a=ac, or in the “fluid phase,”a>a.,  gsponding entropys For a given inner barrier radius below
strong correlations exist across the entire systeee Fig.  he critical point, plotting only the maximum entropy values
15). Examination of the valu€, o demonstrates the change ¢y, each energy, the entropy curve exhibits a “kink.” The
in behavior for the system at the critical point and in the ﬂmdchange in slope for this line gives rise to a discontinuous
phase. For values ai<a., Ciis close to zero,—0.1  j,mpin temperature signifying a phase transition. By defini-
<C, =0. Fora=a., the correlation function differs sig- tjon, at the transition point two branches of the equilibrium
nificantly from zero:—0.78<Cy o< —.55. o _ curve meet. On the high energy branch, the density of the
_ This change in behavior above the critical point is exhib-gystem is quasiuniform. Once the energy is lowered past the
ited in both temporal and positional correlation functions,iransition point, a more centrally concentrated phase exists.

except for the kinetic energy correlation in the canonical SySpiots of energy vs temperature demonstrate intervals in
tem. We believe that this is due to the discontinuity in theyyhich the specific heat is negative.

velocity of the shells that collide with the temperature stabi- \ye find similar results for the numerical simulation for
lizing barrier, which will drive the kinetic energy rapidly to the jsoenergetic system. However, due to the finite number
its equilibrium value, and overwhelm any long-range corre-of particles in the simulation, the transition is no longer in-
lations that exist in the system. finitely sharp. The transition line is rounded and shifted; this
effect is more pronounced with decreasing population, and
we determined a set of exponents that accurately described
this behavior for the range of populations that were simu-
The purpose of the present work was to explore the exiskated in this study. It is noteworthy that the equilibrium dis-
tence and behavior of phase transitions in systems witlvibutions for the simulation were independent of the initial
gravitational interactions. It is expected that the long rangelensity distribution, and the final state always corresponded
nature of these interactions will produce results differentto the thermodynamically stable solution, regardless of the
from those in “normal” systems, due to the nonextensivenumber of particles in the simulation. As we will see later in
nature of the energy. In addition, this model probes the efthe discussion of the canonical ensemble, this is not always
fects of the singularity of the gravitational force, which hasthe case.
been excluded from idealized models, such as that of Ref. A study of temporal and positional correlation functions
[31]. To explore the behavior of the gravitational force, wefor the microcanonical simulations showed that in the fluid
studied a system of spherical, concentric mass shells, whigbhase, long range correlations exist. Once below the critical
move under their mutual and self gravitation. The study wagoint, regardless of the location in thg,@) plane, the cor-
pursued by two methodg1) Theoretical: The system was relations quickly died out. One might expect that the long-
considered in the mean field limit, where the number of partange correlations near the critical poiat-a., might lead
ticles in the system approaches infinity and the mass of eadio a critical ““slowing down,” i.e., the relaxation time would
particle approaches zer®) Experimental: The dynamics of diverge; however, the relaxation time appeared to be inde-
the system were simulated numerically on a computer. In theendent of proximity to the critical point. It is important,
first method, only the equilibrium state is determined; nohowever, to note that the maximum population for the simu-
information about the approach to equilibrium is gained. Inlations wasN= 64, and that increasing the population may
the second method, by simulating a finite number of parbetter demonstrate the effect of correlations on the relaxation
ticles, we were able to study the evolution of the system, antime.

VII. CONCLUSIONS
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TABLE I. Summary of mean field theory and simulation results.
MFT
Ensemble
MCE CE
Critical point, ac 0.00187 0.0043
Jump in virial ratio 3.3 7.2
at transition pt.
Jump in temp. at 6.7 0
transition pt @=0.001)
Jump in energy at 0 40.5
transition pt @=0.001)
p(a)/p(b)—collapsed 3820 3820
p(a)/p(b)—intermediate 3.2 3.2
p(a)/p(b)—quasiuniform 1.3 1.3
Simulation
MCE CE
Rounding exponent 0.74 1.14
Shifting exponent 0.97 11
MCE phase plane point Transition pt Above transition line Below transition line Critical point Fluid phase
Ci=1,j=20 —0.09 —0.08 0.03 -0.78 —0.55
Relaxation Time 45 70 65 80 920
for E,, corelation
CE phase plane point Transition pt Above transition line Below transition line Critical Point Fluid phase
Ci=1,j=20 —0.09 -0.1 —0.04 —0.57 —0.36
Relaxation Time 20 20 1 35 35

for E,, corelation

B. Canonical ensemble

In the canonical ensemble, the thermodynamic state i
determined by the temperatufeand the inner barrier radius
a. Equilibrium states are states of minimum free enefrgy
=F(T,a). As in the microcanonical mean field limit, we
found that below the critical poird<<a., for a certain range
of temperatures, there were multiple states with the sam
value of temperature. Each of these states has a correspo
ing free energy valu€. A graph of the minimum free ener-
gies for each temperature exhibits a discontinuity in the slop
in the equilibrium curve. The energy jumps at that point
signifying a phase transition. At high temperatures, the den
sity of the system is nearly uniform. At the transition point

namical phase transition to the stable phase during the typi-

both the uniform and a centrally concentrated phase exist, as
they did in the microcanonical system. At temperatures
lower than the transition point, the concentrated phase is the
only stable solution. For all values of temperature, the spe- In the grand canonical ensemble, a thermodynamic state
is defined by the temperatufeand the chemical potential.

The numerical simulation for the isothermal system sup-Equilibrium states are states of minimum grand potential,
ports the predictions of the mean field approximation. Again®=®(T,u,a). For the sake of comparison, for eathand
the transition is rounded and shifted due to the finite numbea, the value ofu was fixed by requiring that the average

cific heat is positive.

C. Grand canonical ensemble

gal run times of the experiment. If the system was initially
uniform in density, however, it always relaxed to the more
stable solution, regardless of whether the stable state was
concentrated or uniform.

The isothermal system demonstrated the same lack of
critical “slowing down” as the isoenergetic system. Near the

itical point, long-range correlations in time and position

Gst across the system; however, no significant difference in
relaxation times occurred between any of the systems below,
&t, or above the critical point. In the isothermal system, the
correlations in kinetic energy died out more rapidly than they
did in the isoenergetic case, possibly due to the action at the
' outer wall, which works to thermostat the system.

of particles in the system. The exponents that describe theystem mass is 1, as it is in the microcanonical and canonical
rounding and shifting were determined, and these accuratelgnsembles. Although there are values of temperature that
described the transition behavior for the range of populationsave two states associated with it, plots of the minimum
that we studied. However, these exponents differed frongrand potential for each temperature do not exhibit the same
those in the microcanonical system. kink, as demonstrated in the ensembles described above. The
An interesting feature of the canonical system is the ro-more uniform phase is predicted to be the more stable one
bustness of the concentrated phase above the transition tewver the entire T,a) plane. Thus a transition to a more cen-
perature, where it is thermodynamically less stable. For systrally condensed density profile is not predicted.
tems with populations greater thah= 16, if the system was The results from the dynamical simulations were in com-
initially concentrated, we were never able to observe a dyplete accord with the mean field predictions. The system was
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initiated with a variety of density distributions. In each case,attractive singularity of the two-body potential was screened
the time averaged density profile agreed with that predictethy a hard sphere interaction. However, our study of the
for the more uniform profile. No sign of a transition was evergrand canonical ensemble revealed unexpected results. To
observed, even when the initial state was highly concentrate@ur knowledge, this is the first published investigation of an
near the inner barrier. open gravitational system. The fact that the concentrated
phase was never more stable in our study may have conse-
SUMMARY quences for astrophysics for various stellar or even galaxy
clusters which exchange both matter and energy with the
In this paper we have carefully studied the influence ofenvironment, as well as planet formation in circumstellar
the singularity of the gravitational potential on the systemdisks. Our results suggest that further study over a wider
thermodynamics. We found that as the singularity is baredange of mass, as well as in three dimensions, needs to be
by decreasing the inner barrier radius, the system can exist iexplored. In addition to the chief thermodynamic properties,
multiple phases. We investigated the nature of the transitioour simulations also allowed us to investigate both spatial
in three different ensembles, and found significant differ-and temporal correlations in the system. In contrast with
ences between them. The difference between the canonicelhemical systems, we found a remarkable picture of strong,
and microcanonical ensembles for this one-dimensional dysystem-wide, correlation throughout the fluid phase, and ex-
namical system had the same qualitative features as earlipected weak correlation in the multiphase region of the rel-
mean field studies of three-dimensional systems in which thevant thermodynamic state space for each ensemble.
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