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Gravitational phase transitions in a one-dimensional spherical system

V. Paige Youngkins and Bruce N. Miller
Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129

~Received 5 May 2000!

The behavior of gravitational phase transitions in a system of concentric, spherical, mass shells that interact
via their mutual and self gravitation is investigated. The nature of the transition in the microcanonical, canoni-
cal, and grand canonical ensembles is studied both theoretically in terms of the mean field limit and by
dynamical simulation. Transitions between a quasiuniform state and a centrally concentrated state are predicted
by mean field theory for the microcanonical and canonical ensembles, and this is supported by dynamical
simulation. For the grand canonical ensemble, mean field theory predicts that no transition takes place, and that
the thermodynamically stable state is always the uniform one. Again, this is supported by simulations under
various initial distributions of mass, even when the system is initialized in a collapsed state. In addition to
testing the predictions of the mean field theory and studying the effects of finite size scaling, dynamical
simulation allowed us to examine the behavior of temporal and positional correlations which are predicted to
vanish in the mean field limit.

PACS number~s!: 45.05.1x
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I. INTRODUCTION

The focus of this study is the behavior of phase transiti
in gravitational systems. Gravitational phase transitions
characterized by a change in the distribution of mass of
system, and have relevance in astrophysical phenom
such as black hole and planet formation@1,2#. Over the past
several decades fundamental questions have been st
concerning the existence and properties of gravitatio
phase transitions: Are phase transitions possible for grav
ing systems? How do they differ from those in ‘‘norma
matter? How are they influenced by interactions with
environment?

Obtaining answers to these questions is difficult beca
of the twofold complexity arising from the infinite range an
singularity of the gravitational force. In ‘‘normal’’ matte
studied in laboratory systems, the forces between parti
are of short range and, hence, the energy is an exten
parameter. This is not the case in gravitating systems, a
standard thermodynamic analysis can prove intractable
an approximation, the gravitating system can be conside
in the Vlasov~or mean field! limit of an infinite number of
particles,N→`, while holding the total mass and energ
constant. The system dynamics are represented as a
flow in m(r ,n) space, and is governed by the collisionle
Boltzmann equation~CBE! @3#. For dynamical equilibrium,
in which the distribution of the mass does not change w
time, the time-independent CBE has an infinite number
stationary solutions. One class of such solutions is po
tropes, in which the density as a function of radius is prop
tional to thenth power of the potential energy of the syste
@3#. In 1911, Plummer@4# showed that a polytrope of inde
n55 showed a reasonably good fit to the observational d
of some globular clusters. A few years earlier, Emden@5#
showed that the special case of infinite polytropic index le
to a thermalequilibrium solution, which maximized the en
tropy for the system. This solution had its own set of dif
culties; it does not have a finite radius and has infinite ma

This situation was stagnant until the 1960s, when A
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tonov @6# studied the effects of limiting the radius of th
system by a reflecting spherical box and determined that
system lacks a global~and for low enough energy a loca!
entropy maximum. This leads to an instability in which th
system may undergo a spontaneous collapse. Lynden-
and Wood@7#, who referred to this instability as the ‘‘gra
vothermal catastrophe,’’ studied a system of point partic
contained in a spherical box, interacting only through th
gravitational attraction. They found that for a system with
negative total energy, if the radius of the box was restric
below a critical value, the system possessed a local~but not
global! entropy maximum. Local entropy maxima may giv
rise to long-lived metastable states, but no thermal equi
rium state exists without a global maximum. Lynden-B
and Wood found that if the radius of the box was above
critical value, there was no local entropy maximum, and
central core existed that would grow hotter and more de
without bound. Later, Hertel and Thirring@8# investigated a
system of point fermions interacting by means of their m
tual gravitation, and found that, unlike Lynden-Bell an
Wood’s classical particle system, a global entropy ma
mum, a true equilibrium state, always exists. This sugges
that when the singularity at the origin of the system w
shielded, the gravothermal catastrophe was avoided. Aron
and Hansen@9# shielded the singularity by considering a sy
tem of gravitating hard spheres in the mean field limit, a
found that the gravothermal catastrophe was replaced b
phase transition from a uniform state to a state with a hig
concentrated core. Stahl, Kiessling, and Schindler@2# re-
cently studied a similar hard sphere system for both isoe
getic and isothermal conditions, and found that phase tra
tions occur in both systems.

In related work, Kiessling@10# investigated the complete
N-body gravitating system in the canonical ensemble.
softened the potential, and studied the limit of the partiti
function as the softening is removed. He proved rigorou
that a three-dimensional, nonrelativistic, isothermal syst
will collapse to ad-function density distribution. He also
proved that a phase transition is possible in the isoenerg
4583 ©2000 The American Physical Society
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4584 PRE 62V. PAIGE YOUNGKINS AND BRUCE N. MILLER
system restricted to a spherical box, if the singularity of
two-body interaction potential is regularized so that it
mains bounded atr 50.

Until now, none of these thermodynamic predictions o
phase transition was confirmed by studying the dynam
evolution of a gravitational system. Simulation of realis
gravitating systems, such as globular clusters or galax
comes with its own set of problems. The singularity in t
gravitational force law, escape of stars from the system,
nary formation, and stellar evolution complicate the dyna
ics greatly@3#. Even when stellar evolution is ignored an
each star is represented by a simple mass point in th
dimensional space, the amount of computing time require
integrate the system’s equations of motion for many rel
ation times is considerable. Recent advances in compu
hardware, such as theGRAPE family of dedicated computer
@11#, are making it possible to study large-scale realis
gravitating systems, such as interacting galaxies, with gre
precision. As another alternative, idealized models are
ated that make simulation feasible, while capturing a ba
property of the interaction. The ease of computation for o
dimensional systems has made them a popular choice
studying long term behavior. Typically, these models f
into one of two classes:~1! a system of parallel mass shee
@12–16#, which has been suggested to have some similar
with the motion of stars perpendicular to the plane o
highly flattened galaxy@17#; and~2! a system of concentric
spherical mass shells, which are identified with the dynam
of a spherical globular cluster@18–21#. Simulations show
that if the parallel mass sheet system reaches equilibrium
all, it takes a very long time. This casts into question
usefulness as a test model, and has stimulated a searc
other systems which unambiguously relax to equilibrium.

As a model for a spherically symmetric star clust
Henon @19# studied a system of concentric spherical ma
shells. Each shell represents a collection of stars with
same radius and radial velocity. The stars move on the
face of the shell with the same magnitude of tangential
locity but in different directions. The magnitude of angul
momentum is the same for all stars on a single shell; th
fore, the radial motion of each star is governed by the sa
equation of motion. This allows the radial motion of all th
stars on a shell to be followed by numerically integrating
single equation of motion. Angular momentum is conserv
for each star, and since the radial motion of the shell is
same as that of one of its constituent stars, the singularit
the origin is shielded by the centripetal force. Henon fou
an initial collapse of the system of 1000 shells and a fi
state in a core halo configuration. A later study of a simi
system by Yangurazova and Bisnotavyi-Kogan found sim
results@21#; however, instead of integrating the equations
motion, the system was followed by determining the times
which the shells intersect. This resulted in a more accu
and efficient simulation for the following reasons: compu
roundoff error was introduced only at intersections, the tr
cation error that is introduced by numerical integration me
ods was avoided, and less computer time was require
simulate the system.

In the studies of Refs.@19# and @21#, an evolution to a
core-halo configuration is exhibited. Both systems shield
singularity at the origin by the conservation of angular m
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mentum, which avoids the gravothermal catastrophe
scribed by Lynden-Bell and Wood. Here we describe o
study of phase transitions in a similar system of concen
spherical mass shells, with the difference that the shells h
zero tangential velocity. With no angular momentum, t
origin will not be shielded, and a gravothermal catastrop
could occur. In order to investigate the existence of a ph
transition, we shield the singularity by introducing an inn
barrier with which the shells can collide elastically. This a
lows us to investigate the thermodynamic behavior of
system as the singularity at the origin is approached, by
creasing the radius of the inner barrier.

An initial study of this system explored the phase space
the two shell system to determine its ergodic properties,
compared it with the system of planar, parallel, mass sh
@22#. Reidl and Miller determined that the parallel sheet s
tem with populations of ten or less has at least one sta
periodic orbit, ruling out ergodicity@23#. Froeschle and Sc
heidecker@14# found that in a system with three mass shee
only 4% of the phase space was actually occupied by cha
orbits. In the system composed of two spherical shells
much larger chaotic component was found when the ene
of the system was above the threshold energy~where the
fixed point of the system went from elliptic to hyperbolic!,
suggesting that the spherical shell system may reach equ
rium more quickly than the sheet system@22#. This was sup-
ported by a study by Youngkins and Miller@24#, in which a
system consisting of concentric spherical shells reac
equilibrium on a time scale almost two orders of magnitu
smaller than the sheet system. This suggests that the sp
cal shell system may be a more useful model for test
astrophysical theories concerning the evolution of stellar s
tems.

In the present work we extend our study of the spheri
shell system to investigate the existence and behavio
phase transitions, both theoretically and via dynamical sim
lation. We consider three types of interaction with the en
ronment: microcanonical~system is isolated from its envi
ronment!, canonical~system is in contact with a constan
temperature reservoir!, and grand canonical~system is in
contact with a reservoir of constant temperature and che
cal potential!. An abbreviated version of our preliminary re
sults appeared earlier@25#.

We first focus on the predictions of the mean field theo
We constrain the system to a spherical box, and shield
origin with a reflecting barrier. We find that in all three e
sembles, there is a critical value of the inner barrier rad
below which two phases are possible. The density profile
each phase is smooth, but one phase has a higher ce
concentration of mass. In the microcanonical ensemble,
more uniform distribution is the thermodynamically stab
solution for higher energies, and the concentrated phas
stable at lower energies. The two solutions coexist at
transition point. A plot of the maximum entropy versus e
ergy has a discontinuous slope at the coexistence point
dicating a discontinuous change in the temperature, and
system undergoes a phase transition. Mean field theory
dicts a similar transition for the canonical system; howev
the transition results in a discontinuity in energy instead
temperature. Also, the critical point occurs at different valu
of the inner barrier radius for the two ensembles. These
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ferences emphasize that the two ensembles cannot be
interchangeably, as they can in normal matter in which
energy is an extensive parameter. In the grand canonical
tem, we study a special case where the average mass o
system is constant in order to be able to compare the re
to the other two ensembles. In this case, no phase trans
is predicted; the equilibrium grand potential varies smooth
The concentrated phase is thermodynamically less stable
all values of temperature and inner barrier radius.

Phase transitions are predicted only for systems with
finite population@26#. It is well known that for finite sys-
tems, the jump in the order parameter is smoothed int
rounded transition, the center of which is shifted from t
value at which the transition occurs in the infinite syste
The rounding and shifting of the transition depends on
population of the system,N, asN2g andN2l, respectively
@26#. In the following, we show that this is supported b
dynamical simulation, in which the number of particles
finite. In both the microcanonical and canonical syste
phase transitions were observed, but the transition
rounded over a range of energies~temperatures!, and shifted
from the transition point predicted by mean field theory.
varying the number of particles in the simulation, we de
onstrated that the simulation results for the transition w
consistent with the rounding and shifting behavior predic
by finite size scaling. As predicted by mean field theory,
grand canonical system showed no signs of a transition to
more concentrated phase, even when the system was
pared in a highly condensed configuration.

In addition to testing the predictions of mean field theo
we used dynamical simulation to study the behavior of fl
tuations in the gravitating shell system. It is well known fro
critical phenomena@27# that long-range correlations in den
sity fluctuations exist at the critical point. In normal matte
an attribute of systems that exhibit these correlations
critical ‘‘slowing down’’ where the relaxation time diverge
@28#. From dynamical simulation (N564), we found that
strong temporal and positional correlations do exist near
above the critical point; however, the relaxation time show
no sign of divergence at any point in the transition plane
the microcanonical (E,a) or the canonical ensemble (b,a).

In the following sections, we present our methodology
studying the spherical shell system, and the results obta
for the three ensembles in the mean field approximation
by dynamical simulation. Section II discusses the treatm
of the system in the Vlasov~mean field! limit and a method
for determining equilibrium density profiles, which are us
to investigate the existence of phase transitions for the th
ensembles. Section III describes the numerical simulation
the three different ensembles~microcanonical, canonical, an
grand canonical!, and in Sec. IV a comparison between t
mean field approach and the simulation results is presen
In Sec. V, the behavior of correlations in the system
explored by dynamical simulation. Conclusions are p
sented in Sec. VI.

II. DENSITY PROFILES PREDICTED
BY MEAN FIELD THEORY

For the shell system discussed in this paper, the e
calculation of the appropriate thermodynamic quantit
sed
e
ys-
the
lts
on
.

for

-

a

.
e

s
as

-
e
d
e
he
re-

,
-

,
a

d
d
r

r
ed
d

nt

ee
or

d.
e
-

ct
s

~e.g., the density of statesV or the partition functionZ!
proves intractable. Instead, as an approximation, we cons
the system in the mean field limit ofN→`, while holding
the total mass and energy constant. The shell system con
ered here is represented by a simple fluid flow in a tw
dimensionalm(r ,n) space with mass densityf (r ,n,t). The
evolution of the density function is given by

] f

]t
1n r

] f

]r
1

dn r

dt

] f

]n r
50. ~1!

There are an infinite number of stationary solutio
(] f /]t50) to the Vlasov equation; here we are interested
the equilibrium stationary solution, the one which maximiz
the entropy. The entropy extrema occurs whenf is of the
form @7#

f 5Ae2b@~1/2!n22w~r !#5Ce2bn2/2r~r !, ~2!

whereA andC are normalization constants,b5m/kT, m is
the mass of a single shell,k is Boltzmann’s constant,T is the
temperature andr(r ) is the linear mass density,w(r ) is the
gravitational potential, and

w~r !52GME
a

b

dr8 r~r 8!Fu~r 2r 8!

r
1

u~r 82r !

r 8 G , ~3!

whereu(r 2r 8) is the Heaviside unit step function andM is
the total mass. In equilibrium, from Eqs.~1! and ~2!, the
normalized linear mass density profile,r(r ) satisfies

d

dr F r 2

r

dr

dr G52MGbr~r !, ~4!

subject to

d

dr
r~r !U

r 5a

50 ~5!

and

E
a

b

r~r !dr51, ~6!

wherea andb are the radii of the inner and outer reflectin
barriers, respectively. It is important to note that althou
similar in form, this system of equations for the mass dens
of the one-dimensional shell system is not the same as
for a spherically symmetric three-dimensional system: i
n(r ) is the radial velocity andr(r ) is the mass per uni
length.

To solve forr(r ), Eq. ~4! was decomposed into two firs
order differential equations in the variablesy15dy2 /dr and
y25MGbr:

dy1

dr
2

y1
2

y2
1

2y1

r
5

2y2
2

r 2 , ~7!

dy2

dr
5y1 . ~8!
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These equations were then integrated numerically using
Burlisch-Stoer numerical method@28#.

Since only one boundary condition is specified@y1(a)
50#, we may arbitrarily choose the other boundary con
tion, y2(a) and solve the system of equations, yieldi
y2(r ). From Eq.~6!, integration of the functiony2(r ) from
the inner to outer boundary yieldsMGb, andr(r ) ~for the
specified boundary condition! is then known explicitly. From
r(r ), all thermodynamic functions of interest can be co
puted.

III. PHASE TRANSITIONS PREDICTED
BY MEAN FIELD THEORY

Using mean field theory, we explored the microcanonic
canonical and grand canonical ensemble. In the microcan
cal ensemble, the system is isolated from its environm
No exchange of energy or particles occurs at the outer ba
and the energy of the system is constant. For each solutio
r(r ) for a given energyE, there is an associated entropyS:

S52kNF2bE/M2
1

2
ln b2 ln r~a!

1bMGE
a

br~r !

r
dr1constG . ~9!

Without loss of generality, we define units of distance, tim
and mass for whichb5G5M (total mass)51. Only the so-
lution with the maximum entropy is stable, and hence is
equilibrium solution when it exists.

In the canonical ensemble, the system can exchange
ergy ~but not particles! with a thermal bath. The averag
temperature of the system will remain constant. The f
energy associated with each density profile,r(r ), is given by

F5E2TS52E1
M

b F1

2
ln b1 ln r~a!

2bMGE
a

br~r !

r
dr2constG . ~10!

In the canonical ensemble, the state with the minimum f
energy is the equilibrium state@27#. In chemical systems
where the energy is an extensive parameter, the microcan
cal and canonical ensembles can be used interchangeab
explore macroscopic behavior@28#. However, in gravita-
tional systems, where the energy is not extensive,
equivalence breaks down. One manifestation of this diff
ence occurs in the heat capacity of gravitational systems.
always positive for the canonical ensemble, but can beco
negative in the microcanonical ensemble near a phase
sition @29#.

In the grand canonical ensemble, the system can exch
both energy and particles with the thermal bath. The s
with the minimum grand potential

F5U2TS2mN5
M

b
@ar~a!2br~b!# ~11!
he
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is the equilibrium state, whereU is the potential energy o
the system andm is the chemical potential. We will demon
strate that the three ensembles lead to different results
examining the properties of phase transitions in all three
sembles.

In the microcanonical ensemble, for an inner barrier
dius of say,a50.1, there is a uniquer(r 5a) for each en-
ergy. However, as the radius of the inner barrier is decrea
below a certain threshold, there is a range of energies
admits three possible solutions~see Fig. 1!. Figure 2 shows
the corresponding density profiles for each of the three sta
Both axes are logarithmic. The density profile of state
corresponds to the smallest density value at the inner bar
and is almost uniform between the barriers. In contrast, s
C has a density profile that corresponds to the largest den
value at the inner barrier. Note that almost all of the mas
concentrated near the center of the system. State B h
density profile that lies between the two extremes of A a
C. The amount of mass concentrated near the center o
system varies from state to state even though the energy
all three states is the same. To determine which state is
equilibrium distribution for a given ensemble, the approp
ate thermodynamic quantity, e.g., entropy, free energy
grand potential, must be calculated.

FIG. 1. Energy as a function of the density at the inner bound
for inner barrier radius,a50.001. All units are dimensionless. Th
dotted line shows an energy value that has three correspon
density values (A, B, andC!.

FIG. 2. Density profile for density pointsA, B, andC in Fig. 1.
All units are dimensionless. StateA corresponds to the smalles
density value,C corresponds to the largest, andB lies between the
two extremes~both axes are logarithmic!.
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For the microcanonical ensemble, plotting the entro
calculated for each of the states for an inner barrier rad
a50.1 ~where the energy is single valued! yields a curve that
is smooth with a one-to-one correspondence between ent
and energy; each point represents the maximum entropy
for a given energy. Since the slope of this line, (]S/]E)a
51/T, is continuous at all points, the temperature chan
continuously, and no phase transition is expected at
value of inner barrier radius. As the inner barrier radius
decreased, however, this one-to-one correspondence
ishes, and there are a range of energy values that have
corresponding entropy values~see Fig. 3!. The equilibrium
curve has two branches, with a ‘‘kink’’ in the curve whe
the two branches intersect. The upper~higher energy! branch
consists of solutions with density profiles which resem
that of state A shown in Fig. 2, with the mass almost eve
distributed between the barriers. The solutions on the lo
branch have densities which resemble those of state C~Fig.
3! with most of the mass condensed at the center. At
energy value of 2.7 in our choice of units, the two branch
intersect. At this point, two states with differing mass dist
butions~one roughly evenly distributed and one with a ce
tral condensation of mass! coexist. This coexistence differ
from that at the phase transition point in chemical syste
where both phases can be physically present at the s
time, e.g., the system consists of both liquid and vapor.
gravitational phase transitions this is not the case; the sys
can be in only one of the two possible states. The slope
the maximum entropy,b, changes discontinuously at the c
existence point signifying a first order gravitational pha
transition with a discontinuity in temperature.

In common with chemical systems, each branch has s
tions which continue past the transition point. This portion
the curve consists of metastable states, where the solu
are only locally stable. We will see in later sections that
the dynamical simulation, under certain conditions, th
metastable states manifest themselves, and the average
sity profile of the simulation reflects that of the metasta
state instead of the stable one. The portion of the cu
which connects the two stable branches is thermodyna
cally unstable@28#.

Figure 4 demonstrates how the temperature of the sys

FIG. 3. Entropy vs energy for the microcanonical ensemble
all density profiles for inner barrier radius,a50.001. All units are
dimensionless. Note that there is a range of energies that has
tiple entropy values.
y
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changes as a function of energy. For high energies, the
capacity is positive, as it is in normal systems with sho
range forces. This positive heat capacity exists for energ
down to E52.7. At this point the temperature jumps to
higher value and as the energy decreases further, the
capacity has a negative value.

A useful candidate for the order parameter of the syst
is the virial ratio,VR52T/uUu, whereT and U are the ki-
netic and potential energies of the system. A significant ju
occurs in the virial ratio at the phase transition point,E
52.7 for the microcanonical system with inner barrier r
dius,a50.0001. We will examine the behavior of the ord
parameter from simulation results in Sec. V to see how
time-averaged simulation results compare to mean-fi
theory ~MFT!.

The results shown above demonstrate the prediction
phase transition in the mean field limit for an isoenerge
system with a specific inner barrier radiusa50.001. To
more fully understand the existence of phase transitions,
necessary to consider the full range of inner barrier rad
values and determine which intervals produce phase tra
tions. To do so, we systematically calculated the maxim
entropy curve for many inner barrier radius values, and
termined if a kink occurred, and if so, the correspondi
value of the energy. Figure 5 shows the results of this st
in the phase plane (E,a). Above the critical point a
.0.00187, the system did not experience a phase transi
Below the critical point, phase transitions occur and, as
inner barrier radius decreases, the transition energy
creases.

Similarly, in the canonical ensemble, phase transitions
predicted by examining the minimum free energy curv
Figure 6 shows the free energy as a function ofb when the
inner barrier radiusa50.001. The equilibrium curve consist
of two branches with different density profiles that meet
the transition pointb50.018. For lowb values~high tem-
perature!, the density is quasiuniform between the inner a
outer barriers; states with highb values have a mass conce
tration at the center.

Figure 7 shows how the temperature of the canonical s

r

ul-
FIG. 4. Temperature vs energy for the microcanonical ensem

for system with an inner barrier radius,a50.001. All units are
dimensionless. The temperature changes discontinuously aE
52.7. Note that at energies below the transition point, the h
capacity (dE/dT) is negative.
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4588 PRE 62V. PAIGE YOUNGKINS AND BRUCE N. MILLER
tem changes as a function of energy. This behavior is m
edly different from the microcanoncial system~see Fig. 4!,
and demonstrates the breakdown of the equivalence in
microcanonical and canonical ensembles for gravitatio
systems. In the canonical system, the temperature cha
continuously; it is the energy which exhibits a discontinui
The reverse is true for the microcanonical system. Also
the canonical system, the slopedT/dE is always positive,
while the microcanonical system can exhibit negative s
cific heat once the inner barrier radius decreases below
transition threshold. It is interesting to note, however, t
the values for the specific heat are significantly different
either side of the phase transition. At high energies, the t
perature changes more rapidly for a given change in ene
than occurs for lower energies below the transition point

The mean field virial ratio was calculated for each st
along the minimum free energy curve and plotted versusb.
At b50.125, the virial ratio jumps significantly. In Sec. V
we will examine the results of the dynamical simulations
the isothermal system with varying values ofb to see if this
transition occurs, and how its appearance is affected by

FIG. 5. Phase transition line for the microcanonical ensembl
the~E,a! plane. All units are dimensionless. The critical point lies
a50.00187. The heat capacityC is negative for the condense
phase and positive for the quasiuniform phase. As the inner ba
radius decreases, the energy at which a transition occurs incre
suggesting that as the singularity at the origin is approached, m
of the energy space is occupied by a negative heat capacity.

FIG. 6. Free energy vsb for the canonical ensemble for a
density profiles for an inner barrier radius,a50.001. All units are
dimensionless. Betweenb50.015 and 0.13, there is more than o
free energy value for a givenb.
k-

he
al
es

.
n

-
he
t
n

-
gy

e

f

he

number of particles in the system.
The above results demonstrate that a phase transition

curs at one value of inner barrier radius for the isotherm
system. We examined a range of inner barrier radius val
and determined the value ofb at which a phase transition
occurred, if one occurred at all. Figure 8 demonstrates
phase transition line in theb-a plane for the isothermal sys
tem. The critical point lies ata50.043. Below the critical
point, the transition temperature increases as the inner ba
radius decreases. This trend suggests that for an isothe
system with no shielding of the singularity, a phase transit
would only occur at an infinitely high temperature.

In order to more easily compare the grand canonical
semble with the others, we adjusted the chemical potentia
maintain the total mass equal to unity. Similar to the entro
and free energy, the grand potentialF exhibits a one-to-one
correspondence withb for an inner barrier radius,a50.1.
However, as the radius of the inner barrier is decreased~Fig.
9!, there exists a range ofb that has two corresponding va
ues ofF. The minimum grand potential gives the equilib
rium state; the lower portion of the curve is the stable so
tion. It is noteworthy that in the grand canonical case, unl
the other two ensembles, there is no discontinuity in
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t
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es,
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FIG. 7. Temperature vs energy for the canonical ensemble
the system with an inner barrier radius,a50.001. All units are
dimensionless. Note that there is no area of negative heat cap
that exists in the microcanonical ensemble. The energy chan
discontinuously atT58.

FIG. 8. Phase transition line for the canonical ensemble in
(b,a) plane. All units are dimensionless. The critical point lies
a50.043. As the inner barrier decreases, the temperature at wh
transition occurs increases.
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equilibrium curve, suggesting that no phase transition occ
in this ensemble. The density of this equilibrium phase
quasiuniform, resembling that of stateA in Fig. 3. In Sec. V,
we will show that these results are supported by a simula
in which both particles and energy can be exchanged w
the environment.

IV. SYSTEM DESCRIPTION AND NUMERICAL
SIMULATION METHOD

We considered a system ofN concentric spherical mas
shells of equal mass and uniform surface density. The sh
move in a purely radial direction under their mutual gravi
tion and self-gravitation, with the acceleration of thei th shell
given by

ai52Gm~ i 2 1
2 !/r i

2, ~12!

where the shells are numbered from innermost to outerm
i 51,2, . . . ,N. This includes both the contribution from th
interior mass and the self-acceleration of a given shell.G is
the universal gravitational constant,m is the mass of an in-
dividual shell, andr i is the radius of thei th shell. For the
purposes of this study, we have chosen to use a syste
units whereG51 andm51/N ~the total mass of the system
is equal to 1!. The total energy of the system is conserve
and is given by

E5(
i 51

N F1

2
mn i

22Gm2S i 2
1

2D 1

r i
G , ~13!

wheren i is the velocity of thei th shell. The system is con
tained in a spherical box with reflecting boundaries. In ad
tion, a reflecting inner barrier about the origin is added
order that we may study the influence of the singularity at
origin on the behavior of the system. Numerical difficulti
prevent one from simulating a system where the radii of
shells decrease to exactly zero or to a very small value;
positions of the shells near the center become so close

FIG. 9. Grand potential vsb for the grand canonical ensemb
for an inner barrier radius,a50.01. All units are dimensionless
Two different states exist for a range ofb values; the minimum
grand potential curve is the equilibrium solution. The slope of
equilibrium curve exhibits no discontinuity, so no phase transit
occurs here. The chemical potential was adjusted to maintain a
mass of 1.
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gether that the finite precision of the computer prevents
from distinguishing the shells’ positions, and their motio
cannot be followed. However, by varying the radius of t
inner barrier and allowing it to approach zero, we can g
insight into the singularity’s influence. Similar shieldin
could have been obtained by imparting angular momen
to each shell, and a study of this rotational system is
progress by the present author~B.N.M.!.

As the system evolves, the shells can intersect and p
through one another. When two shells cross, the amoun
mass contained within each shell radius changes in a dis
tinuous manner, i.e., one shell’s interior mass increases
1/N while the other shell’s interior mass decreases by 1N.
This discontinuity in interior mass at a crossing gives rise
a discontinuity in each shell’s acceleration and energy.

We have developed an algorithm that simulates the e
lution of this system without numerically integrating th
equations of motion. From the conservation of individu
shell energy between crossings, it is possible to solve for
time that thei th shell will reach a specified radiusr i , given
the initial time, t0,i , the initial radiusr 0,i , and shell energy
Ei , by performing the integration

t i2t0,i56E
0,i

r i
drF ~2/m!S Ei1

a i

r D G21/2

, ~14!

wherea i52Gm2( i 21/2). The appropriate sign is given b
the direction in which the shell is travelling, i.e.,~1! if the
shell is moving away from the center, and~2! if the motion
is toward the center. The solution of the integral can take
of two forms, depending on the sign of the energyEi .

The event driven algorithm used in this study is based
the ability to use the above equation to calculate the tim
shell reaches a specific radius, given the shell’s initial rad
at an initial time and its individual energy. Three types
events are possible for a shell: collision with the bounda
turning point~only possible for a shell moving outward wit
negative energy!, and intersection with another shell. Solvin
for the times of the first two types is straightforward; th
radius of the event is known explicitly. The positions of th
reflecting boundaries are fixed, and by setting a shell’s
locity n to zero in the equation for an individual shell’s e
ergy, the radius of the turning point can easily be calculat
However, the radius at which an intersection between t
shells occurs cannot be determined analytically. Since
times at which the two shells reach an intersection are eq
we use a numerical method to solve

t i~r c ,r 0,i ,t0,iEi !5t i 11~r c ,r 0,i 11 ,t0,i 11 ,Ei 11!, ~15!

for the crossing radiusr c , wheret i andt i 11 are given by the
previous equation. In this study, a combination of bisect
and the Newton-Raphson method, as described in the s
dard literature@30#, was used to solve for the root of th
above equation using a tolerance of 1310214.

The basic strategy for the algorithm is to determine
times at which these events occur for all shells, and then
these times to find the next event. The appropriate ini
conditions are updated, and the process is repeated. Th
gorithm for following the evolution of the system has seve
advantages over one that numerically integrates the e
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tions of motion. First the efficiency of solving only for eve
times allows the system to be followed for a much long
time. In addition, the truncation error associated with a
numerical integration algorithm is avoided. Cumulative co
puter roundoff error is reduced, since error is introduced o
at events instead of at every time increment, as is the c
with numerical integration methods.

The action at the boundary can be varied in order to sim
late different ensembles of statistical mechanics. For the
crocanonical ensemble, the system is isolated and total
tem energy is conserved. In this type of simulation, collisio
with the boundaries result in no change in the magnitude
velocity of the shell. For the canonical ensemble, the sys
is in thermal contact with a heat bath, and the average t
perature is constant. To simulate this type of system, we
the outer barrier atr 5b as an isothermal wall for ever
hundredth collision. In such an event, detailed balance
respected by returning the shell to the system with a kin
energy determined by randomly sampling the exponen
distribution with meanT. In the grand canonical ensembl
the system can exchange both energy and particles with
bath. Dynamical simulation was accomplished by random
introducing new shells at the outer boundary with a me
creation ratel that is determined by the temperature a
chemical potential of the reservoir we are simulating.
weaken the interaction with the virtual reservoir, the boun
ary was assumed to be ‘‘semipermeable.’’ To effect this,
creation rate was chosen to be one hundredth of the vir
external flux striking the outer barrier. The velocity of th
newly introduced shell is determined by employing the sa
method as in the canonical case. To balance the flux of
particles entering at the boundary, every hundredth s
striking the outer barrier was removed from the system.

To assign initial conditions of a given energy, the she
are placed at equally spaced radii between the inner
outer barrier. This distribution determines the potential

FIG. 10.m space~position, velocity! for theN53200 simulation
at one time unit, 10 time units, and 14 time units. All units a
dimensionless. Each shell’s initial condition is represented b
point; the lines are due to the large number of particles and t
proximity.
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ergy, and the total kinetic energy is calculated from the d
ference of the total energy and the potential energy. The t
kinetic energy is then distributed equally among all partic
with alternating signs of velocity. The first graph in Fig. 1
shows them space~position, velocity! for this configuration
for a system ofN53200 shells. Due to the large number
particles and their close proximity, the individual partic
symbols coalesce into a single line. In Sec. V we will discu
the behavior of systems with the same energy but with
ferent initial conditions. These are selected by limiting t
interval where the shells are initially placed, e.g., using o
half of the region between the inner and outer barrier, res
ing in different distributions of potential and kinetic energi
for the system.

The second and third graphs in Fig. 10 show the evolut
of the system at 10 and 14 time units. A convenient meas
of time is a crossing timetc , which is the time it takes a
particle with no kinetic energy at the outer barrier to fa
inward to the origin.tc is approximately two of our dimen
sionless time units for the system of spherical shells d
cussed in this paper. The spiral behavior shown in the sec
graph can easily be understood. If there were no gravitatio
potential in the system, the shells would travel back and fo
between the boundaries with a constant velocity. The ti
that it would take a given shell to traverse the system wo
not change regardless of the shell’s relative position, i
how many shells are located inside its radius. Since the sh
are initialized with the same magnitude of velocity, th
would all have the same period, and they would all be
phase. Once the gravitational potential is considered, h
ever, even shells that are near to one another will have
ferent accelerations, causing their periods to vary, and t
become out of phase with one another. This effect, known
phase mixing@3#, causes the stream of particles to wind in
a tight spiral pattern, which continues until the particles lo
memory of their initial distribution.

In Sec. III, we demonstrated a method for calculating
density of the system as a function of radius in the mean fi
approximation of an infinite number of particles for a give
energy and inner barrier radius. To compare MFT with t
results of the simulation, we divided the interval between
inner and outer barriers into 20 cells of equal probabili
i.e., the area under the mean field density curve is the s
for each cell. The initial positions and velocities for th
simulation were assigned according to the total energy
inner barrier radius specified for the mean field distributio
The system was sampled at equal time intervals~every
0.05tc), and the number of particles was accumulated in
appropriate cell according to the position of the shell.
determine when the density had reached its equilibrium
tribution, a comparison was made between the current
population and the cell population at half the current num
of samples. Dividing each by the total number of samp
normalized all cell populations. During a sample,Pi5Pi(t)
is the current time-averaged~normalized! population of cell
i, and Pi8 is the time-averaged~normalized! population of
cell i at half the current number of samples, i.e.,Pi8
5Pi(t/2). The simulation was stopped when the sum of
square of deviations between the time-averaged cur
population and the midtime population,
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s25(
i 51

20

@Pi2Pi8#2/20, ~16!

fell below 1.031028. The criteria we chose for terminatin
the simulation guarantees that we are well past the p
where the system has settled down, and thus provide
upper bound for any reasonable choice of relaxation time
Fig. 11, we replacePi8 with 1, the predicted mean field re
sult, and plot the variance as a function of time for a 6
particle simulation. It is apparent from the figure that t
fluctuations gradually vanish, indicating the approach
equilibrium. It is important to note that the variance sett
down to some finite, nonzero value. This is due to the d
ference in density profiles, albeit small, between MFT an
simulation of a system withN564.

V. COMPARISON OF NUMERICAL SIMULATION
AND MEAN FIELD THEORY

Over the past few decades, several studies have pred
the occurrence of phase transitions in gravitating system
using MFT to study the thermodynamic equilibrium state
various gravitational models@2,8,9,29#, as we did for the
system of concentric mass shells in Sec. III. However, u
now, these predictions have not been verified by the dyna
cal evolution of the systems under consideration. Moreo
in order to include the hard-sphere interaction in a Vlas
mean field theory, they all employed some additional,ad
hoc, assumptions. We have demonstrated the occurrence
gravitational phase transition by numerically simulating
system of spherical, concentric, mass shells which move
der their mutual gravitational interaction. The three e
sembles of statistical mechanics that were examined in
mean field limit in Sec. III were simulated by varying th
interaction of the system with its environment~see Sec. IV!.
In Sec. III, we showed that phase transitions were predic
by MFT for both microcanonical and canonical systems.
the grand canonical ensemble, multiple states existed f
given range of temperature; however, the equilibrium so
tion showed no phase transition, under the constraint of c
stant mean mass. Here we discuss the results of the num

FIG. 11. The variance between the simulation~64 particles; the
total energy is20.8 and the inner barrier radius is 0.1! and MFT
prediction is plotted vs time. All units are dimensionless. Note t
in 800 time units, the fluctuations in variance have died out, and
system has relaxed.
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cal simulations for the three ensembles and compare the
the predictions of MFT.

Figure 12 shows the equilibrium density of the simulat
microcanonical system for an inner barrier radiusa50.1
well above the critical value. The results for system popu
tions ofN54, 16, and 64 are shown. The equilibrium dens
is determined by sampling the system at equal time interv
and determining, by its position, which cell each partic
occupies~see Sec. IV!. When the simulation has reache
equilibrium, the population of the cells are normalized
that a cell population of unity corresponds to the mean fi
density distribution. Thus, compared with the MFT pred
tion, the distribution for the four-particle system shows
marked population deficiency in the inner cells and a surp
in the outer cells. The 16-particle case shows a similar str
ture, but the difference is smaller. For 64 particles, the d
sity distribution shows excellent agreement with the MF
prediction. It is remarkable that a system with only 64 p
ticles can so closely approximate a system with an infin
population.

The relaxation time for the shell system is much shor
than that found in the system of parallel mass sheets stu
by Reidl and Miller@32#. Figure 11 shows the variance be
tween theN564 simulation and the mean field distributio
as the simulation is carried out. By 800 time units, the flu
tuations in variance have died out and the system has
laxed. Close examination of Fig. 11 shows a small resid
difference between the simulation and MFT results even
ter the simulation has relaxed (4.331027). This residual dif-
ference increases with decreasing population with value
3.631023 and 4.131022 for N516 and 4, respectively
This is as expected, since the MFT distribution reflects
infinite population.

To investigate whether the system retains memory of
initial condition ~which would suggest that equilibrium ha
not been reached!, we created three different initial cond
tions for the same energy and inner boundary radius, w
initial virial ratios varying between 0.06 and 1.3. All thre
cases~four, 16, and 64 particles! were run with the new
initial conditions and the systems converged to final aver

t
e

FIG. 12. The average density distribution for the simulation
the microcanonical system with four, 16, and 64 particles. All un
are dimensionless. The mean field density is represented by a
zonal line at cell population of 1. The mean field limit is a
proached as the population increases, with excellent agreemen
64 particles.
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density distributions which were nearly identical to the on
shown in Fig. 12.

The same study was performed for the canonical sys
above the critical point,a.ac , and the grand canonical sys
tem above the point where two states exist,a.a2 ~recall the
grand canonical ensemble, under the constraint of cons
mean mass, does not exhibit a phase transition and thus
not have a critical point!. Almost identical results were foun
for both ensembles. At 64 particles, the system approac
the MFT distribution. In addition, for a given temperatu
and inner barrier radius, when the initial virial ratio was va
ied, the system relaxed to the same final density distribut
All three ensembles exhibited very similar behavior wh
the system was not in a region where multiple states exis
a given energy or temperature, and good agreement
MFT was achieved for a population ofN564 with variances
on the order of 1027.

As the phase transition region is approached, howe
differences between MFT and the simulation arise. It is w
known that a system will exhibit a sharp transition only
the limit asN→` @26#. Finite size scaling theory predict
that systems with a finite number of particles will demo
strate a transition that is rounded and shifted compared to
MFT prediction @26#. The amount of rounding and shiftin
depends on the number of particles in the system, with
effect decreasing with increasing population. The range
energies over which the transition is broadened is given

DE5CgN2g, ~17!

whereN is the number of particles in the system,Cg is a
proportionality constant, andg is the rounding exponent
Similarly, the center of this rounding region is shifted fro
the location of the MFT transition by the relationship

Ec~N!2Ec~`!5ClN2l. ~18!

Figure 13 shows the equilibrium virial ratios for the m
crocanonical system in the transition region for systems w
16, 32, and 64 particles. The MFT transition occurs atE
52.7. As expected, theN516 case shows the greate
rounding and shifting, which decreases as the populatio

FIG. 13. Virial ratio vs energy for the transition region of th
microcanonical system forN516, 32, and 64. All units are dimen
sionless. The predicted transition point from the MFT isE52.7.
Note that the rounding and shifting of the transition decreases
increasing population.
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increased toN564. Using linear regression, we calculate
the rounding and shifting exponents to be 0.97 and 0.
respectively, with a goodness of fit of 0.98 and 0.99. T
canonical system showed similar results. When compa
with the MFT prediction, the results again agree; howev
the values for the shifting and rounding exponents are dif
ent from the microcanonical case: 1.1 and 1.4, respectiv

Mean field theory does not predict a phase transition
the grand canonical case. There is a range of temperat
where both the concentrated state and the quasiuniform
exist, however, the quasiuniform state is the thermodyna
cally stable solution for all temperatures. To test if simu
tion bears this out, we conducted simulations in which
initial configurations were varied. Some had highly conce
trated distributions of mass; others were more uniform.
cases converged to the quasiuniform state, as predicte
MFT. This stability of the quasiuniform state, as predicted
MFT and validated by simulation, is a further demonstrati
of the distinction between ensembles in systems with lo
range forces.

To test the robustness of the transitions, we started
simulations with both a concentrated and uniform distrib
tion. The system almost always adhered to the prediction
MFT and evolved to the thermodynamically stable state,
gardless of initial state. An interesting exception occurs
the canonical simulations for temperatures above the tra
tion temperature. For systems withN.16, if the simulation
was begun with the system in the concentrated phase, we
not observe a transition to the more uniform~and thermody-
namically stable! phase during the typical run time of th
numerical experiments. We believe this is a manifestation
the metastable state described in Sec. III. Posch, Narnh
and Thirring@31# found a similar phenomenon in a simula
tion of a two-dimensional system with an attractive force
contact with a thermal reservoir. When their systemN
5132) was started in a uniform state with the temperature
the reservoir below that at which a transition to a conc
trated phase should have occurred, the system did not
lapse. In contrast to the concentrated metastable state d
onstrated in the shell system forN.16, the two-dimensiona
cell system demonstrated a uniform metastable state.
authors of Ref.@31# did not study whether the existence
the metastable state depended on the number of particle
the simulation. For the shell system discussed here, howe
the metastable state was not observed for the system
populationN.16.

VI. RANGE OF CORRELATIONS

Developments in statistical physics have demonstrated
intimate connection between the onset of a phase trans
and the size and evolution of fluctuations@26#. In turn, the
behavior of fluctuations at the microscopic level is mirror
in the space and time dependence of correlation functio
These connections were rigorously established for the t
dimensional Ising model some time ago, and are experim
tally manifested in the phenomena of critical opalescence
particular, we know that near a thermodynamic critical po
fluctuations evolve slowly and grow in size. From the stan
point of theory, both the relaxation time and the two bo
correlation length diverge there. However, the fact tha

th
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phase transition cannot occur at finite temperature in a o
dimensional ‘‘chemical’’ system should prepare us for fu
ther unusual behavior in this investigation.

In analogy with chemical systems, it is natural to exp
that near the gravitational critical point described in the p
ceding sections the persistence of large fluctuations wo
induce a marked increase in the time required for the sys
to equilibrate. The methodology we employed for determ
ing the relaxation time was described in Sec. IV. When
variance between the time-averaged density computed
at timest and t/2 fell below 1028, the system was consid
ered relaxed. In all simulations we found little difference
the relaxation time, suggesting the absence of critical p
‘‘slow down’’ and indicating that the behavior of fluctua
tions in systems with long-range interactions may differ s
nificantly from their chemical counterparts.

In addition to exploring the predictions of mean fie
theory ~which has nothing to say about fluctuations!, dy-
namical simulation allowed us to compute both spatial a
temporal correlation directly. By varying the inner barri
radius we were able to determine the influence on correla
of the singularity in the gravitational force in this on
dimensional system. Here we describe our studies of the
cay of fluctuations of the total system kinetic energy, and
extent of spatial correlation of density fluctuations. We w
see that the central features of the correlation spectra d
both quantitatively and qualitatively from our usual expec
tions.

Figures 5 and 8 show the coexistence curves for the
crocanonical and canonical ensemble, respectively. We w
to demonstrate how the range of correlations behaves at
ous points in these planes. Specifically, we selected po
below the phase transition line, at the phase transition l
above the phase transition line, at the critical point,ac , and
in the ‘‘fluid’’ region a.ac , and examined the correlation
in kinetic energy as a function of time and correlations
density as a function of position.

A. Temporal correlations

We calculated the correlations in kinetic energy as a fu
tion of time for the microcanonical and canonical ensemb

C~t!5 lim
t8→`

1

t8
(
t51

t8

@Ekin~ t !2Ekin0
#@Ekin~ t1t!2Ekin0

#,

~19!

whereEkin(t) is the kinetic energy of the system at the spe
fied time andEkin0

is the mean kinetic energy at equilibrium

To constructC(t) for each of the simulations, we stored th
value of the kinetic energy of the system at equally spa
intervalsDt as the simulation was being carried out. Aft
the system had relaxed and the run was terminated, we
Eq. ~19! with t5nDt, n51,2,3, etc. It is important to note
that t cannot be on the order of the total time that the sim
lation was run, because the number of terms in the corr
tion function will be greatly reduced, e.g., ift is chosen to be
one-half the simulation time there will only be half as ma
terms in the correlation function, which could add mislea
ing fluctuations. For this reason, we have limited the value
t,100 time units. This proves sufficient, as all of the cor
e-
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lation functions have died out before this time. AsC ap-
proaches zero for larget, the kinetic energies att and t1t
become statistically independent.

Striking differences are manifested between the two
sembles and within the ensembles themselves. The cor
tion function dies out much more rapidly for the canonic
system than for the microcanonical system. It is likely th
this is due to the temperature stabilization at the boundar
the isothermal system. Although the interaction is weake
by changing the velocity of the striking particle only eve
100 collisions, the kinetic energy is driven to its equilibriu
value more rapidly than in the case where no external mec
nism exists to stabilize the temperature. Within the micro
nonical system, the temporal correlations took longer to re
for the system in the fluid phase,a.ac . In the canonical
system, the system at the critical point and in the fluid ph
exhibit this trend as well, although the differences betwe
the cases are less marked. At and above the critical point
correlation function has not relaxed at 25 time units, wh
below the critical point, all correlation functions have die
out well before 25 time units.

B. Spatial correlation

The previous subsection demonstrates how the fluc
tions in a single system parameter are correlated as the
between measurements is varied. Spatial correlations w
investigated for this system as well, i.e., how regions of
system are correlated with respect to the distance betw
them. In Sec. IV, we described how the system was divid
into 20 cells of equal probability, and how the population
each cell was recorded at each time interval to determ
how the density of the system behaves over a long t
scale. To determine the spatial extent of fluctuations in d
sity, we calculated a correlation function between each p
of cells,

Ci j 5
1

t8 (t51

t8

@Pi~ t !2 P̄i #@Pj~ t !2 P̄j #/s is j , ~20!

wherePi and Pj are the populations of the cellsi and j at
time t ands i

2 ands j
2 are the variances of the population

cells i andj. Dividing by the variances normalizes the data
that self-correlation terms are equal to 1.

FIG. 14. Positional correlation function for canonical syste
below the transition line. Beta,b50.15 and inner barrier radius
a50.01. All units are dimensionless.
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The trends in positional correlation functions across
system are similar for both ensembles. For values of in
barrier radius less than the critical point,a,ac , regardless
of whether the system is above, at, or below the transi
line, the correlations died out rapidly as the distance betw
cells increased~see Fig. 14!. However, when the system is a
the critical point,a5ac , or in the ‘‘fluid phase,’’ a.ac ,
strong correlations exist across the entire system~see Fig.
15!. Examination of the valueC1,20 demonstrates the chang
in behavior for the system at the critical point and in the flu
phase. For values ofa,ac , C1,20 is close to zero,20.1
<C1,20<0. For a>ac , the correlation function differs sig
nificantly from zero:20.78<C1,20<2.55.

This change in behavior above the critical point is exh
ited in both temporal and positional correlation function
except for the kinetic energy correlation in the canonical s
tem. We believe that this is due to the discontinuity in t
velocity of the shells that collide with the temperature sta
lizing barrier, which will drive the kinetic energy rapidly t
its equilibrium value, and overwhelm any long-range cor
lations that exist in the system.

VII. CONCLUSIONS

The purpose of the present work was to explore the e
tence and behavior of phase transitions in systems w
gravitational interactions. It is expected that the long ran
nature of these interactions will produce results differ
from those in ‘‘normal’’ systems, due to the nonextensi
nature of the energy. In addition, this model probes the
fects of the singularity of the gravitational force, which h
been excluded from idealized models, such as that of R
@31#. To explore the behavior of the gravitational force, w
studied a system of spherical, concentric mass shells, w
move under their mutual and self gravitation. The study w
pursued by two methods:~1! Theoretical: The system wa
considered in the mean field limit, where the number of p
ticles in the system approaches infinity and the mass of e
particle approaches zero.~2! Experimental: The dynamics o
the system were simulated numerically on a computer. In
first method, only the equilibrium state is determined;
information about the approach to equilibrium is gained.
the second method, by simulating a finite number of p
ticles, we were able to study the evolution of the system,

FIG. 15. Positional correlation function for canonical system
the critical point ac . b50.425, and the inner barrier radiusa
50.043. All units are dimensionless.
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determine the effects of varying initial conditions of tem
perature and energy.

To study how interactions with the system’s environme
affected the behavior of phase transitions, we considered
system in three different ensembles of statistical mechan
microcanonical, canonical, and grand canonical. In chem
systems, where the energy is an extensive parameter, t
ensembles may be used interchangeably. However,
would expect that the long-range nature of the gravitatio
force would cause this correspondence to break down.
indeed find this to be true in both the mean field and sim
lation approaches; differences in the behavior of phase t
sitions between ensembles are significant. The results
MFT and simulation are summarized in Table I.

A. Microcanonical ensemble

The thermodynamic state is determined by the total
ergy E and the inner barrier radiusa. Equilibrium states are
states of maximum entropyS5S(E,a). In the mean field
limit, we found that below the critical point (a,ac), for a
certain range of energies, there were multiple states with
same value of energyE. Each of these states had a corr
sponding entropyS. For a given inner barrier radius below
the critical point, plotting only the maximum entropy value
for each energy, the entropy curve exhibits a ‘‘kink.’’ Th
change in slope for this line gives rise to a discontinuo
jump in temperature signifying a phase transition. By defi
tion, at the transition point two branches of the equilibriu
curve meet. On the high energy branch, the density of
system is quasiuniform. Once the energy is lowered past
transition point, a more centrally concentrated phase ex
Plots of energy vs temperature demonstrate intervals
which the specific heat is negative.

We find similar results for the numerical simulation fo
the isoenergetic system. However, due to the finite num
of particles in the simulation, the transition is no longer i
finitely sharp. The transition line is rounded and shifted; t
effect is more pronounced with decreasing population, a
we determined a set of exponents that accurately descr
this behavior for the range of populations that were sim
lated in this study. It is noteworthy that the equilibrium di
tributions for the simulation were independent of the init
density distribution, and the final state always correspon
to the thermodynamically stable solution, regardless of
number of particles in the simulation. As we will see later
the discussion of the canonical ensemble, this is not alw
the case.

A study of temporal and positional correlation functio
for the microcanonical simulations showed that in the flu
phase, long range correlations exist. Once below the crit
point, regardless of the location in the (E,a) plane, the cor-
relations quickly died out. One might expect that the lon
range correlations near the critical point,a5ac , might lead
to a critical ‘‘slowing down,’’ i.e., the relaxation time would
diverge; however, the relaxation time appeared to be in
pendent of proximity to the critical point. It is importan
however, to note that the maximum population for the sim
lations wasN564, and that increasing the population m
better demonstrate the effect of correlations on the relaxa
time.

t
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TABLE I. Summary of mean field theory and simulation results.

MFT
Ensemble

MCE CE
Critical point, ac 0.00187 0.0043
Jump in virial ratio

at transition pt.
3.3 7.2

Jump in temp. at
transition pt (a50.001)

6.7 0

Jump in energy at
transition pt (a50.001)

0 40.5

r(a)/r(b)—collapsed 3820 3820
r(a)/r(b)—intermediate 3.2 3.2
r(a)/r(b)—quasiuniform 1.3 1.3

Simulation
MCE CE

Rounding exponent 0.74 1.14
Shifting exponent 0.97 1.1

MCE phase plane point Transition pt Above transition line Below transition line Critical point Fluid p
C i51, j 520 20.09 20.08 0.03 20.78 20.55
Relaxation Time

for Ekin corelation
45 70 65 80 90

CE phase plane point Transition pt Above transition line Below transition line Critical Point Fluid p
C i51, j 520 20.09 20.1 20.04 20.57 20.36
Relaxation Time

for Ekin corelation
20 20 1 35 35
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B. Canonical ensemble

In the canonical ensemble, the thermodynamic state
determined by the temperatureT and the inner barrier radiu
a. Equilibrium states are states of minimum free energyF
5F(T,a). As in the microcanonical mean field limit, w
found that below the critical pointa,ac , for a certain range
of temperatures, there were multiple states with the sa
value of temperature. Each of these states has a corresp
ing free energy valueF. A graph of the minimum free ener
gies for each temperature exhibits a discontinuity in the sl
in the equilibrium curve. The energy jumps at that po
signifying a phase transition. At high temperatures, the d
sity of the system is nearly uniform. At the transition poin
both the uniform and a centrally concentrated phase exis
they did in the microcanonical system. At temperatu
lower than the transition point, the concentrated phase is
only stable solution. For all values of temperature, the s
cific heat is positive.

The numerical simulation for the isothermal system s
ports the predictions of the mean field approximation. Aga
the transition is rounded and shifted due to the finite num
of particles in the system. The exponents that describe
rounding and shifting were determined, and these accura
described the transition behavior for the range of populati
that we studied. However, these exponents differed fr
those in the microcanonical system.

An interesting feature of the canonical system is the
bustness of the concentrated phase above the transition
perature, where it is thermodynamically less stable. For s
tems with populations greater thanN516, if the system was
initially concentrated, we were never able to observe a
is
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namical phase transition to the stable phase during the t
cal run times of the experiment. If the system was initia
uniform in density, however, it always relaxed to the mo
stable solution, regardless of whether the stable state
concentrated or uniform.

The isothermal system demonstrated the same lack
critical ‘‘slowing down’’ as the isoenergetic system. Near t
critical point, long-range correlations in time and positio
exist across the system; however, no significant differenc
relaxation times occurred between any of the systems be
at, or above the critical point. In the isothermal system,
correlations in kinetic energy died out more rapidly than th
did in the isoenergetic case, possibly due to the action at
outer wall, which works to thermostat the system.

C. Grand canonical ensemble

In the grand canonical ensemble, a thermodynamic s
is defined by the temperatureT and the chemical potentialm.
Equilibrium states are states of minimum grand potent
F5F(T,m,a). For the sake of comparison, for eachT and
a, the value ofm was fixed by requiring that the averag
system mass is 1, as it is in the microcanonical and canon
ensembles. Although there are values of temperature
have two states associated with it, plots of the minimu
grand potential for each temperature do not exhibit the sa
kink, as demonstrated in the ensembles described above
more uniform phase is predicted to be the more stable
over the entire (T,a) plane. Thus a transition to a more ce
trally condensed density profile is not predicted.

The results from the dynamical simulations were in co
plete accord with the mean field predictions. The system w
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initiated with a variety of density distributions. In each ca
the time averaged density profile agreed with that predic
for the more uniform profile. No sign of a transition was ev
observed, even when the initial state was highly concentra
near the inner barrier.

SUMMARY

In this paper we have carefully studied the influence
the singularity of the gravitational potential on the syste
thermodynamics. We found that as the singularity is ba
by decreasing the inner barrier radius, the system can exi
multiple phases. We investigated the nature of the transi
in three different ensembles, and found significant diff
ences between them. The difference between the cano
and microcanonical ensembles for this one-dimensional
namical system had the same qualitative features as ea
mean field studies of three-dimensional systems in which
d
e,
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ed

f

d
in
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cal
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attractive singularity of the two-body potential was screen
by a hard sphere interaction. However, our study of
grand canonical ensemble revealed unexpected results
our knowledge, this is the first published investigation of
open gravitational system. The fact that the concentra
phase was never more stable in our study may have co
quences for astrophysics for various stellar or even gal
clusters which exchange both matter and energy with
environment, as well as planet formation in circumstel
disks. Our results suggest that further study over a wi
range of mass, as well as in three dimensions, needs t
explored. In addition to the chief thermodynamic properti
our simulations also allowed us to investigate both spa
and temporal correlations in the system. In contrast w
chemical systems, we found a remarkable picture of stro
system-wide, correlation throughout the fluid phase, and
pected weak correlation in the multiphase region of the
evant thermodynamic state space for each ensemble.
ace
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