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We study sandpile models as closed systems, with the conserved energy deplsiyyng the role of an
external parameter. The critical energy dengjtynarks a nonequilibrium phase transition between active and
absorbing states. Several fixed-energy sandpiles are studied in extensive simulations of stationary and transient
properties, as well as the dynamics of roughening in an interface-height representation. Our primary goal is to
identify the universality classes of such models, in hopes of assessing the validity of two recently proposed
approaches to sandpiles: a phenomenological continuum Langevin description with absorbing states, and a
mapping to driven interface dynamics in random media.

PACS numbsgs): 05.70.Ln, 05.65tb, 45.70.Ht

[. INTRODUCTION sorbing state$16,17, interfaces in disordered medja8—
21], the voter mode[4], and branching processgz3].

Sandpile model$1] are one of the simplest examples of  In order to make connections with other nonequilibrium
avalanche dynamics, a phenomenon of growing experimentghenomena more firm, and to establish universality classes,
and theoretical interest. In these models, grains of “energy’precise critical exponent values are needed. Unfortunately,
(sand are injected into the system, while open boundariesritical exponents governing the deviation from criticality
[1] allow the system to reach a stationary state, in whichcannot be measured in slowly driven sandpiles, which are
energy inflow(a kind of external driveand outflow(dissi-  posed by definition at their critical poii2]. Thus corre-
pation balance. In the limit of infinitely small external driv- spondences between sandpiles and other nonequilibrium
ing, the system displays a highly fluctuating, scale-invarianphase transitions can be only partial and inconclusive. In
avalanchelike response: the hallmark of criticality. order to overcome this conceptual difficulty, a different ap-

Ten years after the introduction of the first sandpile auproach to sandpiles has been recently purgdécl7,24,2%
tomaton by Bak, Tang, and WiesenfdBTW) [1], our un- It consists in analyzing sandpiles wifixed energy26], that
derstanding of its critical behavior remains frustratingly lim-is, in considering the same microscopic rules that define
ited, although several variants of the original model havesandpile dynamics, but without driving and boundary dissi-
been studied intensive[2—5]. Despite some remarkable ex- pation. In this way the system is closed, and thus the total
act resultg6,7], and various renormalization group analysesenergy is a conserved quantity, fixed by the initial condition,
[8-10], the tempting possibility of assigning these modelsand can be identified as (&emperaturelike control param-
their proper universality classes remains unfulfilled. Theoreteter. The system turns out to be critical only for a particular
ical and numerical difficulties have likewise hampered a prevalue of the energy densitfequal to that of the stationary,
cise estimation of critical exponents. Only recently was theslowly driven sandpilg and it is thus possible to study de-
upper critical dimensionl.=4 established under some as- viations from criticality. This approach to sandpiles suggests

sumptions for the avalanche structdifiel]. further analogies with systems with absorbing stg2&$ and
Originally, sandpile models were proposed as the parainterfaces in disordered medias,29.
digm of self-organized criticalitySOQ [1], i.e., evolution to The stationary state of standard sandpile models is

a critical state without tuning of parameters. For this reasonieached through the balance between the input and loss pro-
sandpile models were considered for a long time to inhabit &esses, identified by the energy addition and dissipation rates
different world than that of standard critical phenomena.h and e, respectively. Critical behavior is observed in the
Later, several authors pointed out that, in fact, the SOC statglow driving regime, in which the parametensand e are

can be ascribed to the presence of two infinitely separatetlined to their critical valuesh—0 and e—0, with h/e

time scale§12-15. The two time scales correspond to the —0) [15,16. In this regime, the system jumps among ab-
external energy input or driving, and the microscopic evolu-sorbing configurationgin which activity is nul) via ava-

tion (“avalanches’). This time-scale separatiqalso called lanchelike rearrangements. Evidently, in the absence of ex-
slow driving effectively tunes the system to its critical point. ternal driving, any sandpile model can fall into an absorbing
What is the relation between critical states due to infiniteconfiguration. The connection to absorbing state phase tran-
time-scale separation and regular critical points? This quessitions is made more clear by definintpsed fixed-energy

tion stimulated many theoretical studies aimed at elucidatingandpiles in whicth=0 and e=0, and periodic boundary
the links among sandpile automata and models exhibitingonditions are imposed. Since the dynamics admits neither
nonequilibrium phase transitions, such as systems with alinput nor loss, the total enerdy is conserved, and the en-
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ergy density/=E/L% is a tuning parameter. In this case, if the shuffling model shows a critical behavior that could be
the energy density is large enough, the system reaches acompatible with the RFT universality class. However, the
stationary state with sustained activity, i.e., it is in twive ~ nonlocal dynamics of this model merits a detailed examina-
phasd 16,27]. Conversely, for small energy values, the sys-tion. It is also important to note that all models show a vio-
tem relaxes with probability 1 into a frozen configuration, lation of certain scaling relations usually associated with
i.e., it is in theabsorbingphase. Separating these two re- absorbing-state phase transitions. This seems to point out the

gimes is a critical point {=¢.) with marginal propagation particular r_ole of the conserved field in. these system;. Fi-
of activity. nally, we discuss the numerical results in the perspective of

Once it is appreciated that fixed-energy sandpiles exhibife theoretical frameworks mentioned above. .
a continuous transition to an absorbing state, the existence of 1€ outline of this paper is as follows: after defining the

a critical stationary state in the corresponding driven dissipa'0dels in Sec. Il, we discuss the generalized RFT theory

tive sandpile is easily understood. That is because energy (S€C- Il and LIM approachSec. IV) to FES models. We
added only in the absence of activity< ¢.), while dissipa- analyze from a critical perspective the approximations and

tion occurs only in the presence of activity¥{.). Thus 2ypothes§s involvedf i?] thgfsfe approgches. In.pﬁl’rticular, we
d{/dt is positive for{<{., and vice versa, leaving, as the |sk():uss the r_laltureho _tde d.'f. erent n?lse_termsl,_t ISI turns out
only possible stationary value of the energy den$ag]. to be essential to the identification of universality classes. In

(The condition that dissipation and hence activity be absengec' V we present the results of extensive simulations in two

in the subcritical phase makes the absorbing nature of thi imensjons, and an_e}lyze them in the perspectjve of
phase an essential ingredient of SDSince SOC means apsorbing-state transitior[46,17, and the LIM mapping,

tuning a system to its critical point by means of an infinitely}NhiChlfocgsesv\?n ]:[.he rqlfjfghness of a suitably defined inter-
slow drive, it is natural to try to understand the critical be-@c€ [18—20. We find differences between BTW, Manna,

havior first in the simpler context of a fixed-energy model.f"’lnd fully stochas_,tlc FES exponents that persist upon er_wlz_arg-
But while many examples of absorbing-state phase transi"9 the system size. Section VI. IS c_oncerned with _the ongins
tions have been studied in detail in recent years, we will se@f these differences, and possible improvements in the theo-

that characterizing sandpile criticality, even in the ﬁxed-retical description;, to capture.the ”‘46 cri.tical behavior of
energy formulation, is a nontrivial project. FES models. A brief summary is provided in Sec. VII.

In this paper we define and studixed-energy sandpiles

(FES’9 with various microscopic dynamics. In particular, Il. FIXED-ENERGY SANDPILES
we analyze the BTW sandpilEl], the stochastic Manna
model[2,31], and a model with random mixing of @eal- In this paper we consider three different sandpile models.

valued energy: the shuffling modé¢B2] (full definitions are  All are defined on ad-dimensional hypercubic latticed(
given in Sec. I]. We show that all of these models exhibit an =2 in this study; the configuration is specified by giving the
absorbing-state phase transition at a critical vaju®f the  energy z at each site. The energy may take integer or real
energy density. What distinguishes the sandpile from othevalues, depending on the model, but is non-negative in all
models with absorbing states is that the control paramieter cases. The specific models are defined as follows.
represents the global value of a conserved field. This phase BTW model[1]: Each active site, i.e., with afintege)
transition is also the basis of the critical behavior of drivenenergy greater than or equal to taetivity threshold g, (z;
self-organized sandpiles. =z,=2d), topples at a unit rate, i.ez—z—zy, andz;
Using the insights provided by the connection with ab-—z;+1 at each of the @ nearest neighbors af The top-
sorbing states, we discuss in detail the attempt to constructfaing rate is introduced in order to define a Markov process
field theory for sandpilefl7]. The latter is a generalization with finite transition rates between configurations that differ
of Reggeon field theoryRFT) [33], the minimal continuum at a small number of sites. The next site to topple is selected
theory describing absorbing-state phase transitidds We  at random from the set of active sites; this is the only sto-
also discuss an alternative approach that considers sandpilelsastic element in the dynamig3he initial configuration is,
from the perspective of linear interface modé@ldM’s) in in general, random as wellThe BTW dynamics, wittpar-
disordered medigd18-20. Since continuum descriptions allel updating(all active sites topple at each update com-
have proved to be of fundamental importance in understandsletely deterministic, and it has been possible to obtain many
ing universality and critical behavior, we analyze in detail exact results for the driven sandpile in this case, due to the
open questions and possible improvements of these theoretbelian property[6]. This property implies that the order in
ical approaches. which active sites are updated is irrelevant in the generation
For all the models mentioned, we report results of simu-of the final (inactive configuration. Accordingly, it is rea-
lations close to the critical point, and discuss them in termsonable to expect that sequential or parallel updating does
of universality classes. Numerical results indicate three disnot affect the qualitative behavior. The BTW model is the
tinct critical behaviors, depending upon the microscopic dy{rototypical sandpile model, and has been the subject of ex-
namics of models. In particular, the BTW model defines atensive numerical studi¢85—37]. Despite the huge numeri-
critical behaviormper sg related to the deterministic nature of cal effort devoted to the analysis of its critical behavior, the
the dynamics. We find striking evidence of nonergodicity inmodel presents scaling anomalies which have precluded a
the BTW FES’s: an anomalous transient to the stationarylefinitive characterization. The scattered numerical values of
state, and lack of self-averaging. Stochastic automata, sudhe avalanche critical exponents were recently interpreted in
as the Manna model, have a critical behavior that is ratheterms of multiscaling propertigs8].
close to the one of linear interface depinning models. Finally, Manna sandpilg2,31]: In this casez;,=2 regardless of
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the number of dimensions; the energy is again integer valeonfiguration is trivially satisfied on large lattices, for the
ued. The two particles liberated when the sitepples move values of interest, i.e., close to the critical val(For largeL,
independentlyo randomly chosen nearest neighbpand |’ the initial height at a given site is essentially a Poisson ran-
(that is,j =]’ with probability 1/21) [39]. This model has a dom variable, and the probability of having no active sites is
stochastic dynamics, which still enjoys a “stochastic” Abe- exponentially decreasing with the lattice sjzé.is worth

lian property, as shown recently by Dhi@1]. The Manna remarking that while the initial conditions are statistically
model has also been the subject of many numerical studiebomogeneous, the energy density is not perfectly smooth.
Together with the BTW model, it has been at the center ofor 1<|<L, the energy density on a set [fsites is essen-
the long debate over universality classes (rven sand- tially a Gaussian random variable with meamnd variance
piles [40—42, that we will discuss in later sections. The ~1~9, The initial value of the critical-site density, (sites
Manna model, fortunately, has a regular scaling behaviorthat become active upon receiving energgoreover, is gen-
The most recent analyses provide a coherent picture of iterally far from its stationary value, complicating relaxation
critical properties and exponent values —44]. to the steady state.

Shuffling mode[32]: This model has non-negative real-  If after some time the system falls into a configuration
valued energies. When a sitetopples, the energ¥ =z with no active sites, the dynamics is permanently frozen, i.e.,
+3yniZj at that site and its nearest neighbors is redistribthe system has reached an absorbing configuration. We shall
uted randomly amongst these five sites. That is, we generaf®€ that as we vary, fixed-energy sandpiles show a phase
random numbersy,, . . . ,ps, uniform on[0,1], and letz, transition separating an absorbmg phﬂseyvhlch_the Sys-
2/ =92yt +7s) (j=1, ... 5).Sites with energy tem always encounters an absorbing configuratisom an

, - . . e active phase possessing sustained actjvi6}. This is a con-
Zj =2y =2 topple with probability 1. In addition, the nearest tinuous phase transition, at which the system shows a critical

neighbors of the toppling site that have enemjy-zy, also  penavior. The order parameter is the stationary average den-
become active with probabilitg{/z, . This model contains sity of active sitesp,, which equals zero fot<{., and
stochasticity in each ingredient of the dynamics, and for thigollows a power lawp,~ (¢ — £.)?, for {>¢.. The correla-
reason can be considered a fully stochastic model. It igion length¢ and relaxation timer both diverge as/— ¢ ;
clearly non-Abelian: the final configuration depends dramatitheijr critical behavior is characterized by the exponents
cally upon the order in which sites are updated. The parallelynq v, defined viaé~|{—¢c| ™" and 7~|{— ¢ ", re-
updating version studied in this work exhibits an interestingspectively. The dynamical critical exponent is defined wia
nonlocal dynamical effect. At each update, the energy._ gz \yhich impliesz= vi/v, . The exponents, v, , andy;
around a site is shuffled among nearest-neighbor sites. If gefine the stationary critical behavior at the absorbing-state
nearest-neighbofor next-nearest-neighbopair of sites are  phase transitiorf27]. In the vicinity of the critical point,
both active, the energy at a certain site or sites will beyhere¢ is very large, the actual characteristic length of the
shuffled twice within a single time step. For larger aggre-system is the lattice size. We shall see that the application

gates of active sites, the reshuffling may involve the samey finjte-size scaling allows us to locate the critical point as
site several times. In particular, energy can be transportefle|| a5 estimate critical exponents.

over large distances by consecutive shuffling events along
the front of active sites. This nonlocality will create a mixing
effect in the energy transport that one expects to influence
the critical behavior.

In the present paper, we study the Manna and shuffling
models with the parallel updating customarily used in sand- In this section we discuss a recently proposed phenom-
pile automata. The BTW model is implemented using ran-enological field theory of sandpile automafi&’]. Our main
dom sequential dynamics, with each active site having a topgoal is to clarify the connection between fixed-energy sand-
pling rate of unity. The next site to topple is chosen atpiles and RFT, which is the minimal field theory describing
random from a list of active sites, which must naturally beabsorbing-state phase transitig88,34] [whose prototypical
updated following each toppling event. The time incrementexamples are directed percolatitdP) [47] and contact pro-
associated with each such eventdis=1/N,, whereN, is  cesse$48]].
the number of active sites. This is the mean waiting time to In Ref.[17] we proposed a Langevin description for sand-
the next event, if we were to choose sites blindly, instead opile automata by considering the mean-field description of
using a list.(In this way,N, sites topple per unit time, just as sandpiles reported in Refgl5,16], and introducing spatial
in a simultaneously updated version of the mod8ince the  dependence and fluctuations. This allows a derivation that is
BTW model is Abelian, the choice of updatiriparallel ver-  based on the microscopic dynamics of sandpile automata, but
sus sequentiakhould be irrelevant to the asymptotic critical involves several approximations.
properties. This has been tested in independent simulations Here we show how to write down a general Langevin
using parallel dynamicp45]. description of sandpile automata by using very general sym-

In a FES, the energy densityis fixed in the initial con-  metry considerationt9]. This results in a complete descrip-
dition. The latter is generated by distributigg® particles tion, but one that is not easy to deal with, unless the proper
randomly among the ¢ sites, yielding an initiaproduc)  approximations are introduced. After the introduction of
distribution that is spatially homogeneous and uncorrelatedsome specific assumptions regarding noise terms, we recover
Once the particles have been placed, the dynamics beginthe results of Refl17]. On the other hand, the present more
The condition to have at least one active site in the initialgeneral treatment indicates possible modifications that may

Ill. SANDPILES AS SYSTEMS
WITH ABSORBING STATES
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be needed for a complete characterization of sandpile modvant to deal with an infinite set of power and derivative
els. terms inp,(x,t) and A{(x,t), we have to identify the rel-

In sandpiles, the order parametergdg, the density of evant terms from the renormalization group point of view.
active sitegi.e., whose height=z.) [15,16,2§; if at a given  This can be done via power counting analysis at the upper
time p,(x) =0 for all x, the system has reached an absorbingritical dimension. This implies a knowledge of the noise
configuration. The only dynamics in the model is due theterm, i.e., we have to decide the terms to retaigjrandg, .
field p,(x), which is coupled to the local energy density The most relevant term is the linear one, corresponding to
{(x,t), which enhances or depresses the generation of neg/afvgpp;’z(x,t) [33,27]. In RFT, the rationale for the noise
active sited50]. We therefore consider the dynamics of the variance being proportional to the local order parameter is
local order-parameter field,(x,t) in a coarse-grained de- that the numbers of elementaflyirth and deathevents in a
scription, bearing in mind that the energy dengitx,t) isa  given space-time cell are Poissonian random variables, so the
conservedield. Note that bothp,(x,t) and {(x,t) are non- variance is equal to the expected value. That the noise term
negative. The most general dynamical equation that imposdsr sandpile models has the same form as in RFT is by no
local conservation of energy is means guaranteed. For instance, the BTW model is fully

(X0 deterministic, and the nontrivial assumption that at the
ag(x,t - coarse-grained level it is described by a time-dependent
ot =VA(fL{pal 8D+ V- [9:({pal {CH n(x,D], noise should be tested. Further, the fact that the §¢igt)
(1) is conserved could affect the noise form. In fact, it is well
known that additional symmetries on the fields can change
wheref, andg, are functionals op, and{. Conservation is the noise forn{52]. In the absence of an exact derivation of
enforced by thé7? term and the standard form of conserving the noise terms, we proceed by showing the Langevin de-
noise, as for example in Cahn-Hilliard-type equati¢b4] scription resulting from the choice of a RFT-like noise.

(7 is ad-component vectorial noiseThe dynamical equa- Assuming RFT-like noise terms, the activity equation
tion for the density of active sites can be written analogouslytakes the form
as Sou0t)
palX,
Ipa(x.t) — = DaV2pa(x.) = rpa(x,t) —bpZ(x.t)

Jt :fa({Pa}!{g})+ga({pa}v{§})W(th)i (2
T upa(X,HAL(X, 1) + 7a(X,t), (4)

wheref, andg, are functionals op, andZ, and»(x,t) is an .
a aNncda ba and¢ 7t where 7,=pY?7. Here we have retained only relevant terms

uncorrelated Gaussian noise. We note thais a noncon- ith ‘1o th . dered. | field th th
servednoise: the active-site density is not a conserved quanWI respect to the noise considered. in mean-nie eory the

tity. The functionalsf, and f,, and variances? and g2 critical point corresponds to=r.=0; we expect fluctua-
apbearing on the rig?]t—handg :sides of E¢H) anétlj @ arge tions to renormalize . to a nonzero value. In any case, the
analytic functiongpolynomialg of the local densities an@n value ofr depends orgo_, I.e., the energy densit§ plays the
orinciple) their spatial derivatives. role of a(temperaturehk}acontrol parameter.

The right-hand sides of Eqél) and(2) must vanish when The evolution ofA{(x.t) is governed only by the most
pa=0 (if they did not, the statg,=0 would not be absorb- relevant term in the functiondl,, that is, the one linear in
inag) This implies tha;t none ofathe functionals, g2 f, pa. The equation may be integrated formally to yield

. ’ a’ ’

and g? contain terms independent pf; they are functions

t
of p,(x,t) and the product(x,t)p,(Xx,t) [27]. In this way Ag(x,t)=A§(x,0)+f dt’[D,/VZpa(x,t')
activity is sustained only ip4(x,t)>0. It is convenient at 0
this point to introduce a reference valggof ¢ (for instance 4y. (m;])]_ (5)

the global average energyand expand the term{p, about

{o- IntroducingA £(x,t) ={(x,t) — {o, we can express all the  gypstituting this into Eq(4) and disregarding irrelevant
functionals as functions ok {(x,t)pa(x,t), where all terms  higher order terms, the proposed Langevin equation for
of the form g pa(X,t)]" are absorbed into the coefficient of fixed-energy sandpiles becoméds:
[pa(X,1)]", £y being constant.

In order to write the various functionals more explicitly,  gp,(x,t) ) 5
we have to consider the symmetry of the lattice in question. i~ DaV pa(X)=r(X)pa(X,) =bpa(x.1)
For isotropic models the system is inversion symmetric un-

der x— —X, so that odd powers of gradients, suchVgs,, L )

are forbidden. This leaves us with functionals such as +WPa(X1t)fodt V2pa(x,t") +\pan(xb).

fa({pa}v{g}) = Davzpa(xat) - l‘pa(X,t) + ,LLpa(X,t)Ag(X,t) (6)
—bpi(x,)+ -, (3) 7 is a Gaussian white noise whose only nonvanishing cumu-

lants are{ 7(x,t) p(x’,t"))=DS(x—x")8(t—1"); c,b, andw
where D,, r, u, and b are constants whose connection are fixed parameters; and the coefficient of the linear term,
with the microscopic dynamics will be clarified below. The
functionalsf,, g,, andg, have similar forms. If we do not r(x)=r—puA(x,0), 7
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inherits its spatial dependence from the initial energy distri-decrease untib, no longer took a maximum there, contrary
bution A £(x,0). Observe thab has to be positive to ensure to hypothesis. We conclude, therefore, that E).does not
stability; w>0 follows from the diffusion coefficienD,  represent quenched disorder.

>0. This equation recovers the result obtained in RET]; Itis interesting to compare the effective growth rate in our
we refer the reader interested in a more phenomenologicdéheory with that found in aon-Markovianversion of the
approach to that paper. contact process employing so-called “run-time statistics”

We find, by standard power-counting analysis, that theRTS) [58,60. In the basic contact proce&SP) the creation
upper critical dimension of this theory k=4 [53]. Above rate (i.e., for activity to spread from an active site to an
d., a qualitatively correct mean-field description is obtainedinactive nearest neighbois X\, independent of position or
by dropping the noise and gradient terms and replacingime. In RTS the creation rate at site is \;(t)=(a
£(x,0) by the spatially uniforni= ¢, yielding +¢;)/(n;+a+1), wherea is a parameter, and represents
the number of creation events outmftotal events at sitg
up to timet. Evidently, sites which by chance have enjoyed
a larger fraction of creation events in the past are likely to
o continue to do so, mimicking a quenched random creation
The critical pointZ={, corresponds to=0. Above{,, we rate. The RTS appears to reproduce the stationary properties
have an active stationary state with~({—¢.)? with g8 of the CP with quenched disorder. On the other hand, a ver-
=1; for {<(., the system falls into an absorbing configu- sion of RTS in which\ (i) was a decreasing function of
ration in which p,=0. Other mean-field critical exponents would not mimic quenched disorder, since sites which by
can be calculated as well. chance had enjoyed a larger than average fraction of creation

The present Langevin equation resembles RFT, except fé¢vents in the past would tend to have fewer such events in
the spatial dependence ofand the non-Markovian term. the near future. In our field theory, the effective creation rate
Both stem from the interaction between activity with the contains a non-Markovian contribution of the latter type,
energy background. Let us present some comments on thes#ice regions with larger than averagg tend to have

dipa(t)=—Tpa(t) —bp3(t). (8)

two terms. V?p,<0, and vice versa. Thus the non-Markovian term pro-
The effective growth ratfi.e., the net coefficient gf, in vides a stabilizing, negative feedback in the creation rate.
Eqg. (6)] is [Note however, thafr(x,t)dx is constant, sincg V2p,dx

=0.] While the non-Markovian term effectively erases the
¢ initial distribution r(x,0), we do expect the spatial depen-
—reff(X)= —r+,uA§(X,O)+Wf dt’'V2p,(x,t’). (9) dence ofr to play an important role when we consider ava-
0 lanches, i.e., the spread of activity from a localized seed, in a
nonuniform energy density.
In the absence of the memory term, and for generic initial As we have just discussed, the non-Markovian term en-
conditions, AZ(x,0)# const, Eq.(6) is the field theory of ables the theory to forget the quenched, stochastic reproduc-
directed percolation withquenched disorderDisorder is tion rater(x,0). Naively, its associated coefficienthas the
known to be a relevant perturbation in DP beldy=4 [54—  same dimensionality asandD, which are the two marginal
58]. On the other hand, the memory and spatially dependergarameters of the RFT at its upper critical dimensidp,
linear termstogetherrepresent coupling to the energy den- =4. Belowd. we expect the critical fixed point to be renor-
sity, which is not quenched in, but relaxes via the diffusionmalized tor =r*, defining a renormalized, and nontrivial
of activity [see Eq(7)]. Thus the effect of a spatially depen- critical exponents. If the non-Markovian term is irrelevant,
dentr, in the present context, is not that of quenched disorthe field theory would be governed at criticality by the RFT
der. In fact, we expect the physical effects of quenched disfixed point. Ind=2 the RFT critical behavior is character-
order, and the present coupling to a conserved energy densiiged by 8=0.58, v, =0.73, andz=1.77[27]. We shall see
(frozen temporarily, that is, only in the absence of activity in the following sections that numerical results are not com-
to be quite differenf59]. A intuitive argument to this effect patible with this picture in the BTW and Manna cases. This
runs as follows. In the active stationary state, close to thealls for a full renormalication groupRG) analysis of Eq.
critical point, activity is typically restricted to localized re- (6). Unfortunately, this is a very dificult task because of
gions at any moment, and a given pointwill experience  primitive divergencies appearing in the perturbative ap-
bursts of activity interspersed amongst dormant intervals. Aproaches. A discussion of the RG treatment of the present
activity alternately enters and vanishes from the neighborfield theory will be reported elsewhefB3].
hood ofx, the positive and negative contributions to the La- Possible modifications and generalizations of &). and
placian memory term in Eq6) will largely cancel, and so their implications for critical behavior, will be discussed in
this term will be dominated by the most recent changes in théater sections. Finally, a microscopic derivation of the field
state of the region. Thus the initial spatial variatiorr (x,0)  theory would ensure that the conservation symmetry has
will effectively be forgotten in the stationary state. been properly taken into account in the present phenomeno-
Suppose that .¢¢(x,t) did represent quenched disorder, logical approach.
i.e., that a pointx at which A{(x,0) has a local maximum
would continue to have a higher than average creation rate
for all t>0. The active site density would then have a local
maximum at x, so that V?p,<0 at x. But since A connection between sandpiles and interfaces moving in
d(—resr)/ St=wV?p,, the effective creation rate atwould  disordered media can be obtained by defining a variable

IV. SANDPILES AS INTERFACES IN RANDOM MEDIA
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H(i,t) that counts the number of topplingstances of ac- (2) If fis large enough, the system has a finite velocity
tivity) at sitei up to timet. This variable defines a growing and keeps moving indefinitely.

surface in a @+ 1)-dimensional space. The interface is said (3) Separating these two regimes is a critical point mark-
to be in the pinned phase if its disorder-average velocityng the depinning transition.

(dH(i,t)) is null; a finite velocity marks the moving phase.  Thus the phase transition in the BTW FES is analogous to
It is then easy to recognize that the pinned phase in interfaca depinning transition. If the caveat noted above regarding
models is completely analogous to an absorbing state, whilthe replacemen® (x)—x turns out to be unimportant, then
the moving phase corresponds to an active stéfg. To  the transition should show the same scaling properties as
make this correspondence more precise, let us note thatdepinning in the Edward-Wilkinson equation with columnar
nonzero interface velocity is only possible if active sites arenoise.

present in the system; equivalently we can note that How are these results changed for the Manna model? For
dH(,t)=py(i,t), so in either representation the dynami-the outflow at site we now have B;(t), since only two
cally active phase is restricted to the regime with nonvanishparticles are transferred in each toppling event. The total
ing pa(x,t). In this way it is evident that pinne@inpinned  input is the sum of the initial energy;(0), and astochastic
and absorbingactive states are just two ways of looking at contribution I;(t) associated with topplings at the nearest
the same physical situation. The connection between driveneighbors ofi,

sandpiles and interfaces was first proposed by Narayan and

Middleton [18] and Paczuski and Boettchgt9], and re- Hi®
cently generalized by Lauritsen and Alak20,21] who pro- |i(t)=iji Zl 7;,i(7), (13

vided a direct mapping between the BTW model and a linear
interface with quenched disorder. In the following we adap

their approach to fixed-energy sandpiles. fwhere then; ;(7) are a set of independe(for i fixed), iden-

tically distributed random variables that specify the number

Let H,(t) be the number of topplings at sitelp to timet, f particles(0. 1 . o he 7th i
andz;(t) the energy at at timet. The latter is evidently the gf gﬁ;jc '?’E(us , Or 2 received by sita at theth toppling

difference between the inflow and the outflow of energy at

sitei in the past. The outflow is given byd®;(t), since in 0 with probability (1— 1/2d)2
each toppling @ particles are expelled from the site. There i »
are two contributions to the inflow, the first being the energy m,j(r)=1 1 with probability (1-1/2d)/d  (14)

z;(0) present at timé=0. The second comes from topplings 2 with probability (1/2d)?2.
of the nearest-neighbor sites, and can be expressed as
2nnHj(t). Summing the above contributions, we obtain  Of course, the variables associated with different acceptor
sitesi are highly correlated, sincg; »; j(7)=2. #; j(7) has
) — o e ) mean 14 and variance (% 1/2d)/d. It is convenient to in-
2 ZI(O)+]N2Ni H; (1)~ 2dH() (10 troduce & ;(7)=7; ;(7)—1/d, which has zero mean, the
same variance ag; j(7), and obeysy;&; j(7)=0. We may
=z(0)+V3H(1), (11)  now write the analog of Eq11) for the Manna model:
whereV 2 stands for the discretized Laplacian. 1, Hi®
Since sites with;(t)>z,=2d—1 topple at unit rate, the z(1)=z(0)+ g VpHi(U+ > > &i(n. (15
dynamics of the height follows JNRE 7=

(1) To obtain a simple EW-like equation for the height in the
: =®[zi(o)+ngi(t)_zc], (12 Manna model, we mudil) ignore the correlations between
dt noise terms associated with different sites, &&dimagine

that the noise is updated when ditiéself, rather than one of
its neighbors, topples; we will denote the noise term as
&(H). Under these assumptions we may write

wheredH;(t)/dt is a shorthand notation for thrate at which
the integer-valued variablél;(t) jumps toH;(t)+1, and
®(x)=1 for x>0, and is zero otherwise. Sinagt) takes

integer values, the smallest argument of t®e function 1

yielding a nonzero toppling rate is unity. If we repla®éx) dH;(t) 1 if z(0)+ _VZDHi(t)+ &(H)=2

by x, and assume this change to be irrelevant for critical dat d (16)
properties[62], then the BTW FES is mapped onto a dis- 0 otherwise.

cretized Edward Wilkinson(EW) equation [28,63 with

guenched disorder, represented by the fluctuations in the We have obtained an EW-like equation wibencheds
z,(0) term. A noise term of this kind, which varies from site well as columnar disorder, the so-called linear interface
to site, but is time independent, is referred tocabumnar  model. This last equation was studied extensively both theo-
noisein the field of interface dynamid$4,65. retically and numerically{28,29,63. If the previously dis-

To understand the phenomenology of EtR), let us de- cussed approximations are irrelevant, the Manna model
fine the average initial energy &s-(z(0)). There are three should belong to the LIM universality claf8,29. The fact
different possibilities. that the correlations between the noise terms are short range

(1) If fis small then, with probability 1 the system is argues in favor of this conclusioi21]. We have seen that
eventually pinned by disorder. two issues remain unresolved.
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(i) Whether the approximations involved in the Mannathe preceding paragraph. Recent numerical studies have re-
change the critical behavior from the LIM universality class.vealed that many growth models may exhiaihomalous

(i) Whether the various models are in the same univerroughening i.e., the local width(calculated on “windows”
sality class, since even if the approximationgiinare irrel-  of sizel <L) scales with an exponent,,., other thanx. In
evant, the Manna equation involves quenched as well as cdhese cases, simple scalinga Family and Viscek does not
lumnar noise, while only the latter appears in the BTWhold. Technically this corresponds to the situatidf{l,t)
equation. ~tPwF,(1/t¥?), with an anomalous scaling function given

In order to answer the above questions analytically, &y
more rigorous study of the noise terms appearing in the in-
terface equations is needed. This is analogous to the Lange- utoe if u<1
vin description of Sec. Ill. We caution, however, that this Falu)~ const if u>1;
analogy does not imply that it is easy, or even possible, to
translate equations or results from one language to the otheit.is only for «;,.=a that usual self-affine scalings7] is
For example, to the best of our knowledge, no one has suaecovered. This phenomenon was recently elucidated by Lo
ceeded in writing down an interfacelike equation equivalenipez(see Ref[68], and references thergirin general it origi-
to RFT[66]. nates from an additional correlation length, shorter than the

From a numerical point of view it is possible to measuresystem size, that enters as a relevant parameter in scaling
various exponents characterizing the behavior of moving inequations, destroying self-affinity. In practical terms, it is
terfaces. Many of these exponents can be related to thosmportant to observe that in the presence of anomalous
measured in the context of absorbing-state phase transitionmughening, if due attention is not pafde., if scaling rela-
It appears clear from the previous discussion that the drivingions are naively assumed to hpldne can measure different
force in the interface picture is equivalent to the energy deneorrelation-time exponents depending on the type of experi-
sity £. This is the control parameter, and the exponer@sd  ment one performs. Let us finally point out that the linear
v, are the same in both pictures. Moreover, the order paraninterface model, at least iti=1, exhibits anomalous rough-
eter exponeng is equivalent to the interface velocity expo- ening[69], and therefore some of the scaling anomalies we
nent usually measured in interface depinning models. Mor@bserve could be ascribed to effects of this nature. This is an
interestingly, associated with the interface picture are nevissue that certainly deserves further study.
exponents, related to the interface roughness, defined as

(20

V. SIMULATION RESULTS
1 -
W2(L,t)= —d<2 (Hi(t)—H(t))2>, a7 In this section we present numerical simulations of FES
L : models. All three FES models studied here exhibit a critical
— 4 point; for large enough values ¢fthe active site densitgin
whereH(t)=1"°2;H;(t) and the( ) brackets represent an the infinite-size limif has a nonzero stationary value. In or-

avzerage over d|ffe_rent realizations. In general one EXPECige; 1o study the critical point and the scaling behavior of the
W< to exhibit anL-independent, power-law growth regime

ior t wurating. that £33 active state in simulations of finite systems, we must study
prior to saturating, that ig53] the quasistationary state that describes the statistical proper-

28 ties of surviving trials. The finite system siteg in fact, in-

trPw 1<ty . .
WA(t,L)~ o (18  troduces a correlation length so that even above the critical

Lo, >ty point some initial configurations lead to an absorbing state.

In practice, we compute average properties over a set of
Nsamp independent trials, each using a different initial con-
figuration (Nsamp ranges from 1®to 1 depending on the
W2(t,L) =L2“W(t/L?), (19) lattice size. ansistationar_y_prop_erties are cs_;llculated fror_n
averages restricted to surviving trials. The active-site density
where the scaling functiol/(x) ~x2Aw for smallx, and at-  €xhibits the usual finite-size rounding in the neighborhood of
tains a constant value for— . The dynamic exponent thus the transition point; only in the limit —< does the transi-
satisfies the scaling relation=a/By, (first proposed by tion become shar_p. For thls_ reason, finite-size scaling is a
Family and Visec67]). We expect a data collapse for dif- fundamental tool in the location of the critical point as well
ferent system sizes in a plot f 2*W2(t,L) versust/L?  @s the calculation of critical exponer0].
The roughness exponents are related via scaling relations to
the other critical exponents. One may show, for example, A. Manna FES model
that By =1— 6, where¢=p/v,. To see this, note thatinthe  \ye performed simulations of the Manna fixed-energy
power-law growth regime, for which the correlation length sanpile in the version in which the two particles liberated
¢(t)<L, growth events in different regions are uncorrelated,yhen 4 site topples move independently to randomly chosen
Assuming the scaling property of the single-site height probyearest neighbors. We studied lattices ranging ftor82 to
ability, P[H;()]=f[H(t)y/H(t)], we have W(t) 1024 sites on a side, using homogeneous, random initial con-
=va{HiM€[H(t)]2. SinceH(t) is simply the integrated figurations as described in Sec. II.
activity, H(t) = f§ dt’ pa(t")<t* ™%, yielding By=1— 6. After a transient whose duration depends on the system
At this point it is well to raise a caution regarding the size L and onA={—{., the surviving sample averages
naive application of scaling laws, such as those mentioned ireach a steady value. In Fig. 1 we show how the density of

where the crossover timg ~ L2 The limiting behaviors de-
scribed above follow from the dynamic scaling property
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FIG. 1. Manna FES: active-site density in surviving trials vs  F|G. 3. Scaling plot of the stationary densjig=L?" p, vs X

time at the critical point{=0.71695. From up to bottom, system —| Y. A for various system sizes in the Manna FES. The slope of
sizesL =192, 256, 384, 512, and 800. the straight line is 0.64,

active sites approaches a mean stationary VEMA,L). At form of Eq.(21) implies that a plot ofp=L*""1p, versusx
a continuous transition to an absorbing state, the order pa=LY":A will show a data collapse for systems of different
rameter p, in this instancgis expected to follow the finite- sizes. In practice, we determine the horizontal and vertical

size scaling form shifts (i.e., in a log-log plot ofp, versusA) required for a
_ , N data collapse. In Fig. 3, the best data collapselfer48 is
pa(A,L)=L"PR(LYLA), (21)  obtained withd/v, =0.78(2) and ¥, =1.222). These val-

ues correspond to an exponght 0.64(2). This is recovered
where R is a scaling function withR(x)~x”? for large x, also by a direct fitting of .the scaling functidR(x) forllarge
since for large enough> &~ A" we must havep,~A”. X (see Fig. 3. A good estimate of8 can be also obtained by

To locate., we study the stationary active-site density as dooking at the scaling of the stationary density with respect
function of system size. Whea=0 we have thap,(0.L) to A for the largest possible sizés In this case ifA>0 and

_ . L>¢ we have the scaling behavigr,~AP?. In Fig. 4, we
~L~A.: for A>0, by contrastp, approaches a stationary . . - a _
value, while forA<0 it falls off asL ~9. Only at the critical show the active site density as a function/ofor L =1024.

. . L . The resulting power-law behavior yielgs=0.64(1), where
point do we obtain a nontrivial power law, which allows us . . T e :
. . the error is dominated by the uncertainty in the critical point
to locate the critical valué, . In Fig. 2 we observe a power-

. Lo
law scaling for{=0.71695, but clearly not for 0.7170 or . .
: I : To determine the dynamical exponemt v| /v, we study
0'716.9’ allowing us to conclude.th'a,;—o.7169555). (Fig- the probabilityP(t) that a trial has survived up to timeThe
ures in parentheses denote statistical uncertainfidse as- latter appears to decay, for long times,R(&) ~ exp(—t/r).
sociated exponent ratio B/v, =0.782). ' P

At the critical point, the characteristic decay time is a
Next we consider the scaling behavior of the active-site ower-law function of the only characteristic length in the
density away from the critical point. The finite-size scahngp y 9

10" [~

© {=0.71695
—{=0.7170
10" - 5—6 (=0.7169

P,

10° .
*L=1024

-3

10

10’ 10* 10° 10° 10°
L A

=3

10

FIG. 2. Stationary active-site density vs system size in the FIG. 4. Stationary active-site density as a function of ¢
Manna FES. Sizes range froi=48 to 800. — ¢, for the Manna FES model withi;=0.71695.
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FIG. 5. Size dependence af close to the critical point of the
Manna FES. The inset shows the power-law de@aya linear-log
scalg of the survival probability vs time af.=0.71695 for sizes
L=192, 256, 384, 512, and 800, from left to right.

FIG. 6. Scaling plot of the scaled active-site density
=pa,a||(t)t9, in the Manna FES, averaged over all trials xs
=tL "% with #=0.42(1) andz=1.563). The system size ranges
from L=128 to 800.

system: the system size Thus we haverp(L)~L?* for A
=0. An estimate ofrp(L) can be obtained by direct fitting
of the exponential tail oP(t), or by the time required for the
survival probability to decay to one half. In Fig. 5 we report
the behavior ofr(L) close to the critical point. Power-law
behavior is recovered at the critical point, yieldirg
=1.574). (The error bar is again dominated by the uncer-
tainty in the critical valuel;.) As a further consistency
check we considered the densipy o (t,L), that is, the
active-site density averaged over all trials, including thos
that have reached the absorbing siaie- 0. Assuming that
the time dependence involves a single characteristic time th
scales a4.%, we write, at the critical poinA =0,

tions plays a role in this peculiar behavior. A more detailed
study of the relaxation to the stationary state is required in
order to understand the origin of these scaling anomalies,
which appear in all the sandpile models analyzed in this
paper, as well as in the one-dimensional Manna FES.

The interface mapping described in Sec. IV prompted us
to study the dynamics of the mean widili(t,L) [see Eq.
(17)]. We studied the evolution of the width &t, in sys-
tems of sizel =128-800. Unfortunately, we were not able
o reach the complete saturation regime of the roughness,
z‘a’¥hi0h would afford an independent estimate of the exponent
a. This is due to the exponential decay of the survival prob-
ability at very large times. As shown in Fig. 7, we obtain a
good collapse using the values=0.80(3) andz=1.572).
Following Eq.(18), the short-time behavior ai/(t,L) gives
an exponenp,,=0.51(1). This exponent, however, shows a
systematic increase with the system dizén particular, for
large sizes I(=512) it seems that a simple power-law re-
gime is not adequate to represent the temporal behavior of

Pa,all(tvl-):tiﬁg(“—iz)a (22

whereg(x) is a constant fok<1 and decays faster than any
power law forx>1. A data collapse can be obtained by
plotting pay=paan(t,L)t? versusx=tL™% The best data
collapse is obtained wit#=0.42(1) andz=1.53); it is
shown in Fig. 6. This result confirms that the dynamical
exponent is in the range=1.55-1.6. An exponentd
=0.42(1) is also found in the decay of the active-site density
pa(t) averaged only over the surviving trialsee Fig. 1 In
simple absorbing-state transitions, the latter exponent is con-
sistent with the usual scaling relatigh= g/ v, obtained by 07 ¢
assuming, forA=0, the simple scaling behaviop,(t)
=LA"1y(tL?), with y(x)=const forx—=. In the Manna
FES model, this simple scaling behavior is not observed, and
the relaxation of the order parameter shows qualitatively dif- 10 L
ferent scaling regimes. In particulay,(t) exhibits a sharp

0

10 T

WL

drop (which seems to grow steeper with increaslngjust e

before entering the final approachg (see Fig. 1L Accord-
ingly, the exponen® violates the usual scaling relation, and
it is impossible to obtain a good data collapse with simple
scaling forms. This is probably due to the introduction of an

©L=256
AL=192

10'2
-

L
0

10

2

10

additional characteristic length that defines the relaxation to F|G. 7. Data collapse analysis &t=0.71695 for the interface

the quasiS_tationary Sta(W? are presently studying the pos- width W(t,L) of H(i,T), defined as the total number of toppling at
sible relation between this effect and anomalous roughertime t for each site, in the Manna FES. The exponents used are
ing). Moreover, it is not clear if the choice of initial condi- «=0.81(2) andz=1.583).
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FIG. 9. Stationary active-site densifgpen squaresand excess
critical-site density(filled squaresvs system size in the BTW FES

at¢,.

FIG. 8. Relaxation of the active-site densjty (lower graph
and the critical-site density, (upper graphin the BTW FES at the
critical point ((=2.125L =1280). Inset: scatter plot qf; VS p,;
X, (=, L=1280; +, {={., L=640; diamondsZ=2.13, L
=320. relation is independent of system sizeand of sample-to-

sample variationgfor the samel); all that changes is the
the interface width. Note also that the scaling relatin portion of the line filled in by the data. For off-critical values
+ Bw=1, satisfied to within uncertainty for the other models of the energy density, the active- and critical-site densities
considered, is violated in the Manna case: 8y,=0.932). follow a different linear trend73|.
It appears that some of the anomalies affecting the temporal |n Fig. 9 we plotp,(Z.,L) and the excess critical-site
scaling of surviving trials could be_ |anL_JenC|ng the esumat'_asdensity|pc(§c \L)—Zcer| (overbars denote mean stationary
of the roughness exponents. Also in this case, further StUd'e§alues) versusL on log scales, anticipating that these decay
for example o_f the Ioca}l roughness, are needed for a direcéSNLlB/yl. The apparent pOV\,/er—Iaw behavior for snialk
comparison with other. interface growth models: followed, for largerL, by an approach to a larger exponent.

In summary, numerical results show clear evidence of the- || — 355 \ve obtain estimates 98/v, =0.78(3) and
critical behavior usually observed in absorbing phase transi0.77(2) from the active- and critical-siteLden.sities, respec-

tions. Criti_cal expon_ents ?‘”d a discussi(_)n about universalityively but it is clear that the slope of this plot has not stabi-
classes will be provided in Sec. IlI B. Finally, we note thatIized 'even forl = 1280

the Manna sandpile does not exhibit the strong nonergodic
effects reported below for the BTW model.

Next we consider the relaxation time &t. There are two
independent quantities whose relaxation is readily moni-
tored: the survival probability?(t) and the active-site den-

B. BTW FES model sity pa(t). (Given the strict linear relationship between
andp., we cannot treat the latter as an independent dynami-
cal variable; not surprisingly, the two yield essentially the
same relaxation timesWe studied four different relaxation

In Refs. [16,17 preliminary results on the two-
dimensional BTW model were reported; however the rela
tively small sizes considered did not allow definitive conclu-> ; : . : .
sions. Here we present a more detailed study, includin?'meS; the first two are associated with the survival probabil-

considerably larger lattices. To study stationary properties?y P(t). This quantity decays slowly at first, then enters a
we performed, for each system size- 20,49 . . . 1280 and regime of roughly exponential decay, after which it attains a

energy densityZ, N, independent trialgranging from nearly constant valuBp . [While P(t) appears to decay very
5% 107 for L= 20 to 1680 forL = 1280), each extending up slowly after attainingPp, the relaxation times we study here
to a maximum time,... The latter, which ranged from 800 are for the approach tBp.] We definerp as the relaxation

for L=20 to 3x 10° for L = 1280, was sufficient to probe the time associated with the exponential-decay regime; another
stationary state. ’ relaxation timerp is defined as the time at whicR(t)

The simulations reported in RefL6], which extended to €duals (1 Pp)/2, midway to its quasistationary value. As
systems of linear dimensioh= 160, permitted us to con- W€ have seem,(t) exhibits a nonmonotonic approach to its

clude thatZ,=2.1250(5)[72]. We first discuss the results of Stationary value, and does not exhibit a clear exponential
simulations performed af.. Figure 8 shows the relaxation €9ime. Taking advantage of the nonmonotonicity, we define
of active- and critical-site densities &t; note the nonmono- 7m @S the time at whiclp, takes its minimum value. Finally,

tonic approach to the limiting values. The inset shows thatV® Noted thatestrictingthe sample to trials that survive up
there is a deterministic, linear relation between the two dentO tmax results in a monotonic, exponential approachpfo
sities during the relaxation process: fge={., a least- (see Fig. 10 A fit to the linear portion of a semilog plot of
squares fit yieldsp.=p. ., —Cp,, Where C=1.368 and the excess densify,(t) — p, yields 7,. Relaxation times in a
pe.or=0.4459 is the critical site density gt in the limit L critical system are expected to diverge with system size as
—oo (for which p, naturally falls to zerp We note that this  7(£.,L)~L"I""+. The data for all four relaxation times, plot-
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FIG. 10. Relaxation Qf the actlvg-sne density in t_he_BTW FES FIG. 12. Initial decay of the active-site density in the BTW FES
at . (L=320). Dashed line: unrestricted sample; solid line: sample

. o . . . at /.. Solid line: L=320; dotted line:L=640; dashed lineL
restricted to runs surviving tg,,,= 10°. The inset is a semilog plot —1280

of p,(t) for the restricted sample.

N . . will show a data collapse for systems of different sizes. The
ted in F'g' 11,' are (_:on5|stent with a power Ia\{v, but due ©gata analysis is as described above for the Manna FES. The
fluctuat|_ons, Ilngar fits to the datéor L=>160) _V'eld EXPO-  pest data collapsésee Fig. 13 for L=80 is obtained with
nent ratios ranging fronr /v, =1.59 to 1.74. Since the four /v, =0.75(2) and I, =1.152). [This value of 8/v, is
Qata sets do seem fo follqw acommon t.reno!, and since the ightly smaller than the value obtained above from the scal-
is no reason to expect different relaxation times to be goving of p, at Z.; note, however, that the latter value 03gis
erned by different exponents, we defirk.) as the geomet- pased on systems with=320] From this finite-size scaling
ric mean of all four relaxation times. The behaviorm§t.) is  analysis we therefore obtain the values=0.87(2) andg
quite regular; linear fits to the data far=80, 160, and 320 =0.652). Once again, though, it is important to check for
yield v|/v, =1.671, 1.668, and 1.657, respectively, leadingsize dependence of the exponent estimates. Fitting the linear
to an estimate of 1.6680) for this ratio. portion of the p, data in the scaling plot, we obtaig

Another manifestation of scaling is the short-time decay=0.62, 0.63, 0.66, and 0.69 fdr=280, 160, 320, and 640,
of the order-parameter density in a critical system, startingespectively.
from a spatially homogeneous initial configuratipf]. In We can apply a similar analysis to the density of critical
Fig. 12 we show the active-site density for short times. Thesites, but here we must isolate thimgular partof p. from
data exhibit an imperfect collapse, and there is no clearcuin analytic background. The latter appears because{ for
power-law regime. The roughly linear region far=1280 <¢., p. increases smoothly witfi. Above ., p. decreases
yields a decay exponerit=0.41. linearly with p,~A#?, so we expect the singular PaIt sing

Next we consider the scaling behavior of the active- and=AA” for A>0, with A<0. The simplest reasonable form
critical-site densities away from the critical point. We ana-

lyze these data using the finite-size scaling form of 24), 2 : : : : :
which implies that a plot op=L#""1p, versusA=LY"1A .
*
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3 4 5 6 7 8 FIG. 13. Scaled order paramejewrs scaled distance from criti-

cality A in the BTW FES. Symbols for the scaled active-site den-
sity: +, L=40; A, L=80; I, L=160; ¢, L=320; O, L=640.
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FIG. 14. Scaling plot of the mean-square interface width InL
WA(t,L) in the BTW FES.X, L=40; O, L=80; ®, L=160; [J, FIG. 15. Main graph: saturation value of the mean-square inter-
L =2320; filled squares., =640. face widthW? vs system sizd_ in the BTW FES at/.. Inset:

apparent value of the growth exponesy, plotted vs 1L.
for the nonsingular background jg ;eg=pc cr+ BA, where
pe.cr=0.4459 is the. — o critical value as noted above. We differ from the mean value computed over a large number of
expect the singular part gf; to follow the same finite-size trials. This means that time averages are different from av-
scaling form as the active-site density. This implies that ~ erages over initial configurations, where the latter play the
role of “ensemble averages.” It is worth remarking that this
pE(A,L)=LP"(pe—peor)=—CR(A)+BLE VWA, nonergodicity is consistent with the existence of toppling
(23 invariants[6]. In Fig. 16, for example, we show the evolu-
tion of p, for five different initial configurationgIC’s) in a
Thus the singular contributions cancel iff (L) —pZ(L').  system withL =80, at{.. Each IC appears to yield a par-
Using the values for, andB/v, found in the scaling analy- ticular active-site density; fluctuations about this value are
sis of p,, We studyp? (L) —p*(L') for all pairs of system quite restricted, and typically do not embrace the mean over
sizes in the rang& =80, . . .,640, and obtaiB=0.71(2).  |C’s. Figure 16 also shows histograms of the stationary mean
We can then construct a scaling plot of the singular partactive-site densityfor a given 10, in samples of 161C’s,
;c,singELﬁ/n|pC_pc,cr_ BA|, which shows a fair data col- for L=80 and 160; the distribution has a single, well-defined

lapse(see Fig. 18 but with much more scatter than fpg,, maximum, and narrows with increasihg The data indicate,

presumably because of the uncertainties involved in isolatin§foWever, that the probability distribution fpr,/p, (i.e., the
the singular contribution. As in the case of the active-sitedrder parameter normallged to its mean valud&)e;s not be-
density, theg estimates we obtain from the. ¢i,, data in-  cOMe sharp ak—ce, as it would, for example, in directed
crease with_. Here we find3=0.65, 0.65, 0.67, and 0.70 for Percolation.

L =80, 160, 320, and 640, respectively. We conclude that 0.10

B=0.7. Studies of larger lattices will be required to refine
this estimate.
We studied the evolution of the interface wid¥(t,L) as 0.08
defined in Eq(17), at {., in systems of sizé.=20-640,
with sample sizes ranging fromx&10* for L=20 to 16 for 0.06
L =640. As shown in Fig. 14, we obtain a good collapse for ’
L =40 using the valuea=1.01(1) andz=1.632). The ex-
ponenta can be found directly from the data for the satura- 0.04
tion value of W? shown in Fig. 15. Fitting the short-time
(power-law data forW? yields an estimate for the growth 0.02
exponent By, which increases systematically with, as
shown in the inset of Fig. 15. Extrapolating to infinltewe
obtain By =0.62, in agreement with the scaling relatigy, 0.00 o
= a/z . Note also that the value afdescribing the interface )
growth crossover time is consistent, as one would expect, p
with that for »j/v,, derived from a study of relaxation  giG, 16. Main graph: histograms for the stationary mean active-
times. site density in a given trial in the BTW FES §t. Dashed line:

The size dependence of the critical exponents could be an=g0: solid line: L=160. The inset shows the evolution of the
indication of the failure of the simple scaling hypothesis active-site density in five different triald & 80); the dashed line
[38]. A further anomalous aspect of the BTW FESh@ner-  represents the stationary mean value averaged over a large number
godicity. in a particular trial, properties such pg typically  of trials.
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. . . . FIG. 19. Autocorrelation function for the number of active sites
FIG. 17. Autocorrelation function for the number of active sites;, 1o BTW FES at’, (L=80), in a long trial.

in the BTW FES at/; (L=80) averaged over 2000 trials.

revivalg, which may be superimposed on a more-or-less lin-
ear decay. The perio@n the range 35-70 fok =80) and
other features vary from one IC to anothf€hanging the

Further evidence of nonergodicity is found in the activity
autocorrelation function, defined as

(NA(to+NA(to)) seed for the random choice of toppling sites changés
C(t)= A AZ -1, (24 only slightly, if we maintain the same I€75].] Evidently,
(Na(to)) C(t) decays rapidly to zero when we average over initial

conditions because of dephasing amongst oscillatory signals
with varied frequencies. Interestingly, the interface width
W(t,L) shows much less dependence on the IC than does the
active-site density or its autocorrelation.
, . . In summary, the BTW fixed-energy sandpile shows signs
:.80’ average over 20.0.0 IC s_and"lﬁ)ne unit9, shown N of the kind oficaling found at simplg)r/absor%ing-state ph%se
F|g._ 17, exh|b_|ts_ surprisingly little structure. Aﬁ_ef deca_ylng transitions, but at the same time exhibits dramatic noner-
rapidly to a minimum value at arourie- 34, and increasing godic effects. We note unusually strong finite-size effects,
to a weak local maximum near=62, C(t) seems to fluctu- \ynich prevent us from determining certain critical exponents
ate randomly about zero. The relaxation occurs on a t'm%recisely. Recently, an analysis of the driven BTW model
scalg over an °,r9'er of magmtgde ;maller thandpror the  \ealed that the violation of finite-size scaling may be re-
survival probability (the relaxation times, and 75 ~800  |3teq to multiscaling properties of the mod@g). In this
for this system size _ case a finite-size scaling analysis is just a first approximation
The reason for this anomalously rapid decay becomeg, ihe scaling properties, and might lead to significant errors.
clear when we examine the autocorrelation function in indi-; jg possible that the anomalies we observe in the BTW FES
vidual trials[ C(t) defined as in Eq(24) butwithoutaverag- 450 have their origin in multiscaling behavior, as in the
ing over IC'y]. Figures 18 and 19 show some typical resultSqyiven case. On the other hand, violation of finite-size scal-
for L=80. (Here, to obtain good statistics, we have averagegng in driven sandpiles is due to the essential role of the open
over 5X 10°~1( time units in the stationary stajélhe cor-  poyndaries in establishing the stationary state. Fixed-energy
relation function in a single trial shows shows considerablesgngpiles are translation-invariant systems, with periodic
structure, including damped oscillatiotend in some cases, poyundaries, suggesting that finite-size scaling may still be

valid in this case. The data presently in hand do not permit us

where Na(t) is the number of active sites at tinte and
(---) stands for an average over timgsin the stationary
statefor a given IC, as well as an average over different IC’s.
The autocorrelation function for the critical BTW FES$ (

000 to ascertain definitively whether the anomalies we observe
0.001 reflect a simple finite-size effect, or are a signature of multi-
scaling.

-0.001
0.005 C. Shuffling FES model

o 0.003 The shuffling mode]32] has a continuously variable con-
0.001 trol parameter, since each site hasr@n-negative real-
-0.001 valued energy. Thus we are no longer constrained to vary the

energy density in increments of 1/2 as we are in discrete
models(e.g., the Manna and BTW FES,svhere the single
grain is the smallest energy unit. In the shuffling FES, all
sites whose energy exceeds the threshgle 2 are consid-
ered active. In addition, sites that have received energy from
a toppling nearest neighbor can become active; iz,
with a probabilityp; =z, /z,. This enlarges considerably the
FIG. 18. Autocorrelation function for the number of active sites choice of possible initial configurations. In particular, after
in the BTW FES at/; (L=80), in three different trials. we have distributed randomly the total amount of energy

0 500 1000 1500 2000
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FIG. 20. Scaling plot of the stationary active-site dengity FIG. 21. Size dependence of close to the critical point of the

=LA p, vs x=LY.A for various system sizes in the shuffling shuffling FES. ¢, =0.2420;0, {=0.2425; *, {=0.2427;0],

model. Here8/v, =0.76 and 1#, = 1.266. The slope of the straight ¢=0.2430. The inset shows the power-law decay a linear-log
line is 0.60. scalg of the survival probability vs time af.=0.20427 for sizes

L=128, 192, 256, and 320, from left to right.

among the lattice sites, we extract for each site a randomjica| point. This could be a signal that the system has not
number ; and we declare active all sites for whiclh et reached its asymptotic temporal behavior for the sizes
=2;/2y,. (Obviously, sites wittz; =z, are active with prob-  ¢opsidered ((<320). That the relaxation could be affected
ability 1.) Unlike discrete models, we have the option of jyy, strong finite-size effects is confirmed by the temporal
generating “flat” initial conditions, in which all sites have scaling ofp,(t,L). In Fig. 22 we observe that the active-site
the same energy. While stationary properties are not affectegensity decay does not follow a definite power law before
by the choice of noisy versus flat initial configurations, weeaching the stationary state. This makes impossible an ac-
do note differences in the short-time behavior. curate determination of the exponefit(~0.46), which is

Another peculiar characteristic of the shuffling model is 55 reflected in the absence of a clear data collapse for the
the strong non-Abelian character of its dynamics. We 'mple‘[emporal scaling functions.

mented the dynamics of the model with parallel updating as - The roughness analysis is affected by several numerical
in the original definition of Ref[32]. However, this form of  oh1ems. The short average lifetime of trials at finite size

the dynamics contains some nonlocal effects as described 565 it impossible to reach the width-saturation regime.
Sec. Il, and does not ensure that parallel and sequential Ug;g effect is even more pronounced than in the Manna case.
dating ggnerate Fhe same critical behavior. Simulations W|tr|1t is therefore impossible to apply a data-collapse analysis, or
sequential updating are in progress. direct measurement, that would yiedd feasible. The short-

Simulations of the shuffling model require many calls t0 ;o behavior of the roughnefsee Eq(17)] is governed by
the random number generator, and so are extremely time

consuming. Here we present simulations with flat initial con- , . . .
ditions and sizes ranging fromn=32 to 384. By analyzing
the L dependence op,(A,L) we find the critical point{,
=0.204275). When ¢{={; the stationary density has a
power-law behavior p,(0,L)~LA"t that vyields B/v, 0" |
=0.7€43). This result is confirmed by the scaling plot of Fig.
20, which, following Eq.(21) showsp=L#""1p, versusx
=LY A, with B/v, =0.76 and 1#, =1.266. This gives an
exponent3=0.60, as confirmed by the straight slope of the
upper branch of the scaling plot. An independent measure- .
ment of the stationary density versiAsfor the largest size 10
used (=384) gives the estimaig=0.6(02), where the er-

ror bar is due mainly to the uncertainty .

p,(t)

We performed a scaling analysis of the temporal behavior 1 0 17 e o 10
by studying the decay of the survival probabilify(t) t
~exp(—t/mp). At the critical point theL dependence of the
characteristic time assumes the power-law behaxior L, FIG. 22. Shuffling FES: active-site density in surviving trials vs

with z=1.71(5) (see Fig. 21 However, it is worth noting  time at the critical point =0.20427. From top to bottom, the sys-
that the scaling behavior with shows a systematic curvature tem sized =128, 192, 256, and 320. The straight line has a slope
from smallest to largest sizes, both below and above th@=0.45.
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TABLE I. Critical exponents for the FES models studied hereavalanche due to a point seed scales as the total variation of
compared with known values for DP and the LIM mod@B].  the field H(i,t), which represents the total number of top-
Figures in parentheses denote statistical uncertainties. plings. Since the roughness scales with exponentwe
readily obtain thaD =d+ « [19,20.

Model A Blv, z=nin o “ Pw For the Manna model, our simulations yidl=2.80(3)
BTW =0.7 0.783) 1.66520) 0.41(1) 1.01(1) 0.621) and z=1.574), which should be compared with the most
Manna 0.641) 0.782) 1.574) 0.421) 0.803) 0.51(1) recent analyses of driven sandpiles, which yield
shuffing 0.602) 0.763) 1.745) =046 =0.96 =057 =2.76(2) andz=1.56(2)[41-44. By using scaling rela-
DP 0.5834) 0.8011) 1.7662) 0.4511) 0.971) 0.551) tions we obtainrs=1.29 andr;=1.51, again in very good

LIM 0.64(2) 0.804) 1.566) 0.512) 0.752) 0.4491) agreement with the values obtained in the driven case. For
the shuffling model we can compare our resaksl.71 and
D=2.96 with the simulations of Maslov and Zhang2],
the exponenB,,=0.57. Applying the scaling relation shown which givez=1.73(5) and>=2.925). In this case we also
in Sec. IV, and using the dynamical exponent obtained presee a very good agreement between independent measure-
viously, we havea=0.96. However, in this case the short- ments.
time behavior of the roughness appears to have a size depen-More subtle is the case of the BTW model. Here different
dence, probably due to the lack of complete convergence tsimulations of the driven sandpile give rather scattered re-
the asymptotic scaling behavior, and the numerical valuesults. A very recent analysis suggesting multiscaling in the
provided here could contain systematic errors that are diffi{driven) BTW sandpile indicates that neith& nor z are
cult to estimate. clearly defined38]. In particular, the effective value dd

In summary, the numerical results for the shuffling FESincreases as one studies higher moments, and saturates at
model show also the signature of a continuous phase trandd=3.0. This is indeed the result we recover from our analy-
tion from an absorbing phase to an active phase. The statiosis [D=23.01(1)]. The possibility of multiscaling is sup-
ary properties of the model show a well defined scaling beported by the scaling anomalies and the lack of self-
havior at the system sizes considered in the present studgveraging we detected in our simulations of the BTW FES.
The dynamic scaling properties, by contrast, show anomalies We shall attempt, on the basis of our numerical results, to
and transient effects that could indicate that the system haassign the various fixed-energy sandpiles studied to univer-

not yet attained its asymptotic behavior 1o 384. sality classes. This a particularly vexing problem, that has
eluded ten years of theoretical and numerical efforts. Soon
VI. DISCUSSION AND OPEN QUESTIONS after the introduction of sandpile models with modified dy-

namical rules, there were many quests for a precise identifi-
cation of universality classes. In particular BTW and Manna
Simulations of sandpile models have mainly been permodels, which are prototypes for deterministic and stochastic
formed in the slow driving regime. It is then natural to com- models, respectively, have been the objects of a longstanding
pare the critical exponents measured in the fixed-energguarrel over their supposed universality clad&85,37,40—
framework(see Table)lwith those observed in driven simu- 43]. The first numerical attempts showed very similar expo-
lations. In driven sandpiles, critical behavior is characterizedhents for the avalanche distributiofi2,35], but the results
by the scaling of the number of topplingsind the duration were afflicted by severe finite-size errors due to the limited
t following the addition of an energy grafi], i.e., an ava- Sizes attainable using the CPU power available at that time.
lanche. The probability distributions of these variables areThese results were later questioned by Ben-Hur and Biham

A. Universality classes and critical exponents

usually described with the finite-size scaling forms [40], who analyzed the scaling of conditional expectation
values of various quantities related to avalanches. These re-
P(s)=s""sG(sls,) (25) sults were, however, biased by the unexpected singular be-
c/s

havior of the distribution$41], and were recently reconsid-
ered by applying other numerical methdd®,43,76. From
P(t)=t" "tH(t/ty), (26)  the theoretical standpoint it is very surprising that small
modifications of the microscopic dynamics would lead to
where s,~LP andt.~L? are the characteristic avalanche different universality class. However, no analytical demon-
size and time, respectively. Applying the fundamental resulstration of distinct universality classes in sandpiles has been
(due to conservation(s)~L? [6,15,26, we can write the presented up to now. On the contrary, many theoretical ar-
scaling relations7s=2-2/D and r,=1+(D—2)/z. Re- guments in favor of a single universality class can be found
cently, these simple scaling forms have been questioned iim the literaturef8].
the case of the BTW mod€B8]. An accurate moment analy- In Table | we summarize the critical exponents found for
sis seems to show multiscaling, so that scaling relations olbeach model. The quoted values indicate, beyond numerical
tained from the above finite-size scaling forms do not applyuncertainties, that the models discussed here belong to three
While critical exponents governing the deviations from distinct universality classes. Striking differences appear be-
criticality in FES’s do not have any counterpart in the driventween the BTW and Manna models. Beyond the numerical
case, which is posed by definition at the critical point, thevalues of critical exponents, we observe a lack of self-
exponents describing the critical point, includiagand the averaging in the BTW FES. This property is related to its
fractal dimensiorD, can be compared directly. In FES simu- deterministic dynamics, and finds consistent analogies in the
lations D can be calculated by noting that the scaling of anwaves of toppling descriptior[77]. The lack of self-
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averaging could also be the origin of the multiscaling fea-pile), we have to define uniquely the properties of the energy
tures recently observed by De Meneehal. [38] in the landscape for spreading experiments. One possibility is to
driven BTW sandpile. From this discussion it appears thauise the absorbing configurations generated by the fixed-
the introduction of stochasticity is a relevant modification forenergy sandpile itself for initial configurations. Suppose we
the critical behavior. At this point it is worth noting that the yse such a configuration for a spreading experiment, by in-
Manna model has been considered for a long time as a NoRroducing an active site. Repeating this process many times,
Abelian model. The opposite was pointed out recently byye obtain the spreading properties for so-called “natural ab-
Dhar[31], by means of rigorous arguments. The conjecturésorhing configurations’[27]. A second option is to use the
that Manna and BTW sandpiles belong to different univer-psirate left by each spreading process as the initial condi-
sality classes because the former is non-Abelian then has i, o the subsequent one. After a transient time the system

be a_bandon_ed. St(.)ChaSt'pr S& however, does n<_)t _defme_ .will flow to a stationary state with well defined properties, in
a unique universality class, as evidenced by the distinct criti-

clpoperie ot anna and g FES models Tl 206 ML coniaaton o nare confousion
origin of the different behavior can be traced to the nonloca ' b 9

nature of the shuffling model dynamics, as we shall maké’e.riment Is identical to SI.OW d_riving, except that energy is

clear later. strictly conservedthe active site must be generated by a
In summary, our numerical results are in good agreemerf?€chanism that does not change the enefg. o

with the most recent measurements of driven sandpiles, con- BY performing spreading experiments closegig it is

firming that the two cases share the same critical behavior. IROSsible to obtain directly the avalanche and spreading scal-

addition, the FES framework enlarges the set of exponent§d behavior, as well as the divergence of characteristic

that can be measured, providing new tools for the charactetengths approaching the critical energy. A preliminary study
ization of critical behavior and universality classes in differ- in this direction for the BTW model confirms the uniqueness

ent models. of the critical behavior at. [24]. Interesting results have
also been obtained for the spreading properties in a FES

mean field mode[84]. A more complete study of spreading
B. Avalanche and spreading exponents exponents in a variety of sandpile models is a promising path

- toward the complete characterization of their critical behav-
In order to compare the exponents found in flxed—energ){or

simulations with the usual avalanche exponentand 7,
we relied on scaling relations. However, avalanches can also
be studied in the FES case, in simulations of critical
“spreading.” Let us first define what constitute, a spreading In earlier sections we presented two alternative theoretical
experiment in a system with an absorbing-s{&@. In such  descriptions for sandpile models. We compare our numerical
experiments, a small perturbatiga single active site, for results with theoretical predictions in order to assess the va-
instancg is created in an otherwise froz¢absorbing con-  lidity of these theoretical frameworks, and the eventual im-
figuration. In the supercritical regime, the ensuing activityprovements needed for a complete description of sandpile
has a finite probability to survive indefinitely, reaching the models.
stationary state deep inside thgrowing) active region. In In Sec. lll we introduced a Langevin description that
the subcritical regime, activity will decay exponentially. In takes into account the absorbing nature of the phase transi-
each spreading sequence, it is customary to measure the sp@an in FES models. Unfortunately, a rigorous derivation of
tially integrated activityN(t), averaged over all runs, and the the noise terms has not yet been made. The assumption of
survival probability P(t) after t time steps. At the critical RFT-like noise terms leads to the Langevin description of
point separating the supercritical and subcritical regimeskq. (6). This differs from the standard DP Langevin descrip-
these quantities have a singular scaliNgt) ~t”7 and P(t) tion for the presence of a non-Markovian term. Only in the
~t~°, wherey and é are called spreading exponents. If we case that this term is irrelevant the theory belongs to the
can define the substrate over which the activity spreadsniversality class of RFT. From a physical point of view this
uniquely, this spread of activity is the same as an avalanchmeans that the local coupling between the activity field
in a sandpile mod€]78]. pa(x,t) and the energy field(x,t) is irrelevant on large
Sandpile models, however, have infinitely many absorbscales. In other words the activity spreads on an effective
ing configurations. In the infinite-size limit, an infinite num- average energy substrate whose only role is to tune the
ber of energy landscapes correspond to the same \alue spreading probability. This is indeed the same as a DP prob-
(For real-valued energies, as in the shuffling model, this inlem, in which the critical parameter is tuned via the average
finite degeneracy already appears for finite systginsthis  energy!.
case spreading properties at a given value of the control pa- Casting a glance at our numerical results, the only model
rameter{ will depend on the initial configuration in which that has exponents compatible with the DP universality class
the system is prepared. It is even possible to observe nonuris the shuffling FES. This is not unexpected; the model was
versality in the spreading exponents, a feature that sandpilesdeed proposed by Maslov and Zhaf®P] as a sandpile
share with the pair contact proce@CP [79,80, and other realization of directed percolation. At the basis of this behav-
systems with infinitely many absorbing configuratid8d—  ior is nonlocal energy transport. As we emphasized in Sec.
83]. I, the shuffling model allows the transfer of the same parcel
In order to have well defined spreading exponeitst  of energy several times in the same time step. This intro-
can be related to the avalanche exponents of a driven sanduces, on average, a strong mixing effect that makes energy

C. Comparison with theoretical results



4580 VESPIGNANI, DICKMAN, MUNOZ, AND ZAPPERI PRE 62

diffusion slower. In this way the spread of activity is effec- Viewed in this light, “self-organized criticality” refers nei-
tively decoupled from the local fluctuations that the activity ther to spontaneous or parameter-free criticality nor to self-
itself generates in the energy field. On the other handtuning. It becomes, rather, a useful concept for describing
Maslov and Zhand32] noted that, ind=1, the nonlocal systems that, in isolation, would manifest a phase transition
energy mixing is not capable of destroying correlations andbetween active and frozen regimes, and that are in fact
following a transient, the model exhibits non-DP scaling.driven slowly from outside.
While the exponents summarized in Table | are compatible A second class of theoretical questions concern the criti-
with the DP universality class, we note that the dynamiccal behavior(exponents, scaling functions, power spectra,
scaling properties of the shuffling model show systematietc) of specific models, and whether these can be grouped
biases that could signal a nonasymptotic behavior for somito universality classes, as for conventional phase transi-
observables. Therefore, we cannot exclude completely thadions both in and out of equilibrium. In this respect, the the-
the model is still in a transient regime, that could finally leadoretical approaches presented here show a very promising
to a different critical behavior, as happenstir 1. path of improvements and modifications that could lead to
The Manna and BTW FES models, by contrast, exhibitthe solution of many of these questions.
critical exponents different from those of DP. In these mod-
els, the energy redistribution during toppling is strictly local, VIl. SUMMARY
and the spread of activity is always correlated with the en- ) i ]
ergy fluctuations generated during toppling processes. It is e studied three fixed-energy sandpile models, whose lo-
then reasonable to expect that a Langevin theory has to tak@! dynamics are those of the BTW, Manna, and shuffling
into account fully the non-Markovian term. It may be also sandpiles, studied heretofqre under external drlvmg. The
possible to derive the pertinent stochastic equations and tHgrmer two models are Abelian, the latter two stochastic. The
noise correlations applying more rigorous treatments, as ifeSults of extensive simulations, which are in good agree-
Ref. [85]. ment (_V|a scaling lawg with previous stgd_|es of _drlven_
The moving interface picture is also afflicted by our igno- sandpiles, place the three models in dlstmq unlver_sallty
rance of the correlations between the quenched noise terni@sses. Results for the Manna FES are consistent with the
appearing in the equatiornsee Sec. Y. By suitable ap- umversahty class of linear mterf_ace deplnnlng,_ while t.he
proximations it has been shown that the Manna model coulghuffling FES appears to follow directed percolation scaling.
belong to the LIM universality class. Our numerical resultsBoth these assignments, however, are somewhat provisional,
show that the stationary critical properties are compatibl¢lue to dynamic anomalies and apparent strong finite-size ef-
with this universality class. The dynamic properties, how-f€cts. The case of the BTW FES, which appears to define a
ever, show anomalies that are not compatible with L|M,s.new.unlversal|t.y class, is further compl!cated by .V|_olat|ons
The origin of these anomalies deserves a more accuraff Simple scaling and lack of ergodicity. Examining the
analysis, and might be understood if we had a better grasp 61@Id—theoretlc qnd mtgrface—helght de_scrlptlons of sandplles
the noise terms in the interface representation. It is interesiD light of our simulation results, we find that a more rigor-
ing, in this context, that the BTW model, for which the map- OUS description of noise correlatl_ons will b_e _reqmred, for
ping to the interface representation seems most straightfoft'®€S€ approaches to become reliable predictive tools. Our
ward, defines a universality clager se incompatible with results st.rongly suggest that th_ere are at least three distinct
linear interface depinning with columnar disorder. This isUniversality classes for sandpiles. Whether others can be
probably due to the strong nonlinearity introduced by theldentified, and how the various classes can be accommodated

local velocity constraint implicit in the® function of Eq. in a unified field-theoretic description, are challenging issues
(12). for future study.
While neither theoretical approach allows an exact char-
acterization of sandpile models, they appear to be conceptu-
ally very relevant, because they provide an answer to the
basic questions of why driven sandpile models show SOC. We thank M. Alava and R. Pastor-Satorras for the many
The genesis of self-organized criticality in sandpiles is a conresults on SOC they have discussed and shared with us prior
tinuous absorbing-state phase transition. The sandpile exhilte publication. We are also indebted to P. Grassberger for
iting the latter may be continuous or discrete, deterministiccomments and private communications. We also acknowl-
or stochastic. To transform the conventional nonequilibriumedge A. Barrat, A. Chessa, D. Dhar, K. B. Lauritsen, E.
phase transition to SOC, we couple the local dynamics of théarinari, L. Pietronero, and A. Stella for very useful discus-
sandpile to a “drive” (a source with raté). The relevant sions and comments. M.A.M., A.V., and S.Z. acknowledge
paramete(s) {{} associated with the phase transition are conpartial support from the European Network Contract No.
trolled by the drive,in a way that does not make explicit ERBFMRXCT980183; M.A.M also acknowledges partial
referenceto {{}. Such a transformation involves slow driv- support from the Spanish DGESIC Project No. PB97-0842,
ing (h—0), in which the interaction with the environment is and Junta de Andall&iProject No. FQM-165. R.D. ac-
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