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Solution of a separable Smoluchowski equation in one spatial dimension
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An approximate solution of a separable Smoluchowski equation in one spatial dimension is constructed here
in the form of a finite eigenfunction expansion. The spectrum of the Smoluchowski operator, and the corre-
sponding eigenfunctions, are computed using the so called shooting method of adjoints. Explicit numerical
solutions are presented for static and fluctuating potentials, and it is shown that for any smooth initial proba-
blity distribution the finite expansion holds on all time scales. The method is applicable to any linear eigen-
problem on a finite one-dimensional interval; the solution of the Sturm-Liouville problem has a particularly
convenient form.

PACS numbds): 02.60.Lj, 05.40-a

I. INTRODUCTION »

P(x,t)= 2, e"'Qp(x), 5
We present here a systematic method of constructing the n=0
solution of a separable partial differential equation with ar-
bitrary precision. The proposed formalism is based on the so d d

called shooting method of adjoirits], which allows the con- AMnQn(X)= &<V'(X)+&) Qn(x), (6)
version of a linear two-point boundary value problem into an

initial value one. The main idea of the method is simple: Let ] )
the boundary value problem dfx;,x,) be given by theN ~ Put Eq. (4) is usually solved by approximate methods of
linear equations propagating the initial distributiof(x,0) in time. Thus the

implicit marching schemésee, e.g., Sec. 197 of RdR])
N yields excellent results for evolution within a single local
yi’(x)=2 Aij(X)y;(x) +fi(x), (1) minimum of the potentiaV, but fails (in our experienceif
=1 the evolution also involves an overbarrier probability flux. In
this case, the first nonzero eigenvalue of E.is close to
zero, and round-off errors appear to systematically render it
(for reasons unclear to uglentically equal to zero, causing
the scheme to converge toward an incorrect stationary state.
N A similar problem with disparate time scales is known also
& (x)= _E A (X) (), (2) in power series expansiod] of the propagator exgyt].
=1 The shooting method of adjoints, by contrast, leads to a finite

y; =dy;/dx, to be solved subject th; boundary conditions
atx=x, andN,=N— N, boundary conditions at=x,. Cor-
responding to Eq(l) is the adjoint equation

) o R expansion of the forn@), which is valid, for a smooth initial
and by construction any two solutioggx) and¢£(x) of Egs.  distribution P(x,0), on all time scales.
(1) and(2) satisfy the identity

- N > - X2 N IIl. THE SMOLUCHOWSKI EQUATION
Y(Xz)'xi(xz)_y(xl)‘§(X1):f dxf(x)-£(x). (3 _ .
Xq The Smoluchowski equatiof#) assumes the forrfll) un-

. . . ) .. der a Laplace transform,
Equation(2) has infinitely many solutions, but with a suit-

able choice of initial conditions it is always possible to find a R
set of N linearly independent solutionsé®(x), k d (P'> :( -V’ P—V")

ool
L [P0, (@)

=1,2,... N, such that arN-fold application of the identity dx p 1 0 p 0
(3) yields a solvableN XN linear system for the missiniy
boundary values at=x; andx,.

Of particular interest to us here will be the separablewith P=P(x,p)=LP(x,t) and P'=dP/dx. The corre-

Smoluchowski equatiof2] sponding adjoint equation is defined by E®), and in order
to select a suitable solution of this equation we must now

IP(x,t) 9 9 def impose boundary conditions on the distributiBx,t). We

o V'(x)+ x P(x,t)=S,P(x,t) (4  choose first a symmetric problem wiW(x)=V(—x) and

P(x,t)=P(—x,t), and with the absorbing boundary condi-

in which V' =dV/dx is independent of time, and the opera- tions P(=11)=0. By symmetry there is then aldo' (1,p)
tor Sy is defined for future convenience. The formal solution=—P’(—1,p), and with the choic&(—1,p)=(0,1) Eq.(3)
of Eq. (4) is[2] finally yields
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P'(=1p)= £,(1, p)f dxP(x,0)£1(X,p), tS)
whence

LTP(=1p)= 2 eMQy(—1) 9

for the desired values af,, and Q;(—1)=—-Q/(1). The

poles ofP’(—1,p) in the complexp plane are defined by the
function &;(x,p) which, according to Eqg2) and(7), satis-
fies the Volterra integral equation

X
&1(x,p)=— e*"(*”f due'@+p
-1

X ug
X f dUleV(ul)f duyéq(u,,p)e Vi),
-1 -1

(10

which is easily solved using the method of Piccard iterations
(see, e.g., Sec. 145 of R¢B] and Refs[5,6]). For regular
potentialsV the functioné&q(x,p) is free of poles, and the
function&,(1,p) has infinitely many zeros along the negative
real axis of the complep plane. These zerog;(1\,) =0,
represent the eigenvaluas,, and the derivative®,(—1)
then follow from the key relation

dgl(l)‘”) fﬁlde(x,O)fl(x,)\n).
-1

FIG. 1. The probability distributio?(x,7)=P(—X,7) versusx
at selected reduced times as labeled. The potentiaV/(x)
=10sirf(mx/2), and the points=+ 1 are absorbing. The one- and
two-peakedsee textinitial distributionsP(x,0) (top) andP,(x,0)
(bottom) are shown in heavy lines.

Qu(—=1)—— 11

tem is governed by the first eigenvalig~—1.35x10 3
and by the corresponding eigenfuncti@my(x)=Q(—Xx).
The contributions 0fQ,(x) = — Q,(—Xx), with \,~—66.2,
and of Q,,(x), n=2,3, ... ,vanish by symmetry. We con-

sider here the two normalized initial distributions

In solving Eg. (10) we use the known exact solution
£1(x,0) as an initial estimate for iterations @f(x,—dp),
and then repeat the procedure until a sufficiently lgrge-
terval is covered. The high order zerosé&gtx,p), moreover,
are almost equidistant on the scaled apis —r?, and the
bracketing of\ , may thus be speeded up if in place of the
decrements-dp one uses the incremerds. In this manner
we found it easy to bracket all eigenvalugse (—10%,0).
The derivativesi&; (1, ,)/dp may be obtained by interpola- Which have a single and a double maximum(enl,1), re-

P1(x,0)=N(1—x?)e V™,

P,(x,0)=N,x3(1—x%)e V),

tion, or, alternatively, by formally differentiating Eq10)
with respect tgp and solving the resultant integral equation
for 9&,(X,\,)/p.

With the values\,, Q,(—1), andQ/(—1) known, we
rewrite Eq.(6) as an integral equation and solve it iteratively
[7]. We recall that the derivative®/(—1) defined by Eg.
(11) are specific to a given initial distribution, but the prob-
lem is linear, and it is therefore possible to solve &).with

spectively. The distributiorP;(x,0)~Q4(x), so that it is

close to the quasistationary state postulated for a metastable

state by Kramer§8]. Indeed, on the time scate= — \ ;t this
distribution undergoes almost no evolution at all fer
=103, while at later times it decays exponentialBx(x,0),
on the other hand, evolves initially rapidly toward the Kram-

ers quasistationary state, and then decays exponentially as

well.

Our second example is the bistable potenti&(x)
=5 cog(mx) on (—1,1). The first two eigenvalues in this
case approach degeneracy, with~—0.186 and\,~
—0.377 corresponding to an even and an odd eigenfunction,
respectively. We consider here a double peaked initial distri-

Here we present some examples of computed distribubution centered in the right hand well; the problem is thus
tions P(x,t). Absorbing boundary conditions are assumedasymmetric, and requires two solutions of the adjoint&y.
and the barrier heights are chosen so as to yield wide, easilyith £)(—1,p)=(0,1) and&®(—1,p)=(1,0). According
plotted functions. to Fig. 2 the evolution again has a transient initial stage of

As a first example we present in Fig. 1 symmetric solu-rapid local equilibrization followed by a period of Markov-
tions of Eq. (4) for the monostable potentiaM(x) ian overbarrier decay, with the left well population totally
=10sirf(mx/2) on({—1,1). The long-time decay of this sys- independent of the detailed form of the initial distribution

Qn(—1)=1 and then to se®,(x)— Q/(—1)Qn(x), where
Q,(—1) are the computed boundary values.

Ill. THE PROBABILITY DISTRIBUTION



PRE 62 BRIEF REPORTS 4471

=5x107_ [\

A
Cown)
=
v
£
X2F _
£l =2
1t .
1.5
0 : . S— ; A
1.0 -0.5 0.0 0.5 10 =
5 1.0-
e
©
<
\
£

FIG. 2. The asymmetric probability distributid®(x, r) versusx
at selected reduced times=0 (labeled, 5x10% 5x10°% (la-
beled, 5x10°%, 1, and 2 (labeled. The potential V(x)
=5 cog(mx), and the pointx=*1 are absorbing. The initial dis-

tribution P(x,0)= Nx2exp(— wx?) wherex=x—1/2 andw=572.

within the right well. Interestingly, Fig. 2 also shows thatthe £, 4. Top: The mean first passage tifwix|y)) versus the
left well population forms a persistent quasistationary statejnverse mean waiting timey. Dashed lines represent results for

In Fig. 3, finally, we present the case of a three-step caswarkovian and solid lines for non-Markovian flip events. The
cade given by the potential(x) =cos(mx/2)—x with ab-  dashed line labeled was calculated according to Ré6], and the
sorbing boundaries at;=—2—x" and x,=4—x', where  dashed line labele® is the result of numerical simulations based
mx' =arctan 2¢?—4) 2. This system is distinguished by its on Eq. (13). *-marked solid lines represent simulations based on
dense spectrum: The functior%’(xi ,p) here have over Eq. (15), with p values as labeled, and the-marked solid curve is
1700 poles on the interval(— 10470>, as compared to only based on the distributiofl6). Bottom: The mean square deviation
about 65 poles in the two cases above. (A7(x|y))? versus the inverse mean waiting tinye Markings and

In all cases we find that the numerical resultat0 rep-  '20€ls as above; the(x,0)=(x) result is not known to us.

resents the prescribed smooth initial distributi®fx,0) to an V. A FLUCTUATING BARRIER
excellent degree of accuracy, and we therefore conclude that
our finite approximation is valid on both the intrawell and  Systems that exhibit dichotomic Markovian fluctuations

the overbarrier time scales. are described by the equati@@|
=0 gt\ P, v Sv,~ v/ \P2 '
where the operatorsy, have been defined by E¢). The
7=0.3 v potential here switches randomly between the vaMigx)

and V,(x), and the waiting times between individual flips

08} T=1v have the exponential distribution
06} D(t)=ye " (13
;‘?04_ and the expectation valug)=y~ 1. The separable Eq12)
a is ammenable to direct treatment by the shooting method, but
0l its eigenvalues are compl¢%0], and locating them may be
' too demanding. We therefore propose to solve @9) by
oo 7 means of a numerical simulation in which we genefatg a
T2 A 0 1 2 3 series of random waiting times,t,,t5, . .. with the distri-
X bution (13), and then use the known propagators[é}@p] to
FIG. 3. The probability distributiof(x, 7) versusx at selected ~Successively calculate the probability distribution on the in-
reduced timesr=0 (labeled, 5x1072, 1x10°%, 2x10°%, 3 te_rvals(O,tl),<t1,t1.-.i-t2.>, ... At t=0 the potentialV is
x 107! (labeled, 5x107%, 8x 1071, 1 (labeled, and 2. The po- With equal probability in the staté; or V.
tential V(x) =co(mx/2)—x, and the points;=—2-—x' and x, We assume absorbing boundariesxat £1, symmetric

=4—x', mx'=arctan 2¢*—4) 2, are absorbing. The initial dis- potentialsV,(x)=10x?> andV,(x)=0, and a smooth initial
tribution P(x,0)=N{(x—x,)(Xx—X,)exp(—w®) where x=x—x.,,  distribution P(x,0)=A{1—x?)e” V1. The quantities of in-
Xm=—14x', andw= — (7/2)?CoS{mXy). terest are the moments of the mean first passage time
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] N C C _ 1 ke if t<tg
(7 (x|y))—nfO dtt f_ldx[Pl(x,t)Jr Pa(x,)] D(t):—l_e—ms 0 it t>t, (16)
(14)

o N _ with the normalization{t)=y~! and parametrizatiort,
averaged over the initial position of the particle. =py L. Curiously, the resultant mean first passage time
The computed first momer{tr(x|y)) is compared with  (7(x|y)) again exhibits enhanced resonance at lower flip
the function7(0|vy) calculated according to Reff6] in Fig.  rates(inverse mean waiting times, see Fig, and we there-
4. There is, obviously; (x| y))< (0| y) for all ratesy, and  fore proposdwith no strict proof that the Markovian distri-
the local minimum of 7(x| y)) shifts to higher flip rates due bution of waiting times leads to the smallest resonance at the
to the decreased effective barrier heifik highest flip rates. According to Fig. 4, further, the mean
In the Markovian distribution(13) the most probable square deviation
waiting time is zero. However, cases where an immediate 2 2 2
jump occurs with zero probability arise quite naturally in the (A7(X[7))*=(T*(x| 7)) = {7(x|7)) (17
context of exit out of a metastable domdsee Sec. IV and s proportional to( T(x|y)>2, but for the distributiong13)
Ref.[5]), and we approximate them by introducing the cutoffand (15) the ratio(A7)/{ 7) decreases with increasing so
time tg, that the large-flip-rate exit events are in fact the least noisy.
] This trend is reversed for the distributi¢h6) where the ratio
0 it t<ts (A7)/{7) increases with increasing.
ke <=9 if t>t, (15 The above examples demonstrate the utility of the shoot-
ing method of adjoints. In conclusion we wish to remark that
and the normalizatiofit)=y~ 1. In parametric form there is the method is applicable also to the eigenproblep®,
thents=py ' andx=y(1—p) !, and Eq(15) goes overto =0OQ,, where® is a linear differential operator in one di-
the Markovian limit(13) as p—0. Figure 4 shows that the mension: The identity3) is in this case obviously of little
mean first passage time computed according to(Es).ex-  help (it leads back to an eigenproblénbut comparing Egs.
hibits stronger resonance at lower inverse mean waiting4) and(6) we see that the eigenproblem can be embedded in
times y than in the case of Markovian flips. At large—1  the parabolic partial differential equatiarQ/dt=0Q, and
the ratex tends to infinity, and the distributiof15) becomes then solved by the methods of Sec. Il. Moreover, if the op-
very sharp, suppressing both short- and long-duration flipserator© is self-adjoint then the computed eigenfunctions are
In order to isolate this effect we introduce also the distribu-mutually orthogonal, and the embedding yields a solution to
tion the Sturm-Liouville problem on a finite interval.
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