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Solution of a separable Smoluchowski equation in one spatial dimension
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~Received 2 August 1999; revised manuscript received 20 April 2000!

An approximate solution of a separable Smoluchowski equation in one spatial dimension is constructed here
in the form of a finite eigenfunction expansion. The spectrum of the Smoluchowski operator, and the corre-
sponding eigenfunctions, are computed using the so called shooting method of adjoints. Explicit numerical
solutions are presented for static and fluctuating potentials, and it is shown that for any smooth initial proba-
blity distribution the finite expansion holds on all time scales. The method is applicable to any linear eigen-
problem on a finite one-dimensional interval; the solution of the Sturm-Liouville problem has a particularly
convenient form.

PACS number~s!: 02.60.Lj, 05.40.2a
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I. INTRODUCTION

We present here a systematic method of constructing
solution of a separable partial differential equation with
bitrary precision. The proposed formalism is based on the
called shooting method of adjoints@1#, which allows the con-
version of a linear two-point boundary value problem into
initial value one. The main idea of the method is simple: L
the boundary value problem on̂x1 ,x2& be given by theN
linear equations

yi8~x!5(
j 51

N

Ai j ~x!yj~x!1 f i~x!, ~1!

yi85dyi /dx, to be solved subject toN1 boundary conditions
at x5x1 andN25N2N1 boundary conditions atx5x2. Cor-
responding to Eq.~1! is the adjoint equation

j i8~x!52(
j 51

N

Aji ~x!j j~x!, ~2!

and by construction any two solutionsyW (x) andjW (x) of Eqs.
~1! and ~2! satisfy the identity

yW ~x2!•xW i~x2!2yW ~x1!•jW~x1!5E
x1

x2
dx fW~x!•jW~x!. ~3!

Equation~2! has infinitely many solutions, but with a sui
able choice of initial conditions it is always possible to find
set of N linearly independent solutionsjW (k)(x), k
51,2, . . . ,N, such that anN-fold application of the identity
~3! yields a solvableN3N linear system for the missingN
boundary values atx5x1 andx2.

Of particular interest to us here will be the separa
Smoluchowski equation@2#

]P~x,t !

]t
5

]

]x S V8~x!1
]

]xD P~x,t !5
def

SVP~x,t ! ~4!

in which V85dV/dx is independent of time, and the oper
tor SV is defined for future convenience. The formal soluti
of Eq. ~4! is @2#
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P~x,t !5 (
n50

`

elntQn~x!, ~5!

lnQn~x!5
d

dx S V8~x!1
d

dxDQn~x!, ~6!

but Eq. ~4! is usually solved by approximate methods
propagating the initial distributionP(x,0) in time. Thus the
implicit marching scheme~see, e.g., Sec. 197 of Ref.@3#!
yields excellent results for evolution within a single loc
minimum of the potentialV, but fails ~in our experience! if
the evolution also involves an overbarrier probability flux.
this case, the first nonzero eigenvalue of Eq.~4! is close to
zero, and round-off errors appear to systematically rende
~for reasons unclear to us! identically equal to zero, causin
the scheme to converge toward an incorrect stationary s
A similar problem with disparate time scales is known a
in power series expansions@4# of the propagator exp@SVt#.
The shooting method of adjoints, by contrast, leads to a fi
expansion of the form~5!, which is valid, for a smooth initial
distributionP(x,0), on all time scales.

II. THE SMOLUCHOWSKI EQUATION

The Smoluchowski equation~4! assumes the form~1! un-
der a Laplace transform,

d

dx S P̂8

P̂
D 5S 2V8 p2V9

1 0 D S P̂8

P̂
D 2P~x,0!S 1

0D , ~7!

with P̂5 P̂(x,p)5LP(x,t) and P̂85dP̂/dx. The corre-
sponding adjoint equation is defined by Eq.~2!, and in order
to select a suitable solution of this equation we must n
impose boundary conditions on the distributionP(x,t). We
choose first a symmetric problem withV(x)5V(2x) and
P(x,t)5P(2x,t), and with the absorbing boundary cond
tions P(61,t)50. By symmetry there is then alsoP̂8(1,p)
52 P̂8(21,p), and with the choicejW (21,p)5(0,1) Eq.~3!
finally yields
4469 ©2000 The American Physical Society
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P̂8~21,p!5
1

j1~1,p!
E

21

1

dxP~x,0!j1~x,p!, ~8!

whence

L 21P̂8~21,p!5 (
n50

`

elntQn8~21! ~9!

for the desired values ofln and Qn8(21)52Qn8(1). The

poles ofP̂8(21,p) in the complexp plane are defined by th
function j1(x,p) which, according to Eqs.~2! and~7!, satis-
fies the Volterra integral equation

j1~x,p!52e2V(21)E
21

x

dueV(u)1p

3E
21

x

du1eV(u1)E
21

u1
du2j1~u2 ,p!e2V(u2),

~10!

which is easily solved using the method of Piccard iteratio
~see, e.g., Sec. 145 of Ref.@3# and Refs.@5,6#!. For regular
potentialsV the functionj1(x,p) is free of poles, and the
functionj1(1,p) has infinitely many zeros along the negati
real axis of the complexp plane. These zeros,j1(1,ln)50,
represent the eigenvaluesln , and the derivativesQn8(21)
then follow from the key relation

Qn8~21!
dj1~1,ln!

dp
5E

21

21

dxP~x,0!j1~x,ln!. ~11!

In solving Eq. ~10! we use the known exact solutio
j1(x,0) as an initial estimate for iterations ofj1(x,2dp),
and then repeat the procedure until a sufficiently largep in-
terval is covered. The high order zeros ofj1(x,p), moreover,
are almost equidistant on the scaled axisp52r 2, and the
bracketing ofln may thus be speeded up if in place of t
decrements2dp one uses the incrementsdr. In this manner
we found it easy to bracket all eigenvalueslnP^2104,0&.
The derivativesdj1(1,ln)/dp may be obtained by interpola
tion, or, alternatively, by formally differentiating Eq.~10!
with respect top and solving the resultant integral equatio
for ]j1(x,ln)/]p.

With the valuesln , Qn(21), andQn8(21) known, we
rewrite Eq.~6! as an integral equation and solve it iterative
@7#. We recall that the derivativesQn8(21) defined by Eq.
~11! are specific to a given initial distribution, but the pro
lem is linear, and it is therefore possible to solve Eq.~6! with
Qn8(21)51 and then to setQn(x)→Qn8(21)Qn(x), where
Qn8(21) are the computed boundary values.

III. THE PROBABILITY DISTRIBUTION

Here we present some examples of computed distr
tions P(x,t). Absorbing boundary conditions are assum
and the barrier heights are chosen so as to yield wide, ea
plotted functions.

As a first example we present in Fig. 1 symmetric so
tions of Eq. ~4! for the monostable potentialV(x)
510 sin2(px/2) on ^21,1&. The long-time decay of this sys
s

u-
,
ily

-

tem is governed by the first eigenvaluel1'21.3531023

and by the corresponding eigenfunctionQ1(x)5Q1(2x).
The contributions ofQ2(x)52Q2(2x), with l2'266.2,
and of Q2n(x), n52,3, . . . ,vanish by symmetry. We con-
sider here the two normalized initial distributions

P1~x,0!5N1~12x2!e2V(x),

P2~x,0!5N 2x2~12x2!e2V(x),

which have a single and a double maximum on^21,1&, re-
spectively. The distributionP1(x,0)'Q1(x), so that it is
close to the quasistationary state postulated for a metasta
state by Kramers@8#. Indeed, on the time scalet52l1t this
distribution undergoes almost no evolution at all fort
&1023, while at later times it decays exponentially.P2(x,0),
on the other hand, evolves initially rapidly toward the Kram
ers quasistationary state, and then decays exponentially
well.

Our second example is the bistable potentialV(x)
55 cos2(px) on ^21,1&. The first two eigenvalues in this
case approach degeneracy, withl1'20.186 and l2'
20.377 corresponding to an even and an odd eigenfuncti
respectively. We consider here a double peaked initial dis
bution centered in the right hand well; the problem is thu
asymmetric, and requires two solutions of the adjoint Eq.~2!,
with jW (1)(21,p)5(0,1) andjW (2)(21,p)5(1,0). According
to Fig. 2 the evolution again has a transient initial stage
rapid local equilibrization followed by a period of Markov-
ian overbarrier decay, with the left well population totall
independent of the detailed form of the initial distributio

FIG. 1. The probability distributionP(x,t)5P(2x,t) versusx
at selected reduced timest as labeled. The potentialV(x)
510 sin2(px/2), and the pointsx561 are absorbing. The one- and
two-peaked~see text! initial distributionsP1(x,0) ~top! andP2(x,0)
~bottom! are shown in heavy lines.
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within the right well. Interestingly, Fig. 2 also shows that t
left well population forms a persistent quasistationary sta

In Fig. 3, finally, we present the case of a three-step c
cade given by the potentialV(x)5cos2(px/2)2x with ab-
sorbing boundaries atx15222x8 and x2542x8, where
px85arctan 2(p224)21/2. This system is distinguished by it
dense spectrum: The functionsP̂8(xi ,p) here have over
1700 poles on thep interval ^2104,0&, as compared to only
about 65 poles in the two cases above.

In all cases we find that the numerical result att50 rep-
resents the prescribed smooth initial distributionP(x,0) to an
excellent degree of accuracy, and we therefore conclude
our finite approximation is valid on both the intrawell an
the overbarrier time scales.

FIG. 2. The asymmetric probability distributionP(x,t) versusx
at selected reduced timest50 ~labeled!, 53104, 531023 ~la-
beled!, 531021, 1, and 2 ~labeled!. The potential V(x)
55 cos2(px), and the pointsx561 are absorbing. The initial dis

tribution P(x,0)5Nx̄2exp(2vx̄2) wherex̄5x21/2 andv55p2.

FIG. 3. The probability distributionP(x,t) versusx at selected
reduced timest50 ~labeled!, 531022, 131021, 231021, 3
31021 ~labeled!, 531021, 831021, 1 ~labeled!, and 2. The po-
tential V(x)5cos2(px/2)2x, and the pointsx15222x8 and x2

542x8, px85arctan 2(p224)21/2, are absorbing. The initial dis

tribution P(x,0)5N(x2x1)(x2x2)exp(2vx̄2) where x̄5x2xm ,
xm5211x8, andv52(p/2)2cos(pxm).
.
s-

at
IV. A FLUCTUATING BARRIER

Systems that exhibit dichotomic Markovian fluctuatio
are described by the equation@9#

]

]t S P1

P2
D 5S SV1

2g g

g SV2
2g D S P1

P2
D , ~12!

where the operatorsSVi
have been defined by Eq.~4!. The

potential here switches randomly between the valuesV1(x)
and V2(x), and the waiting times between individual flip
have the exponential distribution

D~ t !5ge2gt ~13!

and the expectation valuêt&5g21. The separable Eq.~12!
is ammenable to direct treatment by the shooting method,
its eigenvalues are complex@10#, and locating them may be
too demanding. We therefore propose to solve Eq.~12! by
means of a numerical simulation in which we generate@11# a
series of random waiting timest1 ,t2 ,t3 , . . . with the distri-
bution~13!, and then use the known propagators exp@SVi

t# to
successively calculate the probability distribution on the
tervals ^0,t1&,^t1 ,t11t2&, . . . . At t50 the potentialV is
with equal probability in the stateV1 or V2.

We assume absorbing boundaries atxi561, symmetric
potentialsV1(x)510x2 and V2(x)[0, and a smooth initial
distributionP(x,0)5N(12x2)e2V1(x). The quantities of in-
terest are the moments of the mean first passage time

FIG. 4. Top: The mean first passage time^t(xug)& versus the
inverse mean waiting timeg. Dashed lines represent results f
Markovian and solid lines for non-Markovian flip events. Th
dashed line labeledd was calculated according to Ref.@6#, and the
dashed line labeledP is the result of numerical simulations base
on Eq. ~13!. !-marked solid lines represent simulations based
Eq. ~15!, with r values as labeled, and thes-marked solid curve is
based on the distribution~16!. Bottom: The mean square deviatio
^Dt(xug)&2 versus the inverse mean waiting timeg. Markings and
labels as above; theP(x,0)5d(x) result is not known to us.
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^tn~xug!&5nE
0

`

dttn21E
21

1

dx̄@P1~ x̄,t !1P2~ x̄,t !#

~14!

averaged over the initial position of the particle.
The computed first moment̂t(xug)& is compared with

the functiont(0ug) calculated according to Ref.@6# in Fig.
4. There is, obviously,̂t(xug)&,t(0ug) for all ratesg, and
the local minimum of̂ t(xug)& shifts to higher flip rates due
to the decreased effective barrier height@6#.

In the Markovian distribution~13! the most probable
waiting time is zero. However, cases where an immed
jump occurs with zero probability arise quite naturally in t
context of exit out of a metastable domain~see Sec. IV and
Ref. @5#!, and we approximate them by introducing the cut
time ts,

D~ t !5H 0 if t,ts

ke2k(t2ts) if t.ts,
~15!

and the normalization̂t&5g21. In parametric form there is
thents5rg21 andk5g(12r)21, and Eq.~15! goes over to
the Markovian limit~13! as r→0. Figure 4 shows that the
mean first passage time computed according to Eq.~15! ex-
hibits stronger resonance at lower inverse mean wai
timesg than in the case of Markovian flips. At larger→1
the ratek tends to infinity, and the distribution~15! becomes
very sharp, suppressing both short- and long-duration fl
In order to isolate this effect we introduce also the distrib
tion
te

f

g

s.
-

D~ t !5
1

12e2kts
H ke2kt if t,ts

0 if t.ts
~16!

with the normalization^t&5g21 and parametrizationts
5rg21. Curiously, the resultant mean first passage ti
^t(xug)& again exhibits enhanced resonance at lower
rates~inverse mean waiting times, see Fig. 4!, and we there-
fore propose~with no strict proof! that the Markovian distri-
bution of waiting times leads to the smallest resonance at
highest flip rates. According to Fig. 4, further, the me
square deviation

^Dt~xug!&25^t2~xug!&2^t~xug!&2 ~17!

is proportional to^t(xug)&2, but for the distributions~13!
and ~15! the ratio^Dt&/^t& decreases with increasingg, so
that the large-flip-rate exit events are in fact the least no
This trend is reversed for the distribution~16! where the ratio
^Dt&/^t& increases with increasingg.

The above examples demonstrate the utility of the sho
ing method of adjoints. In conclusion we wish to remark th
the method is applicable also to the eigenproblemlnQn
5OQn whereO is a linear differential operator in one d
mension: The identity~3! is in this case obviously of little
help ~it leads back to an eigenproblem!, but comparing Eqs.
~4! and~6! we see that the eigenproblem can be embedde
the parabolic partial differential equation]Q/]t5OQ, and
then solved by the methods of Sec. II. Moreover, if the o
eratorO is self-adjoint then the computed eigenfunctions a
mutually orthogonal, and the embedding yields a solution
the Sturm-Liouville problem on a finite interval.
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