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Analyzing Lyapunov spectra of chaotic dynamical systems
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It is shown that the asymptotic spectra of finite-time Lyapunov exponents of a variety of fully chaotic
dynamical systems can be understood in terms of a statistical analysis. Using random matrix theory, we derive
numerical and in particular, analytical results that provide insights into the overall behavior of the Lyapunov
exponents particularly for strange attractors. The corresponding distributions for the unstable periodic orbits
are investigated for comparison.

PACS numbd(s): 05.45.Jn

Finite-time Lyapunov exponents represent an importantE. One way to investigate this is to replace certain dynami-
tool for the quantitative description of the geometrical andcal quantities of the original system by random ones and to
dynamical properties of chaotic dynamical systdrhsand  study the resulting changes and/or common properties in the
apply therefore to a variety of different physical situations.spectra of LE. In several recent worKsl,12), such random-
Numerous recent worksee, for example, Reff2—6]) try to  like modifications have been suggested. Adopting this meth-
describe the spectrum of these exponents in terms of proddology here, we will use four different ensembles of trajec-
ucts of random matrices. The majority of these investigationsories leading to different distributions for the corresponding
focus on the maximum average Lyapunov exponent that cape. Each ensembl&; consists ofN trajectories(typically
be estimated by taking the proper mean of an ensemble @{~10%) of a given lengthp(p>1) and is given by(i) the
chaotic trajectories for a sufficiently large time interyal  gistribution of the starting points of the finite trajectories and
Details of the corresponding_distribution of Lyapunov eXpo-py (i) the rule applied to generate the trajectory itself. We
nents(LE) are thereby not important. In order to analyze i then be primarily interested in the distributions of the

strange attractors in more detail, it is, however, crucial tinite-time maximum LEA=(1/p)In A belonging to these

know the spectrum of the finite-time LE that provides Valu'.ensemble$Ei}. A is the largest of the absolute values of the

able information on the structures ar_1d properties emerging 'aigenvalues belonging to the transfer matritd
phase spacgl,7]. For the asymptoticlarge p) Lyapunov 0 PO . oo
spectra it is knowrig] that, apart from a few exceptiofig], = k-1Mi(xi) with {x[k=1, ... p} being a finite-time tra-
a Gaussian approximation fits the behavior around the maxiectory of the ensembl&;. M;(xy) is the stability matrix
mum very well. Very little is known however, with respect belonging to thechaotio dynamical lawx,. ;= F(x,). The
to the overall behavior of the distribution. This is in contrastindexi of M; indicates the ensemblg, according to which

to the fact that the non-Gaussian tails of the distribution haveghe points{ik} of the trajectories are determined. It is impor-
significant influence on physical proces¢2]. tant to note that all ensembléE;} (see below use the spe-

In the present Brief Report, we analyze finite-time . . - . . -
Lyapunov spectra for low-dimensional discrete dynamicaIC"cIC functional form of the stability matrix belonging %

systems with fully developed chaos for the case of large timé?lJt involve trajectories with d|_fferent degrees of random-

intervalsp>1, i.e., their asymptotic form. Our main interest ness. In thg followmg, we.speufy the ensembﬂ&}. .

is twofold. First, we exploreommonfeatures of these spec- E, consists of trajectories of Lengm obtained via itera-

tra beyond their behavior in the vicinity of their maxima and tion of the chaotic dynamical law. The corresponding ini-

Compare them to the Corresponding Spectra of the unstabréil conditions are distributed according to the invariant den-

periodic orbits(UPOS9. It turns out that these features can beSity of the map. This gives the so-called finite-time

understood in terms of products of random matrices. Secondryapunov exponent distributio(FTLED) (see Ref[1] and

we investigate the origin of spectral properties that dependeferences thereinThe ensembl&; consists of trajectories

on the dynamical system. System-dependent characteristi¢dat are generated by a random variable distributed according

can, e.g., be due to invariant structures in phase space, suththe invariant density of the chaotic m&p This yields the

as UPOs. bootstrap Lyapunov exponent distributigBLED) [11,12).

It is an open question how the randomlike features of theCompared to the FTLED, the BLED corresponds to a dy-

chaotic dynamics determine the distribution of the finite-timenamics with enhanced random character. The successive
points of the bootstrap trajectory are completely uncorre-
lated. The third ensemblg; uses a uniformly distributed

*Email address: fdiakono@cc.uoa.gr random variable for the generation of the trajectories. The
"Email address: detlef@tc.pci.uni-heidelberg.de range of the uniform distribution is chosen according to the
*Email address: peter@tc.pci.uni-heidelberg.de phase space of the dynamical system. This case corresponds
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FIG. 1. The FTLED(see texk of the Henon and Ikeda map for FIG. 2. The BLED and RMLEDsee text of the Henon(H) and
p=27. Ikeda(l) map forp=27.

o ) , the envelope can be distinguished in the FTLED as well as
to a random maitrix simulation of the dxnamlca! system hoW+he RMLED and BLED: a fast asymptotic algebraic decay
ever, respecting the form of the stability mathk that be- ¢4 |arge values of, a Gaussian-iike behavior around the
longs to the mapF. The resulting distribution of the maximum, and a dominating exponential decay for suffi-
Lyapunov exponents is called the random-matrix Lyapuno\tiently small\. Figure 2 shows the BLED and RMLED for
exponent distributiofRMLED). Within the present investi- these maps for the same lengthThe position of the maxi-
gation, the ensemblg; possesses the highest degree of ranmum of the RMLED is sensitive with respect to the random
domness. The fourth ensemtiig consists of the UPOs of number intervals chosen, i.e., its location carries the infor-
the dynamical systerf with periodp and correspondingly mation of the position of the attractor in phase space. Based
the distribution of their maximal LE. For fixegl the number  on the above results and observations, we are naturally led to
of trajectories contained i, is finite according to the to- the following conclusion: the basic possible features of the
pological entropy of the corresponding phase space. smooth envelope of the FTLEDasymmetric structure,

Let us now explore the distributions defined above for aasymptotic tail propertigsof a chaotic dynamical system are
variety of low-dimensional fully chaotic systems. Our main of random origin and can be obtained and understood by a
goal is to analyze and understand the overall behavior of theorresponding study of random matricsee below. Addi-
FTLED for these systems. We begin with a simple one-tional superimposed structures are signatures of, e.g., invari-
dimensional(1D) example: the logistic map. Results on the ant sets in phase space and are therefore of exclusively de-
FTLED for this system can be found in R¢B]. We note terministic dynamical origin.
that the FTLED has a non-Gaussian form with one dominat- To elucidate and quantify the above observations, we per-
ing central cusp. In comparison to this, our numerical calcuform in the following an analytical investigation of the RM-
lations on both the BLED and RMLED show that they are LED. This will allow us to thoroughly understand the behav-
smooth functions with a Gaussian-like maximum but withior of the RMLED and consequently the corresponding
characteristic asymmetric tails. For the maximum Lyapunowaspects of the FTLED. We begin by introducing a fictitious
exponent distribution of the UPOs, the exact result i§ a dynamical system with a stability matri; of strongly ran-
function, i.e.,p,(\) = 8(\ —In 2) independent of the period dom character, i.e.,

p. Looking at the FTLED, one observes that the tails of the
distribution are rather similar to the tails of the BLED and
the RMLED while the cusgmaximun) is located exactly at
A=In2. The BLED(or RMLED) reflects therefore the over-

all behavior of the FTLED, i.e., describes the envelope of theyherer, is a random variable uniformly distributed j0,R]

FTLED. The latter possesses an additional central peak at thehdi labels the fictitious trajectory of length The simple

position of the Lyapunov exponents of the UPOs. These feaform of the matrixM; allows us to factorize the random

tures will in the following turn out to be common for a broad variables {r;|/i=1,... p} of the stability matrix M)

class of dynamical systems. . . =IIf_,M, and to reduce the problem of the product of ran-
_We focus in the following on two-dimensional systems gom matrices to that of a product of random numbers. The

with a strange attractor. The Henon nfd3] fora=1.4 and  matrix structure is then retained in the constant mariat

b=0.3 and the lkeda mapl4] for a=0.9 andb=6 are s assumed to be nonsingular.

prototypes of such systems. The FTLED of both are pre- The distribution of the maximum LE for trajectories of

sented in Fig. 1. The ensemldig consists of 10 trajectories lengthp of this system is determined as

of length p=27 for both the Henon and lkeda map. The

results are surprisingly similar to the 1D case: A character- R R R

istic envelope with asymmetric tails dominates the distribu- pp()\):f dflf dry--- f drp

tion while superimposed peaks indicate the presence of ad- 0 0 0

ditional structures in phase space. As we shall see in the

following, three regions with different functional forms of X &

ar; br;
Mi:riA: s

cr; dr

l p
A—=In][] r,
p =1

p
Am%)lﬂl p(r),
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where p(z)=0(2)®(R-2)(1/R), © being the step func-
tion, andA .« iS given by 10'
. 5 Py(M)
Amax=3[TrA+sgnTrA)J(TrA) —4 detA]. .
10
Using the substitutiort;=In(r;j|Aed) and performing the
Fourier transform of theS function involved in Eq.(1), we
obtain 10"
pp(N)= P dk e kpr L ‘ ‘ ‘
2m(R|A mad)P) —= 02 01 0 01 02 03 04 05
IN(RIA may) IN(RIA may) *
XJ' t-- J' tp FIG. 3. The FTLED, BLED, and the distribution of the
o o Lyapunov exponents of the unstable periodic orbits for the cross
p map forp=28.
xeXp((1+ik)2 ti). )
= 2p[ pR, |°
_ , , , Po(M)=Trig R | XA —P(A—2))]
The integrations ovet; in Eq. (2) can be easily performed, 2- 1
leading to apth-order pole in the complek plane atk=i. P p i IR p-1
This pole structure, corresponding to valueskdbr which X z i ) (A— Zinl=2 _2)\>
the exponent of the second exponential term in g van- ji=o0 1] Ri
ishes and for which the integration bfleads to singularities, .
is responsible for the features of the LED described above. XOIA— J_|n 2 _2)\). (4)
Complex integration finally yields P IR;
pP Here we have taken the random variables appearing in the
pp(N)= (p_—l)l[In(R|Amxl)—)\]’J’1 stability matrix of the cross map to be uniformly distributed
' in the interval[R;,R,]. The parametel\ is given asA
x e PINRIAma) " M@[IN(R|Apad) —N]. () =In|2acR,|. From Eq.(4) we see that the RMLED of the

cross map is essentially a product of a single exponential and

Equation (3) demonstrates that the exponential behaviora sum of power laws. The latter possess all the same power
dominates for sufficiently small values of. Around the p—1 and differs only with respect to the constants involved.
maximum at\ = In(R|Amad) —(1—1/p), the saddle point ap- The similarity to the RMLED result of our model system in
proximation (>1) gives us a Gaussian. For values Yof Eq. (3) is obvious, which confirms the universality of certain
close to the maximum valuen .= IN(RAma), we arrive at  features of the RMLED. The RMLED for the case of eyen
a power-law behavior, i.e., an algebraic decay. is given by the integral

Although the fictitious dynamical model discussed above
captures the main features of the statistical properties of the
distributions of Lyapunov exponents, it is clearly desirable to
investigate chaotic dynamical systems for which the RM-
LED can be obtained analytically. To this end, let us con-yjith ppia(X) according to Eq(4). The integration in Eq(5)
sider the dynamical system defined by the quadratic equaan be performed analytically, leading to a lengthy expres-
tionsx,, 1= ayﬁ+ b; y,=cx,+d. This system possesses, for
a=c=d=1 andb=—2.5, a strange attractor that contains
repeating crosses of decreasing size. For that reason we call 10"
it the cross map in the following. The average maximum

A
pp()\)zzl)plz()\)f_mdzpp/Z(Z) 5

— A
Lyapunov exponent of this attractor }s~0.123 while its P
fractal dimension idg~1.78. The RMLED for the cross
map can be calculated analytically following the line de- o

scribed above for our fictitious model. One peculiarity of the
cross map is that one has to distinguish between the RMLED
obtained through trajectories with even and odd length
The reason is that for odgl both eigenvalues of the stability
matrix M(P) have the same absolute value, while for epen s ‘ ‘ -
there are two eigenvalues different with respect to their ab- 03 04 05 06 07 08 09

solute value, and one has to select the maximal one. After a A

tedious calculation using complex contour integration tech- FIG. 4. The distribution of the Lyapunov exponents of the un-
niques, we find for the RMLED of the cross map for odd stable periodic orbits of the Henomp27) and lkeda mapp
values ofp the result =14).
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sion that will not be given here. The main characteristics ofprobably due to the fact that the UPOs fail to reproduce the
the functionp,(\) are again the features stated previously: ainvariant density of the attractor, at least up to the above-
dominating exponential behavior for sufficiently small val- considered period. It is well known that the Ikeda attractor
ues of\, a Gaussian maximum, and a fast algebraic decapeeds a description going beyond the linear neighborhood
for X close to its maximum value. We have also studied the 17]. o

FTLED, BLED, and the distribution of the Lyapunov expo- ~ Summarizing our results, we have demonstrated that the
nents of the UPOs for the cross map for 28. The results ove_rall behavior of the_fmlte-tlm(_a Lyapunov exponent distri-
are shown in Fig. 3. The envelope of these distributions ex2utions of fully chaotic dynamical systems show general
hibits the same features as discussed above. The additior} aracteristics, i.e., they can be understood in terms of sta-
structures present in the FTLED of the cross map are, as ¢ tical random matrix simulations of the systems. Seemingly

) is holds also for the distributions of the Lyapunov expo-
be seen from Fig. 3, due to _the presence of th? .UPOS th tents of the unstable periodic orbits embedded into the cha-
provide signatures of deterministic dynamical origin.

: . o) otic phase space. Since Lyapunov spectra are at the heart of
Finally, let us consider the distributions of the Lyapunov P P yap b

our understanding of chaotic systems in general, our results
exponents of the UPOs of the Hengm={27) and the lkeda apply to a variety of different physical systems.
(p=14) map[15,1€ that are presented in Fig. 4. The signs
of the characteristic properties of the envelopes discussed Financial support by the Deutsche Forschungsgemein-
above are also visible here. An interesting feature appears fechaft and the Landesgraduiertemferungsgesetz Baden-
the distribution of the LE of the UPOs of the lkeda map: it is Wurttemberg(D.P) is gratefully acknowledged. We appre-
shifted significantly compared to the FTLED. This shift is ciate valuable discussions with O. Biham.
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