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Environment-induced dynamical chaos
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We examine the interplay of nonlinearity of a dynamical system and thermal fluctuation of its environment
in the ‘‘physical limit’’ of small damping and slow diffusion in a semiclassical context and show that the
trajectories ofc-number variables exhibit dynamical chaos due to the thermal fluctuations of the bath.
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nd
th
d
ro
n

rg
-

d
te
th
si-
i
a
al
ics
s
te
ta

te
de

o
s

ra
n

rr
-
hi
ar
ir

ual
to
of

e
r is

-
s to

l
s

ith
f

the

tor

bu-

e

The interplay of nonlinearity of a dynamical system a
thermal fluctuations of its environment has been one of
major areas of investigation in the recent past. These stu
have enriched our understanding of nonequilibrium p
cesses in several contexts, such as, symmetry betwee
growth and decay of classical fluctuations in equilibrium@1#,
interesting topological features of patterns of paths of la
fluctuations in nonlinear systems@1#, existence of general
ized nonequilibrium potential@2#, influence of nonlinearity
on dissipation in multiphoton processes@3#, and higher-order
diffusion in a nonlinear system@4#, etc. While the develop-
ment in these areas is largely confined to the classical
main we examine a related issue in the semiclassical con
Since quantization is likely to add a new dimension to
interplay of nonlinearity and stochasticity in a weakly dis
pative system, it is worthwhile to consider the physical lim
of small damping and slow diffusion due to thermal fluctu
tions of the environment and look for the therm
fluctuations-induced features of nonlinearity in the dynam
In this communication we specifically explore some intere
ing aspects of dynamical chaos in a driven bistable sys
whose origin lies at the fluctuations of the environmen
degrees of freedom.

To describe the dissipative quantum dynamics of a sys
we first consider the traditional system-reservoir model
veloped over the last few decades@3,5,6#. The bare system is
coupled to an environment modeled by a reservoir
harmonic-oscillator modes characterized by a frequency
$V j%. The quantum dynamics is generated by the ove
Hamiltonian operator H for the system, environment, a
their coupling as follows;

H5H01\(
j 51

`

V jbj
†bj1\(

j 51

`

@g~V j !bj1g!~V j !bj
†#x,

~1!

where

H05
p2

2
1V~x!, ~2!

defines the usual kinetic- and potential-energy terms co
sponding to the system,x andp being the position and mo
mentum operators, respectively. The second and the t
terms in Eq.~1! specify the reservoir modes and their line
coupling to the system.g(V) denotes the system-reservo
coupling constant.
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Systematic elimination of the reservoir modes in the us
way, using Born and Markov approximations leads one
the following standard reduced density-matrix equation
the system only@5#

dr

dt
52

i

\
@H0 ,r#1

g

2
~11n̄!~2ara†2a†ar2ra†a!

1
g

2
n̄~2a†ra2aa†r2raa†!. ~3!

Here the system operator coordinatex is related to the
creation and the annihilation operatorsa†,a, respectively as
x5(1/A2v)(a1a†). v is the linearized frequency of th
system. Also the spectral density function of the reservoi
replaced by a continuous densityD(v). g.0 is the limit of
2pug(v)u2D(v)/v asv→01 and is assumed to be finite.g

is the relaxation or dissipation rate andn̄g is the diffusion
coefficient D. n̄(5@exp(\v/kT)21#21) is the average ther
mal photon number of the reservoir. The terms analogou
Stark and Lamb shifts have been neglected.

The first term in Eq.~3! corresponding to the dynamica
motion of the system refers to Liouville flow. The term
containingg arise due to the interaction of the system w
the surroundings. Whilegn̄/2 terms denote the diffusion o
fluctuations of the reservoir modes into the system mode,g/2
terms refer to the loss of energy from the system into
reservoir. In the limitT→0, i. e. ,n̄→0, the system is influ-
enced by pure quantum noise or vacuum fluctuations@ Note
that 1 in (n̄11) in Eq. ~3! corresponds to the vacuum.#

Our next task is to go over from a full quantum opera
problem described by the Eq.~3! to an equivalentc-number
problem. To this end we consider the quasiclassical distri
tion function W(x,p,t) of Wigner. x,p are nowc-number
variables. Rewriting Eq.~3! in a quasiclassical language w
obtain

]W

]t
52p

]W

]x
1

]V

]x

]W

]p
1

g

2
hS ]xW

]x
1

]pW

]p D
1

gh\

2v
~ n̄11!

]2W

]x2
1

gh\v

2
~ n̄11!

]2W

]p2

1 (
n>1

\2n~21!n

22n~2n11!!

]2n11V

]x2n11

]2n11W

]p2n11
. ~4!
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h in Eq. ~7! is a parameter used to identify the environme
induced effect on the dynamics described by Eq.~4! ~kept for
bookkeeping in the calculation and puth51 at the end!.

In the semiclassical limit\v,,kT, we haven̄11'n̄
andD'gkT so that Eq.~7! reduces to

]W

]t
52p

]W

]x
1

]V

]x

]W

]p
1

g

2
hS ]xW

]x
1

]pW

]p D
1DhS 1

v2

]2W

]x2
1

1

2

]2W

]p2 D
1 (

n>1

\2n~21!n

22n~2n11!!

]2n11V

]x2n11

]2n11W

]p2n11
. ~5!

The overall dynamics described above is a superposi
of two contributions, i.e., the Liouville-Wigner dynamics an
the system-reservoir dissipative dynamics. That the two c
tributions act independently is an assumption. The ma
equation~3! @or its Wigner function version~4!# is the most
popular one in quantum optics. It has been extensively u
@7# for the strongly nonlinear processes like three-wa
four-wave mixing, and strong coherent light-matter intera
tion phenomena. The equation has also been applied in
context of chaos, e.g., in the dissipative standard map@8#,
dissipative logistic map@9#, semiclassical theory of quantum
noise in open chaotic systems@10,11#, and in the studies o
decoherence in relation to chaos for analysis of quant
classical correspondence@12,13#.

In the semiclassical (\→0) limit the dissipative quantum
dynamics can be conveniently described by ‘‘WKB-like
ansatz~we refer to ‘‘WKB-like’’ since we are considering
more that one dimension!. Traditional WKB refer to one
dimension only@1,14# of Eq. ~5! for Wigner function of the
form

W~x,p,t !5Z~ t !expS 2
s

\ D . ~6!

HereZ(t) is a prefactor ands(x,p,t) is a classical action
that is a function ofc-number variablesx andp , satisfying
the following Hamilton-Jacobi equation

]s

]t
1p

]s

]x
2

]s

]x

]s

]p
2

g

2
hS x

]s

]x
1p

]s

]pD1hS ]s

]xD 2

1hv2S ]s

]pD 2

1 (
n>1

x2n~21!3n11

22n~2n!!

]2n11V

]x2n11

]s

]p
50.

~7!

The derivation of Eq.~7! is based on the consideration
the ‘‘physical limit’’ of weak dissipation and slow fluctua
tions in the senseD1 /\2' 1/\, where D15D/2v2 ~note
that D1 and \ have same dimension!. The above equation
can be solved by integrating the Hamiltonian equations
motion,

ẋ5p2
g

2
hx12hP,
-

n

n-
er

ed
,
-
he

-

f-

Ẋ5P2
g

2
hX,

ṗ5V81
g

2
hp22v2hX2 (

n>1

~21!3n11

22n~2n!!

]2n11V

]x2n11
X2n,

Ṗ5V9X1
g

2
hP2 (

n>1

~21!3n11

22n~2n11!!

]2n12V

]x2n12
X2n11, ~8!

which are derived from the following HamiltonianHe f f :

He f f5pP2V8X2
g

2
h~xP1pX!1h~P21v2X2!

1 (
n>1

~21!3n11

22n~2n11!!

]2n11V

]x2n11
X2n11. ~9!

Here we have put]s/]x5P and]s/]p5X. The introduction
of additional degree-of-freedom by incorporating the aux
iary momentum~P! the and coordinate~X! makes the system
effectively a two-degree-of-freedom system. The origin
these two variables is the thermal fluctuations of the res
voir. It is easy to identify the environment-related terms co
taining h in Eqs. ~7!–~9!. The auxiliary Hamiltonian~9! is
therefore not to be confused with the microscopic Ham
tonian ~1! which describes a system in contact with a res
voir with infinite degrees-of-freedom. Although the phas
space trajectories concern fluctuations ofc-number variables
in the formal sense, because of the equations-of-motion~8!
described by a Hamiltonian~9!, the motion is strictly deter-
ministic. The experiments on the corresponding class
version of the problem by Luchinsky and McClintock@1#
have demonstrated that a trajectory of fluctuation is indee
part of physical reality. We emphasize, however, here a nu
ber of distinguishing features in this context. While the stu
ies by Luchinsky and McClintock@1# and Graham and Te´l
@2# concern overdamped limit, we consider here a wea
dissipative system. Furthermore, because of the quan
correction, the phase-space trajectories of fluctuations
significantly modified by semiclassical features. The int
duction of thesequantum features at a semiclassical lev
through ac-number Hamiltonian description of a dissipativ
evolution in the physical limit of weak damping and slo
diffusion due to thermal noise is the essential content of
present paper. Since Eq.~9! describes deterministic evolutio
under nonlinear potential, the pattern of trajectories of flu
tuations may display chaotic behavior. In what follows w
investigate this dynamical aspect of the dissipative syste

The equations derived in the weak thermal noise limit
the weakly dissipative semiclassical systems are fairly g
eral. For illustration, we now consider a simple model s
tem HamiltonianH0 ~see Eq. 2!

H05
p2

2
1ax42bx21gx cosV0t, ~10!

which describes a bistable potential driven by a tim
periodic field.a andb are the constants of the potentialV(x).
The fourth term in Eq.~10! includes the effect of coupling o
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the system as well as the strength of the field of freque
V0. For the Hamiltonian~10! Eq. ~8! reads as

ẋ5p2
g

2
hx12hP,

Ẋ5P2
g

2
hX,

FIG. 1. Plot of x vs p on the Poincare´ surface of section (X
50) for Eq. ~11! with initial condition x522.512, p50, X→0,
P50, g50.01, andh51. ~Units are arbitrary.!

FIG. 2. Same as in Fig. 1 but forh50.
y ṗ54ax322bx1g cosVt1hS g

2
p22v2XD23axX2,

Ṗ5~12ax222b!X1
g

2
hP2aX3, ~11!

which are derivable from the auxiliary Hamiltonian

He f f5Pp2~4ax322bx1g cosvt !X2
g

2
h~xP1pX!

1h~P21v2X2!1axX3. ~12!

The system Hamiltonian~10! has served as a standa
paradigm for a number of theoretical and experimental
vestigations@1,10,15# over many years. For the present pu
pose we choose the following parameter values:a5 1

4 , b
5 1

2 , V056.07, andg510. Since we are considering th
physical limit of weak damping and small diffusion we tak
the initial conditions for the auxiliary variablesX and P
~which originate from the fluctuations due to environme!
asP50 andX→0 ~we have usedX51.531026). This en-
sures a vanishing HamiltonianHe f f for the entire numerical
investigation that follows below.

We first consider a specific trajectory with the initial co
dition p50 andx522.512 for small values ofg ~typical
0.01!. Under this condition (h51) the system is vanishingly
coupled to the surroundings and consequently the dynam
behavior is effectively due to the weak dissipation only. W
illustrate this situation in Fig. 1 in terms of a Poincare m
for the phase space that exhibits strong global chaos. On
other hand when the parameterh is switched off (h50) the
system displays typical weak chaos~Fig. 2!. Similar behav-

FIG. 3. Same as in Fig. 1 but forx522.49.
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ior has been observed for other sets of initial conditions fox
and p ~we have not reproduced them here for the sake
brevity!.

The effect of weak dissipation and slow diffusion due
thermal fluctuations from the surroundings can be seen in
case of other sets of initial conditions also. For the init
condition p50 and x522.49 , one observes forg50.01
dissipative strong chaos (h51). This is illustrated in Fig. 3.
It is interesting to note that forh50, the same trajectory get
localized in the left well as a regular one as shown in Fig

FIG. 4. Same as in Fig. 3 but forh50.
n
,
.

.S
p

s

f

e
l

.

The weakly chaotic and regular trajectories in Figs. 2 and
respectively, are purely semiclassical in nature~in the ab-
sence of any coupling to the surroundings!. The strong glo-
bal chaotic behavior as shown in Figs. 1 and 3 has there
its origin in the thermal fluctuations of the reservoir. In oth
words the chaotic behavior or its enhancement is exclusiv
due to thermal fluctuations from the surroundings, which
comes appreciable even in the physical limit of weak dam
ing and slow diffusion of the thermal noise within the sem
classical description. We have checked this assertion
some other values of the initial conditions for the syste
oscillator.

The reduction of the system-reservoir Hamiltonian d
scription @H in Eq. ~1!# for a dissipative quantum system t
an auxiliary Hamiltonian description@He f f in Eq. ~9!# effec-
tively reduces the infinite-degree-of-freedom system to
two-degree-of-freedom system where the auxiliary degr
of-freedom characterized byX andP owe their origin in the
fluctuations of the reservoir. SinceX and P appear as the
multiplicative factors in the auxiliary HamiltonianHe f f , the
weak thermal noise limit makesHe f f a vanishing Hamil-
tonian. The observed semiclassical chaos may therefor
regarded as a dynamical manifestation of the interplay
nonlinearity and thermal fluctuations.

In this paper we have examined the weak thermal no
limit of a semiclassical dissipative nonlinear system. W
have shown that the vanishing Hamiltonian method can
suitably extended to follow the phase-space trajectories
fluctuations of c-number variables that exhibit dynamic
chaos. In view of the accessibility of the model to analog
electronic circuits@1# we believe that the results discuss
bear further experimental relevance in the semiclassical c
text.

B.C.B. is indebted to the CSIR for partial financial su
port and to J. Ray Chaudhuri for helpful discussions.
A

ay,

-

@1# D.G. Luchinsky and P.V.E. McClintock, Nature~London! 389,
403 ~1997!.

@2# R. Graham and T. Te´l, Phys. Rev. Lett.52, 9 ~1984!.
@3# G. Gangopadhyay and D.S. Ray, J. Chem. Phys.46, 4693

~1992!.
@4# M. Battezzati, J. Chem. Phys.111, 9932~1999!.
@5# W.H. Louisell, Quantum Statistical Properties of Radiatio

~Wiley, New York, 1973!; A.J. Leggett and A.O. Caldeira
Physica A121, 587 ~1983!; G.W. Ford, J.T. Lewis, and R.J
O’Connell, Ann. Phys.~N.Y.! 185, 270 ~1988!.

@6# See, for example, the review by G. Gangopadhay and D
Ray, inAdvances in Multiphoton Processes and Spectrosco,
edited by S.H. Lin, A.A. Villayes, and F. Fujimura~World
Scientific, Singapore, 1993!, Vol. 8.

@7# P. Meystre and M. Sargent III,Elements of Quantum Optic
~Springer-Verlag, Berlin, 1989!; M.D. Reid and D.F. Walls,
.
y

Phys. Rev. A33, 4465~1986!; 34, 4929~1986!.
@8# T. Dittrich and R. Graham, Ann. Phys.~N.Y.! 200, 363~1990!;

Phys. Scr.40, 409 ~1989!.
@9# M.E. Goggin, B. Sundaram, and P.W. Milonni, Phys. Rev.

41, 5705~1990!.
@10# B.C. Bag, S. Chaudhuri, J. Ray Chaudhuri, and D.S. R

Physica D125, 47 ~1999!.
@11# B.C. Bag and D.S. Ray, J. Stat. Phys.96, 271 ~1999!.
@12# W.H. Zurek and J.P. Paz, Phys. Rev. Lett.72, 2508 ~1994!;

Physica D83, 300 ~1995!.
@13# A.K. Pattanayak, Phys. Rev. Lett.83, 4526~1999!.
@14# C.M. Bender and S.A. Orszag,Advanced Mathematical Meth

ods for Scientists and Engineers~McGraw-Hill, New York,
1978!.

@15# W.A. Lin and L.E. Ballentine, Phys. Rev. Lett.65, 2927
~1990!.


