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Environment-induced dynamical chaos
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We examine the interplay of nonlinearity of a dynamical system and thermal fluctuation of its environment
in the “physical limit” of small damping and slow diffusion in a semiclassical context and show that the
trajectories ofc-number variables exhibit dynamical chaos due to the thermal fluctuations of the bath.

PACS numbd(s): 05.45.Mt

The interplay of nonlinearity of a dynamical system and Systematic elimination of the reservoir modes in the usual
thermal fluctuations of its environment has been one of thevay, using Born and Markov approximations leads one to
major areas of investigation in the recent past. These studigke following standard reduced density-matrix equation of
have enriched our understanding of nonequilibrium pro-the system only5]
cesses in several contexts, such as, symmetry between the
growth and decay of classical fluctuations in equilibrift dp
interesting topological features of patterns of paths of large gt —
fluctuations in nonlinear systen], existence of general-
ized nonequilibrium potentidl2], influence of nonlinearity
on dissipation in multiphoton procesd&s, and higher-order
diffusion in a nonlinear systeirf], etc. While the develop-
ment in these areas is largely confined to the classical do- Here the system operator coordinatés related to the
main we examine a related issue in the semiclassical conteX¢reation and the annihilation operataa, respectively as
Since quantization is likely to add a new dimension to they—(1/,20)(a+a').  is the linearized frequency of the
interplay of nonlinearity and stochasticity in a weakly dissi- system. Also the spectral density function of the reservoir is
pative system, it is worthwhile to consider the physical limit repjaced by a continuous densiy(w). y>0 is the limit of
of small damping and slow diffusion due to thermal fluctua-3 7| g(w) |2D(w)/w asw—0, and is assumed to be finit.

tions C.)f th.e environment - and |.00k _for_ the therm_al is the relaxation or dissipation rate aﬁd/ is the diffusion
fluctuations-induced features of nonlinearity in the dynamics. —

. - _ 71 -
In this communication we specifically explore some interestCOefficientD. n(=[expiw/kT)—1]"") is the average ther-
ing aspects of dynamical chaos in a driven bistable systeWal photon number' of the reservoir. The terms analogous to
whose origin lies at the fluctuations of the environmenta/>t@’k and Lamb shifts have been neglected. _
degrees of freedom. The first term in Eq(3) corresponding to the dynamical

To describe the dissipative quantum dynamics of a systefiotion of the system refers to Liouville flow. The terms
we first consider the traditional system-reservoir model de€ontainingy arise due to the interaction of the system with
veloped over the last few decad@s5,6. The bare system is the surroundings. While/n/2 terms denote the diffusion of
coupled to an environment modeled by a reservoir offluctuations of the reservoir modes into the system moti2,
harmonic-oscillator modes characterized by a frequency séerms refer to the loss of energy from the system into the
1Q;}. The quantum dynamics is generated by the overalteservoir. In the limifT—0, i. e. ,n—0, the system is influ-
Hamiltonian operator H for the system, environment, andenced by pure quantum noise or vacuum fluctuatjoNste

i y
—+[Ho.pl+ 5 (1+ n)(2apa’—a'ap—pa'a)

+ %F(Zana—aan—paaT). (3)

their coupling as follows; that 1 in (W+1) in Eq.(3) corresponds to the vacuupmn.
o o Our next task is to go over from a full quantum operator
—Hot b1+ b+ a*(Q b problem described by the E() to an equivalent-number
H=Ho ﬁjzl ;b ﬁj; [9(€2))b;+g7(2;)b; 1, problem. To this end we consider the quasiclassical distribu-

(1) tion function W(,p,t) of Wigner. x,p are nowc-number
variables. Rewriting Eq(3) in a quasiclassical language we

where obtain
2
p
Ho:?‘FV(X). 2 M:—pﬂv—i—ﬂﬂv—l—zn _&XW+_§pW
ot oxX dx dp 2 X ap
defines the usual kinetic- and potential-energy terms corre- yoh —  PW  ypho —  PPW
sponding to the systenx,andp being the position and mo- + > (n+1) 5T > (n+1) 5
mentum operators, respectively. The second and the third @ X p

terms in Eq.(1) specify the reservoir modes and their Iinegr RE(_1)n gantly g2ntlyy
coupling to the systeng({)) denotes the system-reservoir _
coupling constant. n=122"(2n+1)! gx?"*t1 gp?ntl
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7 in Eq. (7) is a parameter used to identify the environment- . vy
induced effect on the dynamics described by @g(kept for X=pP- 2 X,
bookkeeping in the calculation and pyt1 at the_enkd B

In the semiclassical limittw<<kT, we haven+1~n (—1)3n+1 gan+ly

; Y 2 2n
~ | — + 2 _ _
andD~ kT so that Eq.(7) reduces to p=V 5 7P 2w°yX ngl 22 2m)1 o
oW aW+ v 0W+ y 0XW+ IpW
at . Pox Taxap 2" Tax T ap (—1)3Ft g2

: Y
P=V"X+ 5 nP— X2n+1 (8
5 5 27 n; 22"(2n+1)! gx3*2 ®
1 #PW 15°W

+D — - —
7 w? x> 2 &pz

which are derived from the following Hamiltoniaf¢s:

ﬁZn(_l)n a2n+1v &2n+lW
n=1 22n(2n+ 1)| &X2n+l O"pZnJrl '

(5 Heff=pP—V’X—%n(xP+pX)+n(P2+w2X2)

Th . . . . (_l)3n+1 [?2n+lv
e overall dynamics described above is a superposition
of two contributions, i.e., the Liouville-Wigner dynamics and n=122"(2n+1)! gx?"*1
the system-reservoir dissipative dynamics. That the two con-
tributions act independently is an assumption. The mastéHere we have puis/9x= P andds/dp=X. The introduction
equation(3) [or its Wigner function versiond)] is the most  of additional degree-of-freedom by incorporating the auxil-
popular one in quantum optics. It has been extensively useidry momentun{P) the and coordinatéX) makes the system
[7] for the strongly nonlinear processes like three-waveegffectively a two-degree-of-freedom system. The origin of
four-wave mixing, and strong coherent light-matter interac-these two variables is the thermal fluctuations of the reser-
tion phenomena. The equation has also been applied in thair. It is easy to identify the environment-related terms con-
context of chaos, e.g., in the dissipative standard f8p taining » in Egs.(7)—(9). The auxiliary Hamiltonian(9) is
dissipative logistic map9], semiclassical theory of quantum therefore not to be confused with the microscopic Hamil-
noise in open chaotic systerfis0,11], and in the studies of tonian (1) which describes a system in contact with a reser-
decoherence in relation to chaos for analysis of quantumyoir with infinite degrees-of-freedom. Although the phase-
classical corresponden¢#2,13). space trajectories concern fluctuationcafumber variables
In the semiclassicalf{—0) limit the dissipative quantum in the formal sense, because of the equations-of-md8on
dynamics can be conveniently described by “WKB-like” described by a Hamiltonia(®), the motion is strictly deter-
ansatz(we refer to “WKB-like” since we are considering ministic. The experiments on the corresponding classical
more that one dimensignTraditional WKB refer to one version of the problem by Luchinsky and McClintogk]
dimension only1,14] of Eq. (5) for Wigner function of the  have demonstrated that a trajectory of fluctuation is indeed a
form part of physical reality. We emphasize, however, here a num-
ber of distinguishing features in this context. While the stud-
ies by Luchinsky and McClintockl] and Graham and Te
[2] concern overdamped limit, we consider here a weakly
dissipative system. Furthermore, because of the quantum
HereZ(t) is a prefactor and(x,p,t) is a classical action correction, the phase-space trajectories of fluctuations are
that is a function oftc-number variables andp , satisfying  significantly modified by semiclassical features. The intro-

x2n+ l. (9)

W(x,p,t)=Z(t)exr( —;) (6)

the following Hamilton-Jacobi equation duction of thesequantum features at a semiclassical level
through ac-number Hamiltonian description of a dissipative
Js s ds ds vy Js as ds\? evolution in the physical limit of weak damping and slow
ot + Pox " ax aip 2 U™ + p% t7 X diffusion due to thermal noise is the essential content of the
present paper. Since E@) describes deterministic evolution
2( as)z x2N(—1)3*1 g2ty gs under nonlinear potential, the pattern of trajectories of fluc-
+nw P & ) el ap tuations may display chaotic behavior. In what follows we

investigate this dynamical aspect of the dissipative system.
(7) The equations derived in the weak thermal noise limit for
the weakly dissipative semiclassical systems are fairly gen-
The derivation of Eq(7) is based on the consideration of eral. For illustration, we now consider a simple model sys-
the “physical limit” of weak dissipation and slow fluctua- tem HamiltonianH, (see Eq. 2
tions in the sens®, /A%~ 1/f, where D;=D/2w? (note

that D; and# have same dimensi@nThe above equation 2 4 5
can be solved by integrating the Hamiltonian equations-of- Ho=7 +ax —bx“+gxcoslt, (10
motion,

which describes a bistable potential driven by a time-
periodic field.a andb are the constants of the potentié]x).

c=p— 2
X=P73 X+ 2P, The fourth term in Eq(10) includes the effect of coupling of
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FIG. 1. Plot ofx vs p on the Poincaresurface of sectionX FIG. 3. Same as in Fig. 1 but for= —2.49.

=0) for Eq.(11) with initial condition x=—-2.512,p=0, X—0,
P=0, y=0.01, andn=1. (Units are arbitrary.

the system as well as the strength of the field of frequency p=4ax®—2bx+gcosQt+ z %p—ZwZX —3axX?,
Q. For the Hamiltoniar(10) Eq. (8) reads as
. 5_ 2_ Y o ax3
X:p_%nxﬂnp, P=(12ax*=2b)X+ 5 nP—aX’, (11)

which are derivable from the auxiliary Hamiltonian
X=P > 7X,

Hets=Pp—(4ax’—2bx+g coswt)X— %n(xP+ pX)

10- + p(P?+ w?X?) +axX®. (12)
The system Hamiltoniari10) has served as a standard
B . paradigm for a number of theoretical and experimental in-
54 : . . . vestigationd1,10,19 over many years. For the present pur-

S Choead pose we choose the following parameter valugs:3, b
AL ‘ Y =1, 0,=6.07, andg=10. Since we are considering the
5 s physical limit of weak damping and small diffusion we take
a _ At o the initial conditions for the auxiliary variableX and P
_ ‘ﬂ&{ ‘ :///jiis ‘ (which originate from the fluctuations due to environment
N REANRE X, asP=0 andX—0 (we have use=1.5xX10"°). This en-
N o s o sures a vanishing Hamiltonidf¢; for the entire numerical
investigation that follows below.

We first consider a specific trajectory with the initial con-
. dition p=0 andx=—2.512 for small values of (typical
-10- 0.01). Under this condition = 1) the system is vanishingly
coupled to the surroundings and consequently the dynamical
LU L behavior is effectively due to the weak dissipation only. We
-3 -2 -1 0 1 2 3 illustrate this situation in Fig. 1 in terms of a Poincare map
for the phase space that exhibits strong global chaos. On the
other hand when the parametgiis switched off (7=0) the
FIG. 2. Same as in Fig. 1 but foy=0. system displays typical weak cha@sg. 2). Similar behav-
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The weakly chaotic and regular trajectories in Figs. 2 and 4,

respectively, are purely semiclassical in natdre the ab-
4 sence of any coupling to the surroundipngBhe strong glo-
I bal chaotic behavior as shown in Figs. 1 and 3 has therefore
/ "-,‘ its origin in the thermal fluctuations of the reservoir. In other
5 ; \/\ words the chaotic behavior or its enhancement is exclusively

due to thermal fluctuations from the surroundings, which be-
comes appreciable even in the physical limit of weak damp-
ing and slow diffusion of the thermal noise within the semi-

classical description. We have checked this assertion for
o some other values of the initial conditions for the system
oscillator.
The reduction of the system-reservoir Hamiltonian de-
24 '\, scription[H in Eq. (1)] for a dissipative quantum system to

; an auxiliary Hamiltonian descriptioH ¢ in Eq. (9)] effec-

Vo tively reduces the infinite-degree-of-freedom system to a
’ two-degree-of-freedom system where the auxiliary degree-

-4 of-freedom characterized b¥ and P owe their origin in the

fluctuations of the reservoir. Sincé and P appear as the

— 7 multiplicative factors in the auxiliary Hamiltoniald ¢¢¢, the

-3 -2 -1 0 1 2 3 weak thermal noise limit makeBl.;; a vanishing Hamil-

tonian. The observed semiclassical chaos may therefore be

regarded as a dynamical manifestation of the interplay of

FIG. 4. Same as in Fig. 3 but foj=0. nonlinearity and thermal fluctuations.

In this paper we have examined the weak thermal noise
ior has been observed for other sets of initial conditionscfor limit of a semiclassical c_ilsslpatlve nonl!near system. We
and p (we have not reproduced them here for the sake Opa_ve shown that the vanishing Hamiltonian method can be
brevity). sunably_ extended to follow Fhe phase—spac_e.trajecton.es of

The effect of weak dissipation and slow diffusion due tofluctuatlons' ofc-number varl'at_)!es that exhibit dynamical
thermal fluctuations from the surroundings can be seen in th‘éhaos' In view Qf the acces_5|b|llty of the model to _analogue
case of other sets of initial conditions also. For the initialeIeCtron'C cwcmts[_l] we believe that_ the result_s dlsgussed
condition p=0 andx=—2.49 , one observes fop=0.01 bear further experimental relevance in the semiclassical con-

dissipative strong chaoy& 1). This is illustrated in Fig. 3. text.

It is interesting to note that fop= 0, the same trajectory gets B.C.B. is indebted to the CSIR for partial financial sup-
localized in the left well as a regular one as shown in Fig. 4port and to J. Ray Chaudhuri for helpful discussions.
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