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Theory of the evolutionary minority game
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We present a theory describing a recently introduced model of an evolving, adaptive system in which agents
compete to be in the minority. The agents themselves are able to evolve their strategies over time in an attempt
to improve their performance. The theory explicitly demonstrates the self-interactiomaréet impactthat
agents in such systems experience.

PACS numbegps): 02.50.Le, 05.65tb, 05.40--a, 64.75+¢g

Agent-based models of complex adaptive systdrls results are insensitive to the initial distribution pfvalues.
have attracted much attention recently since they provid&urprisingly, agents who either always follow or never fol-
invaluable insight into the nontrivial global behavior of a low what happened last time, generally perform better than
population of competing agents and have potential applicasautious agents using an intermediate valup.dfhere is no
tions in the “physics of finance’[2—4]. Challet and Zhang explicit dependence om for P(p) and L(p) [9,11,12.

[5] (also see Ref.6]) proposed the minority gam@G), in ~ D’Hulst and Rodger§13] proposed an analytic theory giving
which agents successively compete to be in the minority bya P(p) somewhat similar to Fig. 1. However, the theory was
making decisions based on global information created by thdeveloped based on a model in which agents use different
agents themselves. Nontrivial fluctuations arising in thememory look-up tables: the correspondiRgp) is thenm
game[5,6] can be understood in terms of the dynamical for-dependen{11], in contrast to the EMG results shown in
mation of crowds and anticrowds comprising of agents using-ig. 1.

anticorrelated pairs of strategifg]. The game was also re- The basic idea of the present formulation is to consider
lated formally to spin glassé8]. However, the MG does not the interaction between a particular agent and the rest of the
incorporate evolution. Agents are stuck with their initial population. Consider a certain moment of the game in the
strategies. In the real world, agents tend to evolve by learnsteady-state regime. Let the predictor in the memory look-up
ing from past experience, and will also stop playing disastable be 1;i.e., go to room 1. As long as the winning room is
trous strategies. Recently, we proposed the evolutionary mdefined as the minority room, i.e. with a cutoff & {1)/2,
nority game(EMG) which allows for anevolvingpopulation  the following arguments also hold if the predictor says 0. Let
[9-11. Here we provide a theory for the EMG, yielding Fy(n) be the probability of the attendance beingn the
good agreement with numerical data and correctly includingredicted room. From the central limit theorefy(n) is

the self-interaction of the agents. approximately a Gaussian distribution with mebip and

The EMG [9] consists of an odd numbeX of agents varianceN1P(p)p(1—p)dp. HereazfépP(p)dp, which

repeatedly choosing to be in room(6.g., sell or room 1 . . ST f
(e?g. buy)./ The wingers are those i£1 tﬂe mi?writy room. A is known if the distributionP(p) is known. HoweverP(p)

single binary digit denotes the winning minority room. The 600 .
agents have a common “memory” look-up table containing 8
the outcomes from the most recent occurrences of"albi2
strings of lengthm. Faced with a given bit string of recent
occurrences, each agent chooses the outcome in the memo 24
with probability p, which we refer to as the agent's “gene” 400 =
value, and chooses the opposite action with probability 1
—p. To incorporate evolution, we assighl(—1) point to §
every agent in the minoritymajority) room at each time
step. If an agent’s score falls below a vatligd<0), a new
p value is chosen randomly within a ranBecentered on the
old p. We impose reflective boundary conditions to ensure
that O<p=<1, although our conclusions do not depend on
this particular choice of boundary conditions. e ™
We focus on two quantitie®?(p) andL(p), in the long 0 ‘ . w ‘ w ‘ w
time limit. Here P(p) is the frequency distribution of gene
values, typically taken in the long time limit over a time
window and normalized to unity;(p) is the lifespan defined FIG. 1. The life sparL(p) as a function of gene valug for
as the average length of time a gene vatusurvives be- m=12 ... 8. Theinset shows the distribution of gene values
tween modification$9]. Figure 1 shows (p) andP(p) (in-  p(p) for differentm values. Both_(p) andP(p) are insensitive to
sep for a range ofm values. BothP(p) andL(p) are sym- m. Parameters ar&l=101, d=—4, and R=0.2. The quantities
metric aboutp=1/2, with peaks aroungp=0 and 1. The shown in Figs. 1-4 are dimensionless.
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is the unknown that we are going to solve for. In the steady 100 '
state,Fy(n) becomes identical to the probability of the at-
tendance in any one of the two rooms since the two out- 8o
comes are equally likely. Consider the action of a particular
agent, say the&th player, in the background of thid—1 6.0
other agents. LeGK‘_l(n) be the probability of the atten-
dance beingn in the predicted room, given that there are
only (N—1) agents participating in the ganiies. excluding
the kth agent. Hence

Fa(n)=pGh_1(n—1)+(1-p)GK_1(n), (1)

wheren# 0,N. Herep, is thep-value of thekth agent at that
moment. The physical meaning of Eq) is transparent. An
attendance afi in room 1 is achieved if the attendance by the  FIG. 2. The frequency distributio®(p) for N=101 andN
(N—1) agent background is— 1 andthe kth agent decides =51 (inse). d=—4 andR=0.2. Dotted lines are numerical simu-
to go to room 1(first term), or the attendance by theN( lation data. Solid lines are results of the present theory. Dashed
—1) agent background is andthe kth agent decides not to lines are the theory of Ref13].
go to room 1(second term

Let 7(p,) be the winning probability of théth agent.  Substituting Eqs(3) and(4) into Eq. (2), and using Eq(1)
Hence to expressGK,_l[(N—S)IZ] in terms oth_l[(N—l)IZ]
andF\[(N—1)/2], we obtain

P~
o

-

o

2.0

p

(N—=3)/2 N—1
(P=Px 2 Gl i(M+(1—-p) > Gy_1(n), (N-1)12 N
n=0 n=(N+1)/2
) (PO=pc 2 Fu(M+(1-po 2 Fu(n)
since thekth agent wins if(i) the attendance is belowN( N—1
—3)/2 in room 1 before he makes his move and he decides _2Pk(1_pk)GK11(T)- (5)

to go to room 1; oKii) the attendance is abov&l{-1)/2 in
room 1 before he makes his move and he decides nottogoto _ _
room 1. Thekth agent is only characterized Ip; hence  Equation(5) separates(p,) into three terms, each of which

7(p) can also be interpreted as the success rate of an agei@s @ physically transparent interpretation. Consider an “out-
using gene valu@, . Following Eq.(1), sider,” i.e., someone whose action does not affect the out-

come but instead is only betting on which side is the winning

(N-3)/2 (N-3)/2 ; ’ room using the probabilityp,. His winning probability is
21 Fn(n)= 21 GN-1(N)+pkGy-1(0) given by the first two terms in Eq5). The third term gives
"= "= the difference in the winning probability between an outsider
. [N-3 from the game and an agent who actually participates in the
_kaN1<T) game. This term is negative, since an agent has a smaller

probability of winning when participating in the game. Con-

Since Fy(0)=(1—p)GK_,(0), which follows from the sider the case in which the background population is split

consideration that room 1 is empty only if the otér-1  €venly between room 0 and room 1: tkéh agent loses no
agents do not go to room 1 and tkéh agent does not go to matter what action he takes. Thus the third term represents

room 1, we have this §e|f-interacti0n tgrm, or so-calledarket impapﬁn f|
nancial market terminology. Thp,(1—p,) factor implies
(N—-3)12 (N—-3)12 N—3 that the winning probability increases pg deviates further
Z G,‘i,,l(n)z Z FN(n)+ka'§,1<T) from the value 1/2, and it produces the symmetry alput
- - = inL(p) an p) (see Fig. guation(5) also ap-
n=0 n=0 . 1/2 inL dP(p) (see Fig. 1L Equation(5) al
(3) plies when the predictor says O: it is independent of the dy-

Similarly, namics of the predictor which is determined by the time
evolution of outcomes. This further implies that the resulting
N—1 N-1 N—1 P(p) andL(p) do not depend on the value af. For the
E Fn(n)= 2 G',i‘_l(n)+ka,‘§_1(—) present EMG, there is na priori perferred room: hence 0
n=(N+1)2 n=(N+1)2 2 and 1 occur similar numbers of times on average. In this
_ kaKI—l(N_ 1), case, the summations in the first and second terms of3q.
in the steady state yield 1/2, and hendp,) = 1/2—2p,(1
and F(N)=p,GK_,(N—1); therefore, —pGR-_[(N=1)/2].
The right hand side of Eq5) can be expressed entirely in
N-1 ’ N . (N-1 terms of the functiorF. From Eq.(1),
n=(%1)/2 Gn-1(Nn) n=(%1)/2 Fn(n) kaNl( 2 )

(4) PGN-_1(N=2)+(1=PIG_1(n—1)=Fy(n—1). (6)
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FIG. 4. The winning probability-(p) for different values oNN.

lines are numerical simulation data. Solid lines are the presengyig jines are the present theory, while dotted and dashed lines are

theory. Other parameters are the same as Fig. 2.

Multiplying Egs. (1) and (6) by (1—py) and py, respec-
tively, and subtracting the resulting equations, yields

(1= pFn(N) = pFn(n—1)=(1-p)2GK_1(n)
- pEGKJ—l(n_z)-

Repeatedly applying Eq(l), we can eIiminateGh,l(n

—2),GK_1(n=3), ..., toobtain
- nei ) Pk n—j ’
JZO (=)™ IFN() 1—py =(1-pGK_1(n). (7

Similarly, we can obtain

N . 1_pk j=n-1
j;ﬂ(_l)'_n_lFN(j)( P ) =pkGR_1(N).

8

from numerical simulations. The three sets of lines from top to
bottom atp=1/2 correspond t&=201, 101, and 51, respectively.
Other parameters are the same as in Fig. 2.

obtain7(p); (d) calculateP(p) from 7(p) using Eq.(9) and

the normalization condition; ang) check for convergence

of P(p) and, if necessary, repeat the steps until convergence.
Note that Eq(5) is employed since it is valid for all forms of
initial guess forP(p), including those which are nonsym-
metrical aboutp=1/2.

Results forP(p) andL(p) obtained by carrying out the
calculation scheme are shown in Figs. 2 and 3, together with
results of numerical simulation fal=51 and 101. When
properly normalizedP(p) is not sensitive td\, while L(p)
depends oN. Results from our theory are in good agree-
ment with numerical data. The results lB{p) as obtained
in Ref. [13] are also shown in Fig. 2 for comparison: note
that the results of Refl13] show a plateau over a significant
range ofp in contrast to the present theory and the numerical
simulations. The results from the present theory are hence in

The results are exact; however, it makes sense to USE’Ed. petter agreement with the numerical results. As further evi-

for small p, and Eq.(8) for p,~1. Using Eqs(7) or (8) for
n=(N—1)/2, and substituting into Ed5), we obtainr(p,)
entirely in terms ofFy(n), and the labek becomes irrel-

dence for the validity of our theory, results fafp) as a
function of p for N=51, 101, and 201 are shown in Fig. 4.
The numerical data are found by counting the number of

evant. Sincer(py) can be regarded as the winning probabil- times an agent witp wins. Note thatr(p) provides a better

ity of an agent who is using a gene valpewe henceforth

test thanP(p) for the validity of any theory, since many

denote it byT(p) REferenCd:l3] notes that the Stationary forms of T(p) can give rise to similar forms foP(p) In
distributionsP(p) andL(p) are proportional to each other, contrast to the present theory and numerical results, the ex-
P(p)<L(p), with the proportionality constant being inde- pression forr(p) in Ref.[13] gives a very smalk(p) for a
pendent Ob. This relation follows from the balance between Significant range O'p around p= 1/2 Corresponding to the

the fluxes of agents into and out of a regiorpispace in the
steady state. Since an agent usinigses(1—27(p)) points
each turn on averaggl3], the lifespanL(p) is given by
7(p)=|d|/(1—27(p)). Hence

1
P(p)oc1/2——r(p)’ 9

plateau inP(p). Figure 4 shows that the correetp) in the
steady state, which follows from Ep), is indeed consistent
with the form 7(p) ~1/2— A(N)p(1—p) where A(N) is an
N-dependent constant which decreases Withs 14/N. Such
a scaling withN also makes sense from random walk argu-
ments.

In summary, we have presented a mean-field-like theory
of the EMG based on the consideration of a particular agent

with the proportionality constant determined by the normaly the environment formed by the rest of the population. The

ization [5P(p)dp=1.

results are in good agreement with numerical data. The

It is Straightforward to construct an iterative calculation present theory can be read"y genera“zed to different varia-

scheme foiP(p) as follows:(a) assume a form foP(p); (b)

tions[14,15 of the EMG, e.g., when the winning decision is

obtain Fy(n) by evaluatingp and the standard deviation assigned according to whether the attendance is lower than a

from P(p); (c) use Eq.(5) together with Eqs(7) and(8) to

certain cutoff[14].



4396 BRIEF REPORTS PRE 62

[1] J.H. Holland, Emergence: From Chaos to OrdéAddison-
Wesley, Reading, MA, 1998

[2] W.B. Arthur, Am. Econ. Rev84, 406 (1994); Science284,
107 (1999.

[3] H.E. Stanley, Comput. Sci. Eng. Jan./Feb., (2899; J.D.
Farmer and A.W. Lo, Proc. Natl. Acad. Sci. U6, 9991
(1999.

[8] D. Challet and M. Marsili, Phys. Rev. 60, R6271(1999; D.
Challet, M. Marsili, and R. Zecchina, Phys. Rev. Le,
1824 (2000; D. Challet and M. Marsili, e-print
cond-mat/9908480.

[9] N.F. Johnson, P.M. Hui, R. Jonson, and T.S. Lo, Phys. Rev.
Lett. 82, 3360(1999.

[10] N.F. Johnson, P.M. Hui, and T.S. Lo, Philos. Trans. R. Soc.

[4] Proceedings of the International Workshop on Econophysics  London, Ser. A357, 2013(1999.

and Statistical FinancgPhysica A269, 1 (1999].

[5] D. Challet and Y.C. Zhang, Physica 246, 407 (1997); 256,
514(1998; 269 30(1999.

[6] R. Savit, R. Manuca, and R. Riolo, Phys. Rev. L8, 2203
(1999.

[7] N.F. Johnson, M. Hart, and P.M. Hui, Physica 269 1
(1999.

[11] P.M. Hui, T.S. Lo, and N.F. Johnson, e-print
cond-mat/0003309.

[12] E. Burgos and H. Ceva, e-print, cond-mat/0003179.

[13] R. D’Hulst and G.J. Rodgers, Physica2&x0, 514(1999.

[14] N.F. Johnson, D.J.T. Leonard, P.M. Hui, and T.S. Lo, e-print
cond-mat/9905039 .

[15] H. Ceva, e-print cond-mat/9909424.



