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Theory of the evolutionary minority game
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We present a theory describing a recently introduced model of an evolving, adaptive system in which agents
compete to be in the minority. The agents themselves are able to evolve their strategies over time in an attempt
to improve their performance. The theory explicitly demonstrates the self-interaction, ormarket impact, that
agents in such systems experience.
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Agent-based models of complex adaptive systems@1#
have attracted much attention recently since they prov
invaluable insight into the nontrivial global behavior of
population of competing agents and have potential appl
tions in the ‘‘physics of finance’’@2–4#. Challet and Zhang
@5# ~also see Ref.@6#! proposed the minority game~MG!, in
which agents successively compete to be in the minority
making decisions based on global information created by
agents themselves. Nontrivial fluctuations arising in
game@5,6# can be understood in terms of the dynamical f
mation of crowds and anticrowds comprising of agents us
anticorrelated pairs of strategies@7#. The game was also re
lated formally to spin glasses@8#. However, the MG does no
incorporate evolution. Agents are stuck with their initi
strategies. In the real world, agents tend to evolve by lea
ing from past experience, and will also stop playing dis
trous strategies. Recently, we proposed the evolutionary
nority game~EMG! which allows for anevolvingpopulation
@9–11#. Here we provide a theory for the EMG, yieldin
good agreement with numerical data and correctly includ
the self-interaction of the agents.

The EMG @9# consists of an odd numberN of agents
repeatedly choosing to be in room 0~e.g., sell! or room 1
~e.g., buy!. The winners are those in the minority room.
single binary digit denotes the winning minority room. Th
agents have a common ‘‘memory’’ look-up table containi
the outcomes from the most recent occurrences of all 2m bit
strings of lengthm. Faced with a given bit string of recen
occurrences, each agent chooses the outcome in the me
with probability p, which we refer to as the agent’s ‘‘gene
value, and chooses the opposite action with probability
2p. To incorporate evolution, we assign11(21) point to
every agent in the minority~majority! room at each time
step. If an agent’s score falls below a valued (d,0), a new
p value is chosen randomly within a rangeR centered on the
old p. We impose reflective boundary conditions to ens
that 0<p<1, although our conclusions do not depend
this particular choice of boundary conditions.

We focus on two quantities,P(p) andL(p), in the long
time limit. Here P(p) is the frequency distribution of gen
values, typically taken in the long time limit over a tim
window and normalized to unity;L(p) is the lifespan defined
as the average length of time a gene valuep survives be-
tween modifications@9#. Figure 1 showsL(p) andP(p) ~in-
set! for a range ofm values. BothP(p) andL(p) are sym-
metric aboutp51/2, with peaks aroundp50 and 1. The
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results are insensitive to the initial distribution ofp values.
Surprisingly, agents who either always follow or never fo
low what happened last time, generally perform better th
cautious agents using an intermediate value ofp. There is no
explicit dependence onm for P(p) and L(p) @9,11,12#.
D’Hulst and Rodgers@13# proposed an analytic theory givin
a P(p) somewhat similar to Fig. 1. However, the theory w
developed based on a model in which agents use diffe
memory look-up tables: the correspondingP(p) is then m
dependent@11#, in contrast to the EMG results shown i
Fig. 1.

The basic idea of the present formulation is to consi
the interaction between a particular agent and the rest of
population. Consider a certain moment of the game in
steady-state regime. Let the predictor in the memory look
table be 1; i.e., go to room 1. As long as the winning room
defined as the minority room, i.e. with a cutoff at (N21)/2,
the following arguments also hold if the predictor says 0. L
FN(n) be the probability of the attendance beingn in the
predicted room. From the central limit theorem,FN(n) is
approximately a Gaussian distribution with meanNp̄ and
varianceN*0

1P(p)p(12p)dp. Here p̄5*0
1pP(p)dp, which

is known if the distributionP(p) is known. However,P(p)

FIG. 1. The life spanL(p) as a function of gene valuep for
m51,2, . . . ,8. Theinset shows the distribution of gene value
P(p) for differentm values. BothL(p) andP(p) are insensitive to
m. Parameters areN5101, d524, and R50.2. The quantities
shown in Figs. 1–4 are dimensionless.
4393 ©2000 The American Physical Society
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is the unknown that we are going to solve for. In the stea
state,FN(n) becomes identical to the probability of the a
tendance in any one of the two rooms since the two o
comes are equally likely. Consider the action of a particu
agent, say thekth player, in the background of theN21
other agents. LetGN21

k (n) be the probability of the atten
dance beingn in the predicted room, given that there a
only (N21) agents participating in the game~i.e. excluding
the kth agent!. Hence

FN~n!5pkGN21
k ~n21!1~12pk!GN21

k ~n!, ~1!

wherenÞ0,N. Herepk is thep-value of thekth agent at that
moment. The physical meaning of Eq.~1! is transparent. An
attendance ofn in room 1 is achieved if the attendance by t
(N21) agent background isn21 and thekth agent decides
to go to room 1~first term!, or the attendance by the (N
21) agent background isn and the kth agent decides not to
go to room 1~second term!.

Let t(pk) be the winning probability of thekth agent.
Hence

t~pk!5pk (
n50

(N23)/2

GN21
k ~n!1~12pk! (

n5(N11)/2

N21

GN21
k ~n!,

~2!

since thekth agent wins if~i! the attendance is below (N
23)/2 in room 1 before he makes his move and he dec
to go to room 1; or~ii ! the attendance is above (N11)/2 in
room 1 before he makes his move and he decides not to g
room 1. Thekth agent is only characterized bypk ; hence
t(pk) can also be interpreted as the success rate of an a
using gene valuepk . Following Eq.~1!,

(
n51

(N23)/2

FN~n!5 (
n51

(N23)/2

GN21
k ~n!1pkGN21

k ~0!

2pkGN21
k S N23

2 D .

Since FN(0)5(12pk)GN21
k (0), which follows from the

consideration that room 1 is empty only if the otherN21
agents do not go to room 1 and thekth agent does not go to
room 1, we have

(
n50

(N23)/2

GN21
k ~n!5 (

n50

(N23)/2

FN~n!1pkGN21
k S N23

2 D .

~3!

Similarly,

(
n5(N11)/2

N21

FN~n!5 (
n5(N11)/2

N21

GN21
k ~n!1pkGN21

k S N21

2 D
2pkGN21

k ~N21!,

andFN(N)5pkGN21
k (N21); therefore,

(
n5(N11)/2

N21

GN21
k ~n!5 (

n5(N11)/2

N

FN~n!2pkGN21
k S N21

2 D .

~4!
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Substituting Eqs.~3! and ~4! into Eq. ~2!, and using Eq.~1!
to expressGN21

k @(N23)/2# in terms of GN21
k @(N21)/2#

andFN@(N21)/2#, we obtain

t~pk!5pk (
n50

(N21)/2

FN~n!1~12pk! (
n5(N11)/2

N

FN~n!

22pk~12pk!GN21
k S N21

2 D . ~5!

Equation~5! separatest(pk) into three terms, each of which
has a physically transparent interpretation. Consider an ‘‘o
sider,’’ i.e., someone whose action does not affect the o
come but instead is only betting on which side is the winn
room using the probabilitypk . His winning probability is
given by the first two terms in Eq.~5!. The third term gives
the difference in the winning probability between an outsid
from the game and an agent who actually participates in
game. This term is negative, since an agent has a sm
probability of winning when participating in the game. Co
sider the case in which the background population is s
evenly between room 0 and room 1: thekth agent loses no
matter what action he takes. Thus the third term repres
this self-interaction term, or so-calledmarket impactin fi-
nancial market terminology. Thepk(12pk) factor implies
that the winning probability increases aspk deviates further
from the value 1/2, and it produces the symmetry aboup
51/2 in L(p) and P(p) ~see Fig. 1!. Equation~5! also ap-
plies when the predictor says 0: it is independent of the
namics of the predictor which is determined by the tim
evolution of outcomes. This further implies that the resulti
P(p) and L(p) do not depend on the value ofm. For the
present EMG, there is noa priori perferred room: hence 0
and 1 occur similar numbers of times on average. In t
case, the summations in the first and second terms of Eq~5!
in the steady state yield 1/2, and hencet(pk)51/222pk(1
2pk)GN21

k @(N21)/2#.
The right hand side of Eq.~5! can be expressed entirely i

terms of the functionF. From Eq.~1!,

pkGN21
k ~n22!1~12pk!GN21

k ~n21!5FN~n21!. ~6!

FIG. 2. The frequency distributionP(p) for N5101 andN
551 ~inset!. d524 andR50.2. Dotted lines are numerical simu
lation data. Solid lines are results of the present theory. Das
lines are the theory of Ref.@13#.
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Multiplying Eqs. ~1! and ~6! by (12pk) and pk , respec-
tively, and subtracting the resulting equations, yields

~12pk!FN~n!2pkFN~n21!5~12pk!
2GN21

k ~n!

2pk
2GN21

k ~n22!.

Repeatedly applying Eq.~1!, we can eliminateGN21
k (n

22),GN21
k (n23), . . . , toobtain

(
j 50

n

~21!n2 jFN~ j !S pk

12pk
D n2 j

5~12pk!GN21
k ~n!. ~7!

Similarly, we can obtain

(
j 5n11

N

~21! j 2n21FN~ j !S 12pk

pk
D j 2n21

5pkGN21
k ~n!.

~8!

The results are exact; however, it makes sense to use Eq~7!
for small pk and Eq.~8! for pk;1. Using Eqs.~7! or ~8! for
n5(N21)/2, and substituting into Eq.~5!, we obtaint(pk)
entirely in terms ofFN(n), and the labelk becomes irrel-
evant. Sincet(pk) can be regarded as the winning probab
ity of an agent who is using a gene valuep, we henceforth
denote it byt(p). Reference@13# notes that the stationar
distributionsP(p) andL(p) are proportional to each othe
P(p)}L(p), with the proportionality constant being inde
pendent ofp. This relation follows from the balance betwee
the fluxes of agents into and out of a region inp space in the
steady state. Since an agent usingp loses„122t(p)… points
each turn on average@13#, the lifespanL(p) is given by
t(p)5udu/„122t(p)…. Hence

P~p!}
1

1/22t~p!
, ~9!

with the proportionality constant determined by the norm
ization *0

1P(p)dp51.
It is straightforward to construct an iterative calculati

scheme forP(p) as follows:~a! assume a form forP(p); ~b!

obtain FN(n) by evaluatingp̄ and the standard deviatio
from P(p); ~c! use Eq.~5! together with Eqs.~7! and ~8! to

FIG. 3. The lifespanL(p) for N5101 and 51~inset!. Dotted
lines are numerical simulation data. Solid lines are the pres
theory. Other parameters are the same as Fig. 2.
-

obtaint(p); ~d! calculateP(p) from t(p) using Eq.~9! and
the normalization condition; and~e! check for convergence
of P(p) and, if necessary, repeat the steps until converge
Note that Eq.~5! is employed since it is valid for all forms o
initial guess forP(p), including those which are nonsym
metrical aboutp51/2.

Results forP(p) and L(p) obtained by carrying out the
calculation scheme are shown in Figs. 2 and 3, together w
results of numerical simulation forN551 and 101. When
properly normalized,P(p) is not sensitive toN, while L(p)
depends onN. Results from our theory are in good agre
ment with numerical data. The results forP(p) as obtained
in Ref. @13# are also shown in Fig. 2 for comparison: no
that the results of Ref.@13# show a plateau over a significan
range ofp in contrast to the present theory and the numeri
simulations. The results from the present theory are henc
better agreement with the numerical results. As further e
dence for the validity of our theory, results fort(p) as a
function of p for N551, 101, and 201 are shown in Fig.
The numerical data are found by counting the number
times an agent withp wins. Note thatt(p) provides a better
test thanP(p) for the validity of any theory, since man
forms of t(p) can give rise to similar forms forP(p). In
contrast to the present theory and numerical results, the
pression fort(p) in Ref. @13# gives a very smallt(p) for a
significant range ofp aroundp51/2 corresponding to the
plateau inP(p). Figure 4 shows that the correctt(p) in the
steady state, which follows from Eq.~5!, is indeed consisten
with the formt(p);1/22A(N)p(12p) whereA(N) is an
N-dependent constant which decreases withN as 1/AN. Such
a scaling withN also makes sense from random walk arg
ments.

In summary, we have presented a mean-field-like the
of the EMG based on the consideration of a particular ag
in the environment formed by the rest of the population. T
results are in good agreement with numerical data. T
present theory can be readily generalized to different va
tions @14,15# of the EMG, e.g., when the winning decision
assigned according to whether the attendance is lower th
certain cutoff@14#.

nt
FIG. 4. The winning probabilityt(p) for different values ofN.

Solid lines are the present theory, while dotted and dashed lines
from numerical simulations. The three sets of lines from top
bottom atp51/2 correspond toN5201, 101, and 51, respectively
Other parameters are the same as in Fig. 2.
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