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The search for solutions of field theories allowing for topological solitons requires that we find the field
configuration with the lowest energy in a given sector of topological charge. The standard approach is based on
the numerical solution of the static Euler-Lagrange differential equation following from the field energy. As an
alternative, we propose to use a simulated annealing algorithm to minimize the energy functional directly. We
have applied simulated annealing to several nonlinear classical field theories: the sine-Gordon model in one
dimension, the baby Skyrme model in two dimensions and the nuclear Skyrme model in three dimensions. We
describe in detail the implementation of the simulated annealing algorithm, present our results and get inde-
pendent confirmation of the studies which have used standard minimization techniques.

PACS numbd(s): 02.70—-c, 12.39.Dc

I. INTRODUCTION for physical systems. The common constraint of Lorentz in-
variance is easily imposed by using covariant terms. How-
Solitons have played an ever increasing role in the deever, the use of topological models has a major disadvantage.
scription of physical phenomena since their discovery byThe models are generally not integrable and few analytical
Russell[1] in 1834. Generally speaking, a soliton is a stabletechniques are availabl@nly Ansdze topological bounds,
localized solution of a nonlinear partial differential equationtc). It is therefore crucial to study the models using reliable
which propagates at a constant speed and stays localiz&é®d efficient numerical methods. _
even after an interaction with another solitsee Ref[2] for ~ We are looking for the(statig lowest-energy field con-
an introduction to solitons They are particlelike extended figuration in a given topological sector. Thus, we need to
objects. Well-known soliton models in one dimensi@)  Minimize the energy functiondkt of the field theory, the
are the Korteweg—de Vrig&dV) and the sine-Gordon mod- integral of an energy density over a manifoldM:
els. The stability of the KdV soliton is due to the dynamical
balance bgtween _the'nonlingar and the dispersive terms in the E[C]= J' d"x E(x, £(x), (X)), 1)
KdV equation. This differential equation belongs to the class M
of integrable models that can be solved exactly. The sine-
Gordon model is also integrable and the stability of its soli-wheref(x) is a field configuratiorC. The topology typically
ton is also based on the balance between nonlinearity anithposes some boundary conditioh®M). We are search-
dispersion. However, it also belongs to the wider class ofng for the functionf,;,(X) that gives the lowest value fd.
models whose solitons are stable by conservation of a topoFhere are two possible approaches: to solve the Euler-
logical charge or winding number, as discussed in Sec. IV ALagrange equation of the function&l with respect to the
In topology, the field is interpreted as a mapping from physi-function f(x) or to minimizeE through some other means.
cal space to field space and a field configuration with given Hitherto only the first approach, via the Euler-Lagrange
topological charge cannot dynamically change into a fieldequation, has been used with topological systems. We shall
configuration with a different charge. In this paper, when wereview the standard numerical techniques that apply shooting
discuss topological solitons, we shall consider only the fieldor relaxation methods and discuss their reliability and ease of
configuration with lowest energy in a nonzero topologicaluse. In this paper, we show how to minimize the energy
charge sector. functional directly by using the simulated anneali(®A)
Topological solitons arise in many areas of physics: fieldalgorithm, as proposed in Ref4.0,11. SA is based on the
theory (e.g., vortices, monopoles, and instantons, as disfact that a solid which is slowly cooled down, assuring ther-
cussed in Ref[3], and Hopf solitong4,5]), condensed mat- mal equilibrium at each temperature, reaches its ground
ter (e.g., baby Skyrmion§6]), nuclear physicgSkyrmions, state. The SA algorithm describes the cooling process and a
see Ref[7]), cosmology(e.g., cosmic stringg8]), and string  Metropolis subalgorithm brings a system into thermal equi-
theory or M-theory(e.g., Olive-Montonen dualitj®]). They librium. SA has been applied to minimization problems in
possess many interesting properties. The conservation of teuch diverse areas as combinatorial optimizatsrch as the
pological charge can be used to model particle conservatiotraveling salesman problentircuit design, finance, physics,
and annihilation: the number of solitons is conserved andnd military warfare: see Refgl2,13, Sec. 10.9. We give a
two solitons with opposite charge can annihilate. Since theletailed introduction to SA and describe our implementa-
stability of solitons is assured by topology, there exists contions. We find the topological solitons of the sine-Gordon
siderable freedom in constructing appropriate Lagrangianmodel in 1D, the baby Skyrme model in 2D, and the nuclear
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Skyrme model in 3D and compare our results to those ob-

tained using standard minimization techniques.

II. MINIMIZATION VIA THE EULER-LAGRANGE
EQUATION

MARK HALE, OLIVER SCHWINDT, AND TOM WEIDIG
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In many cases one also studies the time evolution of the

models. Computer codes developed for this purpose can be
adapted to find minimal energy solutions by adding a damp-

ing term to the equation of motion. For example[14], two

baby Skyrmions are put in an attractive configuration and

form an oscillating bound state. As the system has been
The standard procedure uses the Euler-Lagrange equationade dissipative, the energy of the system decreases with

resulting from the variation of the function&l with respect time until a minimum is reached. Thus, finding a minimal

to the functionf(x) to find the minimal energy solution energy solution is translated into a damped time evolution.

d
dx

dé
df’

de

—E—O. (2

fin(X). In the 1D case, for example, the problem is a two-The same effect can often be reached by working with a
point boundary value problem satisfying the differential finite box and absorbing any outward propagating radiation
equation on the boundaries.
Relaxation techniques are well documented and appli-
cable in any dimensiofsee Ref[13]). The SOR method has
( ) theoretically the best rate of convergence but might be less
than optimal since the best choice @fcan rarely be deter-
) ) ) ) . mined for a nonlinear system and must be made by trial and
Itis a second order ordinary differential equati@DE), and o141 Using damping in a time-evolution problem is conve-
a partial differential equation in two or more dimensions, nient byt one first has to set up the time-evolution code. It is
which is equivalent to a set of first order ODES. lfé&) and  jmpossible to estimate the error on an integration step and
f(b) represent the boundary conditions a field configuration,ne needs to monitor conserved quantities. This is especially
has to satisfy over the intervgi,b]. There are two standard important if, as is often the case, the field has to satisfy a
approaches: the shooting and the relaxation mett@slslis-  constraint. Furthermore, if the initial configuration is far
cussed inf13], Chap. 17. from the global minimum, we might end up in a local mini-
mum. Moreover, the derivation of the corresponding Euler-
A. The shooting method Lagrange equation becomes increasingly difficult when
. . . . higher-order terms are added to the Lagrangian or when
The shooting method is usually based on integration fromcomplicated constraints on the field space are present
one bound_ary to the other. The valu_e .O.f the function_ at the We have come to the conclusion that the weaker poihts of
Sglr?\}:ti;: I; trﬂ;ednetoAbifj?r:e?iT;glai?] ':Qg:aaltigﬁesfgrfz;grsnpleiterative minimization techniques via the Euler-Lagrange
with a Runge-Kutta. method, up to the other E)oundary poinequation are: uncertainty gbout the global nature _of the n_1ini-
x=b then gives an estimatéa(b) for f at b. This value is %um o_btamed; lack of dlre_\ct co_ntrol over the integration
\ . errors(important for constrained fielflsand tedious deriva-
compared to the known boundary valfigh) and « is ad- tion for complicated Lagrangians
justed to matcltf ,(b) more closely tof (b). This procedure '
is repeated until the desired accuracy is achieved. The shoot-
ing method is unrivaled in speed and accuracy, but appli-
cable only in one dimension.

IIl. MINIMIZATION VIA SIMULATED ANNEALING

Minimizing the energy functional directly is a more
straightforward approach than solving the equations of mo-
tion, and we propose to use the flexible and easy-to-
implement simulated annealing technique.

B. Relaxation methods

Gauss-Seidel over-relaxatig8OR) is commonly used to
solve the boundary problem directly. A time-dependent dif-
ferential equation, a diffusion equation, is constructed out of
the 1D ODE(2),

df(x,t)
dt

If the system reaches equilibrium, i.elf/dt=0, this con-
figuration is a solution to Eq2). One starts out with a con-
figuration satisfying the boundary conditions. The coefficient
o of the leading term, which has the fordff/dx?, is di-
mensionless and determines the speed of convergence. Thiere P(C) is a probability distribution for configuratior(.
choice of integration method is not very sensitive; we canlt must satisfyP(C)=0 and [P(C)dC< in order to be
use Euler integration, the Runge-Kutta method, or the Crankaormalizable. For exampld,F) can stand for the thermal
Nicholson method. The standard SOR uses the Euler methaa/erage of our energy functionga| C] in Eqg. (1). In fact, the
with updated information from already computed field valuesMetropolis algorithm is only one of the possible sampling
at lattice points and ensures better convergence. It is possibieethods for the Monte Carlo evaluation of the integsse
to neglect the derivative of the energy functional with respecf16], Sec. 3.7.
to the derivative of, i.e., we consider only the change with  For the system to reach thermal equilibrium it needs to
respect to the degree of freedom itself; see, 4., satisfy the condition of detailed balance,

A. Metropolis principle

In 1953 Metropoliset al. [15] proposed an algorithm,
now called the Metropolis o (RT)? algorithm, that can be
used to bring a statistical system into thermal equilibrium.
The M(RT)? is most commonly used to evaluate thermal
averagesF) of a quantity/(C),

d
dx

de
df’

2

)
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K(C2|C1) P(Cl):K(Cl|C2) P(Cz) (5) ———-—{ Randomly PERTURB C — Chew l————

Here P(C) is the probability of finding the system in the [
configuration, or stateC, andK(C,|C,) is the conditional
probability of moving fromC; to C,. The conditional prob-
ability K is usually decomposed as [ACGEPT Change: C = Gy

Change A = F(C) — F(Chew) ‘

positive

negative
K(C2|Cl):A(C2|C1)T(C2|Cl)! (6) l Probability of transition ¢ = eﬂAJ

where the transition probability (C,|C;) can be chosen to
be any normalized distribution. It is used to select a random
trial move fromC,; to C,. The complications are kept in ‘ no
A(C,|C;), which gives the probability of accepting this

move and is the correction to the arbitrar”y chosen ) FIG. 1. The Metropolis algorithm: Scheme for thermal equilib-
T(C,|C,). The key element of the algorithm is the evalua-um.

tion of the functionA(C,|C,) by a rejection technique. Thus

the functionT(C,|C,) is sampled, and the resulting configu- the energy is higher, the system accepts this upward step
ration is accepted or rejected depending on the value odith a transition probabilityg. Thus the system can escape

e (Random Number € [0,1]) > ¢?

A(C,|C,). One usually defines local minima and achieve thermal equilibrium. In Fig. 1 we
show a flow diagram representing the Metropolis algorithm.
T(C4|C,)P(Cy) In this diagram,F denotes the functional being minimized.
AColC === mna = (7)
T(C,|CyP(Cy)

B. Simulated annealing

In 1982, Kirkpatrick, Gelatt, and Vecchi7] observed a
A(C,|C1)=min(1,q(C,|Cy)). (8)  deep analogy between annealing of solids and optimization
or minimization problems. A solid that is sufficiently slowly
If the configurationC, has a lower energy tha@, it is  cooled down, i.e., is at thermal equilibrium at each tempera-
accepted. Otherwise, it is accepted with the probabilityture, will reach its ground state. If the energy is the func-
q(C,|C,). This procedure is repeated a large number ofional to be optimized or minimized, the SA scheme should
times and eventually the system reaches an equilibrium. Hefind the minimum energy function of this functional accord-
we define an equilibrium to be the ensemble of states whergg to a statistical proof by Geman and Gen{d8]. One
the average of the energy does not show systematic changesarts out with a configuration at a high temperature and runs
After L steps, equilibrium is established and the systenthe Metropolis algorithm. The size of change of the func-
fluctuates around?). The thermal average is approximated tional is proportional to the temperature. Once we have
by the sum reached thermal equilibrium, the temperature is decreased
according to a cooling schedule and the procedure repeated
as often as necessary. SA is a conceptually easy-to-
(7= Nizgﬂ FC), 9 Understand minimization technique.

There are several varieties of SA algorithms, each de-
whereC; is a state at thermal equilibrium amdis the num-  signed to speed up the minimization of a particular problem.
ber of iterations over which we compute the average. We carihe application to a minimization of a continuous problem
interpret every trial move as representing a unit of quasitimgleserves some reflection on the discretization of the deriva-
having passed. This cannot be converted to real units of timdives. The most important question is the cooling schedule; a
but it is possible to average thermodynamic properties ovesufficiently slow cooling is crucial for the “statistical proof
quasitime when a system is in equilibrium. It is possible toof convergence.” Quite often, a slow cooling is not needed
compute the mean of the quantity because the unit of medo reach the global minimum and a faster cooling schedule
surement, which is the number of trial moves, cancels. If &an be used: this SA version is called simulated quenching.
trial move is rejected, the old configuration has to be countedfor more information on SA, we recommend reading Refs.
in any averages. [12,13, Sec. 10.9. There is no unique way of implementing

For all the examples to be discussd@l(C)zeBE[C], the SA scheme and there exists ample opportunity to im-

where the temperature is defined By (kgT) *. If the tran-  prove the code. However, every SA implementation faces
sition probability T(C,|C;) is chosen to be uniform, the same issues.

and

L+N

q(C,|C,) = ePEIC-EIC1D of Which initial gues8 Unlike the case of the relaxation
method, the initial configuration is not important as the sys-
q(C|Crew =€PEEnew, (10)  tem should be able to jump out of local minima. However, an

initial guess close to the global minimum solution can lead to
Here,E is the energy of the system in the present configuraa reduction of the running time.
tion C andE,, is the energy of the new configurati@),,, What sampling method to ud&he changes t€ should
that was obtained through a random change in the state of th® made such that the configuration space is well sampled.
system(sampled from the distributiom). If the energy of the As the temperature decreases, so should the size of the
new configurationC,e,, is lower, the change is accepted. If changes. Usually the choices made are random in the con-
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figuration space with a Gaussian or Lorentzian distributioncompactify the one-dimensional spaBé to S*. The field
However, since we are dealing with functionals rather thanheory of the sine-Gordon model can be described by the
functions such steps are expensive to compute. Therefore, weap
restrict ourselves to changes at individual gridpoints.
i ; o(t):St—st (12
At what initial temperature to staPt A high temperature

puts the system in thermal equilibrium quickly, but at tooat a given timet. This nontrivial mapping gives us the pos-

high temperature the soliton unwinds. Too low a choice fo_rsibility to partition the space of all possible field configura-

the initial temperature can leave the system in a local mini3;on< into equivalence classes having the same topological

mum. The best choice is found by trial and error. charge or winding number. We can visualize this concept
When is equilibrium reachédThe determination of the \jth a belt. We can trivially close it or we can twist one side
equilibrium position is crucial and a statistical study of the by 180° and close it or we can antitwist it by 180°, i.e., twist
changes of the system is essential. Equilibrium is reachefl by —180°, and close it. The twist in the belt cannot be
when the energy of the system fluctuates but does not showndone unless one opens the belt. Topological solitons can
any systematic trend. However, metastable states have begg thought of as twisted field configurations. The homotopy
observed (like glasses where the state of the system groupIl,(S!)=Z describes the twists in the map. For ex-
changes so slowly that one runs the risk of interpreting it agmple, if we twist the belt twice and then antitwist it twice,
being constant. we get back to an untwisted belt, very much like an annihi-
What choice of cooling sched@@he temperature should |ation process in particle physics. The “twist,” i.e., the to-

decrease according to a logarithmic rule to assure convepological charge, is fixed by boundary conditions and con-
gence to the global minimurtsee Ref[18]). However, it  gserved.

takes a |Ong time to reach thermal equilibl’ium with such a The Corresponding Eu|er-Lagrange equation for the sine-
cooling schedule. Often, the cooling is speeded up by aordon model is
exponential cooling schedule using big temperature de-
creases or a weaker equilibrium condition. b—¢"+sing=0. (13
Discretization of the continuous function#? It is im-
portant not to use the central difference, because it does n@ne can find the minimal energy solution by solving the
depend on the function at the center point. However, thistatic version using theoretical or numerical methods. The
problem can be overcome by computing the derivatives mid4-soliton, i.e., minimal energy solution of topological charge
way between two gridpoints. We discuss this later. 1, can be derived from the Bogomolnyi equati@ee[19],
Use of constraint® Constraints are no problem, becauseSec. 2.5:
we use random changes that satisfy the constraints.

¢'==+2(1—cosp). (14

Rewriting this in terms of sinf/2), integrating, and inverting
We have used the sine-Gordon model for our 1D SAthe resulting relation, one finds
implementation, because it is one of the simplest field theo-
ries exhibiting extended structures and it is exactly solvable Psi(X) =4 arctafexp(x+Xg)]. (15
(see Ref[19]). The sine-Gordon model is also a very good
toy model for solitonic quantum field theories, for the quan-
tum mass correction and the matrix are exactly known. satisfies the boundary conditio(—2)=0 and ¢(=)

Further, Colemar{20] has shown that the quantum sine- ; s ) :
Gordon model and the massive Thirring model are dual to- 27 the field winds around the field sphege once. The

each other: the bosonic soliton in the sine-Gordon is a fer€XPression for the energy density is
mion in the massive Thirring model. Finally and most im- -

. ; I =4 sir? : 16
portantly for this paper, the soliton solution is known exactly s(x) ML ¢s(x)] (16
and we can compare it to our SA results. The energy goes to zero at spatial infinity and the integral is
finite. The total energy ig e(x)dx=8 sine-Gordon energy
units. In the next section, we discuss the 1-soliton, &§),
and calculate its total energy using the SA scheme.

The sine-Gordon model is described by the Lagrangian

density B. Implementation of simulated annealing

IV. SIMULATED ANNEALING IN ONE DIMENSION

We can derive the solitons with higher charge via a Back-
lund transformatiof19]. The static minimal energy solution

A. The sine-Gordon model

L£=%0,¢p0"*p—(1—cosd). (11) Three aspects of the SA implementation are crucial for
successful minimization: the derivatives, the sampling
method, and the cooling schedule with thermal equilibrium.

For simplicity, we have set the mass and the coupling to 1.
The Lagrangian is invariant undér— ¢+ 27n, ne Z. Here

#(x,t) is an angle in field space, the cir®. The field has The most accurate discretized derivative is the centered
to go to the vacuum sufficiently fast for the soliton to be difference. However, this causes problems with derivative
localized and of finite energy. Therefore, we can identify theterms as it does not depend on the function at the point
spatial infinity in each direction with one single point and where the energy is being evaluated. This results in a decou-

1. Derivatives
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pling between neighboring points, which gives rise to two ngz)
independent sublattices. The configuration becomes spiky

T
Minimized donﬁguratlon

since the values jump between the two sublattices. To avoic & | e o atton T
this problem, the energy is computed between the grid points 7
rather than at the grid points. The value of the function be- 6
tween the gridpoints is taken to be the average of the value: 5
at the surrounding points: 4
3
d(X) + d(Xi+1)
d(Xir10) = 5 (17) 2
1
ok
IP(Xi 4112 _ d(Xi 1) — d(X) 18) 1 , , , , , ,
X dx 2 6x (sine Ggrdon leng%?r units) 1 1
2. Sampling FIG. 2. 1D SA cooling for the sine-Gordon model.

Typically, SA is used to minimize a functiof(x) with x
being a vector. The general form of a change to a configu
ration is

rium is by its very nature statistical it is important to know
how many iterations need to be sampled. A ballpark figure
seems to be 10—-15 samples per point on average. We chose
Xi—Xi+M;;Uj the total number of points in the chain to beNL,GvhereNis
the number of grid points, and checked empirically that this

whereM; is a matrix, andJ; is a vector of random numbers Was enough.

satisfying an appropriate probability distributideee Ref.

[21]). The matrixM;; needs to be chosen such that the con- C. Results of simulated annealing
figuration space is well sampled. Information from the cool-
ing process can be used to dynamically adMst. We are
interested in minimizing energy functionals on a latticeNof
gridpoints so ourx vector will have N components. This x=a

makes calculating a new configuration quite an intensive E[d’]:f_ dx(70¢di¢p+1—cosg). (19
process. To simplify matters we sweep across the grid chang- e

ing individual points one at a time. The random numbidys We impose a winding or topological charge of 1 by setting
are taken from a Lorentzian distribution, rather than a Gauss(}ﬁ(_a):O and ¢(a) = 27. We could use a 2D constrained
ian distribution. This is a quite common modification to the ’ e 2 LT

original SA algorithm, as the Lorentzian has a longer tail.fi€ld to represens’, i.e., ¢=(¢1,¢,) with ¢-¢=1. How-

The mean and width of the distribution need to be chosen s§V€r» We opted for an angle representation, because it allows

that we get a good sampling of configuration space. A narys to use fixed boundaries and the soliton cannot unwind. In
row distribution will sample only the local neighborhood the 2D constrained coordinates, the winding is a twist in the

while a wide distribution will spend too much time probing configuration over the whole grid and a very big fluctuation
irrelevant configurations. To achieve a good balance thd'duced by a high temperature undoes the twist.

width is adjusted so that 50% of all the proposed new con- Ve use different grid sizes. In Figs. 2 and 3, we represent
figurations are acceptdthis is called the acceptance raté different aspects_ o_f_the_ cooling _of a s_lne-Gordon sol_lton. _We
the mean is taken to be linearly dependent on the temperé—tart out with an initial field configuration, here a straight line
ture, then the acceptance rate will remain roughly constart@tisfying the boundary conditions. We then heat up the con-
throughout the cooling. This leaves the constant of proporflguration until thermal equilibrium is reachethick solid

tionality to be determined at the start of the cooling process.
Energyst()sine Gordon energy units)
T T T T T T

Specifically, we look here at the sine-Gordon model
where we need to minimize the following energy functional:

éoolin ICurve !
70 Minimal Energy (8 SG units) - - - --

3. Cooling schedule and thermal equilibrium

We use an exponential cooling schedule; the temperature
is decreased by a fixed ratio at each cooling step. This vio-
lates Geman and Geman’s statistical guarantee of reachin
the minimum solution. Since we do not expect many local
minima in 1D, this should not be a problem here.

There are several approaches to determining whether th
configuration is in equilibrium. A popular one is based on a
sliding average, also known as binning, where the mean en
ergy calculated over a number of iterations is monitored to o ; . . . , ‘ . . .
see whether it has converged to a fixed value. We employ ¢ 0 5 10 15 20 2 80 3B 4 45 50

. .. . emperature Decrease Step
simpler, related condition that monitors the lowest energy
obtained during a set sequence or chain of iterations until no FIG. 3. Typical cooling curve for 1D SA in the sine-Gordon
new low from one chain to the other is found. Since equilib-model.
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TABLE I. Energy (sine-Gordon energy unjtversus number of  errors can significantly change the scale of the soliton. It is

points used for the sine-Gordon model. therefore necessary to add extra terms to stabilize the soliton,
: fixing the scale. If we were to extend the model to (3
Points Energy +1)D, the o model term would lead to an expanding soli-
51 8.035 ton, and a balancing term needs to be added to ensure stabil-
' ity.
101 8.009 . - .
201 8.002 The baby Skyrme model is a modified version of 8ter
301 8.001 model and the Lagrangian is
. . . . . — 7 7_ 7 7\2
line in Fig. 2. We cool it down by slowly decreasing the L=30,¢ 0" ¢=0d(d,.b- ")
temperature after reaching thermal equilibrium. Finally, we s = T -
obtain a minimal energy solution close to E@5). —(0u@-9,9) (- 9"P)]—ON(P). (23

We set the acceptance rate to 50% and takeé fdb the
length of the monitored chain to test thermal equilibrium. AThe addition of a potential and a Skyrme term to the La-

ﬁ:}?gggn'nwgsﬁa\églligfuiﬁfhcésr:]?ﬁi;Fi)zeai%gnl?nggfl't%/eOfS;nn':%Srangian ensures stable solitonic solutions. The Skyrme term
’ as its origin in the nuclear Skyrme model and the baby

setting and find the same energy value. This is a good indiz

cator that the monitored chain is long enough to obtain ther—Skyrme model can therefore be viewed as its @)D ana-

mal equilibrium. Our box size is 20 sine-Gordon length log. Further, in (2 1)D, a potential term is necessary in the

units. The more points we use the closer the result becom bsaby Skyrme models to ensure stability of Skyrmions; this

to the exact soliton energy, namelygee Table ) erm is optional in the (3-1)D nuclear Skyrme model. One

To conclude, we find our SA code to be a very convenienciraWbaCk of the model is that the potential term is free for us

i 4
minimization technique in 1D. We have successfully teste 0 choose._The most common choices ‘dFe(l.+¢3) (_the.

our 1D SA code on many different models. The implemen- olomorphic model has an exact one-Skyrmlqn SOIU“.O”’ see
tation of the SA search for solitons is faster, for we did not<e- [23): V=(1+ ¢3) (a one-vacuum potential studied in

. : : Ref.[24]), andV=(1- ¢3)(1+ ¢3) (a two-vacua potential
have to derive the Euler-Lagrange equation. studied in Ref[14]). Except for the first choice, no closed

form minimal energy solutions are known. The baby Skyrme
V. SIMULATED ANNEALING IN TWO DIMENSIONS model is a nonintegrable system, and explicit solutions to its
We have used the baby Skyrme mofled] for our 2D SA  resulting differential equations are nearly impossible to find.
implementation, because there are exact and numerical solblumerical methods are the only way forward.
tions available that we can compare to our SA results. The
baby Skyrme model is used to study some aspects of the
qguantum Hall effect(see Ref.[6]) and is a convenient (2
+1)D toy model for the (31)D nuclear Skyrme model Our 2D and 3D SA implementations originate from a
(see Ref[7]), which requires much more computational re- more general framework, the study of phase transitions in
sources. topological systems at finite temperatures and dengi?igls
The thermodynamic partition function describes a system at
A. The baby Skyrme model a given temperature and can only be evaluated numerically
in the Skyrme models. The evaluation of thermal averages,
as discussed before, can be done with Monte Carlo tech-
niques and the Metropolis principle is one of the possible
sampling techniques. Conveniently, the thermal average of
the energy at zero temperature is equivalent to the minimal
_ S _ T energy of the energy functional to be minimized.
l.e., ¢-p=1. The field at a time is a map We start out with the grand canonical partition function

b(1): S (21 128

B. Implementation

The nonlinears model is described by the Lagrangian
L=30,$ 0", (20

whered is a three-dimensional field vector on the sph&fe

and the associated homotopy groudls(S?)=Z. The ex- Z(,B,V,,u)zj
istence of the topological charge, i.e., the twisted field con- allxg,.... xn 7 allpy,....
figuration representing a soliton, is ensured by topology. It is

N
given by XZO exd B(ui—E]1, (24)

B= %f d?xe,,, b (HHX " ). (22)
whereE; is the energy of théth particle system at tempera-
However, we also need to make sure that the soliton hastare 8= (kgT) " andV is the integration range. The integral
stable scale. From Derrick’s theord@2], the energy func- ranges over all phase space andnd\dimensional, whera
tional corresponding to Eq20) is scale invariant. A change is the number of space dimensions. The thermodynamic par-
of scale does not change the energy and therefore numericttion function for the baby Skyrme model has the form
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= = grand of the partition functiori27) divided by the present
by 3 1t didic Gidx It i iest to test a trial f id point at
2BV, )= | T 8(dy- d—1)d3ey “det My one. It is easiest to test a trial move for one grid point at a
k k time, although other methods will be discussed. The accep-
xex — B(Ve— uBo)]. (25) tance probability defined by E@8) is calculated by

Here M is the mass density matri%; the potential energy A(C2|Cy) =min(1,exf — B(Vnew™ VpresentD)-  (30)
density, and3 the topological charge density. The input pa-
rameters of the thermodynamic partition function are th
temperaturegs, the volume of the system, and the chemical
potential u. The & function is required due to the constrain
on the ¢ field.

At zero temperature, the factor in front of the exponent
becomes irrelevant and, if we further get0, the thermo-
dynamic partition function reduces to the integral

change to the vectorh at lattice pointk modifies the
potential energy on the grid poiftand its neighbors only
t (using a linear approximation for the derivatiyeshis is all
the information needed to apply the Metropolis method. The
quantities of interest to measure are the potential engrgy
and the topological chard® which should be conserved and
is a check on the numerics.

A uniform sampling of the distribution has an extremely
low acceptance rate; too many vectors are rejected. We
Z:J IT 8(dy d—1)d3dsexp— V), (26)  therefore use a biased sampling technique where a new vec-

: tOr ey is sampled neatesen the vector that it is sup-
posed to replace. We sample vectors in an intrinsic frame

where)), is the potential energy density. The implementation ¢
where thez axis corresponds to the present vector. The vec-

of Z is similar to the implementing oZ, but Z contains
information that is not necessary for finding minimal energytOr

splu;ion_s The value. OZ is not of irlwyerest tq us, bu_t thé ﬁint:(nilnt,niznt,ni:?t):(Sinecosqsysingsinqs’cosa)
distribution as3— « is. The probability density function that (31)

is sampled at every poirkt when applying the Monte Carlo

technique is the sum over all neighborskof gives the components of the new vector in Cartesian coordi-

nates in the intrinsic frame. The Euler angles that define the
rotation from the intrinsic frame to the laboratory frame are

number of
neighbors
P=exp -8 2V

(270 given by
i=1
. . . k2= (cosB sina,sinB sina,cosa). 32
Examples of Monte Carlo calculations using a grand canoni- (cospsina,sinfsina @) (32
cal ensemble are given in Ref27,28. A good discussion The anglesy and 8 are used to rotate the new vectdft
of possible errors and how to deal with them is given in Ref.q the |aboratory frame,
28].
[28] .
1. Monte Carlo simulation for the baby Skyrme model Flab_ [ nlab
- 2
We apply the Metropolis principle in the simplest possible n';lb
way and select a new vecte?rnew(xk) at a grid pointk from _ ) -
a uniform probability distribution function over the unit COsawCosf  —sing  sinacosp ny
sphere, as the integration measure with th&inction im- =| cosasing cosB sinasing || nj"
plies. We choose each of the componegitsuniformly be- _sina 0 cosa pint
tween—1 and 1. If the sum of the squares of the components 3
b3+ 3+ ¢3 is larger than 1 the sample is rejected. All ac- (33

cepted vectors are scaled to obtain unit lefd®]. The tran-

sition probability of this simple method is In the previous terminology, the new unit field vector at the

grid point k is dnen(Xx) =12 and it is a vector selected
T(C,Cy) from a particular probability distribution function that is ro-
1 tationally symmetric about the present vect@g,esen(xk)
on the unit sphere  (=k'a%  The vectorshpenX) and preserkXi) are inserted
_ into the acceptance probability. The anglés sampled uni-
0 otherwise, formly on[0, A), whereA<, and¢ is sampled uniformly
(29 on [0, 2w). The corresponding transition probability is

={ (surface area of sphere

1
and therefore — if 1—coso<A
p(Cy) T(C,|Cy) =1 27A (34
) .
C,|Cy= , 29 0 otherwise.
q( 2| l) P(Cl) ( )

- No importance sampling is imposed and the probability dis-
where the present vect@yeserkXi) € C1 and the newly se-  tribution function is uniform, so that the acceptance (8@
lected vectorp, (%) € C,. The quantityg is the new inte- can be applied directly. The optimal value Af which we
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(Xn » Ym +l) (Xn+ 1> Y +1)

B €] D) QO Position of the ¢ field vectors on the grid.
X X X
X X % A b B X' Scaled Averages of the y-components.

i (Kne172:Ym+ 12)
X X X C 3 b3 5 calculated using  (§g- 0,/ A

_ (Xn, Ymn) (%ne 15 Ym) dx

- E
FIG. 4. A picture of the plaquette, where the fields are evaluated lattice spacing 2
at the intersections of the lines and the measured quantities calcu-

lated at the midpoints. FIG. 5. lllustration of the scaling of the center derivative.

tree 1o ch depend h sicul fiourati 7Zb={b, 0} Po(Xn+1) N 3Za 1o, a,1Pa(Xn) are scaled to
are “?e" 0c tohos? elpep T Or:] € pa&'f# a{ conniguration,;; length before the latter is subtracted from the former to
Ezpzc&ae geﬁgen fy \(I)VFE;(; c:j?;%%vz r:égii Z‘;‘]y enesefnrgf’eegf‘egg %)tain thex derivative. Herg[a, ,a,} are the two grid points

other than the acceptance rate. Therefore, we believe that thith the coordinatesxy,ym) and &n.Ym: 1), and {by,ba}

method is reliable and efficient. We alloiv to vary auto- dre the two grid points with the coordinateg, (1,ym) and

matically to achieve an acceptance rate near 40%. The choi&%(n+ 1Yme1)- 'Ihese T\éectorr.:, zre. on th? colr nelrs gfbthe
of A influences the rate at which equilibrium is reached,p aquette(see Fig. 3 Thus, the derivative is calculated by
which is defined as the absence of change in the average ad
energy over a large number of steps. At each temperature, —
the system was required to reach equilibrium before being 2
cooled further. This ensures that cooling does not occur too
quickly. _scaleds S u(x) (35)

The choice(34) samples only a portion rather than the 2 a={a; 2, armnie
whole of the unit sphere. This is a valid method because we
are modeling a continuous system, and therefore the vector&his derivative works very well in practice. At very high
can reach any region in a number of steps.A\&s varied temperatures the numerics may break down, because the de-
automatically, the whole unit sphere is sampled for high temyivative (35) is by definition an underestimate. The 3D ana-
peratures. If the region that is unsampled for low temperatog of this formula is obtained by replacing 1/2 by 1/4 and
tures were sampled, the vectors selected there would hagimming over the four components afand the four com-
virtually zero probability of being accepted. For generality, ponents ofb.
we discuss a more rigorous method using importance sam-
pling in the Appendix. There, new vectors are chosen from a 3. Updating mechanisms
Gaussian(or othe) distribution centered around the present
vector. Importance sampling allows vectors from all over the
unit sphere to be selected at any temperature, and this mig

be necessary for some systems, especially when calculating .5 are stored and the changes to the field are updated
thermal averages. The disadvantage of importance samplir}gﬂy after a complete sweep over the entire grid to avoid
over restricting the transition probability is the increased, \anted sequential correlations. We have split the grid into
amount of computing time. four independent subgrids, each labeled by a different sym-
bol in Fig. 6. The subgrids are chosen at random and, at each
2. Calculation of field derivatives for a field on S sweep, only one of the possible four composing vectors of

We calculate derivatives in a similar way to the 1D imple-h€ derivatives and field averages at the midpoints is
mentation, where measurable quantities are calculated in tHf&'anged. This avoids the creation of fluctuations between
center of the plaquettes. An illustration of a plaquette isn€ighboring vectors for high acceptance rates, which pro-

given in Fig. 4, where the field vectors are evaluated at th&UC€ an unphysical increase in energy. Unfortunately, the

intersections of the lines and all measurable quantities are . . . . .
calculated at the midpoints. If a field vector is altered, using XD
X

=Scale§E > dp(Xns1)
2 b=

by ,b
Xnt1/2 {by bo}

In our 1D simulations, we have randomly selected which
rid point should be sampled. In our 2D and 3D implemen-
tion, we sweep over the grid points sequentially. The new

the Monte Carlo method as described above, the effect of a Jx x\Jx

change has to be calculated on the four surrounding mid- H—A—HH—A—-H]

points. X | x| x| x
All field vectors at each of the four grid points lie on a -XK—H—X—P

unit sphere and the average of the four field vectors must x | x| x| x

also be of unit length, because the topology requires unitarity -BH—A—FHH—A—-H]

everywhere. A simple average fails this criterion unless all X | X | X

X
vectors point in identical directions. We still use the average, - X O X O
corrected by scaling it to unit length. ' ' ' '
This also impacts the calculation of derivatives. For ex-  FIG. 6. The four subgrids for single point changes, each labeled
ample, the error in taking the derivatives is minimized if by a symbol.
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FIG. 7. The four subgrids for plaquette changes, each shaded
differently.

change of single grid points at a time does not favor collec-
tive motion, where a localized energy distribution moves in
one direction. Changing regions of grid points at a time has _ o _
proved to be more efficient. FIG. 8. Baryon density plot with identical vertical scales. We

We have successfully used a plaguette updating mech&h0W the one-vacuum Skyrmions of chargll 2 (b), 3(c), and 4
nism. For a given plaguette, we sample a vector in thdd)- The_ mesh spacing is 0.4 Skyrmg length units, and thg total area
intrinsic frame[see Eq(31)]. Then this frame is rotated as in plotted is 2.4 1.2 Skyrme length units squared in each figure.
Sec. V B for each of the four vectors on the plaquette sepa-
rately. Figure 4 illustrates a plaquette surrounded by the ninéixed to §s=% and 6,=0.1 and for the two-vacua tés
affected midpoints. The total change in the energy density 0&=0.443 65 andd,=0.05 in agreement with existing litera-
all these midpoints is now calculated and all four vectors areure (see Ref[14]). We use an 8880 grid with periodic
accepted or they are all rejected. Again, we have split théoundary conditions and lattice spacidg=0.4 Skyrme
grid into four subgrids, each shaded differently in Fig. 7.length units. The minimal energy solution in the first four
However, some midpoints are affected by two or fourtopological sectors is shown in Figs. 8 and 9. We compare
plagquettes from the same subgrid. Therefore, we choose ththe energies per charge with the calculations from Rif]
subgrids randomly rather than sequentially to avoid undin Table IlI.

wanted correlations. The results for the two-vacua model are the same for both
studies within an accuracy of a few parts irf 10he results
C. Results and comparison from Ref.[14] were obtained via the shooting method. We

. . . can apply this accurate method, because the Skyrmions are
o e e ol yrimeirc an the minmizson edces (0 3 10
the energy functional ' ' pro_blem. There is a slight discrepancy in energy V\_/hen com-
paring the one-vacuum model results. The energies in Ref.
_ o . [14] were obtained on a 2D lattice using a damped time
El¢]= f d?x{3d;i- 9 b+ 04 (9; - d; b)? evolution. The energy of the 1-Skyrmion calculated using the
shooting method i€=19.65 Skyrme energy units. Our SA
(3D 0D Dd:d % result agrees well with this value. The inaccuracies in Ref.
(2i9:5i9)(aid- S A+ BV(H)- (36 [14] arise due to a different derivative approximation, which
First, we looked at the simplest holomorphic model with
the potentialV=(1+ ¢3)*. There exists an explicit one- (2) (b)

soliton solution,

W=4/6,/265(x+iy), (37)

where theW field is the stereographic projection &fon the
complex plane, given byW=2(¢,+i¢,)(1—¢3) 1. We
choose 5= 6,=3, where the total energy equalsm@l
+8/3v2)~36.2618 Skyrme energy units. Since the soliton © (@
profile has a polynomial decay, we need a large lattice. With /
a 350x 350 grid and lattice spacing=0.05, we obtainE
=36.4890 Skyrme energy units af®=0.9999. Here, the
energy is slightly higher than the exact solution because of it R : T
the finite lattice effects. The holomorphic baby Skyrmion has i S it
the slowest decay of any of the models discussed, and there-“&# S
fore can be seen as the worst case scenario. FIG. 9. Baryon density plot with identical vertical scales. We

We have also looked at the baby Skyrme models with on@how the two-vacua Skyrmions of chargéal, 2 (b), 3 (c), and 4
vacuum, whereV=1+ ¢35, and two vacua, wher& =1  (d). The mesh spacing is 0.4 Skyrme length units, and the total area
- d)%. The parameters for the one-vacuum model have beepiotted is 2.0< 1.0 Skyrme length units squared in each figure.
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TABLE II. Baby Skyrme models: Comparison of our SA results with Euler-Lagrange results. The energy
E is given in Skyrme energy units and the baryon nunbés dimensionless.

One-vacuum model Two-vacua model
Topological SA Ref.[14] SA Ref.[14]
charge B E/B E/B B E/B E/B
1 0.99978 19.6505 19.47 0.999 89 19.6572 19.65
2 1.999 73 18.4452 18.27 1.999 84 17.6530 17.65
3 2.99962 18.5257 18.34 2.99983 17.2259 17.22
4 3.99952 18.4014 18.22 3.999 89 17.0677 17.07

tends to reduce the energy. The errors due to the fixedtructure. Specifically, we are interested in the class of po-
boundaries are also greater in Rff4], although this tends tentials that leads to radially symmetric multi-Skyrmions.
to increase the energy of the 1-Skyrmion. We believe that
periodic boundary conditions, which have been used for ou
SA result, have the advantage that the tails of the Skyrmion{sll' SIMULATED ANNEALING IN THREE DIMENSIONS
can spread out further. The finite lattice effects are still We have chosen the nuclear Skyrme mddéfor our 3D
present as Skyrmions could then interact with themselveSA implementation, because we believe that SA is a flexible
over the boundaries. For our SA model, a st{ii] on the  tool for exploring the multi-Skyrmion structure.
1-Skyrmion case shows that the grid size used induces an In the 1960s, Skyrme constructed an effective field theory
error of the order 0.01%. The error due to not having relaxe®f mesons where the baryons are the topological solitons of
the system properly is 0.01%. The largest error is due tahe theory. Research by 't Hooft and Witten has established
finite difference effects and has a possible size of 0.1%. Bethat the nuclear Skyrme model shows important similarities
cause of the successful agreement of our SA result for th& the low-energy effective Lagrangian of Q¢P9,30. The
1-Skyrmion with the result of the shooting method, it is be-1-Skyrmion can be interpreted as a nucleon with reasonable
lieved that the SA solutions with higher topological chargesucces$31]. The numerical work by Braaten, Townend, and
are also more accurate than the results quoted in[R4f.  Carson[32] and Battye and Sutcliffg33] on the structure of
Finally, we show an example of the cooling schedule for itsclassical multi-Skyrmions supports the idea that an appropri-
3-Skyrmion in Fig. 10. ate quantization of these minimal energy solutions for a
We studied three different baby Skyrme models. Changgiven topological sector could possibly lead to an effective
ing from one potential to the other could not have beerdescription of atomic nuclei. However, the calculation of
easier. In the case of the iterative techniques, changing thguantum properties of multi-Skyrmions is very difficult.
differential equation is in itself conceptually easy, but, inPartly this is due to the fact that these minimal energy solu-
practice, a lot of time is spent on getting the coefficients rightions are not radially symmetric and the theory is nonrenor-
and checking the derivation. For future research, we inten@halizable. This is rather frustrating, for the claim that the
to use SA to do a systematic check on the multi-SkyrmionSkyrme model, descending from a laiyeQCD approxima-
tion, models mesons, baryons, and higher nuclei is a very
attractive one. Numerical methods are probably the only way
forward and the SA scheme might be useful in exploring
further the multi-Skyrmion structure for different versions of
the Skyrme model.

A. The nuclear Skyrme model

The nuclear Skyrme Lagrangian

M»M—%[(%M%)Z—(aﬂaaﬁ)(aﬂaa%)s])

L=

N

is a straightforward extension of the nonlineamodel con-

FIG. 10. Baryon density plot of identical vertical scales. We taining an additional fourth order term called the Skyrme
show a SA cooling for the 3-skyrmion in the one-vacuum model:term. We need to include this extra term to ensure stability of
(a) the starting configuration(b) system is heated t8=500 and  the soliton. The mapping becomes
Skyrmions repel each other because their isospins are initially in the
same direction(c) isospins rotate relative to each other and Skyr-
mions attract each othefd) equilibrium has been reached fBr
=500; (e) system is cooled t@=5000; (f) minimal energy solu-
tion at3=cc. The mesh spacing is 0.4 Skyrme length units, and theMlore realistic Lagrangians should probably include higher-
total area plotted is 1:81.6 Skyrme length units squared in each order correction terms. The SA scheme is especially useful,
figure. because the extra term can be included trivially.

d(1):SP -3, (39
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B. Implementation small x, v~ x*/3. Therefore, the inversion is performed nu-

The 3D implementation is very similar to the 2D code andmericallyl by tab“',‘g‘“”gx uniformly on [0,7] ggainstvm
=[ y/2— 3 sin(2y)]*3. The y value corresponding to the se-

we will only mention new issues relevant to the 3D case. Or] redo® is found in this tabl dali int lation i
a 4D unit sphere, the integration measure is given by ectedv =" 1S found In this tablé, and a inear interpolation 1s
applied between the two nearest valuesvdf to give a

better approximation tg. Using 1000 precalculated entries
f . dxdydzdw the error on the whole regioy €[0,7] is then less than
unit sphere 10" 7. On the regiony [0,0.1], where almost the entire

selection ofy lies, the error is less than 18*, which corre-

27 T T

= J f j singsir’ y dpdody sponds to the precision of double real numbers. This method
=0/9=07x=0 does not create any significant errors and is time consuming.
27 (1 w2 No faster method seems to be possible.

=J f J' , d¢ dcosé As the cosines and sines ¢f 6, and y are known, the
=0Jcosf=—1J x/2—(1/4)sin(2x)=0

rotation can be performed using a rotation matrix similar to
Eg. (33). The new choice of vector in the intrinsic frame is

alX 1. ) :
X E—Zsm( X) given by

=int__ ,~int Jint Jint Jint
n"=(ny Nz ,nz",ny)

2 1 /2
- LZOJ :_1L:0d0du w. (40 =(siny sin @ cosg¢,siny sin @ sin ¢, siny cos#,cosy).

In order to rotate the new vector from the intrinsic frame to (42
the laboratory frame, the angjemust be evaluated from.  The 7 axis in the intrinsic frame coincides with'@

The equation = &Dresen(xk) in the laboratory frame, as in the baby Skyrme

y 1 model. The rotation angleg, a, and B (in that ordey are
V=5 Zsin( 2x) (41 defined by

“lab_ L e -
cannot be rewritten in terms of, and therefore it must be K (COSBSiNasiny,singsinasiny,cosa siny,cosy).

solved numerically. The observation that most solutions will ' (43
be in the region of smalk due to the importance sampling  The transformatiori™ to i’ is performed using the ma-
implies that a small approximation might be useful. For trix

n'ab cosa cosB —sinB sinacosBcosy sSinacosBsiny nint
nie cosasinf cosf  sinasingcosy sinasingsiny || nit w
lab | = . . int | . 44
ns —sina 0 COSa COSy cosa siny ns
nIab . I,]int
4 0 0 —siny cosy 4
|
For similar reasons to those already discussed previously, we b=2més, (46)

use a restricted transition probability to be uniform over

[0,A), whereA<m. The method of importance sampling \yhere¢, | ¢,, andé; are three random variables uniformly
has also been investigated for the nuclear Skyrme model and lab ;

o : . L g ~sampled from 0 to 1. The new vect&n(xk) =n"?"is a vector
is given in the Appendix. The transition probability is there that has been selected from a uniform probability distribution

for -
ore centered around the previous veciﬁg(xk)(=k'ab) where
1 ¥ 1 only the angley between these vectors has an upper limit.
—5 I S——sin(2y)<A Finally, é,(x,) and,(x,) are inserted into Eq30) to find
TOY[X)=4 47A 2 4 (45) the acceptance rate.FiAs in the baby Skyrme models, the value
0 otherwise. of A is automatically chosen to have an acceptance rate near
40%. The cooling is also controlled in the same manner as
The angles are sampled by described in 2D.

x 1. . i
v=5- ESIn(Z)()=A§1, C. Results and comparison
The 3D implementation of SA is computationally much
more intensive than the 2D case. The accuracy of our nu-

u=cosf=2§&,—1, merical simulations is therefore reduced due to limited re-
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(a) (b (©) TABLE Ill. The nuclear Skyrme model: SA versus published
results. The energ¥ is given in Skyrme energy units and the
baryon numbeB is dimensionless.

(d)

) SA Ref.[33]
Topological
charge B E/B B E/B
FIG. 11. Plot of the same constant baryon density surface. We 1 1.0015 73.75 0.984 72.96
show the first four multi-Skyrmion solutiortom left to right. All 2 2.0030 70.31 1.972 69.34
plots are to the same scale. The mesh spacing of the plotted objects 3 3.0042 68.52 2. 960 67.69
is 0.12 Skyrme length units. 4 40048 6630  3.948  66.09

sources in computation time and memory. The intergrid

spacing used is 0.12 Skyrme length units and is close to the - . .

upper limit where the numerics break dovat the reason- less accurat_e. The finite lattice effect increases the energy of
ably high temperature required to do SA sufficiently fast the 1-Skyrmion and therefore the energy obtained should be
The maximum grid size that can be used to obtain results i{grger than 73.12 Skyrme energy units. Unfortunately, we do
a reasonable time is 8080x 80. The finite volume causes NOt know which lattice parameters they have used, making a
an increase of energy for the 1-Skyrmion because it repelgood comparison impossible. However, we get the same
itself over the periodic boundary, and therefore induces afninimal energy structure.

error of 1%[10]. The error due to not having relaxed the

system properly is 0.1%. The error due to finite difference VII. CONCLUSION

effects has a maximum of 0.3%. ) ) .

The skyrmions of topological charge 1-4 are shown in W€ have shown that SA is an alternative way of finding
Fig. 11. We show an an example of the cooling schedule fof€ minimal energy solution in a given topological charge
the 4-Skyrmion in Fig. 12. These energies per charge argector. We independently confirmed the validity of the stud-
contrasted in Table Ill with those results obtained by Battyeles using the standard minimization techniques. It is very
and Sutcliffe[33]. It is very difficult to compare the results. hard to objectively compare the different approaches. How-
The 1-Skyrmion solution gives more information for com- ever, we have found SA to be a more convenient and flexible
parison. It is spherically symmetric and the shooting methodninimization technique. The implementation and fine-tuning
in the hedgehogAnsatz can be used. The energy of a of our SA codes took a fair amount of time due to a lack of
1-Skyrmion minimized in the 1D SA code iE=73.12 prior research in this area. In comparison to other methods,
Skyrme energy unitgin the continuous limjt We are not we are confident that future implementations will take us
sure if the result for the 1-Skyrmion in Reff33] is truly  considerably less time. We did not find any significant dif-
more accurate or just a coincidence. Their topologicakerences in speed of minimization. The SA codes can be
charge, an indicator for the discretization error, is Certain'ymade faster by fine-tuning the C00|ing parameters. We prefer
SA minimization because of its ease of use. Speed consider-
ations are irrelevant in 1D and 2D and we can use parallel
computing in the 3D case.

There are several areas we want to look at next. First of
all, we will optimize SA by using more sophisticated update
and cooling mechanisms and by parallelization. We are also
currently investigating the possibility of doing time evolution
via SA minimization of the action. At the same time, we
intend to look at a wide range of models. We shall investi-
gate the multi-Skyrmion structure of several baby Skyrme
models. Research is also underway in the use of symmetry
breaking terms for the nuclear Skyrme model. Moreover, the
2D and 3D codes will be used to study phase transitions in
the baby and nuclear Skyrme models at finite temperatures
and densitie$25]. To conclude, SA is a flexible tool; all we
really need is an energy functional to minimize.

FIG. 12. Plot of constant baryon density surface. We show a SA ACKNOWLEDGMENTS
search of thdB=4 Skyrmion:(a) the starting configuration of four
1-Skyrmions;(b) the system heated t6=500 where the Skyrmi- First of all, the authors would like to thank Niels Walet
ons fuse into one(c) the system in equilibrium g8=500 where ~ for his support and advice. We would also like to acknowl-
the structure emerge&) the minimal energy solution @#¢=. Al edge discussions with Klaus Gernoth, LaunJand Bernard

plots are to the same scale. The mesh spacing of the plotted objed®ette. The authors acknowledge PPARCH.) and EPSRC
is 0.1 Skyrme length units. (O.S. and T.W. for research grants.
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APPENDIX: IMPORTANCE SAMPLING =
P(C2)P(Cy)

For importance sampling, the integi@) is rewritten as q(Co|Cy) = ~ (A6)
P(C1)P(Cp)
<f‘>:f M P(c)dC. (A1) To implement this method, a Gaussian is chosen centered
|3(C) along thez axis in the intrinsic frame. This Gaussian is, in

terms of thez coordinate,
Here P(C) can be normalized without loss of generalization N
(see Ref[16]) and P(C) is a different probability density f=exd —A(1-cosf)*]=exd —A(1-2)%]. (A7)
function that satisfies

The integral
P(C)=0, fT:’(C)dC=1, (A2) 1
J Nexd —A(1-z)%]dz (A8)
-1
and
satisfies Eq(A2), whereN is a normalization constant arid
F(C)P(C) is an arbitrary parameter that changes the breadth of the
— < (A3)  Gaussian and thereby alters the acceptance rate. This is
P(C) sampled using the Box-Mier method, by choosing
except on a countable set of points. In this method one 1
chooses zf—’(C) that minimizes the variance, which is z=1— \/_K V—In & cog27éy)|, (A9)
2 2
var{(F)l= f MdC—(]—“)? (A4)  which is a shifted Gaussian so that the peak igz-atosé
P%(C) =1. All values ofz<—1 are rejected. The azimuth angle

is sampled uniformly alongd0, 27) by ¢=2w¢&;. The ac-
The measurement of statistical accuracy is given byeptance probability becomes
va{(F)}. More samples reduce the variance. Alternatively,
the same variance using fewer samples can be achieved with A(C,|Cy)=min(L,exqd — B(v,— v,) +A(1—2)?]),

importance sampling. In practice, the close(C) is to (A10)
f;({g)ﬁP(C), the smaller the variance becomes. It is knownusing Eqs(A6) and (A7),

F(C)P(C) 2. Nuclear Skyrme model

P(C)= A (AS5)

We do importance sampling by prioritizing smallvalues
and selectingl and ¢ with uniform probability. The smali-
then the integral is equal t& with zero variance. However, region corresponds to the smallregion. Importance sam-
we need to respect the constraii#2), and, even worse, pling is used because the newly selected four-dimensional
choosing P requires knowledge ofF) prior to evaluating unit vector should be in the neighborhood of the previous
the integral. vector. This new vector is selected in the intrinsic frame, as
discussed in Sec. V B, where the previous vector is pointing

1. Baby Skyrme models in the y=0 direction. A good probability distribution is

The application of importance sampling to the partition F=aAv. (A11)
function (26) is complicated, because the range of integration
is on a sphere of unit length. Therefore, we need to use Fhe quantityv is therefore selected using
P(¢(xy)) that is nonzero only on the unit sphere. Further,
the maximum or most likely area of accepted values depends S Eln[ exp{ _TAlZq
on the present vector, and theref&(a?)n(xk)) should not be A 2
restricted to a certain region of the sphere, but should depend ) . .
on the present vectoqip(xk). Looking at the results of a where ¢ is a uniform ra}ndom variable of0,1). The othgr
uniform probability distribution function on the sphere, aangles are sampled as in B46). The acceptance probability
Gaussian distribution of the polar angleseems to be a good now becomes

&1+1, (A12)

choice forP, where#=0 is in the direction of the present A(C,|Cy)=min(L,exd — B(Vy—V,) +Av]). (A13)
vector. This distribution is then rotated around the azimuths P
¢ axis and therefore thep distribution is uniform. The A similar probability distribution function can be used for

Gaussian-distributed and the uniformly distributedp de-  the baby Skyrme model and is faster than the given Gauss-
fine the probability for the new vector. This vector is insertedian. In practice, importance sampling is not used, because it
into F(C) as before, and the Metropolis algorithm accepts oris computationally more time consuming than restricting the
rejects this particular choice. The quantifys given by transition probability.
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