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Dynamics of quasicollapse in nonlinear Schrdinger systems with nonlocal interactions
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We study the effect of nonlocality on some dynamical properties of a self-focusing nonlocal nonlinear
Schralinger system. Using a combination of moment techniques, time dependent variational methods, and
numerical simulations, we present evidence in support of the hypothesis that nonlocal attractively interacting
condensates cannot collapse under very general forms of the interaction. Instead there appear oscillations of the
wave packet with a localized component whose size is of the order of the range of interactions. We discuss the
implications of the results to collapse phenomena in Bose-Einstein condensates.

PACS numbgs): 41.20.Jb, 05.45.Yv, 03.75.Fi

I. INTRODUCTION Presently only few rigorous results and some qualitative
estimates are available for particular cases. To our knowl-
When a system of weakly interacting bosons with twoedge, the only related field where nonlocal equations of non-
body interactions is cooled down below the Bose-Einsteirlinear Schrdinger (NLS) type have been studied in detail
transition temperature, it may be well described by the sand with mathematical rigor is scattering thedfy2], but
called Gross-Pitaevskii equation for the order parameter ofhat field is completely disconnected with our purposes here.
the superfluidV [1] This difficulty is the reason why all the theoretical efforts
related to a description of current experiments on Bose-
2 Einstein condensation have concentrated on the case where
ih—=—-=V2¥+V(n¥ the interactions between the constitutive bosons are very
2m short ranged, which is a good approximation for neutral at-
oms in normal situations. In this limit, to be described in
+U‘1’f K(r—r)|[W¥(r")|?dr’,  (1.1))  detail below, the interaction kernel is taken as a Digc
function, and Eq(1.1) becomes a local cubic NLS equation
for which many more things are known. There is, however,
wherem is the mass of the bosond,=4x#i2a/m character-  at least one situation where this approximation is not valid,
izes the two-body interactio,(r) is a real function describ- which is the case of collapse.
ing an external action on the system, ak@r—r’) is the The problem of collapses in nonlinear wave equations
function which possesses information on the mutual interacwas studied extensively in the literatyrE3—16. In the col-
tion between the bosons. This model has been long known ilapse phenomenon the amplitude of a physical quantity be-
the framework of the theory of ultracold systefi?d. Equa- comes infinite at a particular time, and usually the math-
tion (1.1 is a nonlocal, nonlinear wave equation whoseematical model is no longer representative of the physics of
analysis is not trivial. Only recently have there been studieshe problem. This is the case in many particular instances of
considering particular cases in the contexts of nonlinear opeollapses in plasma physi¢47], nonlinear optic§18], and
tics [3—6], Quantum mechanick7], electromagnetic wave many other examples.
self-action[8], and other field§9]. The applicability of these In the NLS equation the cubic nonlinearity arising in the
types of models has grown enormously after the experimenrcase of local interactions is characterized by a parameter, the
tal realization of Bose-Einstein condensation with ultracoldscattering lengtla, whose sign determines the type of inter-
atomic gase$10,11 for which they provide an accurate de- actions. Whemna<0 the interaction among the particles in
scription if the temperature is low enough. the condensate is attractive, and self-interaction leads to col-
lapse in dimensions higher than or equal tq1®-21], a
result expected from the usual case in NLS models without

*Electronic address: vperez@ind-cr.uclm.es external potentials\(=0). In fact, experiments which tried
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ticles [11] above which the condensate is unstable and de- Il. MATHEMATICAL MODEL
stroyed by the collapse phenomeridi,19—-2]. Despite the

difficulties of generating large negative scattering Iengthfor
condensates by evaporative coolifid,22 one might gen-

Let us specify the problem: introduce the normalization
¥ asN=[|¥|2 d®, and define the parabolic trapping

: . potential byV(r)=3mv?(\ix?+\Jy?+\22%) (see, e.g., in
erate .theT“ uilng Othﬁjr Sroc;]edgr[é‘_s,Zfl]. Infth'f case thz Ref.[20]). As discussed above, we keep the nonlocal inter-
questlc.)rrz Is what would be t e | ynarrlnlcs ora Tllrge con ?néction as it appears in the Hartree-Fock theory.

sate with a negative scattering length. Since collapse implies | ot s write the equations using the new variablgs

the generation of large amplitude localized density peaks, it _ — ot — 23N
is clear that the local interaction approximation breaks down (X0,Y0,20) = (x.y.2)/8o, 7= L, (ro) =(r) vag/N, and

and one has to consider the problem in more detail, includiné’lo: VAlmv. With these definitions Eq1.1) simplifies to

nonlocal interactions. There are other cases where nonlocal

interactions appear, such as Bose-Einstein condensates with -5_¢_ -~ E 2 E 2,232,240 3252
magnetic dipole forcef25]. Y9r T 2 Vout 7 (Xt Yot N2 Y
This is the motivation for our analysis, which will concern
the existence of collapse, and the dynamics of quasicollapse +U{f K(ro—r")|(r")|2dr’ |y, 2.
events, as well as other dynamical features of the problem. In

fact this problem is not completely new; three works concen-

trated on it previously. The first ori&] considered only the where U=4nNa/a,. The particular shape of the kernel
one-dimensional case, and is not relevant for our purposefunction depends strongly on the energy of the interaction
The second ong26] was devoted to an analysis of the caseand the geometry of the molecules involved. In general it is
without an external trapping foroé(r)=0. It was proven in  very difficult to know its precise shape except for very
Ref.[26] for several physically relevant particular potentials simple case$28].

that solutions realizing the absolute minimum of the respec- In this paper we are interested in basic general qualitative
tive nonlocal Hamiltonian are stable. To the best of ourresults, and we do not try to model the specific details of the
knowledge, Ref[26] is the first place where the idea that interaction for any particular atom. This is why we will con-
nonlocal interactions could suppress collapse may be foun@entrate on the simplest case where the kernel depends on
Finally, in the context of Bose-Einstein condensation thereone parametee, related to the kernel “size,” which charac-
was a work in which nonlocality effects were consideredterizes the range of interactions, such that

[27]. The authors used the gradient expansion to obtain a

local interaction energy, and then performed a time indepen- lim K(r)=8(r). 2.2

dent variational analysis with a Gaussian ansatz to conclude ¢
that nonlocal interactions could prevent collapse. However,

the results obtalned_ so far e'ther were based_on quglltatlvwe will concentrate on spherically symmetric interaction
arguments(the gradient expansion is not applicable in the

region where the narrowing of the wave packet is stopped kernels which model spherically symmetric molecules. The

or obtained for particular models and concentrated on statig 2" implication of this fact is that the kernel depends only

" - -
predictions. All of them leave open a question about th on the distance between two atorig|r — r]). Other possi

. . . " ilities were proposed in the literatuf25s].
dynamics of the nonlocal interacting condensate “near the h . il add in what foll is th
collapse.” The question we will address in what follows is the pos-

In our paper we complement qualitative arguments, justi-.SIbIIIty of blow-up with regular kernel&,, and the dynam-

fying that a nonlocal potential of @ather generaltype ics of processes related to cpncentration of _the solution of
should prevent collapse, by a time dependent variationa'1:'q'. (2.D). Th|s IS -a very mtncate 'mathematlc'al proplem,
analysis, numerical simulations, and the analysis of th h'.Ch even in the simplest-interaction _CaSéCUb'C nonh_n-
strongly nonlocal limit. Our interest will be twofold: first, earity has not been completely solved, only a few estimates

from the point of view of nonlinear science, we are interested” collapse conditions exist. Thus we wll not provide math-

in understanding the effect of nonlocal terms on the collaps g‘n"’;t'(;?]lg ggorrg;ifngzgogsr{a?ut}cg?l%/ejcohlgi nlhgetr(')caﬂnsd'g]rl;!g] d
problem; second, although the results are to appear in th PP y q

NLS equation in any field, we will interpret them from the the problem.
viewpoint of Bose-Einstein condensation phenomena, and

e—0

thus the external trapping potential will be included in our I1l. STRONGLY NONLOCAL LIMIT
model. o
Our detailed plan is as follows. In Sec. Il we present A. Qualitative arguments

model equations with a nonlocal term. A formal analysis of Let us start with some arguments showing that nonlocality
the strongly nonlocal limit analysis and wave packet widthof a rather general typecan prevent collapse. Although it is
evolution using the moment method is done in Sec. lll. Innot essential, the algebra is simplified by assuming cylindri-
Sec. IV we present some analytical approximations to obtaigally (\,= Ay=1) or spherically symmetric \y=Ay=X\,

a qualitative description of the collapse dynamics in all the=1) traps. We note that there exist at least two integrals of
regimes. In Sec. V we present the results of numerical simumotion of Eq.(2.1),

lations of the full model, and compare the results with ana-

lytical predictions of previous sections. Finally, in Sec. VI N:f |2 dr

(3.18

we summarize our conclusions.
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[r—r'| R(7)
wherep=|r| and andR(7) >0 for any 7 beforecollapse occursif it occurs).
On the other hand, one can use the inequality

J(r)zujK(r—r'>|¢<r'>|2dr', (3.2

()
which have the usual meaning of the intengitythe case of lr—r’|

Bose-Einstein condensation applications, it is interpreted as

the number of particlgsand the energy of the wave#,  proven in Ref[26], which means that for a localized wave
= 5H/6J). Let us now consider the situation “near” the function one can estimaf(7)~I, wherel is before a size of
collapse, assuming that the wave function is strongly locallocalization region. On the other hand, in the lirhit-0, the
ized. More precisely, it will be assumed that the localizationkinetic termV §y~1~2 becomes dominant, which means that
region of the solutiorl is much less than the range of the the dispersion dominates the nonlinearity which~ig~?*.
nonlocal interactiong, |<e [29]. Balance between these two effects takes place at $gme
First we concentrate on the case when the kernel functio® 0. Thus in the regime of strong localizatidire., the qua-
is nonsingular ar—0. Then in the leading approximation sicollapse regimethe equation describing the dynamics of

dr’ <2N¥3

| wlybzar

one can approximate the wave packet reads
J(r)=UNK(r)+0O(l/e). (3.3 Y 1, UNK(0)
i—=—-5sVoy+—— (3.7
ot 2 |eff

Making the natural suppositiofnot essential for the final
resuly that if collapse occurs it occurs a0 (i.e., at the
minimum of the confining potentialone finds the following
linear equation for the wave function:

oy 1
oy EVSIW' UNK(O0) . (3.4 B. Radially symmetric problem

[cf. Eq. (3.4)]. Thus all above arguments about the “near
collapse” behavior of the wave function can be applied to
this last case, as well.

Let us consider now a particular model wh&=K(p

In Eq. (3.4) we have neglected the confining potential, since— ') (we call it the radially symmetric problemThen it is
it is of order of|?y<1. also possible to argue that the collapse does not occur using

As itis evident, Eq(3.4) does not display collapse. More- the more conventional language of momelr@ta,30. To this

over, the dispersion will lead to spreading out of any initially end let us define the mean squared width of the wave packet,
localized wave packet.

On the other hand, if the widttp?) is much larger than *
the range of interactionls> ¢, the g’-)fgnction limit is appli- <p2>:277(n_1)f0 [4(p)|%p" " dp, (3.8
cable, and the dominant nonlinearity will lead to collapse.
Thus we conclude that there must exigb different tenden- wheren=2 and 3 is the spatial dimension. Then it is a
cies a spreading fot<e and a narrowing fot>e¢ of the  straightforward algebra to obtain
wave packet. This must lead to oscillations of the wave

packet width between different scales, the smaller one being d?

of the order of the interaction range, a fact which we analyze —(p*)=4H—4(p*)—4m(n—1)

below. As a matter of fact the limit< e opposite to the limit dr

of local interactions, and can be interpreted as the case of * 1

infinite range interactionK (r)=K(0). X Jo []2[ I(p)+ Ep\]'(p)}pn_ldp. (3.9

The above qualitative arguments can be generalized to the

case of a singular kemel, which we represent in the form In the limit of an infinite range of interactions, one findis

R(r—r") this limit J(p) =UNK(0)]
|r_rl| d2

—(p?)=4H—4(p?)—2UN?K(0). (3.10
dr

K(r—r")=

whereK (0)#0. Then Eq.(3.2) can be approximated by
The solution of Eq(3.10 reads

(p?)=p§sin(27+ o) +C, (3.12)

J(r)~UR(O)f (3.9

\|2
LAG0]
[r=r|
Next we observe that since the functions in the integranavhere C=H—UN?K(0)/2, andp, and ¢, are real con-
of the right hand side of this equation are positive, therestants. It follows from the energy conservation lgi&q.
exists a function onr, R(7), making sense of effective ra- (3.10] that atl—0 one has BI=UN?K(0)+(p?), i.e.,C
dius of the wave function, such that =(p?)/2. Combining the last estimate with E(B.11), one
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concludes thaC>p§ sin(2r+ ¢y). In other words{p?) is al- To simplify the problem, we restrict the shape of the func-
ways positive(p2)=0. This result rules out the possibility tion W to a convenient family of trial functions and study the
that there could exist a collapse in the sense that all théme evolution of the parameters that define that family. A

solution became concentrated on one particular feint, a  natural choice, which corresponds to the exact solution in the
5-like singularity). linear limit (U=0), ensures a good asymptotic behavior, and
has provided good results in our previous works on related

V. ANALYTICAL RESULTS FOR THE GENERAL CASE systemq 20,31], is ann-dimensional Gaussian-like function

A. Exact results for the center of mass

—[n—mcml® | .
It was pointed out in previous work81,37 that the cen- (xy,z,t)=A[] exp{ B +ina,+in’B,,
ter of mass, defined by K
(4.5

n
<ro>:f r||?dr, (4. where A (amplitude, w,, (width), a, (slope speed B,
(square root of the curvature radiugnd 7, (center of the
performs harmonic oscillations no matter what the nonlineagloud) are free parameters. We are considenngs a free
interaction is. This result is also valid for the nonlocal inter- parameter that can be set to 2 or 3 depending on the dimen-
action case under very general conditions, as follows fronsionality of the problem considered. In the applications of

the extension of Erhenfest theorem to our problem: these models to Bose-Einstein condensation phenomena,
many systems are three dimensional, however, in certain
d? situations a two-dimensional condensate can be considered a
E<Xo>+7\>2<<xo>:0, (428 good theoretical moddi37], and is easier to compare with

numerical simulations of Eq1.1). The procedure for deriv-
ing equations for the parameters has been described in pre-

2 vious works[20,31] and will not be repeated here.

— 2 =
d7.2<y°>+)\y<y°> 0, (4.2 To go on with the analysis, a particular shape must be
chosen for the kernel function. For simplicity, we will con-
d2 sider a simplen-dimensional Gaussian kernel of the form
—(20)+\(zo)=0. (4.29
dr 1 n/2
K(r)= e 12 4.6
To obtain additional exact information on this problem, one (") (27752) (4.9

possibility is to use the moment meth§83—-35 in radial

symmetry. Moreover, it can be seen that it does not providerhe main equations obtained when computing the evolution

gence approximatiof84] is not possible, and the only pos- \idth. To do this, it is useful to introduce a set of rescaled
sibility is to restrict to the classical time-dependent varia-ygriaples for time.r=rt. and the widthsw —a, (7
! ! n 7

tional techniques, which we consider in Sec. IVB. =x,y,2). For ann-dimensional condensate the equations are
found to be
B. Time dependent variational formalism
Following the standard procedure used extensively in the d%v, ) 1 Puy 1
framework of collapse problems for nonlinear Satinger S tNkE 3t oo A9
dr? vk vt ot T (vt 9)

equations[36], we first identify a Lagrangian density for
problem(1.1), which is
whereP=\2/mNa/a, (the strength of the atom-atom inter-

i o¥* gv\ h? action and 5= e/a,. The remainin t d
S x| 2 2 0- g parameters, and g3
L= 2 ( at v at + 2m|V\P| V(|| obey separate equations, but essentially can bg compljted in-
U dependently once,(t) are known.
T EJ K(r=r")|w(r)[2w(r|2dr’, 4.3 System(4.7) is generated by the Hamiltonian

[

where the asterisk denotes complex conjugation. That is, in- 4= % > l}fﬂr % > ( )\’f]vflJr i) +P]] ;
7 7
vi

stead of working with the Gross-Pitaevskii equation, we can 2 7 (vfﬁr 5212’

treat the action, (4.9
tt | -
_ 3, 4t — n terms of systent4.7), collapse corresponds to the behav
S J Ldrdt J LD dt, 4.4 ior whenv,—0. As a matter of fact the explicit expression

of the Hamiltonian already shows that collapse is prevented
wheret; andt; are initial and final times, and study its in- by nonlocal interactionsi.e., by nonzerod) in the frame-
variance properties and extrema, which are in turn solutionsvork of this simple model. Indeed one can easily see lthat
of Eq. (1.1). has a lower bounti=P/§".
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FIG. 1. PotentiaV/(v) for P=—10 andé=0.1. (a) Detail of the
small scale(b) Large scale.

C. 2D case: Equilibrium points and minimum width
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which is plotted in Figs. 1 and 2 for some particular param-
eter values. It can be seen that even wiers negative,
corresponding to negative scattering length, the potential is
repulsive at the origin, so that no blowup is possible.

The case of interest in applications is that of small
values. In this limit the potential has two scales. kor
=0() the parabolic term can be neglected, since the last
two terms are dominant. For=0(%) — O(% ) the last term
can be neglectetat least wherP is not large, and the po-
tential is dominated by the parabolic term. The existence of
two different length scales in the potential is also clear in
Figs. 1 and 2.

The equilibrium pointw, are the solutions of the alge-
braic equations

1 Pu

+—
ve  (v2+8%)?

(4.12

In the present section we will concentrate on two-
dimensional(2D) condensates for the sake of comparisonThe §=0 case was analyzed in R¢R0]; now the situation

with numerical simulations of Eq2.1), which will be pre-
sented in Sec. V. In this case the equations are

dzvx+>\2 + Pox (4.93
Uy=—% , .
dr? X Uf (Ui‘f’ 52)3/2(v§+ 52)1/2
d% 1 Puv
Y y2. _— y
a2 +)‘yvy_vs+ (v2+ 823y 2+ s2) 12’ (4.9
y y X

is quite different, since collapse is not possible. In a generic
case one can show that there exists only one positive root of
Eqg. (4.12. To this end we introduce a new varialdev/ 8

=e?%, and rewrite Eq(4.12 in the form

sinH 2(z+ z,)]cosit z—%PeZZ():O, (4.13

wheres=e? . The left hand side of this equation is a mono-
tonic function ofz and thus there exists only one real root of

Let us consider the case wheg=v,=v, which corresponds  gq_ (4.13. Moreover the root is finite fos# 0, which means
to a cylindrical symmetry around the center of the waveihat the collapse =0) is not possible. This result is in
function. When the solution has the symmetry of the eXtemaégreement with the considerations of Sec. III.

potential(i.e., ncy=0) this corresponds to the usual cylin-

Let us concentrate on the smallcase. To do this we

drically symmetric case, since the wave function amplitudejefine a new variable = (v/6)2>0, so that Eq(4.12 be-

depends only om. In this case the equations are simpler:

d%v N 1 N Pv 410
— tv=—"t—_5. .
dr? ve (V24 8%)?
This equation can be obtained from the potential
V(o) = 502 — ot (4.11)
V)= /0 — S T T .
20 207 202+ 6%
Vo) || @ ye)o
«10* gl 0!
-2
4L -3 (b)
0 20 40 60 80
v
0r Vs =0.0065
0 001 0.02 v 0.03 004 005

FIG. 2. PotentiaM(v) for P=—10 and§=0.01. (a) Detail of
the small scale(b) Large scale.

comes

1 . P
9®> (q+1)%

(4.19

Since we are going to deal with small values, we can
neglect the left hand sid88] and, after some algebra, obtain
the only equilibrium point asj, = 1/J[P|—1, provided|P|
>1, which implies that

(4.195

and is consistent with our previous assumptions on the linear
term. The fact that the equilibrium point depends linearly on
6 is interesting and provides a first estimate of the order of
magnitude of the turning point of the potential which is then
roughly O(8) for a wide range of initial energies. We would
like to point out that this estimate is a lower bound for the
minimum width, since it could happgas it doeg that there

is only part of the solution of Eq.1.1) which tends to col-
lapse, and then the contribution of the noncollapsing part
will make the width finite. In that case our estimate would
correspond roughly to the width of the collapsing peak.
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If |P|~1, Eq. (4.19 cannot be applied, since then the )
denominator can be small. In this case one obtains the law ) 1-5'\/\M/\/\/\/
_(91/2\1/3 ]
v, =(2796)"". 05
It is also possible to compute the frequency of the small I T - T R ¥R
oscillations around the potential minimum, which defines a t
time scale that could be of the order of oscillations found in O
the condensate dynamics due to the competition between u(t)ZMMﬂM/\/\/V\M[\AM{V\/\MU\MA/\f\MMM'
nonlocal dispersion and trapping forces: 1y
e S A T
\/ (302 - ) t
Q= 1+ vi * (Ui + 52)3' (4.16 FIG. 3. Width(a) and amplitudgb) oscillations in a supercriti-

cal condensate with = — 20 and5%=0.05. The frustrated collapse
An important feature of this formula is that the frequencyevents appear as peaks in the condensate amplitudaimum
grows asv, —0, i.e., as the range of interactiodsgoes to ~ heigh.

zero. Later we will check the validity of these predictions. .
sible that collapse does not take place, the compression of

the width due to frustrated collapse process is stronger than

D. 3D case: Equilibrium points and minimum width . -
that of the two-dimensional case.

Considering again the simplifying assumption that

=v,=v,=v, the dynamical equations in this case are
V. NUMERICAL RESULTS

2
d_U+v 1 Pu 4.17) The analyses of Secs. Il and IV share two common con-
d7'2 US (U2+ 52)5/2’

- clusions:(i) There should be a limit on the minimum width
of the wave packet, predicted to be of the order of the inter-

and the potential action range by the Gaussian ansatz approach{ianthere
must exist oscillations on the wave packet. In order to test
, 1 P these results and other predictions related to the dynamics of
V(v)= Pk + 2_02+m (418 the condensate which we obtained during our approximate

variational analysis, we have integrated numerically Eq.

As before, collapse can be ruled out, since the singularity ha&-1- In our numerical simulations we start with Gaussian
been removed. However the equilibrium point satisfies dnitial data, and then compute the solution using a symme-

more complicated equation trized second order in time Fourier pseudospectral method.
Typical grid sizes range from 128128 to 512512 points.
1 Py Simulation times in adimensional units were of the order of
vE St . (4.19 50-100(integration step\t=0.01), which allows us to cap-
v (v2+6%)52 i
ture all the relevant dynamical features.

In our numerical simulations we studied the regionlbf
values contained between the linear cdde=Q) and a large
value ofU=100, which is about ten times above the thresh-

(4.20 old for collapse in the local ca$&9]. In practice we worked
with 6°<[0.005,0.1.

The first conclusion of our analysis is that up to the pre-

and thed dependence df is nontrivial. Without making any cision of the computation we can conclude th@re is no

Again definingg=v?/ 52, the reduced equation is

54_

1+ P
a* 8(q+1)%?

approximations Eq(4.20 can be written as collapse in all the situations analyzeResults of a typical
5 5 <42 y o4 simulation are shown in detail in Fig. 3. Two things are
67(q+1)°(6"9°—=1)°—P=q"=0, (4.2 clear: first, the wave packet width oscillates with a minimum

width of orderO(1); second, the maximum amplitude of the

condensate performs oscillations with a dominant frequency.
One could expect that, according to E4.15, the mini-

mum width of the wave packet was of ord&rHowever, that

. 5 dth v simplifvi .~ ~'"would be the case if the entire wave function were involved
terms in Eq.(4.20, and the only simplifying assumption is i, yhe frystrated collapse events, which is not the case. As it

thatq<1, since we expect now that collapse is stronger tharlllappens, in collapse in the local nonlinear Sdimger equa-

before as is usuql in three-dimensional problems. Using thiﬁon only part of the wave function takes part in the squeez-
assumption we find thaf#/q”= —P, and thus ing dynamics, the remaining part being responsible for the
finite size width. In our case this is very clear in Fig. 4 where
L= (4.22 the two contributions to the solution are clearly seen, one
* |p|1/4' being of ordelO(1) and the other corresponding to a smaller

scalel.. It is also interesting how the low amplitude ex-

which is smaller than the two-dimensional equilibrium tended “inert part” oscillates according to the trap fre-
width. This is an indication that even though it seems plauguency, while the peak dynamics is ruled out by the nonlocal

whose solutions for eachP( ) pair provide the right equi-
libria v, . Now using thez variables as in Sec. IV C, one can
prove that there exists only one positive root of E421).

It is possible to investigate the orders of the different

55/ 4
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T@ e
1
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0.2
(.b) T T
Lsal?l —
[w(0,k, )l ) 01 5 02 0.3
-30 -10 30 " . . .
ky FIG. 6. Minimum width of the “collapsing” pari (the width

. ) of the small scale pealas a function ofs for U= —20. The circles
FIG. 4. (a) Trasversal section of the condensate amplitude gnresent the values obtained by the numerical simulations of Eq.
|l/_’(0'¥)| during a frustrated collapse event fo£0.4. The two con- 5 1) ang the solid line is a least squares interpolant, which proves
tributions to the solution are very clear. The spatial specttom the linear dependence an

also has signatures of the existence of two scales.

which again supports the variational analysis and provides

additional insight on the problef0].
dynamics, a phenomenon which is clear in the width oscil-

lations of Fig. 3, where the two frequencies are present in the VI. CONCLUSIONS
dynamics. In fact, the local oscillations were predicted in
Sec. lll, and also appear as oscillations in the potential Welbin
in the variational formalism. They correspond to “frustrated h
collapse” events, since if the nonlocality were not present,
the concentration dynamics would not stop at sdaléut
would continue up to infinity.

It is remarkable that even when the variational metho
does not take into account the existence of two scales,
least some of its predictions match reasonably well with the
simulated dynamics of Eq2.1). For example, Fig. 5 shows
the frequency of the amplitude oscillations of the condensat
as a function ofs (circles. The variational estimatesolid
line) are in qualitative agreement. This result cannot be im
proved in the framework of a simple variational analysis,
since it corresponds to the Gaussian ansatz, and is derive?
for the oscillations near the bottom of the potential well.

Another relevant prediction of the variational analysis is
the size of the small scalge generated during the quasicol-
lapse event, which should be of ord&iin two dimensions.
To check this we have estimated the width of the collapsin
peak using the small scale of the spatial representation of t
¢ plot and the long scale of the spatial spectra for differemin the framework of numerical simulations.
values ofé. Our resu_lts are summarized in Fig. 6_, were it can  Tha fact that there is no collapse in this system points out
be seen that the width of the peak depends linearlydpn ¢ the Hamiltonian is bounded below, as shown in Ref.
[26] for several relevant instances &f(r) in the system
without external forcesi.e. V(r)=0)]. Thus one may con-
struct a ground state for this system so that stationary states
could probably be obtained. This fact could find applications
in the framework of ultracold gases, where it could imply the
existence of large stable negative scattering length conden-
sates.

Our study was restricted to symmetric kernels. It is also of
significant interest to consider models with essentially anyso-
tropic nonlocal kernels. In the case when nonlocal interac-
tions exist along all threé@n the 3D casgor two (in the 2D
case directions, the qualitative arguments presented in Sec.
Il still hold, and nonlocal interactions should prevent col-

FIG. 5. Oscillation frequency of the condensétécles for U lapse. The most interestin@t least from a mathematical
= — 20 and different values against the variational estiméelid  point of view) situation appears when nonlocality is present
line). only in one or two(in the 3D casgdirections, while in other

In this paper we have studied a nonlocal nonlinear Schro
ger equation including a parabolic external potential. We
ave studied several characteristics of the dynamics of the
quasicollapse” processes. The analytical tools combine an
exact analysis of the highly nonlocal limit, moment analysis,
nd collective coordinate analysis. Even though we do not
resent rigorous proofs, the predictions of all methods match
tonsistently in support of our predictions.

Some of the analytical predictions were based upon the
assumption of cylindrical or spherical symmetry of the wave
function, although it is easy to generalize the results to other
symmetries. From numerical solutions one sees that radially
‘symmetric solutions are stable, and no asymmetric instabili-
ies grow when one starts with symmetric initial data. In fact,

the context of local NLS equation collapse phenomena
seem to be radially symmetric proce$dg].

The analytical predictions were tested with a numerical
scheme. Up to the range in which the numerical simulations
can be trusted, we find a verification of all of our analytical
redictions. Other relevant features of the dynamics such as
e splitting of the solution on two different parts are found
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