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Dynamics of quasicollapse in nonlinear Schro¨dinger systems with nonlocal interactions
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We study the effect of nonlocality on some dynamical properties of a self-focusing nonlocal nonlinear
Schrödinger system. Using a combination of moment techniques, time dependent variational methods, and
numerical simulations, we present evidence in support of the hypothesis that nonlocal attractively interacting
condensates cannot collapse under very general forms of the interaction. Instead there appear oscillations of the
wave packet with a localized component whose size is of the order of the range of interactions. We discuss the
implications of the results to collapse phenomena in Bose-Einstein condensates.

PACS number~s!: 41.20.Jb, 05.45.Yv, 03.75.Fi
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I. INTRODUCTION

When a system of weakly interacting bosons with tw
body interactions is cooled down below the Bose-Einst
transition temperature, it may be well described by the
called Gross-Pitaevskii equation for the order paramete
the superfluidC @1#

i\
]C

]t
52

\2

2m
¹2C1V~r !C

1UCE K~r2r 8!uC~r 8!u2dr 8, ~1.1!

wherem is the mass of the bosons,U54p\2a/m character-
izes the two-body interaction,V(r ) is a real function describ
ing an external action on the system, andK(r2r 8) is the
function which possesses information on the mutual inter
tion between the bosons. This model has been long know
the framework of the theory of ultracold systems@2#. Equa-
tion ~1.1! is a nonlocal, nonlinear wave equation who
analysis is not trivial. Only recently have there been stud
considering particular cases in the contexts of nonlinear
tics @3–6#, Quantum mechanics@7#, electromagnetic wave
self-action@8#, and other fields@9#. The applicability of these
types of models has grown enormously after the experim
tal realization of Bose-Einstein condensation with ultrac
atomic gases@10,11# for which they provide an accurate de
scription if the temperature is low enough.
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Presently only few rigorous results and some qualitat
estimates are available for particular cases. To our kno
edge, the only related field where nonlocal equations of n
linear Schro¨dinger ~NLS! type have been studied in deta
and with mathematical rigor is scattering theory@12#, but
that field is completely disconnected with our purposes he
This difficulty is the reason why all the theoretical effor
related to a description of current experiments on Bo
Einstein condensation have concentrated on the case w
the interactions between the constitutive bosons are v
short ranged, which is a good approximation for neutral
oms in normal situations. In this limit, to be described
detail below, the interaction kernel is taken as a Diracd
function, and Eq.~1.1! becomes a local cubic NLS equatio
for which many more things are known. There is, howev
at least one situation where this approximation is not va
which is the case of collapse.

The problem of collapses in nonlinear wave equatio
was studied extensively in the literature@13–16#. In the col-
lapse phenomenon the amplitude of a physical quantity
comes infinite at a particular time, and usually the ma
ematical model is no longer representative of the physics
the problem. This is the case in many particular instance
collapses in plasma physics@17#, nonlinear optics@18#, and
many other examples.

In the NLS equation the cubic nonlinearity arising in th
case of local interactions is characterized by a parameter
scattering lengtha, whose sign determines the type of inte
actions. Whena,0 the interaction among the particles
the condensate is attractive, and self-interaction leads to
lapse in dimensions higher than or equal to 2@19–21#, a
result expected from the usual case in NLS models with
external potentials (V50). In fact, experiments which tried
to generate Bose-Einstein condensates, with atoms ha
negative scattering lengths found a critical number of p
4300 ©2000 The American Physical Society
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PRE 62 4301DYNAMICS OF QUASICOLLAPSE IN NONLINEAR . . .
ticles @11# above which the condensate is unstable and
stroyed by the collapse phenomenon@11,19–21#. Despite the
difficulties of generating large negative scattering len
condensates by evaporative cooling@11,22# one might gen-
erate them using other procedures@23,24#. In this case the
question is what would be the dynamics of a large cond
sate with a negative scattering length. Since collapse imp
the generation of large amplitude localized density peak
is clear that the local interaction approximation breaks do
and one has to consider the problem in more detail, includ
nonlocal interactions. There are other cases where nonl
interactions appear, such as Bose-Einstein condensates
magnetic dipole forces@25#.

This is the motivation for our analysis, which will conce
the existence of collapse, and the dynamics of quasicolla
events, as well as other dynamical features of the problem
fact this problem is not completely new; three works conc
trated on it previously. The first one@5# considered only the
one-dimensional case, and is not relevant for our purpo
The second one@26# was devoted to an analysis of the ca
without an external trapping forceV(r )50. It was proven in
Ref. @26# for several physically relevant particular potentia
that solutions realizing the absolute minimum of the resp
tive nonlocal Hamiltonian are stable. To the best of o
knowledge, Ref.@26# is the first place where the idea th
nonlocal interactions could suppress collapse may be fou
Finally, in the context of Bose-Einstein condensation th
was a work in which nonlocality effects were consider
@27#. The authors used the gradient expansion to obta
local interaction energy, and then performed a time indep
dent variational analysis with a Gaussian ansatz to conc
that nonlocal interactions could prevent collapse. Howev
the results obtained so far either were based on qualita
arguments~the gradient expansion is not applicable in t
region where the narrowing of the wave packet is stoppe!,
or obtained for particular models and concentrated on st
predictions. All of them leave open a question about
dynamics of the nonlocal interacting condensate ‘‘near
collapse.’’

In our paper we complement qualitative arguments, ju
fying that a nonlocal potential of arather general type
should prevent collapse, by a time dependent variatio
analysis, numerical simulations, and the analysis of
strongly nonlocal limit. Our interest will be twofold: first
from the point of view of nonlinear science, we are interes
in understanding the effect of nonlocal terms on the colla
problem; second, although the results are to appear in
NLS equation in any field, we will interpret them from th
viewpoint of Bose-Einstein condensation phenomena,
thus the external trapping potential will be included in o
model.

Our detailed plan is as follows. In Sec. II we prese
model equations with a nonlocal term. A formal analysis
the strongly nonlocal limit analysis and wave packet wid
evolution using the moment method is done in Sec. III.
Sec. IV we present some analytical approximations to ob
a qualitative description of the collapse dynamics in all
regimes. In Sec. V we present the results of numerical si
lations of the full model, and compare the results with a
lytical predictions of previous sections. Finally, in Sec.
we summarize our conclusions.
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II. MATHEMATICAL MODEL

Let us specify the problem: introduce the normalizati
for C as N5* uCu2 d3r , and define the parabolic trappin
potential byV(r )5 1

2 mn2(lx
2x21ly

2y21lz
2z2) ~see, e.g., in

Ref. @20#!. As discussed above, we keep the nonlocal int
action as it appears in the Hartree-Fock theory.

Let us write the equations using the new variablesr0

5(x0 ,y0 ,z0)5(x,y,z)/a0 , t5nt, c(r0)5C(r )Aa0
3/N, and

a05A\/mn. With these definitions Eq.~1.1! simplifies to

i
]c

]t
52

1

2
¹0

2c1
1

2
~lx

2x0
21ly

2y0
21lz

2z0
2!c

1UF E K~r 02r 8!uc~r 8!u2dr 8Gc, ~2.1!

where U54pNa/a0. The particular shape of the kerne
function depends strongly on the energy of the interact
and the geometry of the molecules involved. In general i
very difficult to know its precise shape except for ve
simple cases@28#.

In this paper we are interested in basic general qualita
results, and we do not try to model the specific details of
interaction for any particular atom. This is why we will con
centrate on the simplest case where the kernel depend
one parametere, related to the kernel ‘‘size,’’ which charac
terizes the range of interactions, such that

lim
e→0

Ke~r !5d~r !. ~2.2!

We will concentrate on spherically symmetric interacti
kernels which model spherically symmetric molecules. T
main implication of this fact is that the kernel depends on
on the distance between two atoms,K(ur2r 8u). Other possi-
bilities were proposed in the literature@25#.

The question we will address in what follows is the po
sibility of blow-up with regular kernelsKe , and the dynam-
ics of processes related to concentration of the solution
Eq. ~2.1!. This is a very intricate mathematical problem
which even in the simplestd-interaction case~cubic nonlin-
earity! has not been completely solved; only a few estima
on collapse conditions exist. Thus we will not provide ma
ematically rigorous proofs, but only join numerical simul
tions and approximate analytical techniques to underst
the problem.

III. STRONGLY NONLOCAL LIMIT

A. Qualitative arguments

Let us start with some arguments showing that nonloca
of a rather general typecan prevent collapse. Although it i
not essential, the algebra is simplified by assuming cylind
cally (lx5ly51) or spherically symmetric (lx5ly5lz
51) traps. We note that there exist at least two integrals
motion of Eq.~2.1!,

N5E ucu2 dr , ~3.1a!
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H5
1

2E „u¹cu21J~r !ucu21r2ucu2
… dr , ~3.1b!

wherer5ur u and

J~r !5UE K~r2r 8!uc~r 8!u2 dr 8, ~3.2!

which have the usual meaning of the intensity~in the case of
Bose-Einstein condensation applications, it is interpreted
the number of particles! and the energy of the wave (ict

5dH/dc̄). Let us now consider the situation ‘‘near’’ th
collapse, assuming that the wave function is strongly loc
ized. More precisely, it will be assumed that the localizat
region of the solutionl is much less than the range of th
nonlocal interactionse, l !e @29#.

First we concentrate on the case when the kernel func
is nonsingular atr→0. Then in the leading approximatio
one can approximate

J~r !5UNK~r !1O~ l /e!. ~3.3!

Making the natural supposition~not essential for the fina
result! that if collapse occurs it occurs atr50 ~i.e., at the
minimum of the confining potential!, one finds the following
linear equation for the wave function:

i
]c

]t
52

1

2
¹0

2c1UNK~0!c. ~3.4!

In Eq. ~3.4! we have neglected the confining potential, sin
it is of order of l 2n!1.

As it is evident, Eq.~3.4! does not display collapse. More
over, the dispersion will lead to spreading out of any initia
localized wave packet.

On the other hand, if the widtĥr2& is much larger than
the range of interactionsl @e, the d-function limit is appli-
cable, and the dominant nonlinearity will lead to collap
Thus we conclude that there must existtwo different tenden-
cies: a spreading forl !e and a narrowing forl @e of the
wave packet. This must lead to oscillations of the wa
packet width between different scales, the smaller one be
of the order of the interaction range, a fact which we anal
below. As a matter of fact the limitl !e opposite to the limit
of local interactions, and can be interpreted as the cas
infinite range interactions,K(r )[K(0).

The above qualitative arguments can be generalized to
case of a singular kernel, which we represent in the form

K~r2r 8!5
K̃~r2r 8!

ur2r 8u

whereK̃(0)Þ0. Then Eq.~3.2! can be approximated by

J~r !'UK̃~0!E uc~r 8!u2

ur2r 8u
dr 8. ~3.5!

Next we observe that since the functions in the integra
of the right hand side of this equation are positive, th
exists a function ont, R(t), making sense of effective ra
dius of the wave function, such that
as

l-

n

e

.

e
g
e

of

he

d
e

E uc~r 8!u2

ur2r 8u
dr 85

N

R~t!
~3.6!

andR(t).0 for anyt beforecollapse occurs~if it occurs!.
On the other hand, one can use the inequality

E uc~r 8!u2

ur2r 8u
dr 8<2N1/2S E ~¹ucu!2dr D 1/2

proven in Ref.@26#, which means that for a localized wav
function one can estimateR(t); l , wherel is before a size of
localization region. On the other hand, in the limitl→0, the
kinetic term¹0

2c; l 22 becomes dominant, which means th
the dispersion dominates the nonlinearity which is; l 21.
Balance between these two effects takes place at somel e f f
.0. Thus in the regime of strong localization~i.e., the qua-
sicollapse regime! the equation describing the dynamics
the wave packet reads

i
]c

]t
52

1

2
¹0

2c1
UNK̃~0!

l e f f
c. ~3.7!

@cf. Eq. ~3.4!#. Thus all above arguments about the ‘‘ne
collapse’’ behavior of the wave function can be applied
this last case, as well.

B. Radially symmetric problem

Let us consider now a particular model whenK[K(r
2r8) ~we call it the radially symmetric problem!. Then it is
also possible to argue that the collapse does not occur u
the more conventional language of momenta@21,30#. To this
end let us define the mean squared width of the wave pac

^r2&52p~n21!E
0

`

uc~r!u2rn11dr, ~3.8!

where n52 and 3 is the spatial dimension. Then it is
straightforward algebra to obtain

d2

dt2
^r2&54H24^r2&24p~n21!

3E
0

`

ucu2FJ~r!1
1

2
rJ8~r!Grn21dr. ~3.9!

In the limit of an infinite range of interactions, one finds@in
this limit J(r)5UNK(0)]

d2

dt2
^r2&54H24^r2&22UN2K~0!. ~3.10!

The solution of Eq.~3.10! reads

^r2&5r0
2 sin~2t1f0!1C, ~3.11!

where C5H2UN2K(0)/2, and r0 and f0 are real con-
stants. It follows from the energy conservation law@Eq.
~3.1b!# that at l→0 one has 2H>UN2K(0)1^r2&, i.e., C
>^r2&/2. Combining the last estimate with Eq.~3.11!, one



y
th

ea
r
om

ne

id
e
-
ia

th

r

, i
a

-
on

c-
e
A
the
nd
ted

en-
of
ena,
tain
ed a
h

pre-

be
-

tion
the

ed

are

r-

d in-

v-
n
ted

t
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concludes thatC>r0
2 sin(2t1f0). In other wordŝ r2& is al-

ways positive^r2&>0. This result rules out the possibilit
that there could exist a collapse in the sense that all
solution became concentrated on one particular point~e.g., a
d-like singularity!.

IV. ANALYTICAL RESULTS FOR THE GENERAL CASE

A. Exact results for the center of mass

It was pointed out in previous works@31,32# that the cen-
ter of mass, defined by

^r0&5E r ucu2dr , ~4.1!

performs harmonic oscillations no matter what the nonlin
interaction is. This result is also valid for the nonlocal inte
action case under very general conditions, as follows fr
the extension of Erhenfest theorem to our problem:

d2

dt2
^x0&1lx

2^x0&50, ~4.2a!

d2

dt2
^y0&1ly

2^y0&50, ~4.2b!

d2

dt2
^z0&1lz

2^z0&50. ~4.2c!

To obtain additional exact information on this problem, o
possibility is to use the moment method@33–35# in radial
symmetry. Moreover, it can be seen that it does not prov
exact results for our case. Even the use of the uniform div
gence approximation@34# is not possible, and the only pos
sibility is to restrict to the classical time-dependent var
tional techniques, which we consider in Sec. IV B.

B. Time dependent variational formalism

Following the standard procedure used extensively in
framework of collapse problems for nonlinear Schro¨dinger
equations@36#, we first identify a Lagrangian density fo
problem~1.1!, which is

L5
i\

2 S C
]C*

]t
2C*

]C

]t D1
\2

2m
u¹Cu21V~r !uCu2

1
U

2 E K~r2r 8!uC~r !u2uC~r 8!u2 dr 8, ~4.3!

where the asterisk denotes complex conjugation. That is
stead of working with the Gross-Pitaevskii equation, we c
treat the action,

S5E L d3r dt5E
t i

t f
L~ t ! dt, ~4.4!

where t i and t f are initial and final times, and study its in
variance properties and extrema, which are in turn soluti
of Eq. ~1.1!.
e

r
-

e
r-

-

e

n-
n

s

To simplify the problem, we restrict the shape of the fun
tion C to a convenient family of trial functions and study th
time evolution of the parameters that define that family.
natural choice, which corresponds to the exact solution in
linear limit (U50), ensures a good asymptotic behavior, a
has provided good results in our previous works on rela
systems@20,31#, is ann-dimensional Gaussian-like function

C~x,y,z,t !5A)
h

expH 2@h2hCM#2

2wh
2

1 ihah1 ih2bhJ ,

~4.5!

where A ~amplitude!, wh ~width!, ah ~slope speed!, bh
~square root of the curvature radius!, andh0 ~center of the
cloud! are free parameters. We are consideringn as a free
parameter that can be set to 2 or 3 depending on the dim
sionality of the problem considered. In the applications
these models to Bose-Einstein condensation phenom
many systems are three dimensional; however, in cer
situations a two-dimensional condensate can be consider
good theoretical model@37#, and is easier to compare wit
numerical simulations of Eq.~1.1!. The procedure for deriv-
ing equations for the parameters has been described in
vious works@20,31# and will not be repeated here.

To go on with the analysis, a particular shape must
chosen for the kernel function. For simplicity, we will con
sider a simplen-dimensional Gaussian kernel of the form

K~r !5S 1

2pe2D n/2

e2r2/2e2
. ~4.6!

The main equations obtained when computing the evolu
equations for these kinds of systems are those related to
width. To do this, it is useful to introduce a set of rescal
variables for time,t5nt, and the widthswh5a0vh (h
5x,y,z). For ann-dimensional condensate the equations
found to be

d2vk

dt2
1lk

2vk5
1

vk
3

1
Pvk

vk
21d2 )

h

1

~vh
21d2!1/2

, ~4.7!

whereP5A2/pNa/a0 ~the strength of the atom-atom inte
action! and d5e/a0. The remaining parametersah and bh
obey separate equations, but essentially can be compute
dependently oncevk(t) are known.

System~4.7! is generated by the Hamiltonian

H5
1

2 (
h

v̇h
21

1

2 (
h

S lh
2vh

21
1

vh
2 D 1P)

h

1

~vh
21d2!1/2

.

~4.8!

In terms of system~4.7!, collapse corresponds to the beha
ior whenvk→0. As a matter of fact the explicit expressio
of the Hamiltonian already shows that collapse is preven
by nonlocal interactions~i.e., by nonzerod) in the frame-
work of this simple model. Indeed one can easily see thaH
has a lower boundH>P/dn.
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C. 2D case: Equilibrium points and minimum width

In the present section we will concentrate on tw
dimensional~2D! condensates for the sake of comparis
with numerical simulations of Eq.~2.1!, which will be pre-
sented in Sec. V. In this case the equations are

d2vx

dt2
1lx

2vx5
1

vx
3

1
Pvx

~vx
21d2!3/2~vy

21d2!1/2
, ~4.9a!

d2vy

dt2
1ly

2vy5
1

vy
3

1
Pvy

~vy
21d2!3/2~vx

21d2!1/2
. ~4.9b!

Let us consider the case whenvx5vy5v, which corresponds
to a cylindrical symmetry around the center of the wa
function. When the solution has the symmetry of the exter
potential~i.e., hCM50) this corresponds to the usual cylin
drically symmetric case, since the wave function amplitu
depends only onr . In this case the equations are simpler:

d2v

dt2
1v5

1

v3
1

Pv

~v21d2!2
. ~4.10!

This equation can be obtained from the potential

V~v !5
1

2
v21

1

2v2
1

P

2~v21d2!
, ~4.11!

FIG. 1. PotentialV(v) for P5210 andd50.1. ~a! Detail of the
small scale.~b! Large scale.

FIG. 2. PotentialV(v) for P5210 andd50.01. ~a! Detail of
the small scale.~b! Large scale.
-

al

e

which is plotted in Figs. 1 and 2 for some particular para
eter values. It can be seen that even whenP is negative,
corresponding to negative scattering length, the potentia
repulsive at the origin, so that no blowup is possible.

The case of interest in applications is that of smalld
values. In this limit the potential has two scales. Forv
5O(d) the parabolic term can be neglected, since the
two terms are dominant. Forv5O(`)2O(`d) the last term
can be neglected~at least whenP is not large!, and the po-
tential is dominated by the parabolic term. The existence
two different length scales in the potential is also clear
Figs. 1 and 2.

The equilibrium pointsv* are the solutions of the alge
braic equations

v5
1

v3
1

Pv

~v21d2!2
. ~4.12!

The d50 case was analyzed in Ref.@20#; now the situation
is quite different, since collapse is not possible. In a gene
case one can show that there exists only one positive roo
Eq. ~4.12!. To this end we introduce a new variablez, v/d
5ez, and rewrite Eq.~4.12! in the form

sinh@2~z1z0!#cosh2 z2
1

4
Pe2z050, ~4.13!

whered5ez0 . The left hand side of this equation is a mon
tonic function ofz and thus there exists only one real root
Eq. ~4.13!. Moreover the root is finite fordÞ0, which means
that the collapse (v50) is not possible. This result is in
agreement with the considerations of Sec. III.

Let us concentrate on the smalld case. To do this we
define a new variableq5(v/d)2.0, so that Eq.~4.12! be-
comes

d 45
1

q2
1

P

~q11!2
. ~4.14!

Since we are going to deal with smalld values, we can
neglect the left hand side@38# and, after some algebra, obta
the only equilibrium point asq* 51/AuPu21, provideduPu
.1, which implies that

v* .
d

AAuPu21
, ~4.15!

and is consistent with our previous assumptions on the lin
term. The fact that the equilibrium point depends linearly
d is interesting and provides a first estimate of the order
magnitude of the turning point of the potential which is th
roughlyO(d) for a wide range of initial energies. We woul
like to point out that this estimate is a lower bound for t
minimum width, since it could happen~as it does! that there
is only part of the solution of Eq.~1.1! which tends to col-
lapse, and then the contribution of the noncollapsing p
will make the width finite. In that case our estimate wou
correspond roughly to the width of the collapsing peak.
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If uPu'1, Eq. ~4.15! cannot be applied, since then th
denominator can be small. In this case one obtains the
v* 5(21/2d)1/3.

It is also possible to compute the frequency of the sm
oscillations around the potential minimum, which defines
time scale that could be of the order of oscillations found
the condensate dynamics due to the competition betw
nonlocal dispersion and trapping forces:

V5A11
3

v
*
3

1P
~3v

*
2 2d2!

~v
*
2 1d2!3

. ~4.16!

An important feature of this formula is that the frequen
grows asv* →0, i.e., as the range of interactionsd, goes to
zero. Later we will check the validity of these predictions

D. 3D case: Equilibrium points and minimum width

Considering again the simplifying assumption thatvx
5vy5vz5v, the dynamical equations in this case are

d2v

dt2
1v5

1

v3
1

Pv

~v21d2!5/2
, ~4.17!

and the potential

V~v !5
1

2
v21

1

2v2
1

P

3~v21d2!3/2
. ~4.18!

As before, collapse can be ruled out, since the singularity
been removed. However the equilibrium point satisfies
more complicated equation

v5
1

v3
1

Pv

~v21d2!5/2
. ~4.19!

Again definingq5v2/d2, the reduced equation is

d 45
1

q2
1

P

d~q11!5/2
, ~4.20!

and thed dependence ofq is nontrivial. Without making any
approximations Eq.~4.20! can be written as

d2~q11!5~d 4q221!22P2q450, ~4.21!

whose solutions for each (P,d) pair provide the right equi-
libria v* . Now using thez variables as in Sec. IV C, one ca
prove that there exists only one positive root of Eq.~4.21!.

It is possible to investigate the orders of the differe
terms in Eq.~4.20!, and the only simplifying assumption i
thatq!1, since we expect now that collapse is stronger th
before as is usual in three-dimensional problems. Using
assumption we find thatd/q252P, and thus

v* .
d5/4

uPu1/4
, ~4.22!

which is smaller than the two-dimensional equilibriu
width. This is an indication that even though it seems pl
w

ll
a

en

as
a

t

n
is

-

sible that collapse does not take place, the compressio
the width due to frustrated collapse process is stronger t
that of the two-dimensional case.

V. NUMERICAL RESULTS

The analyses of Secs. III and IV share two common c
clusions:~i! There should be a limit on the minimum widt
of the wave packet, predicted to be of the order of the int
action range by the Gaussian ansatz approach; and~ii ! there
must exist oscillations on the wave packet. In order to t
these results and other predictions related to the dynamic
the condensate which we obtained during our approxim
variational analysis, we have integrated numerically E
~2.1!. In our numerical simulations we start with Gaussi
initial data, and then compute the solution using a symm
trized second order in time Fourier pseudospectral meth
Typical grid sizes range from 1283128 to 5123512 points.
Simulation times in adimensional units were of the order
50–100~integration stepDt50.01), which allows us to cap
ture all the relevant dynamical features.

In our numerical simulations we studied the region ofU
values contained between the linear case (U50) and a large
value ofU5100, which is about ten times above the thres
old for collapse in the local case@39#. In practice we worked
with d2P@0.005,0.1#.

The first conclusion of our analysis is that up to the p
cision of the computation we can conclude thatthere is no
collapse in all the situations analyzed. Results of a typical
simulation are shown in detail in Fig. 3. Two things a
clear: first, the wave packet width oscillates with a minimu
width of orderO(1); second, the maximum amplitude of th
condensate performs oscillations with a dominant frequen

One could expect that, according to Eq.~4.15!, the mini-
mum width of the wave packet was of orderd. However, that
would be the case if the entire wave function were involv
in the frustrated collapse events, which is not the case. A
happens, in collapse in the local nonlinear Schro¨dinger equa-
tion only part of the wave function takes part in the sque
ing dynamics, the remaining part being responsible for
finite size width. In our case this is very clear in Fig. 4 whe
the two contributions to the solution are clearly seen, o
being of orderO(1) and the other corresponding to a smal
scale l c . It is also interesting how the low amplitude ex
tended ‘‘inert part’’ oscillates according to the trap fr
quency, while the peak dynamics is ruled out by the nonlo

FIG. 3. Width~a! and amplitude~b! oscillations in a supercriti-
cal condensate withU5220 andd250.05. The frustrated collaps
events appear as peaks in the condensate amplitude~maximum
height!.



ci
th
in
e

ed
en

o
,
th
s
a

im
is
riv

is
l-

in
f t
en
an

des

ro
e

the
an
is,
not
tch

the
ve
her
ially
bili-
ct,
na

cal
ns
al
as

nd

out
ef.

ates
ns
he
en-

of
so-
ac-

ec.
l-
l
nt

d Eq.
ves
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dynamics, a phenomenon which is clear in the width os
lations of Fig. 3, where the two frequencies are present in
dynamics. In fact, the local oscillations were predicted
Sec. III, and also appear as oscillations in the potential w
in the variational formalism. They correspond to ‘‘frustrat
collapse’’ events, since if the nonlocality were not pres
the concentration dynamics would not stop at scalel c but
would continue up to infinity.

It is remarkable that even when the variational meth
does not take into account the existence of two scales
least some of its predictions match reasonably well with
simulated dynamics of Eq.~2.1!. For example, Fig. 5 show
the frequency of the amplitude oscillations of the condens
as a function ofd ~circles!. The variational estimates~solid
line! are in qualitative agreement. This result cannot be
proved in the framework of a simple variational analys
since it corresponds to the Gaussian ansatz, and is de
for the oscillations near the bottom of the potential well.

Another relevant prediction of the variational analysis
the size of the small scalel c generated during the quasico
lapse event, which should be of orderd in two dimensions.
To check this we have estimated the width of the collaps
peak using the small scale of the spatial representation o
c plot and the long scale of the spatial spectra for differ
values ofd. Our results are summarized in Fig. 6, were it c
be seen that the width of the peak depends linearly ond,

FIG. 4. ~a! Trasversal section of the condensate amplitu
uc(0,y)u during a frustrated collapse event fort.0.4. The two con-
tributions to the solution are very clear. The spatial spectrum~b!
also has signatures of the existence of two scales.

FIG. 5. Oscillation frequency of the condensate~circles! for U
5220 and differentd values against the variational estimate~solid
line!.
l-
e

ll

t

d
at
e

te

-
,
ed

g
he
t

which again supports the variational analysis and provi
additional insight on the problem@40#.

VI. CONCLUSIONS

In this paper we have studied a nonlocal nonlinear Sch¨-
dinger equation including a parabolic external potential. W
have studied several characteristics of the dynamics of
‘‘quasicollapse’’ processes. The analytical tools combine
exact analysis of the highly nonlocal limit, moment analys
and collective coordinate analysis. Even though we do
present rigorous proofs, the predictions of all methods ma
consistently in support of our predictions.

Some of the analytical predictions were based upon
assumption of cylindrical or spherical symmetry of the wa
function, although it is easy to generalize the results to ot
symmetries. From numerical solutions one sees that rad
symmetric solutions are stable, and no asymmetric insta
ties grow when one starts with symmetric initial data. In fa
in the context of local NLS equation collapse phenome
seem to be radially symmetric proceses@42#.

The analytical predictions were tested with a numeri
scheme. Up to the range in which the numerical simulatio
can be trusted, we find a verification of all of our analytic
predictions. Other relevant features of the dynamics such
the splitting of the solution on two different parts are fou
in the framework of numerical simulations.

The fact that there is no collapse in this system points
that the Hamiltonian is bounded below, as shown in R
@26# for several relevant instances ofK(r ) in the system
without external forces@i.e. V(r )50)]. Thus one may con-
struct a ground state for this system so that stationary st
could probably be obtained. This fact could find applicatio
in the framework of ultracold gases, where it could imply t
existence of large stable negative scattering length cond
sates.

Our study was restricted to symmetric kernels. It is also
significant interest to consider models with essentially any
tropic nonlocal kernels. In the case when nonlocal inter
tions exist along all three~in the 3D case! or two ~in the 2D
case! directions, the qualitative arguments presented in S
III still hold, and nonlocal interactions should prevent co
lapse. The most interesting~at least from a mathematica
point of view! situation appears when nonlocality is prese
only in one or two~in the 3D case! directions, while in other

e

FIG. 6. Minimum width of the ‘‘collapsing’’ partl c ~the width
of the small scale peak! as a function ofd for U5220. The circles
represent the values obtained by the numerical simulations of
~2.1! and the solid line is a least squares interpolant, which pro
the linear dependence ond.
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directions the kernel is local. This problem seems to be n
trivial, and must be studied separately.

From a fundamental point of view our analysis is, to o
knowledge, the first systematic study of the behavior of
effect of nonlocal interacting Bose-Einstein condensates,
ing into account different aspects: variational analysis, m
ment approximations, and numerical techniques. We h
this study will provide a new understanding of the comp
phenomena involved in nonlocal nonlinear wave equatio
v
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