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Collective topological dynamics in the Frenkel-Kontorova chains
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Topological dynamics of an array of harmonically coupled damped dc-driven nonlinear oscillators are
studied by introducing a dynamical contraction factor and a deviation factor. Different dynamical transitions
are identified, and topological changes for these transitions are studied. A bifurcation from the kink state to the
kink-antikink-pair state is found, which relates the topological change to the spatiotemporal dynamics of the
system. The presence of antikinks leads to the extension of the localized kink, and collisions of kinks and
antikinks induce strong oscillations of the topology of the array.

PACS numbd(s): 45.05+x, 05.45—-a, 74.40+k, 74.50+r

[. INTRODUCTION It was shown that there is a gap between the low- and high-
velocity regimes(LVR and HVR), where motions within

There has been a great tide of interest in recent years ithese two regimes are distinguished by two types of wave
exploring collective behaviors of coupled nonlinear systemspropagations. In the LVR, the motion is dominated by the
with spatiotemporally competing interactiofs,2] in relat-  |ocalized solitary wavékinks). Due to the discreteness of the
ing to a number of practical problems in phys[&-5], bi-  array, the velocity of the array may experience numerous
ology [6], and chemistry{7]. The Frenkel-KontorovdFK)  resonant steps as one increases the external driif17).
model, which describes an array Nfsingle pendula inter- |n the HVR, the moving kink is strongly extended, where the
acting with the harmonic nearest-neighboring coupling, maywhirling instability induces resonances in the HVR.
be one of the simplest capable of capturing the essential fea- |n spite of numerous studies in LVR and HVR, a quanti-
tures of the competitive interactiop8]. In the damped case, tative description of the topology of the array is still lacking.
when the array is driven by a constant external force, thegspecially, it is an interesting issue about the configurational

equation of motion can be written as follows: dynamics of the chain varying with external parameters and
the manifestation of the topology during dynamical transi-
0+ y€i+sin 0,=K(0,1—26,+6,_)+]. (1) tions[19]. The studies of these problems may shed light on

collective behaviors of coupled systems with spatiotemporal
. competitions. The configurational behaviors of the spatially
Here 6; denotes the phase of théh oscillator, andg; its  modulated systems such as the FK model have been fully
corresponding phase velocity, K, and| are the friction studied in relating to the ground-state problem and the
coefficient, coupling strength, and constant driving force, recommensurate-incommensurate phase transitions. As for the
spectively. The frustrationg= a/2m, which relates to the topological dynamics of the array under various influences, it
spring constant, does not appear in E@L), but this param- was shown that kink-antikink pairs dominate between the
eter may play a significant role in the dynamics of systemHVR and LVR, and the kink instability at high velocities
(2). leads to the hysteresis effd@2]. Also, rich spatiotemporal
Despite its simplicity, the dynamical FK model has beenbehaviors were revealed in these regifie8). It is our task
fully investigated in relating to a number of problems, suchin this paper to study in depth the collectit@pological dy-
as coupled pendulgg], charge-density wavegd.0], nanotri-  namics of the damped case under the influence of a constant
bology and surface probleni$1], the heat-conduction prob- force. In this paper, @ynamical contraction factoand de-
lem [12], synchronization$13], coupled ratchet§l4], and viation factorare introduced, which serve as valuable order
Josephson-junction arrays and laddéss]. The ground state parameters in describing the motion of the system in a uni-
of the FK model has been exhaustively explored over thdied way. These two factors in fact originate from the same
past few decadepl6]. Dynamics of the FK model under coherence function, while they possess completely different
various external influences such as dissipations, external dshysical meanings. A dynamical bifurcation from the kink
and ac forces, and noises have been studied and abundanbtion to kink-antikink collisions is found in terms of the
dynamical transitions and phase-locking behaviors were obxemporal oscillation of the dynamical contraction factor. This

served[5,17,18. bifurcation closely relates to changes in the spatiotemporal

Under a constant drivi the array may possess a nonzerodynamics of the array. The kink loses its stability via a cas-

value of the average velocity defined by cade of transitions from the moving kink to the emergence of
antikinks.

1 N 1T The arrangement of the present paper is as follows. In

Q=—> lim —f l9,—(t)dt. (2)  Sec. ll, a dynamical contraction factor is introduced to de-

N =11, Tlo scribe the dynamics of the topological compression of the
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1.2 monic coupling. This type of collective stick-slip motion has
| 1@ been well studied for coupled systems. The oscillatory tails
‘0__ f around the 2r kink can be observed in Fig(d). This oscil-
0.8 & lation is a consequence of the discreteness of the l4Ridle
S Under certain conditions, the kink motion and radiated pho-
} 0.6 I1=04 iy non waves may become phase-locked, leading to quantized
=] I=0z [=0 velocity steps under the driving foréeFor very large, the
0‘4'_ I kink is strongly extended, as shown in Figb}, where par-
0.2 / ticles are distributed almost uniformly between 0 and 1. The
1 : j I distinct difference between Figs.(@ and Xb) implies a
0.0 N b ooonesS drastic transition in the topology of the array.
0 20 40 60 80 100 To describe the topological behavior of the array, it is
j instructive to introduce the following coherence function:
1.0 N
. 1 .
1® Rexdie(H)]= 1 2 exdif(b)], 3)
0.8 N =
& 06 whereR(t) is a typical coherence factor in studies of phase
e ] entrainment of coupled limit cyclels7,21]. ¢(t) denotes a
i 1=07 collective phase anddenotes the imaginary index. By sepa-
S— 0‘4_ . . .
rating the real and the imaginary pags ,(t), one may re-
02 write the above expression as follows:
‘ i N
1
0.0+ But)= 5 2 cogb;(1)], @
0 20 40 60 80 100 =1
J
1 N
_ FIQ. 1. T_WO _types of kinks. The conflgur_atlon (a) is a Iocgl- Bo(t)= N Z sin gj(t)]_ (5)
ized kink, lying in the LVR, and the topological structure(in) is =1
an extended kink in the HVR. Oscillations {a) can also be ob- ) ) )
served on the tail of the kink. The time average 0B, (t) can be accordingly defined:
kink_, e_md a deviation_ factor is also appligd to measure the (Bi(1)= lim EfTﬁi(t)dt, =12, ©
deviation of the velocity-force characteristics from the linear T T Jo

Ohm’s law. We investigate the time-averaged behaviors

varying with the external driving force. Temporal behaviorsit is interesting that the formula g8,(t) is very similar to
of these two quantities are presented in Sec. Ill, where wehe definition of the contraction factg8y, introduced in
connect their temporally collective behaviors with spatiotem{17], and 8,(t) depicts the dynamical features of the topol-
poral patterns of the system. We show that the generation &gy of the lattice. Therefore, we calt;(t) the dynamical
the kink-antikink pairs may reduce the localization of the contraction factor(DCF). Usually the value of3; lies be-
array, and the collision between kinks and antikinks WOU'dtween Oand 1. A |argqﬁ1 |mp||es a stronger localization of

lead to strong oscillations of the array. Section IV gives athe kink, as shown in Fig.(&). For a very small, one may
concluding remark. Throughout the paper 0.1 (the under-  expect

damped caseand K= 1.0 (moderate couplingare adopted.

Periodic boundary conditions are considered, it.,n(t) (B1(t))=~BumE- @)

= 0;(t)+27M, whereM is the number of geometric kinks

(twists) trapped in the array. Thus the frustratiés M/N, In Fig. 2,(B,) is plotted byadiabatically varying | for

and the static length of the harmonic chain shouldde casess=1/100 and 34/89 ~(3—5)/2]. The hysteresis

=274. loop can be clearly observed. Fé=1/100 in Fig. 2a),
when | is not large,{B,) remains almost constant, whose

IIl. THE CONTRACTION AND DEVIATION BEHAVIORS value is approximately equal {Bye. This is in agreement

with the expectatin 7 . As onéfurther increasel a decrease

The motion of the FK array under the driving of the dc of (8,) may be observed, indicating that the array becomes
external forcel is dominated by the collective kink motion. less localized, while a localized kink solution still persists.
In Fig. 1, topological configurations of the array at someAn abrupt transition occurs &t=0.65, wherg 8,) suddenly
time t=ty>1 are given for different driving forces fax drops to a small negative value. This change corresponds to
=100 andM = 1. For relatively small, it is shown in Fig. the transition from the LVR to the HVR, where the localized
1(a) that almost all particles are localized at 0 or 1, i.e., akink becomes extended. Whébecomes very large, the har-
particle may stay in the potential well for a long time before monic array moves uniformly with the velocit=1/vy
it jumps to another well. As one particle jumps into a newalong the periodic potential. One may approximately write
well, the adjacent particles follow this jump due to the har-the steady solution of Eq(l) as 6;(t)=+aj+(1/y)t,



4296 ZHIGANG ZHENG AND BAMBI HU PRE 62

............................................. ﬂMF (a) 7 { \\\\ } * .

R 8=1/100

Eﬁj{m (b) I !
FIG. 3. The same relation as Fig. 3 in the HVR. The axes are

labeled by the logarithm scale. Power law can be clearly seen. A
Bur fitting line is also drawn for an easy observation.

value By [see the part above the dashed line in Figp) R

The increase of the contraction factor indicates that the array
is further localized as an external driving is applied. This
stronger localization comes from the interaction of the mul-
tiple trapped kinkdi.e., M>1) and the phonons, and a rea-
sonable theoretical interpretation of this collective suppres-
I sion is still open. The DCF becomes the largest in the
interval | =0.3—0.35 and decreases as one goes on adiabati-

FIG. 2. The relation between the average D@ (t)) and the

external dc drive for (a) §=1/100 andb) 6=34/89. A decrease in cally increasing. . )
(@) in the LVR can be clearly observed, while {b) the relation Now let us focus on the discussion @h(t). Under a

exhibits a multiple-peak behavidsee the regions denoted by ar- given external forcd, 6;(t) oscillates around the averaged

kaV\Il(S) Oggik?ating_ fr031 trflle resonant b?hak\]/iOY bf_twegr the movingphase velocity. One expects the time averagefyft) may

ink and the radiated phonon waves. In the multistable region, sev - > _ ,

eral different regimes IC():an be identified. ’ have small contributions, "e<ﬂj(.t)>~0' By averaging Eq.
(1) over both time and lattices on both hands and

omitting the second-derivative term, we gey()

+(1/N)Z(sin g(t))=1. Recalling the definition ofB,(t),

one obtains

where s is an arbitrary constant phase. As»«, by insert-
ing it into Eqgs.(4) or (2), we may easily get

1 N
ﬁl(t):Re{N > exdi 0j(t)]] =0. (8 (B,(1))= % > (sin 6;())=1— Q. (10)
J

=1

For a finitel, as shown in Fig. 28,<0, which is not a For a large drivind, the motion of the array obeys an Ohm'’s
finite-size effect and depends & M/N. The negative con- law, i.e.,Q=1/y and{B,(t))=0. Therefore{B,(t)) in fact
traction factor corresponds to another type of weak localizadescribes the deviation of the system from this linear
tion different from the low-velocity kink3,; approaches 0 velocity-force relation. We call this quantity thgeviation
when | is increased to infinity. It is shown in Fig. 3 for factor (DF). In Fig. 4 we give relationg3,)—1 for &
different frustrations that3.(t)) vs| obeys the same power =1/100 and 34/89. A large parameter region shows a devia-
law: tion from the Ohm’s law(see the nonzero DF in Fig).4This
deviation behavior comes from the resonance between the
(Ba(t)yoc—1729 (99  moving kink and its radiated phonon waves, leading to a
weak dependence @& on I. It is interesting to note that in
As one adiabatically decreasédrom a large value{B;)  the HVR, we have(B,)=0 while {8,)#0. This indicates
jumps to a positive value &t=0.42, and several intermediate that although the motion of the array obeys the linear
transitions to higher values occur by further decreading velocity-force law, theopologyof the array still “feels” the
These intermediate states occur beyond the LVR and HVRperiodic substrate due to the discreteness of the lattice. In
Each step denotes a robust topology of the array due to thieig. 4, theoretical lines are shown by dashed lines. The
resonance. Whehis decreased to approximately 0(13;) agreement between the numerical simulation and theoretical
jumps back to the low-velocity branch. argument is quite good.

Similar transition is also shown fa¥=34/89 in Fig. 2b), It is interesting that the hysteresis effect manifests itself in
with a much larger negative value in the HVR. For the casahe topological structure of the array. This indicates that hys-
5= 34/89, there exists a large parameter regiorl of the teresis in the velocityor, mobility) force characteristics re-
LVR that the (81) is much higher than the ground-state sults from the structural robustness of the array. Especially,
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Ni rical result
umericat resu FIG. 5. Time evolution of the DCEB,(t) for N=100 andM

Theoretical line =1 for different cases(a) 1=0.1; (b) 1=0.2; (c) 1=0.4; (d) |
=0.5. From(b) to (d), one may notice the large-amplitude fluctua-
tion around an average value, resulting from the kink-antikink in-
teractions. More frequent flutuations indicate higher concentration
of the kink-antikink pairs. Ir(d), the contraction factor decreases to
a small negative value, indicating the transition to the HVR.

given at some timé=t, for | =0.2, N=100, andM =1. As
I compared to Fig. (&), the configuration possesses a hump
and a valley, which are composed of three kinks and two
; ; _ ) antikinks. This observation coincides with the spatiotemporal
force I, where §5=1/100 in(a) and §=34/89 in(b). Linear devia-

. . i attern in Fig. @), where there are three lines with the nega-
tions frpm t_he linear Ohm's law are clearly shown. The_ dasheoﬁve slope and two lines with positive slope. An antikink
theoretical lines(B,)=1—yQ are in perfect agreement with nu-

merical results. d_escribes the minimally possible, topologically sta@l@en-
sion of the commensurate structuf22,23. The localized
) ) ) kink is stretched due to the presence of antikinks, thus
the topology of the array still persists as weak noises areg, (t)) decreases. This interprets the behavior of the aver-
applied. This has been numerously tested in simulations. age DCF in Fig. 5. The antikink moves toward theposite
direction of the kink motion and collides with kinks. As soon
as a kink collides with an antikink, thg; ,(t) experience
strong oscillations in a pulsed manner. More kink-antikink
pairs are generated and collisions occur more frequently
To explore the dynamics of the system and get a bettewhen the driving force increases. This leads to stronger
understanding of topological changes described above, it is
pertinent to investigate the temporal behaviors of these two 100
factors. In Fig. 5, we give the time evolution gf (t) for gO4 My
[=0.1, 0.2, 0.4, and 0.5. Initial values are randomly given.
For smalll, both 8,(t) and B,(t) approach positive values
with very small-amplitude oscillations. Ak increases, the A
temporal behavior of these factors becomes complicated 201
When| changes from 0.1 to 0.2, large-amplitude pulselike :
oscillations are superimposed on the small oscillation back- 100
ground, and meanwhile the average valygh (t)) de- 801
crease. With further increasing the large-amplitude oscil-
lation occurs more frequently. This type of oscillation
implies strong fluctuations in the topology of the kink, sig-
nifying a dynamical bifurcation to a new topological state. 20
To reveal the origin of this oscillation, let us explore the
spatiotemporal behavior of the system. In Fig&)66(d),
we plot the spatiotemporal patterns corresponding to cases il

Figs. Ha)—5(d) with the same initial conditions. The black kG, 6. The spatiotemporal patterns corresponding to the cases
line represents lower values of ¢6gt)]. A moving kink can in Fig. 2. Collisions of kinks and antikinks can be observed from
be clearly observed. In Fig () for | =0.2, antikinks, which  (b), and the interactions become more frequent with increasing the
propogate toward the opposite direction of kinks, can beic forcel in (c). In (d), kink-antikink collisions induce an ava-
found. In Fig. 7, a profile of the configuration of the array is lanche, finishing in a totally running state.

FIG. 4. The average DRg,(t)) varies with the external dc

I1l. KINK-ANTIKINK INTERACTION INDUCED
DYNAMICAL TRANSITIONS

Lattice
N
o
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FIG. 7. A profile of the configuration of the array for=100, 0‘%.05 ' 0_'1 " 015 020 025
M=1, andl=0.2. Different from the topology fot=0.2 in Fig. I

1(a), antikinks are observed.

FIG. 9. The oscillation amplitude of the DCF against the exter-

pulselike oscillations. At the same time the average contracr]al dc force. A bifurcation from the localized kink state to the

tion factor decreases due to the stretching effect of antikinksnk-antikink-pair state is observed with the scaling expongnt

In Fig. 6(d), we give a case at the onset of the transition from™ S

the LVR to HVR. One may find that many kink-antikink

pairs are generated, and meanwhile collisions between kinksolution loses its stability by bifurcating the first antikink.
and antikinks excite more pairs. This avalanche behavioThe second dynamical bifurcation takes placetatl5,
eventually leads to a complete extension of the af28].  where another antikink is excited. A=22 and 28, the third
The avalanche in Fig.(6) corresponds to the decrease of and fourth antikinks bifurcate from the dominating kink. A
B1(t) [ B2(1)] to a small negative valugero in Fig. 5(d). A cascade of kink-antikink emergence leads to the extension of
very strong oscillation in the intervai=200-300 indicates a the array. The excited bundles of kinks and antikinks collide
drastically frequent collision of kinks and antikinks. In Fig. 8 gd excite more pairs. As the dominant kink and antikink
we show the loss of stability of the kink by plotting the 1, nqles collide at~60, the chain becomes fully extended,
evolution of the DCF and the spatiotemporal patternFor corresponding to a drastic decrease/ft) to zero. This
=0.7, N=100, andM=1. The system evolves from the dynamical bifurcation cascade implies a cascade of losses of
ground statek =0, #;=0). When a large force is applied at stapjility of kink and kink-antikink states, which manifests on
t=0, the trapped kink begins to move along the chain. Thishe evolution ofg,(t) (note the first four peaks correspond-
leads to a drastic oscillation ¢#,(t), whose minimum val- g 1o the bifurcation poins A theoretical study of this sce-
ues decrease through zero and touch the negative zone. TReyiq of bifurcations is very important in understanding the

phase velocity of the array increases with the time. For highy stersis behavior. This is under exhaustive investigations
velocities, the kink may lose stability. At~10, the kink

now.
To better show the dynamical transition from the kink

10 state to the kink-antikink-pair state, it is intuitive to quanti-

03] (a) tatively investigate the oscillation behavior gf(t). We re-

0'6 write B1(t) =(B1)+AB1(t) and AB,=maxAB(t)|. In Fig.
] 9, we give the relation betweehB; and| for the cased
S04 =1/100. It can be found that &t=1., a new positive branch

0.2+ bifurcates from the nearly zero branch with the scaling law,

0.0 S

0.2

' ' ' 80 100 ABr=(1=10)%, (13)
(b)
' "s s where the exponeng§=0.5. As shown in Fig. 6, the large

pulselike oscillations originate from the interaction of kinks
and antikinks. Therefore, this dynamical bifurcation just cor-
responds to the emergence of kink-antikink pairs. The non-
zero branch may coexist with the kink-antikink branch in a
/ large parameter regime éfdue to the multistability of the
' system. The kink-antikink states correspond to intermediate
states between the localized kiflkVR) and extended kink
(HVR) states. On this branch, more kink-antikink pairs can
FIG. 8. (a) The evolution ofg,(t) for 1=0.7 andN=100, M  be excited as one increasksand this in consequence leads
=1.(b) The corresponding spatiotemporal pattern. Antikinks bifur-to the strong fluctuation of the topological configuration of
cate from the moving kink, corresponding to the peakgg(t). the array and the relaxation of the kink compression.
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IV. CONCLUDING REMARKS ful in explorations of collective dynamics of coupled oscil-
lators. On the other hand, because these two quantities relate

Itis an interesting and Important issue to introduce Ny the average on lattices, the detailed dynamics of local
appropriate quantity to characterize the topology of the armaYattices cannot be accurately studied by applying them one at

In this paper, we define a dynamical contraction factor to_ .. : )
describe the topological change of the kink and a deviatio a time. A collaboration of spatiotemporal patterns and the

. . . 'ber (DF) is necessary.
factor to depict the nonlinear effect of the velocity-force re- Because the Frenkel-Kontorova model corresponds to a

gfé‘r‘e:crz]:sfzgtvc\)l (r) %%Eﬁgt':f: aﬁgvgosfr'é C%?#:gﬁ? V:\'tzig;%umber of real situations such as charge-density waves, Jo-
’ y purely pny .sephson junction arrays and ladders, coupled pendula, and so

implications. We show that the average DCF exhibits transron’ the method and behaviors proposed in this paper are

tions corresponding to '_topological Chan_ges. The kink is fur'expected to be well applied to these experimental studies.
ther compressed when it moves for the incommensurate case.

In the HVR, we show that although the motion of the array

on average obeys the Ohm’s law, the topology still feel the ACKNOWLEDGMENTS
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