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Collective topological dynamics in the Frenkel-Kontorova chains
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Topological dynamics of an array of harmonically coupled damped dc-driven nonlinear oscillators are
studied by introducing a dynamical contraction factor and a deviation factor. Different dynamical transitions
are identified, and topological changes for these transitions are studied. A bifurcation from the kink state to the
kink-antikink-pair state is found, which relates the topological change to the spatiotemporal dynamics of the
system. The presence of antikinks leads to the extension of the localized kink, and collisions of kinks and
antikinks induce strong oscillations of the topology of the array.

PACS number~s!: 45.05.1x, 05.45.2a, 74.40.1k, 74.50.1r
s
m

a
fe
,
th

re

em

en
ch

-

th
r
l
d
o

ro

igh-

ave
he
e
us

he

ti-
g.
nal
nd

si-
on
ral
lly

fully
the
r the
, it

the
s
l

tant

er
ni-

me
ent
k

e
is

oral
s-
of

. In
e-

the
I. INTRODUCTION

There has been a great tide of interest in recent year
exploring collective behaviors of coupled nonlinear syste
with spatiotemporally competing interactions@1,2# in relat-
ing to a number of practical problems in physics@3–5#, bi-
ology @6#, and chemistry@7#. The Frenkel-Kontorova~FK!
model, which describes an array ofN single pendula inter-
acting with the harmonic nearest-neighboring coupling, m
be one of the simplest capable of capturing the essential
tures of the competitive interactions@8#. In the damped case
when the array is driven by a constant external force,
equation of motion can be written as follows:

ü i1gu̇ i1sinu i5K~u i 1122u i1u i 21!1I . ~1!

Here u i denotes the phase of thei th oscillator, andu̇ i its
corresponding phase velocity.g, K, and I are the friction
coefficient, coupling strength, and constant driving force,
spectively. The frustration,d5a/2p, which relates to the
spring constanta, does not appear in Eq.~1!, but this param-
eter may play a significant role in the dynamics of syst
~1!.

Despite its simplicity, the dynamical FK model has be
fully investigated in relating to a number of problems, su
as coupled pendula@9#, charge-density waves@10#, nanotri-
bology and surface problems@11#, the heat-conduction prob
lem @12#, synchronizations@13#, coupled ratchets@14#, and
Josephson-junction arrays and ladders@15#. The ground state
of the FK model has been exhaustively explored over
past few decades@16#. Dynamics of the FK model unde
various external influences such as dissipations, externa
and ac forces, and noises have been studied and abun
dynamical transitions and phase-locking behaviors were
served@5,17,18#.

Under a constant driveI, the array may possess a nonze
value of the average velocity defined by

V5
1

N (
j 51

N

lim
T→`

1

TE0

T

u̇ j~ t !dt. ~2!
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It was shown that there is a gap between the low- and h
velocity regimes~LVR and HVR!, where motions within
these two regimes are distinguished by two types of w
propagations. In the LVR, the motion is dominated by t
localized solitary wave~kinks!. Due to the discreteness of th
array, the velocity of the array may experience numero
resonant steps as one increases the external drivingI @15,17#.
In the HVR, the moving kink is strongly extended, where t
whirling instability induces resonances in the HVR.

In spite of numerous studies in LVR and HVR, a quan
tative description of the topology of the array is still lackin
Especially, it is an interesting issue about the configuratio
dynamics of the chain varying with external parameters a
the manifestation of the topology during dynamical tran
tions @19#. The studies of these problems may shed light
collective behaviors of coupled systems with spatiotempo
competitions. The configurational behaviors of the spatia
modulated systems such as the FK model have been
studied in relating to the ground-state problem and
commensurate-incommensurate phase transitions. As fo
topological dynamics of the array under various influences
was shown that kink-antikink pairs dominate between
HVR and LVR, and the kink instability at high velocitie
leads to the hysteresis effect@22#. Also, rich spatiotempora
behaviors were revealed in these regimes@18#. It is our task
in this paper to study in depth the collectivetopologicaldy-
namics of the damped case under the influence of a cons
force. In this paper, adynamical contraction factorandde-
viation factorare introduced, which serve as valuable ord
parameters in describing the motion of the system in a u
fied way. These two factors in fact originate from the sa
coherence function, while they possess completely differ
physical meanings. A dynamical bifurcation from the kin
motion to kink-antikink collisions is found in terms of th
temporal oscillation of the dynamical contraction factor. Th
bifurcation closely relates to changes in the spatiotemp
dynamics of the array. The kink loses its stability via a ca
cade of transitions from the moving kink to the emergence
antikinks.

The arrangement of the present paper is as follows
Sec. II, a dynamical contraction factor is introduced to d
scribe the dynamics of the topological compression of
4294 ©2000 The American Physical Society
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kink, and a deviation factor is also applied to measure
deviation of the velocity-force characteristics from the line
Ohm’s law. We investigate the time-averaged behavi
varying with the external driving force. Temporal behavio
of these two quantities are presented in Sec. III, where
connect their temporally collective behaviors with spatiote
poral patterns of the system. We show that the generatio
the kink-antikink pairs may reduce the localization of t
array, and the collision between kinks and antikinks wo
lead to strong oscillations of the array. Section IV gives
concluding remark. Throughout the paperg50.1 ~the under-
damped case! andK51.0 ~moderate coupling! are adopted.
Periodic boundary conditions are considered, i.e.,u j 1N(t)
5u j (t)12pM , whereM is the number of geometric kink
~twists! trapped in the array. Thus the frustrationd5M /N,
and the static length of the harmonic chain should bea
52pd.

II. THE CONTRACTION AND DEVIATION BEHAVIORS

The motion of the FK array under the driving of the d
external forceI is dominated by the collective kink motion
In Fig. 1, topological configurations of the array at som
time t5t0@1 are given for different driving forces forN
5100 andM51. For relatively smallI, it is shown in Fig.
1~a! that almost all particles are localized at 0 or 1, i.e.
particle may stay in the potential well for a long time befo
it jumps to another well. As one particle jumps into a ne
well, the adjacent particles follow this jump due to the h

FIG. 1. Two types of kinks. The configuration in~a! is a local-
ized kink, lying in the LVR, and the topological structure in~b! is
an extended kink in the HVR. Oscillations in~a! can also be ob-
served on the tail of the kink.
e
r
s

e
-
of

d
a

-

monic coupling. This type of collective stick-slip motion ha
been well studied for coupled systems. The oscillatory ta
around the 2p kink can be observed in Fig. 1~a!. This oscil-
lation is a consequence of the discreteness of the lattice@20#.
Under certain conditions, the kink motion and radiated ph
non waves may become phase-locked, leading to quant
velocity steps under the driving forceI. For very largeI, the
kink is strongly extended, as shown in Fig. 1~b!, where par-
ticles are distributed almost uniformly between 0 and 1. T
distinct difference between Figs. 1~a! and 1~b! implies a
drastic transition in the topology of the array.

To describe the topological behavior of the array, it
instructive to introduce the following coherence function:

R~ t !exp@ iw~ t !#5
1

N (
j 51

N

exp@ iu j~ t !#, ~3!

whereR(t) is a typical coherence factor in studies of pha
entrainment of coupled limit cycles@7,21#. w(t) denotes a
collective phase andi denotes the imaginary index. By sep
rating the real and the imaginary partsb1,2(t), one may re-
write the above expression as follows:

b1~ t !5
1

N (
j 51

N

cos@u j~ t !#, ~4!

b2~ t !5
1

N (
j 51

N

sin@u j~ t !#. ~5!

The time average ofb1,2(t) can be accordingly defined:

^b i~ t !&5 lim
T→`

1

T E
0

T

b i~ t !dt, i 51,2. ~6!

It is interesting that the formula ofb1(t) is very similar to
the definition of the contraction factorbMF introduced in
@17#, andb1(t) depicts the dynamical features of the topo
ogy of the lattice. Therefore, we callb1(t) the dynamical
contraction factor~DCF!. Usually the value ofb1 lies be-
tween 0 and 1. A largerb1 implies a stronger localization o
the kink, as shown in Fig. 1~a!. For a very smallI, one may
expect

^b1~ t !&'bMF . ~7!

In Fig. 2, ^b1& is plotted byadiabatically varying I for
casesd51/100 and 34/89@'(32A5)/2#. The hysteresis
loop can be clearly observed. Ford51/100 in Fig. 2~a!,
when I is not large,^b1& remains almost constant, whos
value is approximately equal tobMF . This is in agreement
with the expectation 7 . As onefurther increasesI, a decrease
of ^b1& may be observed, indicating that the array becom
less localized, while a localized kink solution still persis
An abrupt transition occurs atI'0.65, wherê b1& suddenly
drops to a small negative value. This change correspond
the transition from the LVR to the HVR, where the localize
kink becomes extended. WhenI becomes very large, the ha
monic array moves uniformly with the velocityV5I /g
along the periodic potential. One may approximately wr
the steady solution of Eq.~1! as u j (t)5c1a j 1(I /g)t,



iza

r
r

te

VR
t

s

te

rray
is

ul-
a-
es-
the
bati-

d

nd

’s

ar

via-

the
a

ar

. In
he

tical

f in
ys-
-
lly,

r-
in
se

are
. A

4296 PRE 62ZHIGANG ZHENG AND BAMBI HU
wherec is an arbitrary constant phase. AsI→`, by insert-
ing it into Eqs.~4! or ~2!, we may easily get

b1~ t !5ReH 1

N (
j 51

N

exp@ iu j~ t !#J 50. ~8!

For a finite I, as shown in Fig. 2,b1,0, which is not a
finite-size effect and depends ond5M /N. The negative con-
traction factor corresponds to another type of weak local
tion different from the low-velocity kink.b1 approaches 0
when I is increased to infinity. It is shown in Fig. 3 fo
different frustrations that̂b1(t)& vs I obeys the same powe
law:

^b1~ t !&}2I 22.0. ~9!

As one adiabatically decreasesI from a large value,̂ b1&
jumps to a positive value atI'0.42, and several intermedia
transitions to higher values occur by further decreasingI.
These intermediate states occur beyond the LVR and H
Each step denotes a robust topology of the array due to
resonance. WhenI is decreased to approximately 0.1,^b1&
jumps back to the low-velocity branch.

Similar transition is also shown ford534/89 in Fig. 2~b!,
with a much larger negative value in the HVR. For the ca
d534/89, there exists a large parameter region ofI in the
LVR that the ^b1& is much higher than the ground-sta

FIG. 2. The relation between the average DCF^b1(t)& and the
external dc driveI for ~a! d51/100 and~b! d534/89. A decrease in
~a! in the LVR can be clearly observed, while in~b! the relation
exhibits a multiple-peak behavior~see the regions denoted by a
rows! originating from the resonant behavior between the mov
kink and the radiated phonon waves. In the multistable region,
eral different regimes can be identified.
-

.
he

e

valuebMF @see the part above the dashed line in Fig. 2~b!#.
The increase of the contraction factor indicates that the a
is further localized as an external driving is applied. Th
stronger localization comes from the interaction of the m
tiple trapped kinks~i.e., M.1) and the phonons, and a re
sonable theoretical interpretation of this collective suppr
sion is still open. The DCF becomes the largest in
interval I'0.3– 0.35 and decreases as one goes on adia
cally increasingI.

Now let us focus on the discussion ofb2(t). Under a
given external forceI, u̇ j (t) oscillates around the average
phase velocityV. One expects the time average ofü j (t) may
have small contributions, i.e.,^ü j (t)&'0. By averaging Eq.
~1! over both time and lattices on both hands a
omitting the second-derivative term, we getgV
1(1/N)( j^sinuj(t)&5I. Recalling the definition ofb2(t),
one obtains

^b2~ t !&5
1

N (
j

^sin u j~ t !&5I 2gV. ~10!

For a large drivingI, the motion of the array obeys an Ohm
law, i.e.,V5I /g and^b2(t)&50. Therefore,̂ b2(t)& in fact
describes the deviation of the system from this line
velocity-force relation. We call this quantity thedeviation
factor ~DF!. In Fig. 4 we give relationŝ b2&2I for d
51/100 and 34/89. A large parameter region shows a de
tion from the Ohm’s law~see the nonzero DF in Fig. 4!. This
deviation behavior comes from the resonance between
moving kink and its radiated phonon waves, leading to
weak dependence ofV on I. It is interesting to note that in
the HVR, we havê b2&50 while ^b1&Þ0. This indicates
that although the motion of the array obeys the line
velocity-force law, thetopologyof the array still ‘‘feels’’ the
periodic substrate due to the discreteness of the lattice
Fig. 4, theoretical lines are shown by dashed lines. T
agreement between the numerical simulation and theore
argument is quite good.

It is interesting that the hysteresis effect manifests itsel
the topological structure of the array. This indicates that h
teresis in the velocity~or, mobility! force characteristics re
sults from the structural robustness of the array. Especia

g
v-

FIG. 3. The same relation as Fig. 3 in the HVR. The axes
labeled by the logarithm scale. Power law can be clearly seen
fitting line is also drawn for an easy observation.



a
.

tt
it
tw

n
s

te
ike
c

-
n
g-
te
e

s
k

b
is

p
wo
ral
a-
k

us
er-

n

nk
ntly
er

e
-

a-
in-
tion
to

ases
m
the

-

PRE 62 4297COLLECTIVE TOPOLOGICAL DYNAMICS IN THE . . .
the topology of the array still persists as weak noises
applied. This has been numerously tested in simulations

III. KINK-ANTIKINK INTERACTION INDUCED
DYNAMICAL TRANSITIONS

To explore the dynamics of the system and get a be
understanding of topological changes described above,
pertinent to investigate the temporal behaviors of these
factors. In Fig. 5, we give the time evolution ofb1,2(t) for
I 50.1, 0.2, 0.4, and 0.5. Initial values are randomly give
For small I, both b1(t) and b2(t) approach positive value
with very small-amplitude oscillations. AsI increases, the
temporal behavior of these factors becomes complica
When I changes from 0.1 to 0.2, large-amplitude pulsel
oscillations are superimposed on the small oscillation ba
ground, and meanwhile the average values^b1,2(t)& de-
crease. With further increasingI, the large-amplitude oscil
lation occurs more frequently. This type of oscillatio
implies strong fluctuations in the topology of the kink, si
nifying a dynamical bifurcation to a new topological sta
To reveal the origin of this oscillation, let us explore th
spatiotemporal behavior of the system. In Figs. 6~a!–6~d!,
we plot the spatiotemporal patterns corresponding to case
Figs. 5~a!–5~d! with the same initial conditions. The blac
line represents lower values of cos@uj(t)#. A moving kink can
be clearly observed. In Fig. 6~b! for I 50.2, antikinks, which
propogate toward the opposite direction of kinks, can
found. In Fig. 7, a profile of the configuration of the array

FIG. 4. The average DF̂b2(t)& varies with the external dc
force I, whered51/100 in ~a! and d534/89 in ~b!. Linear devia-
tions from the linear Ohm’s law are clearly shown. The dash
theoretical lineŝ b2&5I 2gV are in perfect agreement with nu
merical results.
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given at some timet5t0 for I 50.2, N5100, andM51. As
compared to Fig. 1~a!, the configuration possesses a hum
and a valley, which are composed of three kinks and t
antikinks. This observation coincides with the spatiotempo
pattern in Fig. 6~b!, where there are three lines with the neg
tive slope and two lines with positive slope. An antikin
describes the minimally possible, topologically stableexten-
sion of the commensurate structure@22,23#. The localized
kink is stretched due to the presence of antikinks, th
^b1(t)& decreases. This interprets the behavior of the av
age DCF in Fig. 5. The antikink moves toward theopposite
direction of the kink motion and collides with kinks. As soo
as a kink collides with an antikink, theb1,2(t) experience
strong oscillations in a pulsed manner. More kink-antiki
pairs are generated and collisions occur more freque
when the driving forceI increases. This leads to strong

d

FIG. 5. Time evolution of the DCFb1(t) for N5100 andM
51 for different cases:~a! I 50.1; ~b! I 50.2; ~c! I 50.4; ~d! I
50.5. From~b! to ~d!, one may notice the large-amplitude fluctu
tion around an average value, resulting from the kink-antikink
teractions. More frequent flutuations indicate higher concentra
of the kink-antikink pairs. In~d!, the contraction factor decreases
a small negative value, indicating the transition to the HVR.

FIG. 6. The spatiotemporal patterns corresponding to the c
in Fig. 2. Collisions of kinks and antikinks can be observed fro
~b!, and the interactions become more frequent with increasing
dc force I in ~c!. In ~d!, kink-antikink collisions induce an ava
lanche, finishing in a totally running state.
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pulselike oscillations. At the same time the average cont
tion factor decreases due to the stretching effect of antikin
In Fig. 6~d!, we give a case at the onset of the transition fro
the LVR to HVR. One may find that many kink-antikin
pairs are generated, and meanwhile collisions between k
and antikinks excite more pairs. This avalanche beha
eventually leads to a complete extension of the array@22#.
The avalanche in Fig. 6~d! corresponds to the decrease
b1(t) @b2(t)# to a small negative value~zero! in Fig. 5~d!. A
very strong oscillation in the intervalt5200– 300 indicates a
drastically frequent collision of kinks and antikinks. In Fig.
we show the loss of stability of the kink by plotting th
evolution of the DCF and the spatiotemporal pattern forF
50.7, N5100, andM51. The system evolves from th
ground state (F50, u̇ j50). When a large force is applied a
t50, the trapped kink begins to move along the chain. T
leads to a drastic oscillation ofb1(t), whose minimum val-
ues decrease through zero and touch the negative zone
phase velocity of the array increases with the time. For h
velocities, the kink may lose stability. Att'10, the kink

FIG. 7. A profile of the configuration of the array forN5100,
M51, andI 50.2. Different from the topology forI 50.2 in Fig.
1~a!, antikinks are observed.

FIG. 8. ~a! The evolution ofb1(t) for I 50.7 andN5100, M
51. ~b! The corresponding spatiotemporal pattern. Antikinks bif
cate from the moving kink, corresponding to the peaks ofb1(t).
c-
s.

ks
r

s

he
h

solution loses its stability by bifurcating the first antikin
The second dynamical bifurcation takes place att'15,
where another antikink is excited. Att'22 and 28, the third
and fourth antikinks bifurcate from the dominating kink.
cascade of kink-antikink emergence leads to the extensio
the array. The excited bundles of kinks and antikinks coll
and excite more pairs. As the dominant kink and antiki
bundles collide att'60, the chain becomes fully extende
corresponding to a drastic decrease ofb1(t) to zero. This
dynamical bifurcation cascade implies a cascade of losse
stability of kink and kink-antikink states, which manifests o
the evolution ofb1(t) ~note the first four peaks correspon
ing to the bifurcation points!. A theoretical study of this sce
nario of bifurcations is very important in understanding t
hystersis behavior. This is under exhaustive investigati
now.

To better show the dynamical transition from the kin
state to the kink-antikink-pair state, it is intuitive to quan
tatively investigate the oscillation behavior ofb1(t). We re-
write b1(t)5^b1&1Db1(t) and Db15maxuDb1(t)u. In Fig.
9, we give the relation betweenDb1 and I for the cased
51/100. It can be found that atI 5I c , a new positive branch
bifurcates from the nearly zero branch with the scaling la

Db1}~ I 2I c!
j, ~11!

where the exponentj.0.5. As shown in Fig. 6, the large
pulselike oscillations originate from the interaction of kin
and antikinks. Therefore, this dynamical bifurcation just c
responds to the emergence of kink-antikink pairs. The n
zero branch may coexist with the kink-antikink branch in
large parameter regime ofI due to the multistability of the
system. The kink-antikink states correspond to intermed
states between the localized kink~LVR! and extended kink
~HVR! states. On this branch, more kink-antikink pairs c
be excited as one increasesI, and this in consequence lead
to the strong fluctuation of the topological configuration
the array and the relaxation of the kink compression.

-

FIG. 9. The oscillation amplitude of the DCF against the ext
nal dc force. A bifurcation from the localized kink state to th
kink-antikink-pair state is observed with the scaling exponenj
50.5.
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IV. CONCLUDING REMARKS

It is an interesting and important issue to introduce
appropriate quantity to characterize the topology of the ar
In this paper, we define a dynamical contraction factor
describe the topological change of the kink and a devia
factor to depict the nonlinear effect of the velocity-force r
lation. These two quantities are closely connected with
coherence factor, while they have purely different physi
implications. We show that the average DCF exhibits tran
tions corresponding to topological changes. The kink is f
ther compressed when it moves for the incommensurate c
In the HVR, we show that although the motion of the arr
on average obeys the Ohm’s law, the topology still feel
substrate. A cascade of dynamical bifurcation from the k
to kink-antikink and extended states is shown. We also g
the scaling law of the kink-antikink transition. We also stu
ied their temporal features by resorting to the spatiotemp
pattern dynamics of the system, and found that the ki
antikink interaction may result in strong oscillations of the
two functions.

The parameters we introduced in this paper are very u
ce

ri
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n
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e
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-
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ful in explorations of collective dynamics of coupled osc
lators. On the other hand, because these two quantities r
to the average on lattices, the detailed dynamics of lo
lattices cannot be accurately studied by applying them on
a time. A collaboration of spatiotemporal patterns and
DCF ~DF! is necessary.

Because the Frenkel-Kontorova model corresponds t
number of real situations such as charge-density waves
sephson junction arrays and ladders, coupled pendula, an
on, the method and behaviors proposed in this paper
expected to be well applied to these experimental studie
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