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Analog of the Wigner-Moyal equation for the electromagnetic field
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The evolution equation for the Wigner distribution of the classical electromagnetic field is derived for a
nonstationary and inhomogeneous optical medium, which is formally similar to the Wigner-Moyal equation for
a quantum system. The geometric optics approximation is discussed in detail, and the conservation equation for
the number of photons is justified. The influence of dispersion is also considered.

PACS numbeps): 42.25-p, 42.15-i

I. INTRODUCTION In Sec. IV, the derivation of Sec. Il is generalized for the

. . . . case of dispersive media. Finally, in Sec. V, the results are
The Wigner function was introduced in order to represeng}]mmarizeg y

the quantum state of a system in the corresponding classica
phase spacfl]. This is a very important concept which can
be used to establish a link between the wave and particle
manifestations of the quantum fields, and it is currently used We first consider a nondispersive medium, in order to
in quantum optic$2,3]. It is also well known that the space clearly state our approach. We also assume that the medium
and time evolution of the Wigner distribution is described byis isotropic and nondissipative. In the absence of charge and
the Wigner-Moyal equatiof4], which reduces, in the clas- current distributions, we have, from Maxwell’s equations,
sical limit, to the one-particle Liouville equation.

An interesting aspect of the electromagnetic field is that
its wave and particle properties can be completely described
in purely classical terms: the electromagnetic waves are de-

scribed by Maxwell’s equations, and the photon trajectorie@vhere[;:eoeé is the displacement vector. We know that

are described by the ray equations of the geometric optic§:1+X, whereyy is the susceptibility of the medium. As-

approximation. It is the aim of the present work to eStab“Shsuming, for simplicity, that the fields are transver%ﬁ

a link between these two kinds of classical descriptions by_o) we can write

using the Wigner function of the electromagnetic field, and

II. NONDISPERSIVE MEDIUM

. R 9
VZE—V(V'E)—MOED=O, (1)

by deriving the corresponding evolution equation. o2 >
. . . . 190E 19 -
Quite recently, this approach was used for the particular V2E— === 5 WXE). 2
case of waves propagating in a nonstationary plagsyé, c’ Jtc ¢ ot

where the Wigner function was used to define in general

terms the photon occupation number, or number of photons N géneral, the transverse field approximation is not valid
NP 1), f q i ith tBr at for an arbitrary inhomogeneity. However, it is well known
K(r.t), for modes propagating with wave vectsr at a .+ for weak inhomogeneities, where the properties of the

positionr and timet, and an evolution equation was estab- medium vary on a scale much larger that the characteristic

lished. Actually, in Ref[6], the Wigner-Moyal equation was field wavelengths, such an approximation is valid, and it is

already derived, but it was stated in a quite implicit way, andcommonly used in optical media and plasmas.

only for the plasma case. Now we use the notatiok;=E(r;,t;) and x;=x(r,,t;),
Here we generalize this work in order to consider an arfor j=1 and 2, and we can write

bitrary optical medium and to explicitly derive a general

form of the Wigner-Moyal equation for the classical electro- 1 62\, 1 .
magnetic field. We also show that, in the geometric optics Vi— - 5 |Ei== Xk 3
approximation, this equation reduces to the conservation c® dty c” oty

equation for the number of photom,, which is formally

identical to the one-particle Liouville equation, in analogy , 1 #?\. 1 .

with the above mentioned results of the quantum theory. Ea=— 5 XxaEa. 4
This paper is organized in the following way. In Sec. I,

we derive the Wigner-Moyal equation for the electromag- ) i i N

netic waves propagating in a nondispersive and nondissipa- -€t U multiply the first of these equations By , and the

tive medium. In Sec. Ill, a simplified form of the Wigner complex conjugate of the second oneBy. Noting that, in

function is introduced, which is valid for a spectrum of linear the absence of losses, the refractive index is always xeal,

waves. The evolution equation for the number of photons is= x{' , we obtain, after subtracting the resulting two equa-

derived and the geometric optics approximation is discussedions,
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y s PP f(r+s)=exps-V)f(r). (13
(Vl_VZ)_? P Ci2
L 2 This means that, by performing a doultépace and time
1( 92 92 Taylor expansion of the susceptibilitigg and y» aroundr
==| Zx17 —3x2|Cw2 (5  andt, we obtain
with EE —nd T -
x1=x(r+s/2,t+7/2)=ex > V+§ﬁ x(r,t) (14
Ci,=E;i-E}. (6)
. and
It should be noted that, far, =r, andt,=t,, this quantity
reduces to the square of the electromagnetic field amplitude: .. S
Cir1=r.t;=t,)=|E(r,t)]2 For convenience, we intro- X2=x(r—sl2t—7l2)=exp —3 V‘Eﬁ X(rb).
duce new space and time variables, such that (15)

=3(ry+ry), s=ri—r, (7)

and
t=3 (ty+ty), (8)

T:tl_tz.

The difference between the two values of the susceptibil-
ity of the medium can now be written as

S T d
V+——)X

(x1—Xx2)=2 Slm‘( >t

Using these variable transformations, we can easily real-

ize that
92 92 1 42 . 92 ( )
ToX1T T 5X2 ST TS5 X17 X2
g2 2 2 T\ a g 2
+ ” + 9
M(Xl X2)- 9

This expression can be simplified by noting thas a fast
time scale, and is a slow time scale, as will become more

21+1

X-

s
V+ (16)

Z (2|+1)l 2 9t

At this point it is useful to introduce the double Fourier
transformation ofC,,:

dk

_J d—wF(Ft'w E)e”z'g““”.
(2m)3) 27 ’

17

clzzc:(riat,f):f

obvious below. Furthermore, we can assume that the suscep-

tibility x is a slowly varying function of time, and that its
dependence on the fast time variahlés negligible. Using
(x1t x2)=2x, we can then write this equation as

o vy £ et "
"Vs EM 12—§(X1 Xz)ﬁ 12
2 dx 0

We know that, by making a Taylor expansion of a func-

tion of time f(t+ 7) aroundf(t), we can obtain

m

f(t+7) —f(t)+2 —T j—f(t)

tm

af(t)
ot

f(t)+

T

(11)

The corresponding inverse transformation is related with the
electric field as shown:

ik-stior

F(F ot )= f d3 f drC(F St e

=fd§fd7é

X E*

*+§ tho
r+5.t+5
272

F_ ,t )eilz~§+iwr. (18)

N »y

r
2

This quantity is formally quite similar to the Wigner func-
tion for a quantum systerfi]. Therefore we can call it the
double(or, space and timewigner function for the electric
field. It should be noted, however, that the usual Wigner
function for quantum systems is not a doulfpace and

This can be written in a more elegant and more compaciMme) but a single(space or reduced quasidistribution. A

form, by using an exponential operator, as

f(t+ T)ZEXF(

T—) f(t). (12

at

A power series development of this exponential operator

clearly shows that this is equivalent to EG1). Similarly, a
function of the coordinatef(r +s) can be expanded around
f(r) as

single Wigner function for the electromagnetic field will also
be defined below.
Replacing this definition in Eq.10), we obtain

c?k
+ .
wEeE

Ine

J
V>F+—F

ot

1%

r (19

w
:lz(Xl_Xz)F,

where (y;— x») is determined by Eq(16). But, from the
definition of F, we conclude that
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e (—imE, (in (20 -l oK Oy (26
s—=(—1IS y — =T . Vy=—7>=—=—=—K.
k™ do™ K0k Jek e
This means that we can write, on the right-hand side of Eqln this case of a linear wave spectrum, the Wigner funckion
(19), simplifies to
. 2% (-1 1o 10 e . F=F(rtw,k)=F(rt)é(o—oy. 27
(x1=x2)F= S0 2k 200 at| X Replacing this in Eq.(17), and noting that the reduced

(21)  Wigner functionF, is independent otv, and consequently

that
Replacing this result in Eq19) we finally obtain
R o = (~ D)Mo ) =0
P Cgl-(’ e o A - é’(um_ ké’a)m W~ wg)= W — Wk oM =V,
éﬁ—’—_ + E =—w(esin ), (22 (28)

where A is a differential operator, which acts both back- we can write the Wigner-Moyal equation in a simplified

wards one and forward orF. It can be defined by form:
J . dlne oy .
N A - - a"‘vk‘v Fit gt Fk:—?[ESInAka]- (29
T2\ R e 29 | - |
Here, Ay is a reduced differential operator defined by
The right and left arrows are used to indicate that, in both 1= 9 g
terms, the first differential operator acts backwardlyecamd A=—— —. (30)
the second one acts forwardly dh The sine differential 2 or ok

operator in Eq(22) is, in fact, an infinite series of differen-

tial operators, according to Because, in the Wigner-Moyal equation, the sine operators

are usually too complicated to be explicitly calculated in
(—1) specific problems, it can be useful to simply retain the first
sinA=>, ——— —AZ+1, (24)  term in development24):

=0 (21+1)!
SinAk:Ak . (31)

o

The result stated in E¢22) shows that, at the cost of such _ = . ) ) )
unusual operators, from Maxwell's equations we were abld NS is only valid for a slowly varying medium, where the
derive a closed evolution equation for the Wigner funcfion 9radients contained in the operatdy are very small. In
of the electric field. This is valid in quite general conditions, SUch @ case, we are close to the conditions where the geo-
apart from our basic assumptions that the medium should BE€rc optics approximation is valid. The Wigner-Moyal
nondispersive and that the dielectric constant should onljduation reduces to
evolve on a slow space and time scale. Its relation with the
Ig“aometric optics approximation will become apparent in Sec. (_ +Jk' v

Equation (22) is formally quite similar to the Wigner-

Moya| equation for quantum Systen‘j$,4], except for the On the other hand, if we neglect the Iogarithmic deriva-
term on the time derivative of the refractive index, which hastive in this equation, we note that it implies that a triple
no equivalent in the quantum mechanical problem. For thiggquality exists, namely,

reason this equation can be called the Wigner-Moyal equa-
tion for the electromagnetic field.

(32)

Fit KT 2e

alne> oy [ de IF
at ar ok

dF_ dk

= =—-. (33
v (o /2€)(delar)
lll. KINETIC EQUATION FOR PHOTONS o , _
This is equivalent to stating that
It is now useful to introduce a few simplifying assump-
tions. The first one is associated with the character of the dr . dwy
electromagnetic spectrum. We can assume that such a spec- EZUFE, (34)

trum is determined by a linear superposition of waves. For
each spectral component, the value of the frequenbgas to .
satisfy the linear dispersion relation of the medium: dk o de ke de  dwy (35

= -

dt  2e 9 268320 or

0= o= kC/\/E. (25
Here we recover the ray equations of the geometric optics

The corresponding group velocity is approximation, written in Hamiltonian form. Clearllf/andlz
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are the canonical variables, and the frequemgyis the We can now return to the Wigner-Moyal equati(86),
Hamiltonian function. They are nothing but the characteristicout including the logarithmic derivative of the refractive in-
equations of the simplified version of the Wigner-Moyal dex, and rewrite it as

equation, which can then be written as
d

‘ F (—alnE)F (43
d g . dk 4 dt k=~ ko
(—+vk-V+a-7>Fk:0. (36) dt %

—F,=
dt K
where the total derivative is determined by E86). On the
This equation states the conservation of the Wigner functio®ther hand, if we take the total time derivative of the number
F«, and it is valid when the logarithmic time derivative, as Of photons[Eq. (42)], and note that
well as the higher order derivatives associated with the dif-

fraction termsl >0 in the development of the sine operator dog _do oy (dIn 5) (44
sinAy, can be neglected. dt at 2\ at )’
Furthermore, by replacing Eq27) in the definition of
C1,, we obtain we can then obtain
C,,=C(r,s t, d 10 .
12 ( T) a K= (EE'{‘UK-V Ine Nk- (45)
—e it | E (Ft)eig'g dk . . o
Ko (2m)3 Neglecting the slow variations of the refractive index ap-
pearing on the right hand side, we can finally state an equa-
=e '"C(r,s,t,7=0). (37)  tion of conservation, for the number of photons, in the form
According to Eq.(18), this simply means that we can define dNg [0 - dk ¢
F.(r,t) as the space Wigner function for the electric field: dat EJFUK'VJF dt gk N=0. (46)
Fk(F,t)Zf C(F.,5,t,7=0)e %543 This equation simply states that the number of photdpss
conserved. Of course, such a statement could be made by

R oL e using simple physical arguments. But the present derivation
=f E(r+s/2t)-E*(r—s/2t)e ™®Sds. (38)  has the advantage of using a precise and general definition

for Ni. On the other hand, we understand from it that the

It is now useful to introduce the concept of the number ofconservation equation for the number of photons is only

photonst(F,t), defining it in terms of the reduced Wigner valid when the higher order terms contained in the sine op-
function. as erator of the Wigner-Moyal equation can be neglected. This

means that these terms represent diffraction corrections to
IR the geometric optics approximation.

5) Fu(r,t), (39

“k IV. DISPERSIVE MEDIUM

whereR=0 is the dispersion relation of the medium. Such a  The above derivation is conceptually quite interesting, be-
definition was introduced in our recent wofk.,6]. As it cayse it establishes a clear link between the exact Maxwell's
states, it can be applied to arbitrary forms of wave fieldsequations and a kinetic equation for photons. However, its
(plane, spherical or cylindrical wavesin particular, if we  range of validity is not very wide, because we have neglected
take the simple case of plane waves, such thét,t) dispersion. The generalization to the case of a dispersive
=Eexp(ky T —iwgt), this reduces to medium is considered in this section. For simplicity, we still
neglect the losses in the medium, which can easily be in-
- € IR s cluded in the calculations, as discussed at the end of this
Ni(r,t) = 8% &_w|E0| S(k—=ko). (400 section. First of all, if the electromagnetic radiation propa-
gates in a dispersive medium, our starting equatibnis
This is just the definition commonly found in the litera- replaced by
ture [7,8], which is not very useful to describe, e.g., short
laser pulses. For the case considered here of a nondispersive
medium, the dispersion relatidR=0 can be written as

€0

Ni(r.0) =g

. & .
E=uo—P, (47)
Mo g2

o2 1 42
c? at?

R=R(w,k)=e—c*k? w?=0. (41) L o
where P=¢e,E+D is the polarization vector. In general

The expression for the number of photdis). (39)] is then  terms; this is related to the electric figilby the integral
reduced to
IS(F,t)=60f dF’f dt’ x(r,t,r’ tHE(r—r’ t—t’).

N(Fot) = 2 S (Foh). 42)
Ah wy (48
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Returning to the procedure followed in Sec. Il, we can segjons is equal to 1dw;dw,=dQdw anddk,dk,=dqdk. In

that Egs.(3) and (4) should be replaced by terms of these new variables, the quan@ty, becomes for-
L2 7 maJIy idgntical to Eq.(17), as it should, with the quantity
(ViZ_ ? ? Eizuoﬁpi (49) F(r,t;w,k) now defined as
I I
F(Ft oK)= d_ iq-r—iOt
fori=1and 2. _ _ _ (rntok)=|>=
Again, from this we can derive an evolution equation for (57)
the quantityC,,=E;-E% . The result is
and
19> & - R Lol I
(V2-V2 )__ —~—||Cw J(9,k,Q,w)=E(0+Q/2k+q/2) - E(— 0+ Q/2,—k+q/2).
as  ats (58)
P 2 .. Returning to Eq(51), and retaining on its right hand side
=po| —(P1-E3)— —(P3-E1)|. (500  only the dominant term, the one proportionald® 72, we
0 It can write
Let us now introduce the space and time variables defined by 52 d0
Egs.(7) and(8). This equation becomes Vem ——— =—— | —
gs.(7) and (8) q 2V Ve S50, S~ ) 75
o vy -2 - C dq
Vg gﬂ_ 12 Xf q (7.
(2m)°
17,7 (P1-E3—P3 Ey) )3(q.k,Q,0)
= 7 * - — [RAY] , W
M04¢?t2 PR 2 E1 7/-“-q e
[?2 Xelq-r*IQtelk-Sfle, (59)
=% *
oG ato (Pl = +P Ey). (52) where, in order to simplify the expression, we have intro-

duced the quantities
At this point, we can introduce the Fourier transformation

Here we should note thab|> ||, becausew is associated

(52) with the fast time scale, whereas the frequendy is asso-
A similar transformation for the polarization vector is de- ciated with the slow time scale In the same way, we can
fined by assume thdtk|>|q| Developing these guantities around the
values @,k) and (r,t), we obtain
P P(rl,t) J 27TJ (2p P(r|,t|,(1)|,k)elk I'| |w|t| _ Q (9770 g % T@ E %J’_ §
(53 R A I S M '
(61)
where we have .
where we have considered that
P(ri tiioi k)= eox(ri ti; o k) E(w; k). (54 0= 02X (1t ,K). 62)
The susceptibilityX(F,t;w,IZ), appearing in this expres- This means that, in Eq59), we can use
sion, is assumed to be a slowly varying function of space and
time. We can rewrite the quantity,, in terms of the Fourier ang dno dng - dnNg
components of the electric field. But, because this would lead 7+~ Q% q K T T
to quite cumbersome expressions, we prefer to introduce new 63)

frequency and wave vector variables, such that
o _ L But we also note that the quantity, and its derivatives are
q=kitky, k=3 (ki—kp) (55  independent of) andq. This means that, in Eq59), they
can be taken out of the integrals. This allows us to make the

and following replacements, in the same equation:

O=w+w,y;, w=3(0;—0)). (56) J

. o a-f- 'm—.—m,t,w K)
As in the case of the space and time variable transforma- (2

tions[Egs.(7) and(8)], the Jacobian of the new transforma- (64
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and

de dg ... iq-r—iQt ; > "
5 (ZW)SqJ(q,k,Q,w)e =—iVF(r,t;w,k).

(65
The result is
2| V.-V L7 C
Vs ?m 12
o[ 5 s
c? (2m)°
dno d  dno
I(:i;'gf—'ig—- )F(rﬂ,w k)
3770 g Z g " iK-s—iwr
+ T7+S~V’r]0 F(rt;m,k)|e . (66)

We can now replac€,,=C(r,t,s,) by its Fourier inte-
gral, as defined by Ed57), and obtain

v+ 2 2 E(F ok
. +?E (rvtaw!)

ol ol 5] o

(9770 > -> >
T*’S'V’?o C(r,t,s,7)

X

Xei(l;’—l;)»ge—i(w'—w)r_ (67)
But it is also clear that we can write

S Jd o,
f re ' —o)rg—j | gile’'~0)7q,
dw’
=27 S(w' —w)— (68

and

Zai(K —k-8)q2 N

se ds=—(2m)%i (k' —k) g (69

This means that we can finally transform E7) into a
closed differential equation for the Wigner functiof

=F(r,t,»,k), which takes the form
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20| 24 % __|9mPF 90 o
ANo" w Tl dew ot gk
JF (9770
(%7__*'%70)' (70

After rearranging the terms in this equation, we can rewrite it
in a more suitable form,

d
+vg V)FZ—

at (71)

2w+(9770/(9w(770AF)’

whereA is the differential operator defined by E&3), and
Jg is the group velocity defined by

2¢%k— w2del 9K
= (72
2wet wlieldw
with e=1+ y=1+ 7/ w?.

It can easily be seen that, if we use the full development
of . around (,t), instead of the first terms, we can obtain
the operator sirk instead of A, which is a characteristic
feature of the Wigner-Moyal equation. The present approach
therefore generalizes the above derivation of this equation to
the case of a dispersive medium. Obviously, for a nondisper-
sive medium, such thatzn,/Jdw =0, this would reduce to the
result of Sec. Il.

Let us assume that the electromagnetic wave spectrum is
made of a superposition of linear waves, such that we can
use Eq.(49): F=F\6(w— wy). Then, Eq.(71) becomes

Jd L 1

J
e S Tk
at ok

d
— - —|Fy=0,

_ 73
(awze/aw) o K 73

wherev, = (dw/ IK) o, and 7= wix(rKt).

As an example of a dispersive medium, we can consider
an isotropic plasma, where we hayg= — wf, , andwy, is the
electron plasma frequency. In this case, the gradiengof
appearing in the last term of this equation reduces to the
gradient of the electron plasma density, or equivalently, to
the gradient of the square of the plasma frequency. We then
have

(74)

where wy= Vk?c?+ w3(r,t). This is equivalent to stating

that the reduced Wigner functidf is conserved,

dF aeadIZaF .
dat K=\ gt Tk gk dt g/ (79)

because we know, from the photon ray equations, that,

dk dwy 1 &ws
Tk = T (76
dt ar 20 gr
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From these reduced forms of the Wigner-Moyal equation V. CONCLUSIONS
for a dispersive medium, we can then justify the use of the |t was shown in this work that an evolution equation for
equation of conservation for the number of photdhgr,t) the Wigner function of the classical electromagnetic field in
[Eq. (46)], which can also be called the kinetic equation fora nonstationary and inhomogeneous medium can be derived.
photons propagating in slowly varying dispersive media. ~ The simple case of wave propagation in a nondispersive me-
It is well know that, due to causality, propagation in a dium was considered in detail, and its generalization to a
dispersive medium was also considered. For the sake of clar-

dispersive medium always implies some wave dissipation;

Our calculations are therefore only approximate, and Ca‘]{y, the discussion was restricted to isotropic and nondissipa-

only be assumed to be valid if the relevant mode frequenciegve media, .bUt the inclgsion of anisotropy and dissipation in
. . _our calculations is straightforward.
@k art.a much larger than the ".”eaT mode damping coeffi- The Wigner-Moyal equation derived here can be seen as a
Clents: y <. Such_an appr_OX|mat|on breaks down near dyeneral transport equation for the number of photons. This
resonance of the optical medium. In such a case, on the rig ork shows that, in general, the number of photons is not
hand side of Eq(75), we have to replace zero by the small ¢onserved. The validity conditions of the conservation of the
quantity —2yFy. o number of photons, and of the geometric optics approxima-
Another limitation of the present calculation is that we tjon, are clarified, and the first order corrections associated
have only retained a single polarization mode where, in genwith diffraction are identified.
eral, there are twdfor dielectric media and three(for plas- This work extends the Wigner-Moyal approach to the
mas independent polarizations. Each one would be decase of purely classical fields, and establishes the link be-
scribed by a Wigner-Moyal equation like E5), to which  tween kinetic equation for the classical particlghotons
we could also add linear coupling terms due to the inhomoand the corresponding wave field equations. In that sense it
geneities of the medium. We know that such a coupling iscan be extended to other classical fields, and can eventually
negligible, except when the refractive index of the differentP® used to derive kinetic equations for other classical par-
polarization states are nearly equal. Similarly, nonlineaficles, such agpurely electrostaticplasmons and phonons.
mode coupling terms could be added to Eg6) by using . Finally, it should be notgd .that'the clas‘_5|cal Wigner func-
perturbation method7,8]. tion fpr the electromagnetic field is somgtlmes used to char-
Let us also briefly comment on the extension of our calacternize ultrashort '?‘Ser pulses W't.h a time-dependent spec-
trum, as measured in optical experimeff$ In contrast, an
. . "Evolution equation of this quantity seems to have been ig-
tity Cq, would have to be generalized to a second-rank tensqtg o The \Wigner-Moyal equation, in its various versions
Cij=EiE;, but the results would be comparable. This andyegcribed here, can eventually be used to understand the

other generalizations of the present work will be discussed i%pace-time evolution of such short pu|ses in an 0ptica| me-
a future work. dium.
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