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Chaos or noise: Difficulties of a distinction
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In experiments, the dynamical behavior of systems is reflected in time series. Due to the finiteness of the
observational data set, it is not possible to reconstruct the invariant measure up to an arbitrarily fine resolution
and an arbitrarily high embedding dimension. These restrictions limit our ability to distinguish between signals
generated by different systems, such as regular, chaotic, or stochastic ones, when analyzed from a time series
point of view. We propose to classify the signal behavior, without referring to any specific model, as stochastic
or deterministic on a certain scale of the resolutignaccording to the dependence of the #) entropy,

h(e, 7), and the finite size Lyapunov exponexte) on e.

PACS numbdrs): 05.45.Tp

[. INTRODUCTION if \=0. Thus if we have the possibility of determining the
_ o behavior of\(€) or h(e,r) for arbitrarily small scales, as
Itis a long debated question if and by what means we capointed out above, we could answer the original question

distinguish whether an observed irregular signal is determinghout the charactefdeterministic or stochastiof the law
istically chaotic or stochastifl-6]. If the signal was ob-  phat generated the recorded signal.

tained by iterating a certain model on a computer, we can o vever, the limits of infinite time and resolution, be-

glr\é\?e?j ?ﬁgnggnzrllswer, because we know the law which 9N5ides being unattainable when dealing with experimental

In the case of time series recorded from experimentafiata’ may also result to be physically uninteresting. As a

measurements, we are in a totally different situation. Indeed?qat'[er of fact, it is now clear that the maximum Lyapunov

in most cases, there is no unique model of the “system”€XPonent and the Kolmogorov-Sinai entropy are not com-
which produced the data. Moreover, we will see that know-PEtely satisfactory for a proper characterization of the many
ing the character of the model might not be an adequatéaces of complexity and predictability of nontrivial systems,
answer to the question of the character of the signal. Fopuch as, for instance, intermittent systeftid] or systems
example, data of Brownian motion can be modeled by avith many degrees of freedofi?,12]. For example, in the
deterministic regular process as well as by a deterministi€ase of the maximum Lyapunov exponent, one has to con-
chaotic or stochastic process, as we will show in Sec. IV. sider infinitesimal perturbations, i.e., infinitesimally close
In principle, if we were able to determine the maximum trajectories or infinite resolution, respectively. In systems
Lyapunov exponentX) or the Kolmogorov-Sinai entropy Wwith many degrees of freedoie.g. turbulence an infini-
per unit time hys) of a data sequence, we would know, with tesimal perturbation means, from a physical point of view,
no uncertainty, whether the sequence is generated by a déhat the differences$x,=xy —x, of the componentsy, and
terministic law(in which casen,his<«) or by a stochastic X, of the initially close state vectors’ and x, have to be

law (in which casex,hgg— ). much smaller than the typical valugg of the variablesx.

In spite of their conceptual relevance, there are evideng ye % s take very different values, then the concept of
practical problems with such quantities that are defined ag sinitesimal perturbation becomes physically unimportant,
infinite time averages taken in the limit of arbitrary fine reso-;,, ihe event one is interested only in the evolution of the

lution, since., typically, we have access only to a fir('med. components with the largest typical valugs13 (e.g., the
often very limited range of scales. In order to cope with large scales in a turbulent motipn

these limitations, in this paper we make use of the “finite
size Lyapunov exponent{FSLE) [7], a variant of the maxi-
mum Lyapunov exponent, and the,{) entropy per unit

Taking into account all the limitations mentioned above,
in particular the practical impossibility to reach an arbitrarily
. o e fine resolution, we propose a different point of view on the
time [8-10], a generalization of the Kolmogorov-Sinai en- yistinction between chaos and noise: it neither relies on a
tropy per unit time. Basically, while for evaluatingandhys  particular model for a given data set nor ignores the fact that
one has to detect the properties of a system with infinitgne character of a signal may depend on the resolution of the
resolution, for determining the FSLE(¢), or the (,7) €n-  ghservation. Indeedh(e, ) [or equivalently\(e)] usually
tropy per unit timeh(e, 7), the investigation on the systemis gisplays different behaviors as the range of scales is varied.
performed at a finite scale, i.e., with a finite resolution.  According to these different behaviors, as will become clear
A(€) gives us the average exponential rate of the divergencgrough the paper, one can define a notion of deterministic

between closdon a scalee) trajectories of a system, and anq stochastic behaviors, respectively, on a certain range of
h(e, 7) is the average rate of information needed for predic-g¢cgles.

tion. If properly defined, In Sec. Il we recall the definitions of thes(r) entropy
h(e,7) — hygs and \(e) — X\, and the finite size Lyapunov exponent. In Sec. Il we discuss
€70 €0 how one can consistently classify the stochastic or chaotic
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character of a signal by using information theoretic concept&or the sake of simplicity, we ignored the dependence on the
such as thed, 7) entropy or the redundancy and compare ourdetails of the partition. For a more rigorous definition one
approach with previous attempts. In Sec. IV we discuss sombas to take into account all partitions with elements of a size
examples showing that systems at opposite ends in the realesmaller thane, and then definé(e, ) by the infimum over

of complexity can give similar results when analyzed from aall these partitiongsee, e.g., Ref10]). In numerical calcu-
time series point of view. Section V is devoted to a critical lations we circumvent this difficulty by using coverings in-
discussion of some recent, intriguing a@metimescon-  stead of partitiongsee below.

troversial results on data analysis of “microscopic” chaos, A concept which is complementary to tleentropy is the

in particular we comment on the point of view to be adoptede redundancy(see, e.g., Ref[16]), which measures the
in interpreting the result of Sec. IV. In Sec. VI the readeramount of uncertainty on future observations which can be
finds some remarks on nontrivial behaviors of high-removed by the knowledge of the past, namely,
dimensional systems. Section VIl summarizes and concludes

the paper. 1
p p rm(f,’T):;[Hl(E,T)_(Hm+1(€,T)_Hm(E,T,))],
Il. TWO CONCEPTS FOR A RESOLUTION-DEPENDENT . . .
TIME SERIES ANALYSIS whereH (€) estimates the uncertainty of the single outcome
of the measurement, i.e., neglecting possible correlations in
A. (e,7) entropy and redundancy the signal. Alternatively, we can write the redundancy in the

In this section we recall the definition of the,¢) entropy ~ fOrm
discussing its numerical computation, and possible technical 1
probllem's, as wgll as its properties.. We start with a continu- r(€,7)=—Hy(e,7)—hy(€,7), (6)
ous (in time) variablex(t) e IRY, which represents the state T
of a d-dimensional system. We discretize the time by intro-

ducing a time interval and we consider the new variable which emphasizes the complementarity between the redun-

dancy and entropy. If the data are totally independent, one

XM(t)=(x(t),X(t+7), . .. X(t+m7r—7)). (1) hasH(e,7)=mH;(e€) and, thereforer,,(e,7)=0. On the
opposite side, in the case of a periodic signal the redundancy
Of course X(M(t) e IR™ and it corresponds to the dis- is maximalr(e,7)=H(e,7)/7.
cretized trajectory in a time intervd@l=mr. The Kolmogorov-SinaiKS) entropyhyg is obtained by
Usually, in data analysis, the space where the state vectotaking the limite, 7—0:

of the system live is not known. Mostly, only a scalar vari- o

ableu(t) can be measured. In these cases one considers vec- hks=limlimh(e, 7). (7)

tors X(M(t) = (u(t),u(t+7), ... u(t+mr— 7)), that live in 7060

IR™ and allow a reconstruction of the original phase spac

known as delay embedding in the literat(itd,15. It can be

viewed as a special case of H@).

®The KS entropy is a dynamical invariant, i.e., it is indepen-
dent of the employed state representati@)y while this is
not the case for the entropy[Eq. (4)]. To simplify the

We now introduce a partition of the phase spacé, IR notation we drop ther dependence in the following, apart

using cells of lengtte in each of thed directions. Since the " << in which the dependency is explicitly consid-
region where a bounded motion evolves contains a finiteered as in Sec. IV

number of cells, eac(™(t) can be coded into a word of

- In a genuine deterministic chaotic system one has 0
lengthm, out of a finite alphabet: g y

<hyg<o (hxs=0 for a regular motiojp while for a random

(m) m _ ; : _ rocesshys=. The entropiesH,(e) were above intro-
XPO-Wie)=((eilet+), .. ilet+mr=r), (Fj)uced usizsg a partition andFihe ugL(Ja)I Shannon entropy; how-

2 ever, it is possible to arrive at the same notion starting from

wherei(e,t+j7) labels the cell in IR containingx(t+j 7). other entropylike quantities, which are more suitable for nu-
From the time evolution oK(™(t) one obtains, under the Mmerical investigations. Following Cohen and Proca¢tid,
hypothesis of stationarity, the probabilitiP§W™(e)) of the ~ one can estimatel ,(e) as follows. Given a signal composed
admissible word§W™(¢e)}. We can now introduce thee(7) of N successive records and the embedding varisf, let

entropy per unit timeh(e,7) [9], us introduce the quantities
1 (m) _ : ; .
hi(€,7)=~[Hmi1(€,7)—Hu(e, )], 3 =N & O XPin-XGD: @

1 1 then the block entrop¥ ,(€) is given by
h(e,7)= lim h(e,7)=—=1lim —=H (€, 7), (4)
m—oe Tm*mcm

1
Wy — — = (m)
| ()=~ T D 2 Inn{™(e). 9
whereH,, is the block entropy of block lengti:
In practicenj(m)(e) is an approximation oP(W™(¢€)). From
Ho(e,7)=— E P(W™(¢€))In P(W™(€)). (5) the numerical point of view the even more suited quantities
(WM(e)} are the correlation entropi¢$8,19
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H®)(e)=—In > n(™

- <H@)
1 > e =K@, ao

where one approximates the Shannon entropy by the Renyi

entropy of orderg=2.
In the determination ohyg by data analysis, one has to
consider some subtle poinsee Ref[20] for a detailed dis-
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Eqg. (14) may be difficult to observed experimentally due to
problems related to the choice of(see Sec. IV.

B. Finite-size Lyapunov exponent

The finite size Lyapunov exponent was originally intro-
duced in the context of the predictability problem in fully
developed turbulendg’]. Such an indicator, as will become

cussion. Let us just make some remarks about the generatlear below, is for some aspects the dynamical systems coun-

problems in the computation of the Kolmogorov-Sinai en-
tropy from a time series of a deterministic system. The first

point is the value of the embedding dimension Let us

terpart of thee entropy.
The basic idea of the FSLE is to define a growth rate for
different sizes of the distance between a reference and a per-

assume that the information dimension of the attractor of theéurbed trajectory. In the following we discuss how the FSLE

deterministic system i®. In order to be able to observe a
finite entropy,m has to be larger thaD, since the behavior
of the entropies in the limie—0 is
hm(€)=const- O(e)=hgsg, (11
providedm>D [21]. The second relevant point is the fact
that the saturation, i.e. the regime where the entriopfe)
does not depend on the length scalean be observed only
on length scales smaller than soege Thus it is possible to

can be computed, by assuming to know the evolution equa-
tions. The generalization to data analysis is obtained follow-
ing the usual ideas of “embedology[15]. First, one has to
define a norm to measure the distangg)=||ox(t)|| be-
tween a reference and a perturbed trajectory. In finite-
dimensional systems the maximum Lyapunov exponent is
independent of the used norm. However, when one considers
finite perturbations there could be a dependence on the norm
(as for infinite-dimensional systemsHaving defined the
norm, one has to introduce a series of thresholds starting

distinguish a deterministic signal from a random one only forfrom a very small one, e.g.,e,=r"¢, (n=1, ... P), and
€<e,. Due to the finiteness of the data set there is a loweto measure the “doubling time(T,(e,)) at different thresh-

scalee; below which no information can be extracted from

olds. T,(e,) is the time a perturbation of size, takes to

the data. Taking into account the number of points of thegrow up to the next threshold, .. The threshold rate
seriesN, it is possible to give the following relation between should not be taken too large, in order to avoid the error to
the embedding dimension, the KS entropy, the informatioryrow through different scales. On the other hancannot be

dimension, and the saturation rangg ¢, [22]:
?$(Ne7mTth)l/D’ (12)
|

where e, and ¢, are the upper and lower bounds of the in-

too close to 1, because otherwise the doubling time would be
of the order of the time step in the integrati@ampling time
in data analysisaffecting the statistics. Typically, one uses
r=2 or r=\2. For simplicity T, is called is “doubling
time” even if r #2.

The doubling timedT,(e,) are obtained by following the

terval of scales at which the deterministic character of a deevolution of the distancgox(t)|| from its initial value ey,
terministic signal shows up. Note that this relation does nok ¢, up to the largest thresholg,. Knowing the evolution

determinee,. For more details, see Rdf22]. If mis not
large enough and/o¢ is not small enough, one can obtain
misleading results; e.g., see Sec. V.

The € entropyh(e, ) is also well defined for stochastic
processes. Its dependenceeotan give some insight into the
underlying stochastic procegKd]. In the case of finiter, it is

equations, this is obtained by integrating the two trajectories
of the system starting at an initial distaneg;,. In general,

one must choose,,;,< €y, in order to allow the direction of
the initial perturbation to align with the most unstable direc-
tion in the phase space. Moreover, one must pay attention to
keep ep<é€gaturation, SO that all the thresholds can be at-

possible to define a saturation range; below some lengttained (esaiuration iS the typical distance of two uncorrelated

scalee,(7), we have
hy(€)=const-1n e+ O(e). (13

However, the limitr— 0 will lead to e,—0; thus the satu-
ration will disappear. As shown in Ref10], for some sto-

trajectories.

The evolution of the error from the initial value,;, to
the largest thresholdp carries out a single error-doubling
experiment. At this point the model trajectory is rescaled at a
distancee,;, with respect to the true one, and another ex-
periment begins. Aftet\/ error-doubling experiments, we

chastic processes it is possible to give an explicit expressiogan estimate the expectation value of some quantias

of h(e,7) in this limit. For instance, in the case of a station-
ary Gaussian process with spectr@w) < w2, one hag8]

lim h(e,7)~ =,

7—0

(14

1 N
(Ae=77 24 Ai- (15)

This is not the same as taking the time average, because each
error-doubling experiment may require a different time than

the same scaling behavior is also expected for Brownian mdghe others. For the doubling time we have

tion [10]. It can be recovered by looking di(e,7) in a
certain (€,7) region. See Refl10] for a detailed derivation

of Eq. (14). We have to stress that the behavior predicted by

A(en)= (16)

<Tr(6n)>e Inr;
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4 3,
' redundancy redundancy
entropy - \ entropy ———

NinlE)m(e)
Tm(€).hm(e)

@ 0.01 0;;1 . 1 (b) .

FIG. 1. (8) hy,(€) (dashed lingandr ,(€) (solid line) for the Henon map with the standard parameters {.4 andb=0.3), withm
=2,...,9, andb) The same for an AR) process, wittm=1, ... ,5 andfixed 7.

for details, see Refl7]. The method described above as- deterministic (n>D) stochastic
sumes that the distance between the two trajectories is con-
tinuous in time. This is not the case for maps or for a discrete Fm(€)— hm(€)—=
sampling in time, thus the method has to be slightly modi-chaotic nonchaotic white  colored
fied. In this caseT,(e,) is defined as the minimum time at noise noise
which €(T,)=re,, and now we havé7] My hn(€)>0  limy_.hn(e)=0 r(€)=0 rp(e)>0
1 e(T,)
A(€n)= <Tr(6n)>e<|n( . )> : 17 The behavior of the FSLE in the limi#—0 is similar to
e

that of thee entropy,h(e). It is worth noting that the FSLE
defined through the doubling timdsee Sec. Il B is also
It is worth noting that the computation of the FSLE is not zero if A <0.
more expensive than the computation of the Lyapunov expo- In all practical situations we have only a finite amount of
nent by the standard algorithm. One simply has to integratéata. Let us assume we have embedded the time series in an
two copies of the system and this can also be done for veryn-dimensional space, e.g., by time delay embedding. Then to
complex simulations. this set of points one can relate an empirical meagdre
One can expect that in systems with only one positive
Lyapunov exponent, one haqe)=h(e¢); see Ref[7] for
details. Additionally it was shown in Ref23] how it is 1 .
possible to use the FSLE for characterizing the predictability p* (X(M) = N 21 S(X(M —X(M(i7)). (18)
(also from the data analysis point of vigwf systems con- a
taining a slow component and a fast one. Let us comment on
some advantages of the FSLE with respect to the)(en-
tropy. For the FSLE it is not necessary to introduce ean

partition; most importantly, at variance with the,{) en- -
tropy, the algorithmic procedure automatically finds theMeanNs that we cannot perform the linait-0. Of course, on
a finite scalee, both entropy and redundancy are always

“proper time,” so that it is not necessary to decide on the_

right sampling time and to test the convergence at varyiné'n!te.; therefore, we are unable_ fo decide \.Nh'Ch will reaph
the words block siz&\. This point will be discussed in Sec. 'nf.|n|ty for .6_’0' But we can define stochastic and determin-
IV C istic behaviors of a time series at the length scale dependence

of the entropy and redundancy. Figure 1 shows the typical
behavior of the entroph,,(¢) and redundancy,,(e€) in the
IIl. CLASSIFICATION BY € DEPENDENCE case of a deterministic modéh two-dimensional chaotic

map and a stochastic modéhutoregressive model of first
In Sec. Il we discussed the entropy and the FSLE as order, AR1)).

tools to characterize dynamical processes. Let us re-examine For a time series long enough, a “typical” system can
the question of distinguishing chaos and noise posed in Seghow a saturation range for both the entropy and the redun-

. Equations(11) and (13) allow us to make rigorous state- dancy. For decreasing length scatesvith e<e,, one ob-
ments about the behavior of the entropy in the li@it0.  serves the following behaviors:
Then the behavior of the redundancy can be determined by

N

This empirical measurg.* approximates the true measure
only on length scales larger than a finite length sealeThis

using the relation to the entropy, given by E6), if we take Deterministic Stochastic
into account thaH ;(€) o —In € for continuously valued non-
periodic process. Both the behavior of the entropy and the rm(€)*—Ine hm(€)x—Ine

redundancy are summarized in the following talé hm( €)=~ const r m(€)=~const
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In addition, as far as stochastic behaviors are concerned, the 1.2
€ entropy can exhibit power laws on large scales, e.g., in the
case of the diffusion14) (see Sec. IV and Ref.10] for
further details. 08
If on some range of length scales either the entrtopie)
or redundancy ,(¢) is a constant, we call the signal deter- .. 06

x

ministic or stochastic on these length scales, respectively.i

it

Thus we have a practical tool to classify the character of a 04

signal as deterministic or stochastic without referring to a 02t

model, and we are no longer obliged to answer the meta-

physical question of whether the system which produced the 0

data was a deterministic or stochastic one. 02 , , , ,
Moreover, from this point of view, we are now able to "o 0.2 0.4 0.6 0.8 1

give the notion of noisy chaos a clear meaning: chaotic scal- x

ing on large scales and stochastic scaling on small scales. We P .
also have the notion of chaotic noise, namely, stochastic FIG. 2. The magF(x) (20) for A=0.4 is shown, superimposed

scaling on large scales and deterministic scaling on sma\'l\'ith the approximatingregulay map G(x) [Ed. (27)] obtained by
.using 40 intervals of slope 0.

scales. These notions will become clear with the examples in

the following sections. T alone, a genuine deterministic chaotic system from one with
The method presented for distinguishing between chaOﬁ1trinSiC randomness

and noise is a refinement and generalization of one of the '

first discussed methods of approaching this problem: estimat-

ing the correlation dimension, and taking a finite value as a

sign for the deterministic nature of the sigha#]. The main We first discuss problems, due to the finite resolution,

criticism of this approach is based on the work of Osbornewhich one can have in analyzing experimental data. We con-

and Provenzalg2], who claimed that stochastic systems with sider a map which generates a diffusive behavior on the large

a power-law spectrum will produce time series which exhibitscaleq27],

a finite correlation dimension. A detailed discussion of this

problem is beyond the scope of this paper, but a main step X+ 1= [Xe] +F(X¢—[Xt]), (19

toward clarifying the problem was taken by Theile5]. were[xt] indicates the integer part af, andF(y) is given

A. Diffusive regime

First, he noted that the discussed signals were nonstationa]
and highly correlated with correlation times of the order of

the length of the time series. From a conservative point of (2+A)y it ye[0,1/2]
view one has to stop at this point in any attempt to calculate F(y :‘ _ ’ (20)
dimensions or entropies. If one proceeds nonetheless, Theiler (2+A)y—(1+4) if ye]l/2,1].

showed that the result will depend on the number of dat . . .
points and the length scale. If one has a sufficient number o he mf:1X|mum Ir_yapunov’exponemcan be obtained imme-
data points, for this kind of signals one will also encounterdiately: N =In|F’|, with F’=dF/dy=2+A. Therefore one
the embedding dimension which leads to the typical behaviofXPects the following scenario fix(e) [and for(e)]:
given in Eq.(13) for the entropy. Moreover, if one uses a _
typical time delay embedding like E¢l) in contrast to Refs. h(e)=x for e<1, @D
[2] and[25], the result depends strongly on the chosen delay D
time. h(e)x— for e>1, (22)
We are aware that there are many other attempts to dis- €
tinguish chaos from noise discussed in the literature. ThevvhereD is the diffusion coefficient. i.e
are based on the difference in the predictability using predic- P
tion algorithms rather than the estimating the entrgpy, w2\
or they relate determinism to the smoothness of the signal {(x=x))~2 D t for larget. 23
[5,26]. All these_ methods have in common that one hgs tdigures 3 and 4 show(e) and h(e), respectively. Let us
choose a certain length scateand a particular embedding pyiefly comment on a technical aspect. The numerical com-
dimensionm. Thus they also could, in principle, shed light hytation of\ () does not present any particular difficulties;
on _the_mterestmg crossover scenarios we are going to dgsn the other hand, the results fote) depend on the em-
scribe in Sec. IV. ployed sampling timer. This can be appreciated by looking
at Fig. 25b of the review by Gaspard and Wda@], where
the power law behavidiEg. (22)] in the diffusive region is
obtained only if one considers the envelope (e, 7)
evaluated for different values af while looking at a single
In this section we analyze in a detailed way some ex-r, one has a rather inconclusive result. This is due to the fact
amples which illustrate how subtle the transition from largethat, at variance with the FSLE, when computin@, 7) one
scale behavior to small scale behavior can be; and thus theas to consider very larg®, in order to obtain a good con-
difficulties arising in distinguishing, from data analysis vergence foH,(€) —H,_1(¢€).

IV. DIFFICULTIES IN THE DISTINCTION BETWEEN
CHAOS AND NOISE: EXAMPLES
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10 with « a function ofpy. Now we increase the graining, and
Oog, identify all the x values in a cell of sizee=L, with L an
1L Bog I 1 integer multiple ofl. If we observe the coarse-grained state
F—o-—o—ofananeaen g . .
Y of the system only every(>s) time steps, and define the
10" g 1 variablesk and n, such thatkl=kL and ns=n7, we can
— write
&
= -2 — (K2/2an)(L?/
10 4 s e~ (K/2an)(L7/7) L2
P(k,n)=———F=——\/— (25
V‘G ! ~
103 m ] V2mTan T
“ for the probability of finding the systefL cells apart after
10

10° 10* 10° 102 10"
€

10

n 7 intervals. Thus, by choosing?/ r=1%/s, we expect that
the sequences generated by checking the system either on a
scaleL every 7 steps or on a scaleevery elementary time

FIG. 3. A(€) vs € obtained with the majF(y) [Eq. (20)] with steps, have the same statistics, in particular the same en-
A=0.4 (O), and with the noisyregulay map (J) [Eqg. (27)] with tropy, as a signature of a diffusive behavior. Note that if
10000 intervals of slope 0.9 with=10"*. The straight lines indi-  lim,, ...H(e,7=€?)/m is constant at varyinge, as we
cates the Lyapunov exponent=In 2.4 and the diffusive behavior found numerically, then thee entropy per unit time

Ne)~e % liM . Hm(e, 7)/m7 goes like 162,

. . _ _ _ Since the equalitl?/7=1%/s is assured by the choices

Because of the diffusive behavior, a simple dimensional _ | _ yl and = s, one can expect that, for a diffusion

argument shows that, by sampling the system every eleme'ﬂ)'rocess, the following scaling relaton holds:
tary time step, a good convergence holdsrfer €2/D. Thus,

. oS o limy, ..Hm(e, 7)/m=lim,, ..Hn(ye, ¥*7)/m, with y an ar-
for E,_llo and typical values of the diffusion coefficieBt i ary scaling parameter. This scaling relation allows us to
=10+, one has to consider an enormous block size. A pos

See why the power law behavit4) is expected to be valid
sible way out of this computational difficulty may be the Y P a4 P

. - generally for the Brownian motion. Indeed, if we chooge
following. We calll (=1) the length of the intervdl0,1] =1/e we haveH,(e,7)=H,(1,7/€2) and, finally, taking the
whereF (y) is defined; if we adopt a coarse-grained descrip-“mit 70, thee entropy is given by

tion on a scales=|1, i.e. we follow the evolution of the inte-

ger part ofx;, the dynamical syster(iL9) is well described [Hpps(1,7/€2) —Hy(1,71€2)]

by means of a random walR7], with a given probabilityp, h(e)=lim =
that in a time steps(=1) the integer part ok does not 70
change: [x;+s]=[X{], and probabilitesp. that [X;;s] consik 7/e2+0(72) 1
=[x,]*=1. A diffusive behavior means that the probability =|im o« —, (26)
Lor[ch?nging[xt] by =k in n elementary time steps is given 70 T €
28
y which is Eq.(14). Note that the first equality in E¢26) was
e~ (Kr2am)(1%s) ] obtained by a Taylor expansion aroune 0, and by noting
P(k,n)=——— 5 (24)  thath(1,0)=0 otherwise, the entropy for unit time will be
2man infinite at finite e, which is impossible.
1k a--& O N B. Finite resolution effects
[N
Y We now consider a stochastic system, namely, a map with
107 | g, dynamical noise
"\
= &\ Xi+1=[Xe]+ G(X—[X]) + o, (27)
102 1
S whereG(y) is shown in Fig. 2, andy, is a noise with uni-
&\\ form distribution in the interval —1,1], and no correlation
10° | \,k 1 in time. As can be seen from Fig. 2, the new n@&fy) is a
AN piecewise linear map which approximates the nigy).
\\\ WhendG/dy<1, as is the case we consider, m@j), in
10“‘10_1 1 1'0 102 the absence of noise, gives a nonchaotic time evolution.

Now one can compare the chaotic case, i.e.,(Eg). with
the approximated maf27) with noise. For example let us
FIG. 4. (,7) entropy for noisy (1) and chaotic ©) maps with  Start with the computation of the finite size Lyapunov expo-

the same parameters as in Fig. 3; the encoding method is explaingtent for the two cases. Of course from a data analysis point
in the text. The straight lines indicates the KS entrdgs=X  Of view we have to compute the FSLE by reconstructing the

=In 2.4 and the diffusive behaviti(e)~ e 2. The regione<o has  dynamics by embedding. However, in this example we are
not been explored, due to computational costs. interested only in discussing the resolution effects. There-
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FIG. 5. (a) Time record obtained from Eq28) with the frequencies chosen as discussed in the text Mith10*, C=0.005 and
o/ =108, the numerically computed diffusion constantls=0.007. The length of the data set is°1@nd the data are sampled with
At=0.02.(b) Time record obtained from an artificial Brownian motidaq. (30)], with the same value of the diffusion constant agdh

fore, we compute the FSLE directly by integrating the evo-sen in such a way to have a definite power spectrum, e.g., a
lution equations for twdinitially) very close trajectories, in  power law spectrum, which is a common characteristic of
the case of noisy maps, using two different realizations of thenany natural signals. Of course E&8) can be considered
noise. In Fig. 3 we show (€) versuse both for the chaotic as the Fourier expansion of a stochastic signal only if one
[Eq. (19)] and the noisyEq. (27)] maps. As one can see, the consider a set of @ points such thaM AQ = 7/At, where
two curves are practically indistinguishable in the region At is the sampling timg2]. Time series like Eq(28) have
>¢. The differences appear only at very small scalesr, been used to claim that suitable stochastic signals may dis-
where one has &a(e) which grow with e for the noisy case, play a finite correlation dimensidr2,29]; see the discussion
remaining at the same value for the chaotic deterministiin Sec. Ill.
chase. Here we adopt a slightly different point of view. Signal
Both the FSLE and thee( 7)-entropy analysi¢see Figs. 3 (28) can also be considered as the displacement of a har-
and 9 show that we can distinguish three different regimesmonic oscillator linearly coupled to other harmonic oscilla-
observing the dynamics of Eq27) on different length tors. Indeed, it has been well known for a long time that a
scales. On the large length scakes1 we observe diffusive large ensemble of harmonic oscillators can originate stochas-
behavior in both models. At length scales<e<1, both ticlike behaviors. In particular, we refer to REBO], where it
models show a chaotic deterministic behavior, because th&as proved that an impurity of magslinearly coupled to a
entropy and the FSLE are independentecdind larger than one-dimensional equal masg,,, chain of M oscillators
zero. Finally on the smallest length scales o we see sto- coupled by a nearest-neighbor harmonic interaction, in the

chastic behavior for systen27), while system(19) still limit of u>puy and of infinite oscillators M — ), under-
shows a chaotic behavior. goes a Brownian motion. Our observable is practically given

by the sum of harmonic oscillations as in Eg8), where the

C. Effects of finite block length frequenciedq}; were derived in the limigo/u<1 by Cukier

and Mazuf 30]. The phaseg, are chosen as uniformly dis-

In Sec. IVB we discus_,sed the difficglties arising in Cla,s'tributed random variables if0,27] and the amplitudeX,
sifying a signal as chaotic or stochastic because of the ims

2 . . ‘ X are chosen as

possibility of reaching an arbitrary fine resolution. Here we
investigate the reasons which make it difficult to distinguish X =CQ; 1, (29)
a stochastic behavior from a deterministic nonchaotic one. In
particular, we show that a nonchaotic deterministic systenyhere theC is an arbitrary constant and tkie dependence is
may produce a signal practically indistinguishable from ajust to obtain a diffusivelike behavior. Note that for a signal
stochastic one, provided its phase space dimension is largg length 2V the random phases and thg;’s represent a
enough. initial condition of the M oscillators, because their phase

The simplest way to generate a nonchadtegula) sig-  space is M dimensional.
nal having statistical properties similar to a stochastic one is  |n Fig. 5@&) we show an output of signaR8); for com-
by considering the Fourier expansion of a random si§®Rl  parison, in Fig. %) we also show an artificial continuous

One can consider the signal time Brownian motion obtained by integrating the equation
M
. dx(t)
X(1)= 2 Xoi sin(it+ ), (28) gt~ £, (30)

where the frequencies are equispaced discrete frequencieghereé(t) is a Gaussian white noise, produced by a random
e, Q;=0,+iAQ, the phase®,; are random variables uni- number generatdthe variance of the process is chosen as to
formly distributed in[0,27], and the coefficienX,; are cho-  mimic that obtained by Eq28)]. Because the random num-
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In Figs. 1a) and 1b) we show thee entropy, calculated
by the Grassberger-Procaccia methd8]. The deterministic
signal [Eq. (28)] and the stochastic ondEq. (30)] indeed
produce very similar results. Note that we calculated
h2)(e,7) instead oth{}(e,7), because it is used more often
due to better statistics in most cases. However, in Fig. 8 one
can see that, on relevant length scales, both entropies are
almost equal.

As in Refs.[10,31,33, we considered different time de-
lays 7 in computing thee entropy because of the problems
discussed in Sec. Ill. The power law behavior for the e
entropy is finally obtained only as an envelope of different

10'31 1‘0 computations with different delay times. The results for the
m FSLE calculated from the time series are shown in Fig. 9.
Both the e entropy and the FSLE display €/ behavior,

FIG. 6. Dependence of the embedding dimension ofelen-  which denotes that the signals can be classified as Brownian
tropy calculated with the Grassberger-Procaccia algorithm using motion[10]. It is worth noting that the FSLE computed from
=1.85, from the time series shown in Figah The horizontal line  the time record is not too sensitive on the choice of the delay
only indicates a possible numerically evaluated value for the satlg e » and the embedding dimension From this simple

ration of the entropy. example is it easy to understand that the impossibility of
ber generator uses a high entropic one-dimensional determifaching high enough embedding dimensions severely limits
istic map, this is an example of a high entropic low- Our ability to make definite statements about the “true”
dimensional system, which produces a stochastic behavior. gharacter of the system which generated a given time series,
is possible to see that the two signals appear to be vergs well as the already analyzed problem of the lack of reso-
similar. lution.

Now it is important to stress that i <« the signals
obtained according to E§28) cannot develop a true Brown-
ian motion, especially if one is interested in long time series. v. SOME REMARKS ON A RECENT DEBATE ABOUT
Indeed for a long enough record one should be able to rec- “MICROSCOPIC” CHAOS
ognize the regularities in the trajectory ®ft). However, ) ] ) )
even if the time record is long enough, in order to give a The issue of the detection of “microscopic” chaos by
definite answer about the value of the entropy one also redata analysis has recently received some atterfB@33
quires very large embedding dimensions. The basic fact igfter a work by Gasparet al. [31]. Gasparcet al, from an
that a deterministic behavior can be observed only if theentropic analysis of an ingenious experiment on the position
embedding dimensiom is larger than the dimension of the of a Brownian particle in a liquid, claim to give an empirical
manifold where the motion takes place, whichMsfor M evidence for microscopic chaos, i.e., they claimed to give
harmonic oscillators. This means that although the entropgvidence that the diffusive behavior observed for a Brownian
hks is zero, the conditional entropids,(e,7)=(H . 1(€) particle is the consequence of chaos on the molecular scale.
—Hy(e))/r for finite m are nonzero, and may even be Their work can be briefly summarized as follows: from a
slowly decreasing fom>M. Moreover, one can encounter long (=~1.5x 10° datg record on the position of a Brownian
some quasiconvergences with respeantfor m<M, if 7is  particle they computed the entropy with the Cohen-
large enough; i.e., the entropy can seem to be independent Bfocaccid 17] method, described in Sec. II, from which they

hm(z)(s,‘l:)

m, e.g. see Fig. 6. obtained
10 : : 10
1 L
= 107} =
K K
g &
£ 102 £
10°
10+ — s b 10 - . 8
107 1 10 b 107 1 10
(a) c (b) c

FIG. 7. € entropy calculated with the Grassberger-Procaccia algorithm using usinpii@s from the time series shown in Fig. 5. We
show the results for an embedding dimensios 50. The two straight lines show tti2/ €? behavior.



PRE 62 CHAQOS OR NOISE: DIFFICULTIES OF A DISTINCTION 435

102 I . 102 . . T v T T
q=1 _— \‘\ N
g=2 —— Bo_ N\ “a
10| 3 o oy 11 ‘& 1
B, A
Y B
1 . . 11 n |
\m kY
- n %
< 1 ORTY
LT 210"} % 1r X 1
.:E E ‘é\
- kY
102 10% N 1r S |
\ -
log Sa
1038 L 3 Na
10% 1T N T
10 - : 4 . :
) -1 10 L ' ' /] L L s
10 10 1 10 102 1071 1 10 0.01 0.1 1 10
€ € €

FIG. 8. € entropy estimated by the Cohen-Procaccia algorithm FIG. 9. Finite size Lyapunov exponent from an artificial Brown-

(q=1) compared to the entropies calculated by the Grassbergef@n motion (right), and for the time serie€28) (left). Embedding -
Procaccia algorithmg=2) for m=20 and7=0.2. Let us stress dimensionm=20. We consider only neighbors which are distant in

that the behavior below=0.2 is essentially a finite sample effect. time more than 1000 sampling timeSheiler windows. The
straight lines show the behavi@/ €2, whereD =0.007 is the dif-

fusion constant. The analysis was performed ohfdints. Differ-
D ent computations that changeand m have led to the same result.
h(e)~ ., (3

acter of the system due to the lack of resolution. This is
whereD is the diffusion coefficient. Then thegssumedhat particularly evident in the comparison between the diffusive
the system is deterministic and therefore, because of the if@P [EQ. (20] and the noisy mapEq. (27)], if one only
equality h(e>0)=<hys, they concluded that the system is OPS€rves at scales>o. According to the pragmatic pro-
chaotic. However, from the results presented in the previoqusal of classification discussed in Sec_. 1, one has that for
sections we can understand that their result does not gi\/gs e<1 both system$2(?)'and(27), in s.plte Of. their “true
direct evidence that the system is deterministic and chaoti€haracter, can be classified as chaotic, whilederl both
Indeed, power law31) can be produced in different ways. ¢@n be considered stochastic.

(1) A genuine chaotic system with diffusive behavitike In this respect, the problem o_f the lack of resolution is
map (20) of Sec. IV A). even more severe for high entropic systems. One can roughly
(2) A nonchaotic system with some noise, like m@f). estimate the criticak (¢,), below which the satura’qon can
(3) A genuine Brownian system, like E¢30). be observed, to beuocexp(—th). Indeed exm@) estimates

(4) A deterministic linear nonchaotic system with many the number of symbols, i.e., cells of the partition required to
degrees of freedorflike Eq. (29)]. reconstruct the dynamics. Therefore, in the Brownian motion

(5) A “complicated” nonchaotic system like the Ehren- Studied by Gaspardt al. [31], where the KS entropy is ex-
fest wind-tree model, where a particle diffuses in a plane du®€cted to be proportional to the number of molecules present
to collisions with randomly placed, fixed oriented squarein the fluid, the possible smak, is pushed on scales far
scatters(as discussed by Dettmaet al. [32] in their com- frorr_1 being reachable with the finest experimental resolution
ment on Gasparet al. [31]). available.

It seems to us that the very weak points of Gasyerdl.
are(a) the explicit assumption that the system is determinis- VI. DISCUSSIONS
tic, and(b) the neglect of the limited number of data points ] ] o .
and, therefore, of both limitations in the resolution and the Here we briefly review two examples, studied in detail in
block length. Point(a) is crucial; without this assumption Refs.[34,35, showing that high-dimensional systems can
(even with an enormous data sétis not possible to distin- dlsplay no_ntrl_\nal be_hawors at varying resolution sc_al_es. We
guish between casés) and(2). One has to say that in cases believe this discussion can bg useful in further cIanfymg the
(4) and (5), at least in principle, it is possible to understand subtl_e.agpects of the_d|st|nct|o_n between stochastic and de-
that the systems are “trivial’(i.e., not chaotig, however, for ~ terministic behaviors in dynamical systems.
this one has to use a very huge number of data. For example Olbrich etal. [34] analyzed an open flow system de-
Dettmanet al. estimated that in order to distinguish betweenScribed by a unidirectionally coupled map lattice,
caseq1) and(5), using realistic parameters of a typical lig-

uid, the number of data points required has to be at least Xj(t+1)=(1—0o)f(Xj1(1))+ oXx(1), (32
~10*. Let us point out that Gaspaet al. [31] used~1.5
X 10° points. wherej=1,... N denotes the site of a lattice of siket the

It seems to us that the distinction between chaos and noisdiscrete time, andr the coupling strength. A detailed nu-
makes sense only in very peculiar cases, e.g. very lowmerical studyalso supported by analytical argumera§the
dimensional systems. Nevertheless even in such a case arentropyh(e) at different values og, in the limit of small
entropic analysis can be unable to recognize the “true” charcoupling, gives the following scale-dependent scenario: for
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l=e=0 there is a plateath(e)=\s where \g is the  microscopic one. The above results suggest that at a coarse-
Lyapunov exponent of the single mapt+1)="f(x(t)). For  grained level, i.e.e>1/\N, the system can be described by
o= e=¢? another plateau appearshqie) ~ 2\, and so, for an “effective” hydrodynamical equatiorfwhich in some
o""1=e=0", one hash(e)~n\,. Similar results hold for cases can be low-dimensiopalwhile the “true” high-
the correlation dimension, which increases step by step adimensional character appears only at a very high resolution,
the resolution increases, showing that the high dimensional-e.,
ity of the system becomes evident only &s'0.

Therefore, one has strong evidence that the dynamics at il
different scales is basically ruled by a hierarchy of low-

N
dimensional systems whose “effective” dimensiogs(e€) )
increase ag decreases, The presence of two plateaus for the FSLE at different length

scales is present in generic systems with slow and fast dy-

1

ese.~0

Ney(€)~ M , (33)  namics[23]. The interesting fact is that in systems like Eq.
In(1/o) (35) the two temporal scales are generated by the dynamics
where[ - - - ] indicates the integer part. In addition, for a reso-itself.
lution larger thane, it is possible to find a suitable low- Let us stress that the behavidi§e) =const at smalle,

dimensional noisy systeifdepending ore) which is able to andh(e) decreasing for large¢, and not pecularities of the
mimic x4(t) given by Eq.(32). It is interesting to note that, diffusive map[Eg. (20)]. In typical high-dimensional chaotic
looking ath(e) on an extended range of values @ffor e  systems one hak(e)=hyxs~O(N) for e<e. (whereN is
=¢N one observes the number of degrees of freedom, agd—-0 as N—x)
while for e=e€., h(e) decreasesoften with a power law
h(e)~ln3 (34) From this point of view, the fact that in certain stochastic
€’ processesh(e)~e ¢ can indeed be extremely useful for
modeling such high-dimensional systems. As a relevant ex-
i.e., the typical behavior of a stochastic process. Of coursgmple we mention fully developed turbulence, which is a
for e<o™ one has to realize that the system is deterministiG/ery high-dimensional system whose noninfinitesirtthie
andh(e)~N\s. Even if this study mainly concerns small so-called inertial rangeproperties can be successfully mim-

unidirectional coupling, the diffusive and strong couplingicked in terms of a suitable stochastic proce33.
cases deserve further analysis; they represent a first step to-

ward an understanding of the issue of data analysis of high- VIl. CONCLUSIONS
dimensional systems. . ) .

Let us now briefly discuss the issue of the macroscopic e have shown how an entropic analysis at different
chaos, i.e., the hydrodynamical-like irregular behavior offesolution scalegin terms of e entropy and the finite size
some global observable, with typical times much longer thar-Yapunov exponentof a given data record allows us a clas-
the times related to the evolution of the singleicroscopi¢ sification of the stochastic or chaotic character of a signal. In
elements composing a certain system. This interesting kingractice, without any reference to a particular model, one can
of dynamical behavior has been studied in some rece efine the notion of deterministic or chaotic behavior of a

works[35,36] for globally coupled maps evolving according SYStém on a certain range of scales. In our examples we show
to the equation that, according to the pragmatic classification proposed in

Sec. lll, one can considébn a certain resolutionra system
o XN random or deterministic independently of its “true” nature.
X(t+1)=(1—0o)f(xi(1))+ N Z fa(xj(t)), (35 At first glance this can appear disturbing; however, if one
=1 adopts a “nonmetaphysical”’ point of view there is an ad-
whereN is the total number of elements, afgis a nonlin-  Vantage in the freedom of modeling the behavior of the sys-
ear function depending on a paramedeCenciniet al. [35] tem, at Ieagt _|f one is interested in a cert@oninfinitesimal
(see also Shibata and Kandla] for a related workstudied ~ COarse-graining property.
the behavior of a global variabl@.e., the center of mass
using the FSLE analysis. Their results can be summarized as

follows: (i) at smalle (<1/yN), one recovers the “micro- We thank R. Hegger and T. Schreiber for useful discus-
scopic” Lyapunov exponent, i.e\(€)~\nicro; and(ii) at  sions and suggestions. M.C., M.F. and A.V. were partially
large € (>1/\/N) one observe another plateéorrespond- supported by INFM(PRA-TURBO and by the European
ing to what we can call the “macroscopic” Lyapunov expo- Network Intermittency in Turbulent Systeni€ontract No.
nend A(€)~Amacro» Which can be much smaller than the FMRX-CT98-0175.
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