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Chaos or noise: Difficulties of a distinction
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In experiments, the dynamical behavior of systems is reflected in time series. Due to the finiteness of the
observational data set, it is not possible to reconstruct the invariant measure up to an arbitrarily fine resolution
and an arbitrarily high embedding dimension. These restrictions limit our ability to distinguish between signals
generated by different systems, such as regular, chaotic, or stochastic ones, when analyzed from a time series
point of view. We propose to classify the signal behavior, without referring to any specific model, as stochastic
or deterministic on a certain scale of the resolutione, according to the dependence of the (e,t) entropy,
h(e, t), and the finite size Lyapunov exponentl(e) on e.

PACS number~s!: 05.45.Tp
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I. INTRODUCTION

It is a long debated question if and by what means we
distinguish whether an observed irregular signal is determ
istically chaotic or stochastic@1–6#. If the signal was ob-
tained by iterating a certain model on a computer, we
give a definite answer, because we know the law which g
erated the signal.

In the case of time series recorded from experimen
measurements, we are in a totally different situation. Inde
in most cases, there is no unique model of the ‘‘syste
which produced the data. Moreover, we will see that kno
ing the character of the model might not be an adequ
answer to the question of the character of the signal.
example, data of Brownian motion can be modeled by
deterministic regular process as well as by a determini
chaotic or stochastic process, as we will show in Sec. IV

In principle, if we were able to determine the maximu
Lyapunov exponent (l) or the Kolmogorov-Sinai entropy
per unit time (hKS) of a data sequence, we would know, wi
no uncertainty, whether the sequence is generated by a
terministic law~in which casel,hKS,`) or by a stochastic
law ~in which casel,hKS→`).

In spite of their conceptual relevance, there are evid
practical problems with such quantities that are defined
infinite time averages taken in the limit of arbitrary fine res
lution, since, typically, we have access only to a finite~and
often very limited! range of scales. In order to cope wi
these limitations, in this paper we make use of the ‘‘fin
size Lyapunov exponent’’~FSLE! @7#, a variant of the maxi-
mum Lyapunov exponent, and the (e,t) entropy per unit
time @8–10#, a generalization of the Kolmogorov-Sinai e
tropy per unit time. Basically, while for evaluatingl andhKS
one has to detect the properties of a system with infin
resolution, for determining the FSLE,l(e), or the (e,t) en-
tropy per unit time,h(e,t), the investigation on the system
performed at a finite scalee, i.e., with a finite resolution.
l(e) gives us the average exponential rate of the diverge
between close~on a scalee) trajectories of a system, an
h(e,t) is the average rate of information needed for pred
tion. If properly defined,

h~e,t! →
e,t→0

hKS and l~e! →
e→0

l,
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if l>0. Thus if we have the possibility of determining th
behavior ofl(e) or h(e,t) for arbitrarily small scales, as
pointed out above, we could answer the original quest
about the character~deterministic or stochastic! of the law
that generated the recorded signal.

However, the limits of infinite time and resolution, be
sides being unattainable when dealing with experimen
data, may also result to be physically uninteresting. As
matter of fact, it is now clear that the maximum Lyapun
exponent and the Kolmogorov-Sinai entropy are not co
pletely satisfactory for a proper characterization of the ma
faces of complexity and predictability of nontrivial system
such as, for instance, intermittent systems@11# or systems
with many degrees of freedom@7,12#. For example, in the
case of the maximum Lyapunov exponent, one has to c
sider infinitesimal perturbations, i.e., infinitesimally clo
trajectories or infinite resolution, respectively. In syste
with many degrees of freedom~e.g. turbulence!, an infini-
tesimal perturbation means, from a physical point of vie
that the differencesdxk5xk82xk of the components,xk8 and
xk of the initially close state vectorsx8 and x, have to be
much smaller than the typical valuesx̃k of the variablesxk .
If the x̃k’s take very different values, then the concept
infinitesimal perturbation becomes physically unimporta
in the event one is interested only in the evolution of t
components with the largest typical values@7,13# ~e.g., the
large scales in a turbulent motion!.

Taking into account all the limitations mentioned abov
in particular the practical impossibility to reach an arbitrar
fine resolution, we propose a different point of view on t
distinction between chaos and noise: it neither relies o
particular model for a given data set nor ignores the fact t
the character of a signal may depend on the resolution of
observation. Indeedh(e,t) @or equivalentlyl(e)] usually
displays different behaviors as the range of scales is var
According to these different behaviors, as will become cl
through the paper, one can define a notion of determini
and stochastic behaviors, respectively, on a certain rang
scales.

In Sec. II we recall the definitions of the (e,t) entropy
and the finite size Lyapunov exponent. In Sec. III we disc
how one can consistently classify the stochastic or cha
427 ©2000 The American Physical Society
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character of a signal by using information theoretic conce
such as the (e,t) entropy or the redundancy and compare o
approach with previous attempts. In Sec. IV we discuss so
examples showing that systems at opposite ends in the r
of complexity can give similar results when analyzed from
time series point of view. Section V is devoted to a critic
discussion of some recent, intriguing and~sometimes! con-
troversial results on data analysis of ‘‘microscopic’’ chao
in particular we comment on the point of view to be adop
in interpreting the result of Sec. IV. In Sec. VI the read
finds some remarks on nontrivial behaviors of hig
dimensional systems. Section VII summarizes and conclu
the paper.

II. TWO CONCEPTS FOR A RESOLUTION-DEPENDENT
TIME SERIES ANALYSIS

A. „e,t… entropy and redundancy

In this section we recall the definition of the (e,t) entropy
discussing its numerical computation, and possible techn
problems, as well as its properties. We start with a conti
ous ~in time! variablex(t)PIRd, which represents the stat
of a d-dimensional system. We discretize the time by int
ducing a time intervalt and we consider the new variable

X(m)~ t !5„x~ t !,x~ t1t!, . . . ,x~ t1mt2t!…. ~1!

Of course X(m)(t)PIRmd, and it corresponds to the dis
cretized trajectory in a time intervalT5mt.

Usually, in data analysis, the space where the state vec
of the system live is not known. Mostly, only a scalar va
ableu(t) can be measured. In these cases one considers
tors X(m)(t)5„u(t),u(t1t), . . . ,u(t1mt2t)…, that live in
IRm and allow a reconstruction of the original phase spa
known as delay embedding in the literature@14,15#. It can be
viewed as a special case of Eq.~1!.

We now introduce a partition of the phase space Id,
using cells of lengthe in each of thed directions. Since the
region where a bounded motion evolves contains a fi
number of cells, eachX(m)(t) can be coded into a word o
lengthm, out of a finite alphabet:

X(m)~ t !→Wm~e,t !5~ i ~e,t !,i ~e,t1t!, . . . ,i ~e,t1mt2t!!,

~2!

wherei (e,t1 j t) labels the cell in IRd containingx(t1 j t).
From the time evolution ofX(m)(t) one obtains, under the
hypothesis of stationarity, the probabilitiesP„Wm(e)… of the
admissible words$Wm(e)%. We can now introduce the (e,t)
entropy per unit time,h(e,t) @9#,

hm~e,t!5
1

t
@Hm11~e,t!2Hm~e,t!#, ~3!

h~e,t!5 lim
m→`

hm~e,t!5
1

t
lim

m→`

1

m
Hm~e,t!, ~4!

whereHm is the block entropy of block lengthm:

Hm~e,t!52 (
$Wm(e)%

P„Wm~e!…ln P„Wm~e!…. ~5!
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For the sake of simplicity, we ignored the dependence on
details of the partition. For a more rigorous definition o
has to take into account all partitions with elements of a s
smaller thane, and then defineh(e,t) by the infimum over
all these partitions~see, e.g., Ref.@10#!. In numerical calcu-
lations we circumvent this difficulty by using coverings in
stead of partitions~see below!.

A concept which is complementary to thee entropy is the
e redundancy~see, e.g., Ref.@16#!, which measures the
amount of uncertainty on future observations which can
removed by the knowledge of the past, namely,

r m~e,t!5
1

t
@H1~e,t!2„Hm11~e,t!2Hm~e,t,!…#,

whereH1(e) estimates the uncertainty of the single outcom
of the measurement, i.e., neglecting possible correlation
the signal. Alternatively, we can write the redundancy in t
form

r m~e,t!5
1

t
H1~e,t!2hm~e,t!, ~6!

which emphasizes the complementarity between the red
dancy and entropy. If the data are totally independent,
hasHm(e,t)5mH1(e) and, therefore,r m(e,t)50. On the
opposite side, in the case of a periodic signal the redunda
is maximalr m(e,t)5H1(e,t)/t.

The Kolmogorov-Sinai~KS! entropyhKS is obtained by
taking the limite,t→0:

hKS5 lim
t→0

lim
e→0

h~e,t!. ~7!

The KS entropy is a dynamical invariant, i.e., it is indepe
dent of the employed state representation~1!, while this is
not the case for thee entropy @Eq. ~4!#. To simplify the
notation we drop thet dependence in the following, apa
from cases in which thet dependency is explicitly consid
ered as in Sec. IV.

In a genuine deterministic chaotic system one has
,hKS,` (hKS50 for a regular motion!, while for a random
processhKS5`. The entropiesHm(e) were above intro-
duced using a partition and the usual Shannon entropy; h
ever, it is possible to arrive at the same notion starting fr
other entropylike quantities, which are more suitable for n
merical investigations. Following Cohen and Procaccia@17#,
one can estimateHm(e) as follows. Given a signal compose
of N successive records and the embedding variableX(m), let
us introduce the quantities

nj
(m)5

1

N2m (
iÞ j

Q„e2uX(m)~ i t!2X(m)~ j t!u…; ~8!

then the block entropyHm(e) is given by

Hm
(1)~e!52

1

~N2m11! (
j

ln nj
(m)~e!. ~9!

In practicenj
(m)(e) is an approximation ofP„Wm(e)…. From

the numerical point of view the even more suited quantit
are the correlation entropies@18,19#
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Hm
(2)~e!52 lnS 1

N2m11 (
j

nj
(m)~e! D<Hm

(1)~e!, ~10!

where one approximates the Shannon entropy by the R
entropy of orderq52.

In the determination ofhKS by data analysis, one has t
consider some subtle points~see Ref.@20# for a detailed dis-
cussion!. Let us just make some remarks about the gen
problems in the computation of the Kolmogorov-Sinai e
tropy from a time series of a deterministic system. The fi
point is the value of the embedding dimensionm. Let us
assume that the information dimension of the attractor of
deterministic system isD. In order to be able to observe
finite entropy,m has to be larger thanD, since the behavior
of the entropies in the limite→0 is

hm~e!5const1O~e!>hKS , ~11!

providedm.D @21#. The second relevant point is the fa
that the saturation, i.e. the regime where the entropyhm(e)
does not depend on the length scalee, can be observed only
on length scales smaller than someeu . Thus it is possible to
distinguish a deterministic signal from a random one only
e,eu . Due to the finiteness of the data set there is a low
scalee l below which no information can be extracted fro
the data. Taking into account the number of points of
series,N, it is possible to give the following relation betwee
the embedding dimension, the KS entropy, the informat
dimension, and the saturation rangeeu /e l @22#:

eu

e l
<~Ne2mthKS!1/D, ~12!

whereeu and e l are the upper and lower bounds of the i
terval of scales at which the deterministic character of a
terministic signal shows up. Note that this relation does
determineeu . For more details, see Ref.@22#. If m is not
large enough and/ore is not small enough, one can obta
misleading results; e.g., see Sec. V.

The e entropyh(e,t) is also well defined for stochasti
processes. Its dependence one can give some insight into th
underlying stochastic process@10#. In the case of finitet, it is
possible to define a saturation range; below some len
scaleeu(t), we have

hm~e!5const2 ln e1O~e!. ~13!

However, the limitt→0 will lead to eu→0; thus the satu-
ration will disappear. As shown in Ref.@10#, for some sto-
chastic processes it is possible to give an explicit expres
of h(e,t) in this limit. For instance, in the case of a statio
ary Gaussian process with spectrumS(v)}v22, one has@8#

lim
t→0

h~e,t!;
1

e2 , ~14!

the same scaling behavior is also expected for Brownian
tion @10#. It can be recovered by looking ath(e,t) in a
certain (e,t) region. See Ref.@10# for a detailed derivation
of Eq. ~14!. We have to stress that the behavior predicted
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Eq. ~14! may be difficult to observed experimentally due
problems related to the choice oft ~see Sec. IV!.

B. Finite-size Lyapunov exponent

The finite size Lyapunov exponent was originally intr
duced in the context of the predictability problem in ful
developed turbulence@7#. Such an indicator, as will becom
clear below, is for some aspects the dynamical systems c
terpart of thee entropy.

The basic idea of the FSLE is to define a growth rate
different sizes of the distance between a reference and a
turbed trajectory. In the following we discuss how the FSL
can be computed, by assuming to know the evolution eq
tions. The generalization to data analysis is obtained follo
ing the usual ideas of ‘‘embedology’’@15#. First, one has to
define a norm to measure the distancee(t)5 zudx(t)uz be-
tween a reference and a perturbed trajectory. In fin
dimensional systems the maximum Lyapunov exponen
independent of the used norm. However, when one consi
finite perturbations there could be a dependence on the n
~as for infinite-dimensional systems!. Having defined the
norm, one has to introduce a series of thresholds star
from a very small onee0, e.g.,en5r ne0 (n51, . . . ,P), and
to measure the ‘‘doubling time’’„Tr(en)… at different thresh-
olds. Tr(en) is the time a perturbation of sizeen takes to
grow up to the next threshold,en11. The threshold rater
should not be taken too large, in order to avoid the error
grow through different scales. On the other hand,r cannot be
too close to 1, because otherwise the doubling time would
of the order of the time step in the integration~sampling time
in data analysis! affecting the statistics. Typically, one use
r 52 or r 5A2. For simplicity Tr is called is ‘‘doubling
time’’ even if rÞ2.

The doubling timesTr(en) are obtained by following the
evolution of the distancezudx(t)uz from its initial valueemin
!e0 up to the largest thresholdeP . Knowing the evolution
equations, this is obtained by integrating the two trajector
of the system starting at an initial distanceemin . In general,
one must chooseemin!e0, in order to allow the direction of
the initial perturbation to align with the most unstable dire
tion in the phase space. Moreover, one must pay attentio
keep eP,esaturation, so that all the thresholds can be a
tained (esaturation is the typical distance of two uncorrelate
trajectories!.

The evolution of the error from the initial valueemin to
the largest thresholdeP carries out a single error-doublin
experiment. At this point the model trajectory is rescaled a
distanceemin with respect to the true one, and another e
periment begins. AfterN error-doubling experiments, we
can estimate the expectation value of some quantityA as

^A&e5
1

N (
i 51

N
Ai . ~15!

This is not the same as taking the time average, because
error-doubling experiment may require a different time th
the others. For the doubling time we have

l~en!5
1

^Tr~en!&e
ln r ; ~16!
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FIG. 1. ~a! hm(e) ~dashed line! and r m(e) ~solid line! for the Henon map with the standard parameters (a51.4 andb50.3), with m
52, . . . ,9, and~b! The same for an AR~1! process, withm51, . . . ,5 andfixed t.
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for details, see Ref.@7#. The method described above a
sumes that the distance between the two trajectories is
tinuous in time. This is not the case for maps or for a discr
sampling in time, thus the method has to be slightly mo
fied. In this caseTr(en) is defined as the minimum time a
which e(Tr)>r en , and now we have@7#

l~en!5
1

^Tr~en!&e
K lnS e~Tr !

en
D L

e

. ~17!

It is worth noting that the computation of the FSLE is n
more expensive than the computation of the Lyapunov ex
nent by the standard algorithm. One simply has to integ
two copies of the system and this can also be done for v
complex simulations.

One can expect that in systems with only one posit
Lyapunov exponent, one hasl(e).h(e); see Ref.@7# for
details. Additionally it was shown in Ref.@23# how it is
possible to use the FSLE for characterizing the predictab
~also from the data analysis point of view! of systems con-
taining a slow component and a fast one. Let us commen
some advantages of the FSLE with respect to the (e,t) en-
tropy. For the FSLE it is not necessary to introduce ane
partition; most importantly, at variance with the (e,t) en-
tropy, the algorithmic procedure automatically finds t
‘‘proper time,’’ so that it is not necessary to decide on t
right sampling time and to test the convergence at vary
the words block sizeN. This point will be discussed in Sec
IV C.

III. CLASSIFICATION BY e DEPENDENCE

In Sec. II we discussed thee entropy and the FSLE a
tools to characterize dynamical processes. Let us re-exam
the question of distinguishing chaos and noise posed in
I. Equations~11! and ~13! allow us to make rigorous state
ments about the behavior of the entropy in the limite→0.
Then the behavior of the redundancy can be determined
using the relation to the entropy, given by Eq.~6!, if we take
into account thatH1(e)}2 ln e for continuously valued non
periodic process. Both the behavior of the entropy and
redundancy are summarized in the following table@6#:
n-
te
i-

o-
te
ry

e

y

n

g

ine
c.

by

e

deterministic (m.D) stochastic

r m(e)→` hm(e)→`
chaotic nonchaotic white

noise
colored
noise

limm→` hm(e).0 limm→` hm(e)50 r m(e)50 r m(e).0

The behavior of the FSLE in the limite→0 is similar to
that of thee entropy,h(e). It is worth noting that the FSLE
defined through the doubling times~see Sec. II B! is also
zero if l,0.

In all practical situations we have only a finite amount
data. Let us assume we have embedded the time series
m-dimensional space, e.g., by time delay embedding. The
this set of points one can relate an empirical measurem* :

m* ~X(m)!5
1

N (
i 51

N

d„X(m)2X(m)~ i t!…. ~18!

This empirical measurem* approximates the true measu
only on length scales larger than a finite length scalee l . This
means that we cannot perform the limite→0. Of course, on
a finite scalee l , both entropy and redundancy are alwa
finite; therefore, we are unable to decide which will rea
infinity for e→0. But we can define stochastic and determ
istic behaviors of a time series at the length scale depend
of the entropy and redundancy. Figure 1 shows the typ
behavior of the entropyhm(e) and redundancyr m(e) in the
case of a deterministic model~a two-dimensional chaotic
map! and a stochastic model„autoregressive model of firs
order, AR~1!….

For a time series long enough, a ‘‘typical’’ system ca
show a saturation range for both the entropy and the red
dancy. For decreasing length scalese with e,eu , one ob-
serves the following behaviors:

Deterministic Stochastic

r m(e)}2 ln e hm(e)}2 ln e

hm(e)'const r m(e)'const
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In addition, as far as stochastic behaviors are concerned
e entropy can exhibit power laws on large scales, e.g., in
case of the diffusion~14! ~see Sec. IV and Ref.@10# for
further details!.

If on some range of length scales either the entropyhm(e)
or redundancyr m(e) is a constant, we call the signal dete
ministic or stochastic on these length scales, respectiv
Thus we have a practical tool to classify the character o
signal as deterministic or stochastic without referring to
model, and we are no longer obliged to answer the m
physical question of whether the system which produced
data was a deterministic or stochastic one.

Moreover, from this point of view, we are now able
give the notion of noisy chaos a clear meaning: chaotic s
ing on large scales and stochastic scaling on small scales
also have the notion of chaotic noise, namely, stocha
scaling on large scales and deterministic scaling on sm
scales. These notions will become clear with the example
the following sections.

The method presented for distinguishing between ch
and noise is a refinement and generalization of one of
first discussed methods of approaching this problem: estim
ing the correlation dimension, and taking a finite value a
sign for the deterministic nature of the signal@24#. The main
criticism of this approach is based on the work of Osbo
and Provenzale@2#, who claimed that stochastic systems w
a power-law spectrum will produce time series which exh
a finite correlation dimension. A detailed discussion of t
problem is beyond the scope of this paper, but a main s
toward clarifying the problem was taken by Theiler@25#.
First, he noted that the discussed signals were nonstatio
and highly correlated with correlation times of the order
the length of the time series. From a conservative poin
view one has to stop at this point in any attempt to calcu
dimensions or entropies. If one proceeds nonetheless, Th
showed that the result will depend on the number of d
points and the length scale. If one has a sufficient numbe
data points, for this kind of signals one will also encoun
the embedding dimension which leads to the typical beha
given in Eq.~13! for the entropy. Moreover, if one uses
typical time delay embedding like Eq.~1! in contrast to Refs.
@2# and@25#, the result depends strongly on the chosen de
time.

We are aware that there are many other attempts to
tinguish chaos from noise discussed in the literature. T
are based on the difference in the predictability using pre
tion algorithms rather than the estimating the entropy@3,4#,
or they relate determinism to the smoothness of the sig
@5,26#. All these methods have in common that one has
choose a certain length scalee and a particular embeddin
dimensionm. Thus they also could, in principle, shed lig
on the interesting crossover scenarios we are going to
scribe in Sec. IV.

IV. DIFFICULTIES IN THE DISTINCTION BETWEEN
CHAOS AND NOISE: EXAMPLES

In this section we analyze in a detailed way some
amples which illustrate how subtle the transition from lar
scale behavior to small scale behavior can be; and thus
difficulties arising in distinguishing, from data analys
he
e

ly.
a
a
a-
e

l-
e

ic
ll
in

s
e
t-
a

e

t
s
p

ry
f
f
e
ler
a
of
r
r

y

is-
y
-

al
o

e-

-

he

alone, a genuine deterministic chaotic system from one w
intrinsic randomness.

A. Diffusive regime

We first discuss problems, due to the finite resolutio
which one can have in analyzing experimental data. We c
sider a map which generates a diffusive behavior on the la
scales@27#,

xt115@xt#1F~xt2@xt# !, ~19!

where@xt# indicates the integer part ofxt , andF(y) is given
by

F~y!5H (21D)y if y P[0,1/2[

(21D)y2(11D) if y P]1/2,1].
~20!

The maximum Lyapunov exponentl can be obtained imme
diately: l5 lnuF8u, with F85dF/dy521D. Therefore one
expects the following scenario forh(e) @and forl(e)]:

h~e!'l for e,1, ~21!

h~e!}
D

e2 for e.1, ~22!

whereD is the diffusion coefficient, i.e.,

^~xt2x0!2&'2 D t for large t. ~23!

Figures 3 and 4 showl(e) and h(e), respectively. Let us
briefly comment on a technical aspect. The numerical co
putation ofl(e) does not present any particular difficultie
on the other hand, the results forh(e) depend on the em
ployed sampling timet. This can be appreciated by lookin
at Fig. 25b of the review by Gaspard and Wang@10#, where
the power law behavior@Eq. ~22!# in the diffusive region is
obtained only if one considers the envelope ofhm(e,t)
evaluated for different values oft; while looking at a single
t, one has a rather inconclusive result. This is due to the
that, at variance with the FSLE, when computingh(e,t) one
has to consider very largem, in order to obtain a good con
vergence forHm(e)2Hm21(e).

FIG. 2. The mapF(x) ~20! for D50.4 is shown, superimpose
with the approximating~regular! mapG(x) @Eq. ~27!# obtained by
using 40 intervals of slope 0.



na
e

o
e

ip
-

ty
n

d

te
e

on a

en-
if

s
n
s:

to

ith

o-
oint
the
are
re-

r

in

432 PRE 62CENCINI, FALCIONI, OLBRICH, KANTZ, AND VULPIANI
Because of the diffusive behavior, a simple dimensio
argument shows that, by sampling the system every elem
tary time step, a good convergence holds form>e2/D. Thus,
for e510 and typical values of the diffusion coefficientD
.1021, one has to consider an enormous block size. A p
sible way out of this computational difficulty may be th
following. We call l (51) the length of the interval@0,1#
whereF(y) is defined; if we adopt a coarse-grained descr
tion on a scalee5 l , i.e. we follow the evolution of the inte
ger part ofxt , the dynamical system~19! is well described
by means of a random walk@27#, with a given probabilityp0
that in a time steps (51) the integer part ofx does not
change: @xt1s#5@xt#, and probabilities p6 that @xt1s#
5@xt#61. A diffusive behavior means that the probabili
for changing@xt# by 6k in n elementary time steps is give
by @28#

P~k,n!.
e2(k2/2an)( l 2/s)

A2pan
Al 2

s
, ~24!

FIG. 3. l(e) vs e obtained with the mapF(y) @Eq. ~20!# with
D50.4 (s), and with the noisy~regular! map (h) @Eq. ~27!# with
10000 intervals of slope 0.9 withs51024. The straight lines indi-
cates the Lyapunov exponentl5 ln 2.4 and the diffusive behavio
l(e);e22.

FIG. 4. (e,t) entropy for noisy (h) and chaotic (s) maps with
the same parameters as in Fig. 3; the encoding method is expla
in the text. The straight lines indicates the KS entropyhKS5l
5 ln 2.4 and the diffusive behaviorh(e);e22. The regione,s has
not been explored, due to computational costs.
l
n-

s-

-

with a a function ofp0. Now we increase the graining, an
identify all the x values in a cell of sizee5L, with L an
integer multiple ofl. If we observe the coarse-grained sta
of the system only everyt(.s) time steps, and define th
variablesk̃ and ñ, such thatkl. k̃L and ns.ñt, we can
write

P~ k̃,ñ!.
e2( k̃2/2añ)(L2/t)

A2pañ
AL2

t
~25!

for the probability of finding the systemk̃ L cells apart after
ñ t intervals. Thus, by choosingL2/t5 l 2/s, we expect that
the sequences generated by checking the system either
scaleL every t steps or on a scalel every elementary time
step s, have the same statistics, in particular the same
tropy, as a signature of a diffusive behavior. Note that
limm→`Hm(e,t5e2)/m is constant at varyinge, as we
found numerically, then thee entropy per unit time
limm→`Hm(e,t)/mt goes like 1/e2.

Since the equalityL2/t5 l 2/s is assured by the choice
e5L5g l and t5g2s, one can expect that, for a diffusio
process, the following scaling relation hold
limm→`Hm(e,t)/m5 limm→`Hm(ge,g2t)/m, with g an ar-
bitrary scaling parameter. This scaling relation allows us
see why the power law behavior~14! is expected to be valid
generally for the Brownian motion. Indeed, if we chooseg
51/e we haveHm(e,t)5Hm(1,t/e2) and, finally, taking the
limit t→0, thee entropy is given by

h~e!5 lim
t→0

@Hm11~1,t/e2!2Hm~1,t/e2!#

t

. lim
t→0

const3t/e21O~t2!

t
}

1

e2 , ~26!

which is Eq.~14!. Note that the first equality in Eq.~26! was
obtained by a Taylor expansion aroundt50, and by noting
that h(1,0)50 otherwise, the entropy for unit time will be
infinite at finitee, which is impossible.

B. Finite resolution effects

We now consider a stochastic system, namely, a map w
dynamical noise

xt115@xt#1G~xt2@xt# !1sh t , ~27!

whereG(y) is shown in Fig. 2, andh t is a noise with uni-
form distribution in the interval@21,1#, and no correlation
in time. As can be seen from Fig. 2, the new mapG(y) is a
piecewise linear map which approximates the mapF(y).
When dG/dy,1, as is the case we consider, map~27!, in
the absence of noise, gives a nonchaotic time evolution.

Now one can compare the chaotic case, i.e., Eq.~19! with
the approximated map~27! with noise. For example let us
start with the computation of the finite size Lyapunov exp
nent for the two cases. Of course from a data analysis p
of view we have to compute the FSLE by reconstructing
dynamics by embedding. However, in this example we
interested only in discussing the resolution effects. The

ed
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FIG. 5. ~a! Time record obtained from Eq.~28! with the frequencies chosen as discussed in the text withM5104, C50.005 and
m0 /m51026, the numerically computed diffusion constant isD'0.007. The length of the data set is 105, and the data are sampled wit
Dt50.02. ~b! Time record obtained from an artificial Brownian motion@Eq. ~30!#, with the same value of the diffusion constant as in~a!.
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fore, we compute the FSLE directly by integrating the ev
lution equations for two~initially ! very close trajectories, in
the case of noisy maps, using two different realizations of
noise. In Fig. 3 we showl(e) versuse both for the chaotic
@Eq. ~19!# and the noisy@Eq. ~27!# maps. As one can see, th
two curves are practically indistinguishable in the regione
.s. The differences appear only at very small scalese,s,
where one has al(e) which grow withe for the noisy case,
remaining at the same value for the chaotic determini
chase.

Both the FSLE and the (e,t)-entropy analysis~see Figs. 3
and 4! show that we can distinguish three different regim
observing the dynamics of Eq.~27! on different length
scales. On the large length scalese.1 we observe diffusive
behavior in both models. At length scaless,e,1, both
models show a chaotic deterministic behavior, because
entropy and the FSLE are independent ofe and larger than
zero. Finally on the smallest length scalese,s we see sto-
chastic behavior for system~27!, while system~19! still
shows a chaotic behavior.

C. Effects of finite block length

In Sec. IV B we discussed the difficulties arising in cla
sifying a signal as chaotic or stochastic because of the
possibility of reaching an arbitrary fine resolution. Here w
investigate the reasons which make it difficult to distingu
a stochastic behavior from a deterministic nonchaotic one
particular, we show that a nonchaotic deterministic syst
may produce a signal practically indistinguishable from
stochastic one, provided its phase space dimension is l
enough.

The simplest way to generate a nonchaotic~regular! sig-
nal having statistical properties similar to a stochastic on
by considering the Fourier expansion of a random signal@2#.
One can consider the signal

x~ t !5(
i 51

M

X0i sin~V i t1f i !, ~28!

where the frequencies are equispaced discrete frequen
i.e., V i5V01 iDV, the phasesf i are random variables uni
formly distributed in@0,2p#, and the coefficientX0i are cho-
-

e

ic

,

he

-
-

In
m

ge

is

ies,

sen in such a way to have a definite power spectrum, e.g
power law spectrum, which is a common characteristic
many natural signals. Of course Eq.~28! can be considered
as the Fourier expansion of a stochastic signal only if o
consider a set of 2M points such thatMDV5p/Dt, where
Dt is the sampling time@2#. Time series like Eq.~28! have
been used to claim that suitable stochastic signals may
play a finite correlation dimension@2,29#; see the discussion
in Sec. III.

Here we adopt a slightly different point of view. Sign
~28! can also be considered as the displacement of a
monic oscillator linearly coupled to other harmonic oscill
tors. Indeed, it has been well known for a long time tha
large ensemble of harmonic oscillators can originate stoch
ticlike behaviors. In particular, we refer to Ref.@30#, where it
was proved that an impurity of massm linearly coupled to a
one-dimensional equal mass,m0, chain of M oscillators
coupled by a nearest-neighbor harmonic interaction, in
limit of m@m0 and of infinite oscillators (M→`), under-
goes a Brownian motion. Our observable is practically giv
by the sum of harmonic oscillations as in Eq.~28!, where the
frequenciesV i were derived in the limitm0 /m!1 by Cukier
and Mazur@30#. The phasesf i are chosen as uniformly dis
tributed random variables in@0,2p# and the amplitudesX0i
are chosen as

X0i5CV i
21 , ~29!

where theC is an arbitrary constant and theV dependence is
just to obtain a diffusivelike behavior. Note that for a sign
of length 2M the random phases and theX0i ’s represent a
initial condition of the M oscillators, because their phas
space is 2M dimensional.

In Fig. 5~a! we show an output of signal~28!; for com-
parison, in Fig. 5~b! we also show an artificial continuou
time Brownian motion obtained by integrating the equatio

dx~ t !

dt
5j~ t !, ~30!

wherej(t) is a Gaussian white noise, produced by a rand
number generator@the variance of the process is chosen as
mimic that obtained by Eq.~28!#. Because the random num
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ber generator uses a high entropic one-dimensional deter
istic map, this is an example of a high entropic low
dimensional system, which produces a stochastic behavio
is possible to see that the two signals appear to be v
similar.

Now it is important to stress that ifM,` the signals
obtained according to Eq.~28! cannot develop a true Brown
ian motion, especially if one is interested in long time seri
Indeed for a long enough record one should be able to
ognize the regularities in the trajectory ofx(t). However,
even if the time record is long enough, in order to give
definite answer about the value of the entropy one also
quires very large embedding dimensions. The basic fac
that a deterministic behavior can be observed only if
embedding dimensionm is larger than the dimension of th
manifold where the motion takes place, which isM for M
harmonic oscillators. This means that although the entr
hKS is zero, the conditional entropieshm(e,t)5„Hm11(e)
2Hm(e)…/t for finite m are nonzero, and may even b
slowly decreasing form.M . Moreover, one can encounte
some quasiconvergences with respect tom for m,M , if t is
large enough; i.e., the entropy can seem to be independe
m, e.g. see Fig. 6.

FIG. 6. Dependence of the embedding dimension of thee en-
tropy calculated with the Grassberger-Procaccia algorithm usine
51.85, from the time series shown in Fig. 5~a!. The horizontal line
only indicates a possible numerically evaluated value for the s
ration of the entropy.
in-
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In Figs. 7~a! and 7~b! we show thee entropy, calculated
by the Grassberger-Procaccia method@18#. The deterministic
signal @Eq. ~28!# and the stochastic one@Eq. ~30!# indeed
produce very similar results. Note that we calculat
hm

(2)(e,t) instead ofhm
(1)(e,t), because it is used more ofte

due to better statistics in most cases. However, in Fig. 8
can see that, on relevant length scales, both entropies
almost equal.

As in Refs.@10,31,32#, we considered different time de
lays t in computing thee entropy because of the problem
discussed in Sec. III. The power law behaviore22 for the e
entropy is finally obtained only as an envelope of differe
computations with different delay times. The results for t
FSLE calculated from the time series are shown in Fig.
Both the e entropy and the FSLE display 1/e2 behavior,
which denotes that the signals can be classified as Brow
motion @10#. It is worth noting that the FSLE computed from
the time record is not too sensitive on the choice of the de
time t and the embedding dimensionm. From this simple
example is it easy to understand that the impossibility
reaching high enough embedding dimensions severely lim
our ability to make definite statements about the ‘‘true
character of the system which generated a given time se
as well as the already analyzed problem of the lack of re
lution.

V. SOME REMARKS ON A RECENT DEBATE ABOUT
‘‘MICROSCOPIC’’ CHAOS

The issue of the detection of ‘‘microscopic’’ chaos b
data analysis has recently received some attention@32,33#
after a work by Gaspardet al. @31#. Gaspardet al., from an
entropic analysis of an ingenious experiment on the posi
of a Brownian particle in a liquid, claim to give an empiric
evidence for microscopic chaos, i.e., they claimed to g
evidence that the diffusive behavior observed for a Brown
particle is the consequence of chaos on the molecular sc
Their work can be briefly summarized as follows: from
long ('1.53105 data! record on the position of a Brownia
particle they computed thee entropy with the Cohen-
Procaccia@17# method, described in Sec. II, from which the
obtained

u-
e
FIG. 7. e entropy calculated with the Grassberger-Procaccia algorithm using using 105 points from the time series shown in Fig. 5. W
show the results for an embedding dimensionm550. The two straight lines show theD/e2 behavior.
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h~e!;
D

e2 , ~31!

whereD is the diffusion coefficient. Then theyassumedthat
the system is deterministic and therefore, because of the
equality h(e.0)<hKS , they concluded that the system
chaotic. However, from the results presented in the previ
sections we can understand that their result does not
direct evidence that the system is deterministic and chao
Indeed, power law~31! can be produced in different ways

~1! A genuine chaotic system with diffusive behavior@like
map ~20! of Sec. IV A!.

~2! A nonchaotic system with some noise, like map~27!.
~3! A genuine Brownian system, like Eq.~30!.
~4! A deterministic linear nonchaotic system with ma

degrees of freedom@like Eq. ~28!#.
~5! A ‘‘complicated’’ nonchaotic system like the Ehren

fest wind-tree model, where a particle diffuses in a plane
to collisions with randomly placed, fixed oriented squa
scatters~as discussed by Dettmanet al. @32# in their com-
ment on Gaspardet al. @31#!.

It seems to us that the very weak points of Gaspardet al.
are~a! the explicit assumption that the system is determin
tic, and~b! the neglect of the limited number of data poin
and, therefore, of both limitations in the resolution and
block length. Point~a! is crucial; without this assumption
~even with an enormous data set! it is not possible to distin-
guish between cases~1! and~2!. One has to say that in case
~4! and ~5!, at least in principle, it is possible to understa
that the systems are ‘‘trivial’’~i.e., not chaotic!; however, for
this one has to use a very huge number of data. For exam
Dettmanet al. estimated that in order to distinguish betwe
cases~1! and ~5!, using realistic parameters of a typical liq
uid, the number of data points required has to be at le
;1034. Let us point out that Gaspardet al. @31# used;1.5
3105 points.

It seems to us that the distinction between chaos and n
makes sense only in very peculiar cases, e.g. very l
dimensional systems. Nevertheless even in such a cas
entropic analysis can be unable to recognize the ‘‘true’’ ch

FIG. 8. e entropy estimated by the Cohen-Procaccia algorit
(q51) compared to the entropies calculated by the Grassber
Procaccia algorithm (q52) for m520 andt50.2. Let us stress
that the behavior belowe50.2 is essentially a finite sample effec
in-
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acter of the system due to the lack of resolution. This
particularly evident in the comparison between the diffus
map @Eq. ~20!# and the noisy map@Eq. ~27!#, if one only
observes at scalese.s. According to the pragmatic pro
posal of classification discussed in Sec. III, one has that
s<e<1 both systems~20! and~27!, in spite of their ‘‘true’’
character, can be classified as chaotic, while fore>1 both
can be considered stochastic.

In this respect, the problem of the lack of resolution
even more severe for high entropic systems. One can rou
estimate the criticale (eu), below which the saturation ca
be observed, to beeu}exp(2hKS). Indeed exp(hKS) estimates
the number of symbols, i.e., cells of the partition required
reconstruct the dynamics. Therefore, in the Brownian mot
studied by Gaspardet al. @31#, where the KS entropy is ex
pected to be proportional to the number of molecules pres
in the fluid, the possible smalleu is pushed on scales fa
from being reachable with the finest experimental resolut
available.

VI. DISCUSSIONS

Here we briefly review two examples, studied in detail
Refs. @34,35#, showing that high-dimensional systems c
display nontrivial behaviors at varying resolution scales. W
believe this discussion can be useful in further clarifying t
subtle aspects of the distinction between stochastic and
terministic behaviors in dynamical systems.

Olbrich et al. @34# analyzed an open flow system d
scribed by a unidirectionally coupled map lattice,

xj~ t11!5~12s! f „xj 11~ t !…1sxj~ t !, ~32!

wherej 51, . . . ,N denotes the site of a lattice of sizeN, t the
discrete time, ands the coupling strength. A detailed nu
merical study~also supported by analytical arguments! of the
e entropyh(e) at different values ofe, in the limit of small
coupling, gives the following scale-dependent scenario:

r-

FIG. 9. Finite size Lyapunov exponent from an artificial Brow
ian motion ~right!, and for the time series~28! ~left!. Embedding
dimensionm520. We consider only neighbors which are distant
time more than 1000 sampling times~Theiler windows!. The
straight lines show the behaviorD/e2, whereD50.007 is the dif-
fusion constant. The analysis was performed on 105 points. Differ-
ent computations that changet andm have led to the same resul
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1>e>s there is a plateauh(e)5ls where ls is the
Lyapunov exponent of the single mapx(t11)5 f „x(t)…. For
s>e>s2 another plateau appears ath(e)'2ls , and so, for
sn21>e>sn, one hash(e)'nls . Similar results hold for
the correlation dimension, which increases step by step
the resolution increases, showing that the high dimensio
ity of the system becomes evident only ase→0.

Therefore, one has strong evidence that the dynamic
different scales is basically ruled by a hierarchy of lo
dimensional systems whose ‘‘effective’’ dimensionne f f(e)
increase ase decreases,

ne f f~e!;F ln~1/e!

ln~1/s!G , ~33!

where@•••# indicates the integer part. In addition, for a res
lution larger thane, it is possible to find a suitable low
dimensional noisy system~depending one) which is able to
mimic x1(t) given by Eq.~32!. It is interesting to note that
looking at h(e) on an extended range of values ofe, for e
>sN one observes

h~e!; ln
1

e
, ~34!

i.e., the typical behavior of a stochastic process. Of cou
for e<sN one has to realize that the system is determini
and h(e)'Nls . Even if this study mainly concerns sma
unidirectional coupling, the diffusive and strong couplin
cases deserve further analysis; they represent a first ste
ward an understanding of the issue of data analysis of h
dimensional systems.

Let us now briefly discuss the issue of the macrosco
chaos, i.e., the hydrodynamical-like irregular behavior
some global observable, with typical times much longer th
the times related to the evolution of the single~microscopic!
elements composing a certain system. This interesting k
of dynamical behavior has been studied in some rec
works @35,36# for globally coupled maps evolving accordin
to the equation

xi~ t11!5~12s! f a„xi~ t !…1
s

N (
j 51

N

f a„xj~ t !…, ~35!

whereN is the total number of elements, andf a is a nonlin-
ear function depending on a parametera. Cenciniet al. @35#
~see also Shibata and Kaneko@36# for a related work! studied
the behavior of a global variable~i.e., the center of mass!
using the FSLE analysis. Their results can be summarize
follows: ~i! at smalle (!1/AN), one recovers the ‘‘micro-
scopic’’ Lyapunov exponent, i.e.l(e)'lmicro ; and ~ii ! at
large e (@1/AN) one observe another plateau~correspond-
ing to what we can call the ‘‘macroscopic’’ Lyapunov exp
nent! l(e)'lmacro, which can be much smaller than th
as
l-

at

-

e
c

to-
h-

ic
f
n

d
nt

as

microscopic one. The above results suggest that at a coa
grained level, i.e.,e@1/AN, the system can be described b
an ‘‘effective’’ hydrodynamical equation~which in some
cases can be low-dimensional!, while the ‘‘true’’ high-
dimensional character appears only at a very high resolut
i.e.,

e<ec'OS 1

AN
D .

The presence of two plateaus for the FSLE at different len
scales is present in generic systems with slow and fast
namics@23#. The interesting fact is that in systems like E
~35! the two temporal scales are generated by the dynam
itself.

Let us stress that the behaviorsh(e)5const at smalle,
andh(e) decreasing for largere, and not pecularities of the
diffusive map@Eq. ~20!#. In typical high-dimensional chaotic
systems one hash(e)5hKS;O(N) for e<ec ~where N is
the number of degrees of freedom, andec→0 as N→`)
while for e>ec , h(e) decreases~often with a power law!.
From this point of view, the fact that in certain stochas
processesh(e);e2a can indeed be extremely useful fo
modeling such high-dimensional systems. As a relevant
ample we mention fully developed turbulence, which is
very high-dimensional system whose noninfinitesimal~the
so-called inertial range! properties can be successfully mim
icked in terms of a suitable stochastic process@37#.

VII. CONCLUSIONS

We have shown how an entropic analysis at differe
resolution scales~in terms of e entropy and the finite size
Lyapunov exponent! of a given data record allows us a cla
sification of the stochastic or chaotic character of a signal
practice, without any reference to a particular model, one
define the notion of deterministic or chaotic behavior of
system on a certain range of scales. In our examples we s
that, according to the pragmatic classification proposed
Sec. III, one can consider~on a certain resolution! a system
random or deterministic independently of its ‘‘true’’ natur
At first glance this can appear disturbing; however, if o
adopts a ‘‘nonmetaphysical’’ point of view there is an a
vantage in the freedom of modeling the behavior of the s
tem, at least if one is interested in a certain~noninfinitesimal!
coarse-graining property.
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