PHYSICAL REVIEW E VOLUME 62, NUMBER 3 SEPTEMBER 2000

Unified description of nondiffracting X and Y waves
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A unified spectral and temporal representation is introduced for nondiffracting waves. We consider a set of
elementary broadbarXiwaves that spans the commonly considered nondiffracting wave solutions. These basis
X waves have a simple spectral representation that leads to expressions in closed algebraic form or, alterna-
tively, in terms of hypergeometric functions. The span of Xhwaves is also closed with respect to all spatial
and temporal derivatives and, consequently, they can be used to compose different types of waves with
complex spectral and spatial properties. The unified description of Bessel-based nondiffracting waves is further
extended to include singular Neumann and Hankel wave¥,waves. We also discuss connections between
the different known nondiffracting wave solutions, and their relations to the present unified approach.

PACS numbeps): 43.20+g, 42.25.Bs, 46.40.Cd, 62.30d

[. INTRODUCTION polychromatic generalizations of Bessel beams. We also dis-
cuss “extended” nondiffracting waves that are based on the

Nondiffracting waves have attracted intense attention afNeumann or Hankel—instead of Bessel—beaf8,14.
ter Durninet al.[1] first reported the generation of an optical Noting that the cross section of the Hankel waves resembles
diffraction-free beam, also referred to as a Bessel beam, ifhe capital letterY, we suggest for them the nameY*
1987. Although the monochromatic solution had originally waves.” We also analyze the spectral and azimuthal degrees
been presented by Stratt?l—as early as 1941—the poly- of freedom exhibited by nondiffracting waves.
chromatic waves remained relatively ignored until Lu and We explicitly consider an important subclass of nondif-
Greenleaf 3] first introduced nondiffracting acoustic pulses, fracting waves that we refer to aswaves. These are waves
and subsequently presented a theoretical derivation of nowith a spectrum of the forro™e™ ““. We have already pre-
diffracting X waves[4]. sented these solutions and analyzed their properties using the

Several different approaches to nondiffracting waves hav@ngular-spectrum representati¢f,7]. Here we represent
been proposed. Lu and Greenleaf themselves also suggesté&m in closed algebraic form. The original definition of
another scheme in which one transforms an ordinary wavaondiffractingX waves[4] is more general and contains es-
solution in an 6—1)-dimensional space into a nondiffract- sentially all nondiffracting waves. Th¥-shaped form of the
ing solution in ann-dimensional space; when applied to Wave is, however, most pronounced for this subclass of wave
wavelet solutions, it was called a wavelet transfgsh We  solutions, and we refer to the more general class of solutions
have discussed nondiffracting waves using the angular spegaerely as nondiffracting waves.
trum of plane waves, and analyzed new solutions obtained as Finally, we consider different known nondiffracting wave
temporal derivatives of the fundamentdlwave [6,7]. A  solutions and discuss connections between the notations in
temporal, instead of spectral, approach to nondiffractinghis field. This is to assist further studies on the subject and
waves was suggested by Stepanishen and [B8]. Re- 1o help clarify the significance of and interrelations between
cently, we re-derived nondiffracting waves using their Fou-the many contributions.
rier representation to generali2é waves into anisotropic
wave propagatiofil0].

In the present paper, we obtain a general expression for
nondiffracting waves using their Fourier transforms. This Nondiffracting waves provide propagating beams and
leads to the spectral representation of nondiffracting wavegulses that feature good spatial localization—of the order of
which is here subsequently converted into a temporal reprewavelength—without diffractive effects that would divert
sentation. We derive an algebraic expression for an imporsimilarly localized Gaussian waves. Physically, diffractive
tant subclass of broadbandwaves and show that this sub- spreading of waves is avoided provided that the wave propa-
class of wave solutions is closed with respect to all temporagjates invariant in shape, which is the mathematical premise
and spatial derivatives. This simplifies in an essential wayfor the unified formulation of the present paper for nondif-
the description of derivative-based mixed-wave modes, sucfracting waves. Since nondiffracting waves are supposed to
as the bowtid11] and array wavefgl2]. propagate in free homogeneous media they may be con-

We define nondiffracting waves as such solutions of thestructed as linear combinations of plane waves. The condi-
wave equation that propagate uniformly—invariant intion of uniform propagation requires that all plane-wave
shape—along a given direction with a fixed velocity = components share a common phase velocity in the direction
called the velocity of propagation. Mathematically, the waveof propagation. Consequently, they remain in phase and the
is expressed asp(Xx,y,z;t)=f(x,y,z—vt). This leads to wave possesses an invariant form.

II. PHYSICS OF NONDIFFRACTING WAVES
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For monochromatic nondiffracting beams, the cross sec-
tion of the wave is invariant in the axial direction, thexis, (a)
while it features a peaked amplitude maximum in tlReyj
plane. The peak itself can be made as narrow as the wave-
length without spreading effects. On the other hand, the re-
quirement of uniform propagation unavoidably leads to a
transverse component of the energy flux that is needed to
support the main peak of the wave. It is observedadn
infinite number of relatively strong side lobes and the wave
energy decreases only in proportionrto! far from the axis
of propagation. Nevertheless, even finite-aperture approxi-
mations of nondiffracting beams show a wavelength-wide
focal line of arbitrary length in the axial direction, and en-
ergy concentration along this focal line.

The energy propagation within nondiffracting waves is
manifestly seen in pulselik¥ waves; they consist of conical
wavefronts that carry the wave energy. The fronts extend a
fixed angle(defined by the velocity of the pulsevith the (b)
axis of propagation, and the propagating pulse is observed at
the crossing of the wavefronts. Thus, the energy of the pulse
does not propagate along the axis of propagation, but is pro-
vided by the conical wavefronts that carry energy from the
outer regions of the aperture. The characteristic structure of
nondiffracting waves is revealed in the “fundamentél
wave” that is illustrated in Fig. 1 and further discussed in
Sec. VII.

IIl. UNIFIED FORMULATION

A nondiffracting wave is defined as a solution to the sca- G- 1- (Colon Fundamentak wave . (@) Cone of propa-
lar wave equation that propagates uniformly alongzfaeis gation chara_cterlstlc to aII_nondlffractlng waves. The direction of

. . . propagation is along theaxis. The focal spot and the wave pattern
with the velocity of propagation. Such a wave may be . )

. . . appear to propagate with superluminal velocity.The (x,z) cut of
expressed qﬁw(x,y,z,t):f(x,y,z—vt), and its Fourier rep- the same wave. Small arrows represent the energy flow that coin-
resentation i$15] cides with the propagation of the wavefronts while the large arrow

indicates the propagation of the entire wave. The focal spot is
j BX,y,Z:1) formed as the superposition of wavefronts. Since the wave is sym-
o metric about the axis, the wavefronts are conical in three dimen-
sions. For then=0 wave, the energy flux has no azimuthal com-
x e (kxtkytkz=ogrdt, (1)  ponent and the wavefronts cross on #rexis. For higher azimuthal
orders, the flux also possesses an azimuthal component and the
Changing the variables of integration inip=z—vt and #  wavefronts no longer cross in a single center, which causes the
=z leads to higher-order waves to be so-called “dark pulse” waves.

1
(2m)?

F(?)(kxakyvkz;w):

~ V2m, Due to the nondiffraction conditiork,= /v, we deduce
CoN _ . ,
Pk Ky ke 0) =Sk~ wlv) v flkoky,0fv), (2 that v =c/cos{=c (sincev>0 and thus & /<m/2). The
radial wave number assumes the form
wheref is the Fourier transform df either of which may be
taken arbitrary. However, the Fourier representation of the
wave itself proves proportional té(k,— w/v), which is a
sufficient condition for the wave to propagate uniformly
along thez axis. The wave is also required to satisfy theandg in Eq. (3) is the azimuthal angle in thekg ,k,) plane.
wave equation, which holds assuming thiet+kj=k?  Above, =0 corresponds to a plane wave, whife= /2
= w?/c?—k?, wherec is the speed of lightor sound in the  would imply a wave independent af which formally has an
medium andk, is the radial wave number. This is satisfied infinite velocity of propagation along The parametet is
by construction provided that we choose the representationcalled the axicon angle of the wave, see Réf], and its
value is determined by the velocity of propagatd]. Be-

k, =w(sin{)/c (4)

ky=w(sing)(cosp)/c, low, we find that the axicon angle defines a cone of propa-
gation that is characteristic to all nondiffracting waves hav-
ky=w(sing)(sinp)/c, (3)  ing equal velocities.

Consequently, the Fourier transform of an arbitrary non-
k,=w(cos{)/c. diffracting wave is of the form
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Bk, 0)="f(w,B8)dK, — w(sin)/c)d(k,— w(coss)/c). Although the indexn in the Bessel function may also assume
' ' - z negative values, the absolute value is chosen for convenience
as it will prove simpler below.

The latter delta function, containirig, arises from the non-  Sincev=c/cos{ is the velocity of propagation of the
diffraction condition, while both delta functions together en-wave, all nondiffracting waves are composed of Bessel
sure that the wave equation be satisfied. beams having different frequencies but the same velocity of

We point out that the above express|@y. (5)], is essen- propagation. Each Bessel wave has the radial wave number

tially identical to that presented by Donneby al.[see Ref. Kk, =w(sin{)/c and the axial wave numbér= w(cos{)/c in
[18], Eq. (1D accordance with Eq3). The general expression for a non-

diffracting wave is given by summing over the azimuthal
\I,y(k,(U):E(K,’)’)5(kZ_ yrIN1—9?) 8(w—ckl\1—?), degrees of freedonm. The func_tionfrJ(w) representg the
(6)  temporal spectrum of the nondiffracting wave of azimuthal
ordern and it is also sometimes called the transfer function
wherex is the radial wave number ange (—1,1) is a free  of the systen{4]. We point out that general Fourier theory
parameter. According to this representation, the velocity otloes not constrain the spectruig(w) to positive frequen-
propagation i® = w/k,=c/y whencey= cos{ in our nota-  cies. If we require, however, that the nondiffracting wave is
tion. represented as the real part of a complex analytic function,
the spectral functiorf,(w) must be limited to positive fre-

A. Spectral approach quencies only. This will be the case for all nondiffracting
wave solutions considered in this paper, apart from the
impulse-response waves that also contain negative frequen-
cies.

o Here we want to compare this result with the original
flw,8)= 2, f,(w)e":. (7)  definition of nondiffractingX waves by Lu and Greenleaf in
n=—c Ref.[4], where the expression fof waves is written in the
form
This shows that any nondiffracting wave is a superposition
of components with well-defined azimuthal properties, i.e.,
azimuthal orden. Below we show that the azimuthal depen-
dence in real space also shares the same functional form
e'"?. Considering a wave for fixed, we obtain

Sincep is limited into the finite interval 0,277], we may
expressf(w,B) as the Fourier series

Dy =e‘”¢f T(k)J,(kr sing)ekEeose=ehgk, (12
n 0

~ _ in(g-mi2) 2m o Changing the variable of integration inio= ck leads to the
n(k,w)=e fn(“’)zﬂki w(sing)/c) result given in Eqs(9) and (10). The only difference is that
the interval of integration is no longer limited to positive
X 8(k,— w(cosg)/c). (8)  values, and the index of the Bessel order may also assume

negative(intege) values. Although the negative Bessel or-
The arbitrary functionf,(w) is called the spectrum of the ders hardly offer anything new for individual wave modes,
nondiffracting wave. The factor2/k; arises from the mea- they do prove necessary in the construction of waves with
sure of integration in cylindrical coordinat¢$9]. We em-  more complicated azimuthal shapes. Apart from a few tech-
phasize that all nondiffracting wavésith a common veloc- nical aspects, the original nondiffracting waves are the
ity and direction of propagationin free space can be most general nondiffracting waves.
expressed as a sum of waves of this form. This shows that
the originalX waves[4] are the most general nondiffracting
waves, except for being limited to positive frequencies only. B. Impulse approach

The inverse Fourier transform leads to Equation(9) represents a nondiffracting wave in terms of
its spectral decomposition. Expressing the spectip(®) as
(9) a Fourier transform of the impulse functién,(t),

©

q)n(r!t):f fn(w)q’Jn(r,go,Z,t;w)dw,

1 » -
— ’ ot !
which is a spectral generalization of Bessel beams of the fn(w)= \/EJ'an(t Jetdt, (13)
form
D, (r,¢,2,t0)=(—1)*"e"¢J), (wr (sing)/c) the nondiffracting wave may be represented as
Xei[(cos{)zlc—t]w, (10)
where we introduce the notation P(r,t)= f_ Fat)W; (reztit)dt'. (14
1, n=0
(—1)*"= (1)

(=1)", n<o. Above, the impulse-response wa\lejn is
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TABLE I. Algebraic expressions foX waves in some special
®d, (r,<p,z,t;w)ei“’t'dw cases. HereP, is a Legendre polynomial anHl is the gamma
" function. The main-branch complex square root functions are to be
used in these expressions.

1 ©
‘I’Jn(r,QD,Z,t;t'):\/?f
aJ—=
eine VbZ— 2 +ip)l
PN Lk T

\2m bl"l\o?~ n=m=0

for evenn and

n=0 (I)O,m(rvt):

I'(m+1)
(—1)*"em  (JbZ—n2+in (21 p2)mine ™ 2 p2
v, (reztit')= 2i Im

\/ﬂ b|n“/b2— 7]2 o0 q)no(r’t):(_l)*neimp pin!

(16) ! /7.2+ bZ( 7'2+b2+7')|n|
(2[n))! pin!
|n|[2\n\ (72+b2)|n|+1/2

for odd n, where »=t'—[t—(cos{)z/c] and b=r(sin{)/c.
We also define complex analytic impulse-response waves m=|n|
‘ifJn, which only contain positive frequencies. They are given
as

(D\n|,n(rvt) =(—D* neine

specific form, namely(polynomial of w)xe™ *“ that are

<I>Jn(r,go,z,t;w)e‘“’t'dw obtained by linear combinations over differant The most
frequently considered waves are of this form.

The single-mode wave is now expressed in the form

- 1 (=

q,Jn(r,@'Z,t;t,):\/T_ﬂ'jo

_(=prre™ (PP i

V2w N (Dn’m(r,t)z(—1)*”ei”“’fxwm‘]|n|(bw)e_”"dw, (19
a7 i

. . . . . wherer=a—i[(cos{)zZ/c—t] andb=r(sin{)/c. This can be
and they automatically yield complex analytic nondlffractmgimegrated ana[tl(yticzi)ly angi the resu(lt m%y be expressed in

waves when mse_rted into E‘.ql4)' Note that the comp_le>_< terms of associated Legendre functioh§ [see Ref.[20],
analytic property is also achieved by using an analytic |m—Eq 6.6211)];

pulse functionF,(t), in which case the impulse-response

wave may either be taken as in E¢E5,16 or as in Eq(17), CT(mtn[+1) ,
see Ref][8]. D, )=(—1)*"ene——— “p-ill _____|
’ (V72 +bp?)m+l V72 +b?

IV. X WAVES (20

cific form. Consider a wave defined by the Fourier represen@t€d Legendre function be negative in this expression since
tation Pm(2)=0 for n>m. This is the original reason for the intro-

duction of positive Bessel index and the facter {)*" in

- in(a—2) e 2T Eqg. (10). The parametem is not limited to integer values
D m(k,w)=e""" T H(w)o e e only but the wave simplifies essentially fguositive) integer
m.
X 8(k, — w(sin{)/c)d(k,— w(cosf)/c), (18) Transforming to the variablesM=7+b? and Q

=7/\/77+b?, the associated Legendre functions can be ex-
where H(w) is the Heaviside step function that limits the pressed algebraicallfsee the Appendix for detajlsand the
interval of integration to positive frequencies. We also intro-wave solution is represented as
duce an attenuation facter which will imply a time and
length scale, see below. The wave has two degrees of free- - T'(m+|n|+1)
dom: an azimuthal order of the wavee 7, and a spectral P m(r,)=(=1)*"e"* N
order,me 7, with m=0. Being limited to positive frequen- (VM)

Inl

1-Q
1+0Q

cies only, the wave has a complex analytic form, and its m (m+K)1/(m—K)! (1—Q)K
spectrum is given by, (w) = o™e™** while the correspond- X > (—1)k

ing impulse function isF,(t)=(27) Ym!(a+it) ™%, k=0 (Inl+k)! 2!

see Eq(13). (22)

Waves given by Eq(18) are single-mode waves with
uniquely defined spectral and azimuthal properties. The term Although this expression may appear complicated at first
X wave refers to all linear combinations of waves of thissight, it is easy to evaluate numerically. Furthermore, it sim-
type. This class of nondiffracting waves has the followingplifies considerably for certain special cases, see Table I. The
two properties{i) all azimuthal degrees of freedom allowed X waves can also be expressed in terms of generalized hy-
for nondiffracting waves are covered by summing over thepergeometric functions, see Table Il. We emphasize that the
index n, and (ii) the spectra of the waves are limited to a square roots in Eq21) must be taken according to the main
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TABLE Il. Alternative new representations fot waves using associated Legendre functions and gener-
alized hypergeometric functions. The algebraic expressions requirmtasgsume an integer value while the
hypergeometric representations are valid for any nezl0.

I(m+|n|+1) il

(JZ+pHmet "

b\l
(E—) (|n|+m+1)

T

Npa

q)n,m(r:t) =(- 1)* neingo

_(—1)*ngine In[+m+1 |n+m+2_|n|+l._b_2)
Tm+1r(|n|+1) 2h1 2 1 2 ) ’ 7-2
(b)lnl
=] I'(|n[+m+1)
(1) 2 In| - In|+m+1 —m+|n|.|n|+1_ 2
JZFp)MmIp(n+p> 2 0 2 "2+ b2

=(_ 1)* neinzp
7_2

b\l
(E—) F(|n|+m+1)(

™0 (In|+1)

pz| M mt [n|-m |n|]-m-1
) 21 -

b2
, nj+1;——].
> i )

branch with the complex plane cut along the negative real

B. Extended nondiffracting wave solutions

axis. We point out that the associated Legendre functions

P;‘”'(x) are well defined also fan>m. However, the func-
tion is singular forx=—1, but this value of the argument is

The description of nondiffracting waves employed thus
far starts from their Fourier representation. This method is

never achieved for the main branch of the square root idimited to wave solutions that propagate in an infinite free

Eq. (20).

A. Normalized time and length scales

Due to the existence of the attenuation factgrthe X

space. If the space is somehow limited, or we allow for ex-
ternal forces, the waves do not fulfill the Fourier space con-
dition given by Eq.(3). An example is provided by spiral
waves[13] that have a divergence along theaxis. Some-
times this divergence is of purely mathematical nature with

waves can be represented in normalized coordinates. The physical interpretatioiNeumann waves, see belpvat

general expression for aXwave is given in Eq(19):

0

cbn,m(r,t):(—l)*“e‘wf ™I (wr (sing)/c)

0

Xe—{a—i[(cosg)z/c—t]}wdw. (22)

Changing the variable of integration o= aw yields

;ei“‘PJmeJn|(wr(sin§)/(0a))

am+l 0

(bn,m(rit) =
Xef{lfi[(cosg)z/cft]/a}wdw' (23)

Now we introduce normalized coordinates=r/(ca), z

other times it may be taken as a source or a sink for the wave
motion (Hankel waves [21]. Originally, the spiral nondif-
fracting waves were taken to be monochromatic, but they
can also be generalized to broadband waves.

Since the Neumann functions satisfy exactly the same dif-
ferential equation as the Bessel functiof@part from the
boundary conditions we may in Eq(10) replace the Bessel
functions with Neumann functions of the same order, or with
any linear combinations of them. This leads to Neumann
beams

<1>Yn(r,<p,z,t;w)=ei”‘f’(— 1)* Y (wr (sing)/c)

Xei[(cosg)z/cft]w, (25)

=7/(ca) andt=t/a, whereupon the wave in the new coor- which represent nondiffracting waves in the volume of space

dinates is represented as

(—*"

+
aml

Dy (r,t)= einwfo WmJ‘n|(W’I: sing)

Xe—[l—i(% cosg—i)]wdw_ (24)

In this set of coordinates{ waves propagate with the nor-

from which the axis of propagation has been excluded. We
may also provide a spectral generalization for Neumann
beams

@I:j fn(w)(I)Yn(r,qo,Z,t;w)dw, (26)

malized velocityo = 1/cos. We use these scaled coordinatessuch that we obtain the NeumanX waves for f(w)

in all the figures.

=M ** with m=n [see Ref[20], Eq. 6.6212)]
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TABLE lll. Derivatives of Bessel beams arXlwaves.

(I)‘Jn q)n,m
d wSlng“ S|n§
& (q)J 1 ‘]n+1) (q)n 1m+1 q)n+l,m+1)
J lwsmg i smg
ay e (Py TPy ) e @Pn-1meat Priames)
d wsm( » sm{ i
ar (é‘P‘bJ e ) (e' O 1mr1—€ " Ppiimys)
9 in®d, ind,
do "
d iw cos¢ i cos¢
5_ c Jn T nm+1
i —iwq)Jn _iq)n,m+1

ot

_ % V. DERIVATIVES OF NONDIFFRACTING WAVES
@I,m(r,t)z(—l)*”e'wf 0" (bw)e” ™dw i ) o

0 The Fourier formulation readily yields all temporal and
spatial derivatives of nondiffracting waves. Using the Fou-

—(—1)*neine S 2 I'(m+|n[+1) rier representatiofEq. (8)] and the fact thak,=k, cosp
- p (m)m+1 =[(wsind)/(2c)](¢P+e'A), we find
I 7| 2l ik D,= Smg( d dpiq). (30
XQp" (27) ax 2¢ OTn-1m @)
m

Similarly, the partial derivative with respect yois given by

The associated Legendre functions of the second kind,
QL(x), diverge forx=1 and the wave is undefined fdr
=r=0, i.e., along the axis of propagation. This integral con-
verges(at w—0) only for m=n while the opposite circum-
stance would lead to a non-integrable singularity at zero freThe necessity of introducing nondiffracting waves for nega-
quency. tive Bessel orders becomes obvious with spatial derivatives:

Both the Bessel-type waves and the Neumann-type wave@ositive Bessel orders do not span all the spatial degrees of
represent “standing wave” solutions that propagate energfreedom and, especially, they do not cover the derivative
towards thez axis and away from it with equal energy flux waves. The last two derivatives, i.e., the spatiderivative
(to be compared with the sine and cosine waves that arand the temporal derivative, are readily obtained from the
superpositions of waves propagating to the left and yight Fourier representation, and are given by
We may also consider their complex superpositions, i.e.,

ising .

F o (0@ 1+ o®n.). (@D

i =ik, D=
y Ky

Hankel-type waves that propagate energy either towards the I, —i ﬁw&) (32
z axis or away from it. They represent “source” and “sink” Jz c n

fields whose energy is not conserved but is creg@ednni-

hilated on the axis of propagation. Using the Hankel func-and

tions H(M(x) = J,(x) £iY,(x) [22], we obtain spiral non-

diffracting beamgHankel beamks &;{:n ——iwd,. (33)

(1,2) .\ — i@/ 1y%N (12)
q)Hn (r¢.2,t0) == 1)* Hjj"(wr (sing)/c) Since Bessel beams are monochromatic nondiffracting

x @ll(coszic—tlo (29) waves and t.he< waves haye the .simpleme*“’” spectlrum,
their derivatives are readily obtained from the previous ex-
pressions, and they are given in Table Ill. In Table Ill, we

Nondiffracting Hankel waves are similarly obtained by sum-have also included the derivatives with respect to cylindrical
ming Bessel- and Neumann-basédvaves coordinates. We conclude that all derivatives of the Bessel

beams and th& waves can be expressed in terms of Bessel
beams anc waves, respectively. Therefore, both subclasses
of nondiffracting waves are closed with respect to all deriva-
tives.

Note that the cross section of the Hankel waves only con- As already emphasized by Ljd1,12, the derivatives of
tains a half-cone. Therefore, we introduce for them the nameondiffracting waves can be used to generate new wave so-
Y wave (see Fig. 7 below and the discussion in Sec.)VIl  lutions with specified azimuthal properties. We shall briefly

(1.2 .
O =D, D) (29)
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consider bowtie and array wave techniques, both of which sing q
employ spatial derivatives. In the bowtie waves the energy (I)A(q)—|°‘< 5 ) 2 ( )(—1)p®n_2q+4p,m+2q
propagates primarily near the,) plane, leading to a rela- ¢/ p=0lP

tively narrow wave in the direction, while the array waves (39)

have several focal spots in the shape of an array, instead of

single focal center. Both techniques start with single-mode

waves(usuallyn=0) and, via partial differentiation, lead to wsing| 293

new solutions. They are defined as follows: <I>§(q)=iq( 5 ) > ( )( DPO; e (40
n p: n-

@E(q): &_qq)n' (34 Since the analytical solutions are known both mgn and

ay9 ®, m, all the bowtie and array waves are also obtained in
closed form. This again emphasizes the completeness of the

2 classes of Bessel beams aXdvaves.

q):\(Q): .

ax%9y4 VI. RESULTS ON NONDIFFRACTING WAVES

Several nondiffracting wave solutions and methods for
their generation have been reported after the original intro-
duction of the Bessel beafi]. In this section, we discuss
how the different solutions are related to our unified descrip-
tion of the nondiffracting waves presented above, and appli-
cations of the unified formalisniSee Table IV.

where the superscripB® andA refer to the bowtie and array
type waves, respectivelg;is the order of the bowtie or array
wave, andn is the azimuthal order of the nondiffracting
wave used to generate the new waves.

From here on, we limit our discussion to the bowtie and
array waves generated by Bessel beamsXawdves. Recall-
ing that the derivatives of these only differ owing to the fact

that each derivative introduces a factor wffor the Bessel A. Variety of different approaches

beams and raises the spectral indeky 1 for theX waves, The Fourier representation of nondiffracting waves,
we choose to consider onlg waves explicitly in what fol- which has also been employed by Donnediyal. in Ref.
lows. [18], naturally leads to the polychromatic generalizations of
Consider anX wave of ordersn and m. It generates a Bessel beams and, thus, to all ordinary nondiffracting waves
family of bowtie waves [23]. This procedure is essentially identical to the angular
spectrum representatid6], since the latter is chosen to be
- _ wsinZ\9 o limited to ordinary nondiffracting waveg24]. Piestun and
<I>Efrﬂ’=(iky)qd>n,m=iq( > ) (eP—e A, Shamir also employed a Fourier-based method to derive
¢ “generalized propagation-invariant wave fieldg25], which
ising\9& [q). in the sp_ecial case of _uniform prop_agation reduce into mono-
—( 5C ) pZO (p)(l)nqﬂp’mq, (35 chromatic nondiffracting waves, i.e., Bessel beams. How-

ever, Fourier-based methods are not the only way to derive
nondiffracting wave solutions. A cylindrical representation
whence of the wave equation was originally employed by Lu and
Greenleaf4] and it leads, together with a suitable ansatz, to

i sing| 93 the general expression for Bessel-based nondiffracting
B(q
Cbn,m_( ) E ( n q+2p,m+q- (36) waves.

p=0 There is also a mathematically interesting algorithm of
converting an —1)-dimensional ordinary wave solution
Similarly, we obtain bowtie waves generated by Besseinto an n-dimensional nondiffracting wave solutiof,7].

beams: This is possible since the degrees of freedom of the former
solution coincide with those of the latter. Therefore, there is
iwsing| 93 a one-to-one mapping between ordinary two-dimensional
@?(q)—( ) > ( ) (37)  (2D) waves and nondiffracting 3D waves. In the Fourier rep-
n =0 n q+2p . .. . .
P resentation, this is apparent since the 2D wave satikfies

_ _ +k§ w?/c? whereas the 3D wave obeys +k;=w?/c?
Array waves generated by atiwave are in turn given by —k2=(1/c>~1h?)w?. Applied to the two- d|mensional

wavelet solution, this yields a three-dimensional nondiffract-

a)ﬁ,(r%):(ikx)q(iky)q&)n,m ing wave that correqunds to t_D(aNave_CD(),z. The impulse-
response approad®,9] is readily obtained from the mono-
a sin\2 3 [q ~ chromatic Bessel beams via temporal Fourier transformation.
=i 2c pZO (=1)P®n 2q+4p,m+2q> However, it was noticed already by Stratt? that the

cylindrical wave equation is satisfied by all circular cylinder
(38  functions, that is, also by Neumann and Hankel functions,
but not along the axis of propagation. It was pointed out by
whence Chavez-Cerdaet al. [13] that the monochromatic Bessel
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TABLE 1V. Different nondiffracting wave solutions.

Authors Spectrum Comments Refs.
Chavez-Cerda and co-workers monochr. Hankel waves, Sommerfeld radiation condition, afd 3,55 [14]
interference of nondiffracting waves
Donnelly, Power, Templemen, and Whalen — we™ ““ Simulation results [18]
Durnin, Miceli, Jr., and Eberly monochr. The origink) beam [1]
Erddyi et al. monochr. Microlithography, Fabry-Perot interferometer [32]
Fagerholm and co-workers wMe Angular spectrum representation, 2D & 3D nondiffracting [6,7]
waves

Hsu, Margetan, and Thompson monochr. Planar ultrasonic transducer [27]
Koike, Yamada, and Nakamura monochr., pulse Conical ultrasonic transducer [26]
Laycock and Webster monochr. Optical and microwave applications [28]
Lu and Greenleaf sin(wgt)e % The originalX wave [3]
Lu and Greenleaf positive X waves [4,43]
Lu, Xu, and Greenleaf wle @ Wavelet transform [5]
Lu general Bowtie and array waves [11,12
Lu monochr. Design of nondiffracting waves [35]
Piestun and Shamir monochr. Generalized propagation-invariant waves [25]
Ruschin and Leizer monochr. Evanescent Bessel waves [53]
Saari and Swajalg Gaussian Opticad waves [31]
Stepanishen and Sun general Impulse-response approach [8,9]
Stratton monochr. Theoretical origin of Bessel waves [2]

beam itself should not be considered as an elementary solu- czcosi—t
tion, but rather as the superposition of two counterpropagat-® . (r,t)e \/1+i —Ze—[rzsin2 ¢+ (z cos¢—ct)?)/(2c?a?)

ing Hankel waves. This is due to the fact that the Bessel woa

beams and their polychromatic generalizations do not satisfy 4

the Sommerfeld radiation condition and, correspondingly, X Jo 1+i%)rwo(sin{)/c

they involve an energy flux emanating from infinifg4]. woa’?

Physically, a finite aperture will automatically exclude this « giwolz(cosnic—t] (a1)

effect but, nevertheless, the Hankel-type solutions reappear
locally with conical transducerf26] that generate only the
“approaching part” of the cone of propagatideee Figs. 1
and 8. The approaching part of the cone first locally corre-
sponds to the Hankel solutidd® and subsequently trans-
forms into the Bessel-type solution. Finally, the wave as- B. Applications of the unified theory

sumes the form of the Hankél") solution which spreads  |n this paper, we have presented a systematic study of
outward from the axis of propagation. A planar transducehondiffracting wave solutions, with an emphasis on different
with a finite apertur¢27,28 may be used to produce both a spatial and dynamic degrees of freedom compatible with the
Bessel-shaped wave that eventually transforms into the Hamondiffraction requirement. By now, a large variety of appli-
kel waveH®), and a second Hankel wave that first obtainscations has been proposed for nondiffracting waves and, in
the form of a Bessel wave and only then diverts as a firsparticular, for the zero-order Bessel beam as it offers a long
Hankel wave. In the original experiment of Durrehal.[1],  focal line, that makes it useful in lithograph$2] and imag-
the Bessel wave was formed, while both hologrddiffrac-  ing applications of wavelength accuraf33]. Nonetheless,
tive elements [29] and axicons[30] have both been em- higher-order Bessel beams and beams of more complicated
ployed to form nondiffracting waves of the Hankel type.  spatial structures have also attracted increasing attention.
Although mathematically the spectrum of nondiffracting Since they lack the circular symmetry of thg Bessel beam,
waves may be chosen arbitrarily, the physical systems intwo-dimensional acoustic array transducers have been em-
volved may set limitations on the spectrum. As pointed oufployed in their excitation34]. Up to the discretization accu-
by Saari and Swajalg [31], a nearly Gaussian spectrum racy, such transducers may be optimized to excite arbitrary
f(w)= Vo exf — a’(o—wo)%2] should be chosen for optical nondiffracting beam$35]. In optical systems, complicated
nondiffracting waves generated by laser devices. This pamondiffracting beams are obtained frofGaussiain laser
ticular form is, in a sense, even more suitable than an ordibeams with diffractive elemen{86] or by using the polar-
nary Gaussian spectrum since it tends to zero continuously @&ation properties of lighf37]. In particular, diffractive ele-
low frequencies. Furthermore, the spectrum is limited toments may be employed to produce complicated wave pat-
positive frequencies only, resulting in a complex analyticterns and, for instance, rotating helical waves by superposing
signal. Then=0 order wave itself is then given by Bessel beams having different velocities of propagdit&a].

which is approximate but sufficiently accurate for any pulse
bandwidth achievable in optics.
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Recently, an interesting application for high-order “dark”
beams has been suggested in confining cold atoms into a
optical atom guide formed by the dark center of the beam

[39]. Millimeter-wave diffractive elements may also prove 't

n=0 n=1

useful in the generation of radio-frequency nondiffracting ;

beamg 40]. . il f
Nondiffracting waves also encompass periodic beam ar- [

rays[41], which, in our approach, resemble array beams of r 'z r -

infinite order. Beam arrays consist of a two-dimensional lat- S o

tice of “beams” and they contain only a finite number of '

plane-wave components. Formally, they may be expressed &

a sum of Bessel beams but they are more conveniently ane

lyzed as convolutions of Bessel beatasually of rather low

orden and distributions of lattice points. Beam arrays are iy

suggested to be useful for free-space optical interconnect F o

[42]. '
As demonstrated in the first experimgag], nondiffract-

ing pulses have potential in dynamic imaging applications. 'z ¢ z

The time dependence of nondiffracting pulses also requires

dynamic apertures that can be controlled both spatially and

temporally. In acoustic applications, this may be realized ei- FIG. 2. (Color Impulse-response waves for orders 0, 1, 2,

ther with circular-symmetric annular transducé#st] (for and 6. The waves of orders 0, 2, and 6 are purely real while the

the n=0 pulse$, or with real two-dimensional transducer Wave of order 1 is purely imaginary. The amplitudes of the waves

arrays[45] that allow more complicated spatial structures. A diverge forr sinf=[zicos¢. The cone of propagation is obtained by

truly dynamic transducer allows us to choose the spectrdPtating the wave about theaxis. The two disjoint insides of the

contents of the waves freely, leading to a large variety offone contain no wave motion, which is bound to the outside of the

different forms of acoustic bullet§8,9]. While dynamic

multielement antenna arrays could also be used to send ) _

radio-frequency nondiffracting puls¢g6], optical X waves the mere impulse-response waves may be interpreted as the

[47] are obtained as nondiffracting beams with very shortimiting case of a broadband nondiffracting wave having a

lifetime between the ignition and extinction of the beam. InVery low attenuation at high frequencies. As such, they

addition to |mag|ng app”cationS, e|ectr0magn%0/vaves Sh0u|d be C0n.SIdereq arChe.typ(.BS Of nondlffl’actlve waves

have recently been suggested, e.g., for radio communicatigither than their physical realizations.

n=2 i n=>6

[48]. In Fig. 2, we illustrate four impulse-response waves; those
of ordersn=0, 1, 2, and 6. The impulse waves illustrate the
VII. PHYSICAL PROPERTIES OF NONDIEERACTING X-wave nqture of all the nondiffracting waves: the energy of
WAVES the wave is concentrated on the cone of propagation whose

axis coincides with the propagation direction. The opening

Heretofore, we have considered the purely mathematicadngle of this cone is defined by the axicon angle parameter
construction of nondiffracting waves. Now we turn to de-and it is 90~ (see Fig. 2 The cross section of the cone
scribe the physical properties of the various specific nondifwith the (x,z) plane has the shape of the lettér The
fracting wave solutions presented above. impulse-response waves also have the special property that

Prior to considering more complicated nondiffracting the wave is strictly bound to the outside of the cones, i.e., for
wave solutions, we briefly discuss the fundamedtakave  r sin{>|Zcos¢, while the volume inside the cones is free of
®y 0, that illustrates the general conical shape characteristizzave motion. The energy of the wave is concentrated into
to all nondiffracting waves. The wave equation together withthe vicinity of the cones where the amplitudes of the
the nondiffraction condition fixes the ratio of the radial andimpulse-response waves diverge. This divergence is, how-
axial wave vectors according t&, =(w/c)sin{ and k, ever, integrable and it vanishes in the convolution with the
=(w/c)cos¢. Since the wave equation under considerationimpulse function of the physical wave.
is isotropic and nondispersive, the velocity of the energy
flow is necessarily equal to the phase veloaty B. X waves

Figure 1 represents the fundamentalvave and the en-
ergy flow within the wave. Although the structure of the spot
itself differs for more complicated waves, the asymptotic
conical shape remains common to all broadband waves.

The set ofX waves has many physically and mathemati-
cally appealing properties that justify their treatment as one
of the most important special cases of nondiffracting waves.
In this connection we want to emphasize that there actually
is an infinite number of sets of waves: the defining expres-
sion, given by Eq.(18), depends on two parameters. The

Impulse-response wavelEq. (14)] are nondiffracting axicon angle is the angle between theaxis in the Fourier
waves that correspond to a unit impulse in the time domainspace and the direction of the actual wave vectofsRef.
The actual physical waves are obtained as a convolution d6], Fig. 2). This parameter is used to define the scaling,of
the impulse functions and the impulse response waves, buitith frequency; hence, it defines the velocity of propagation

A. Impulse-response waves
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FIG. 3. Above: Waist £=0) of X waves for the orderm=0, FIG. 4. Above: Waist ¢=0) for X waves of the azimuthal

m=1, m=2, andm=10. The azimuthal order i8=0 and the  ordersn=0, n=1, n=2, andn=10. The spectral order i;1=0
axicon angle is{=45° for all. Below: Approaching formsz(  and the axicon angle is=45° for all. Below: Approaching forms
=10) of these waves. Th¥ waves become increasingly localized (z=10) of these same waves. While the increasing spectral arder
for large m since the spectrum of the wave)e™ ““, becomes |eads to more localized waves, the growing azimuthal orgen
concentrated for high frequencies. The zero-order wawe Q) is  turn, makes them less localized. For high azimuthal ordersXthe
strongly delocalized which is due to the diverging spectrum for zerayave also concentrates to the outside of the cone of energy propa-
frequency[the 1k, factor in Eq.(18)]. Oscillations of the higher gation. The radius of the cone &t 10 is R=10. The wave fon
spectral modes can also be observed. The graphs display the reall has odd parity with respect tg owing to the factore!"?.
parts of the waves. Each wave has been scaled individually.

damental mode least localiz49], as can be seen in Fig. 3.
v=wlk,=c/cos{. The other parameter is the attenuationThe increasing spectral order also causes the waves to be
factor a that damps the high-frequency components. Xhe increasingly oscillatory near the axis of propagation.
waves defined through different choices for these parameters Also, the azimuthal order of the wave affects the degree
are, however, mutually reducible to each other. Thereforegf |ocalization of the wave. Since the Bessel beams of orders
we consider Only one set of waves, with fixed but arbitrary |n|>1 exhibit a zero on the axis, the Corresponding
values for these parameters. We assume the values of thg@aves also display a zero on thexis. Hence, the maxima
parameters to bé¢e (0,7/2) anda e (0,»). of the waves are located at some finite distance from the axis

The existence of the attenuation factors quite useful in of propagation_ The |arger the azimuthal Orthﬂ the farther

defining an effective frequency scale since high frequencieghe maximum is from the axis of propagation. Although the
are damped according to dxpaw], whence the “frequency ordern has no effect on how fast the wave decays for large
unit” is 1/a. Single-modeX waves®, ., also have an effec- the halfwidth of the wave increases for high azimuthal or-
tive frequency. Although the spectrum of waves has a ders, see Fig. 4. The azimuthal order also delocalizes the
nonvanishing value for all positive frequencies, it reaches itsvave in the direction of propagation. Although the wave
maximal value at,,,=m/ a. The fundamentaX wave®,,  remains outside the cone of propagation, it no longer is con-
displays a spectral maximum at zero frequency, which isentrated in the vicinity of the cone. The wave also becomes
hardly physical in optics. The spectral maximum of higheroscillatory outside the congee Fig. 5.
modes may be varied using different values for the attenua-
tion factora and also the spectral orden, The effect of the C. Mixed-wave modes
spectral ordem can be seen in Fig. 3. Since the dominating )
frequencies for the higher spectral modes are also higher, the According to Eqs(7) and(9), the most general expres-
X waves become increasingly localized for increasing Sion for nondifracting waves may be written as
This is due to the fact that the spatial Fourier componénts ( o .
and k) scale with frequency and, thus, also obtain large d(rt)y= > f ()P, (r,¢,zt0)dw, (42
values. This allows for better spatial localization. In this re- n=—o J-o n
spect, the fundamental modg, , proves somewhat compli-
cated. Since the Fourier representation of naves[Eq.  where the wave is divided into components of different azi-
(18)] also contains the factori/, the Fourier transform of muthal orders. In the general case, the spectra of the modes
the wave diverges for small frequencies. This makes the funare mutually independent. We point out that the spectral
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FIG. 5. (Color) X waves of different azimuthal orders, For ‘3::'5 ¥ 3 ‘1_313 " 13
higher orders, the wave is no longer localized near the cone of
propagation but spreads outside the cone. Although the wave de 3 13
cays for large, the waist of the central pulse is strongly broadened =
(see also Fig. ® 4] # x
=
o -
functionsf, also serve as weight functions for the different § ¥ A ¥
modes, although these weights are sometimes frequency de¢—
pendent. If the spectra are the same for each mode, up t £ . #
constant factors, they may be referred to as the weights o<
each mode. In this case, the wave is represented as 1 ¥ s "By = 13

FIG. 6. (Color) FundamentaK wave, bowtie waved=10), and

* « array wave ¢=10). The rotationally invariank wave ®,, has a

d= E C flw)®; (1,¢,2,t;0)dw, (43 circular waist and an annular approaching fofch Fig. 1 for the
n=-—o —® " geometry. For the bowtie waves, the energy essentially propagates

along they axis making the wave narrower in thedirection. The

where the spectrum of the whole wave is merily) while array wave is formeq from wave c_omponents propagating ajong
the (complex weights ¢, define the contribution of each =X leading to a grid-shaped waist for the wave. Each wave has
mode. Usually, the weights tend to zero for high indices, bupeen individually spaled. Thg increasing localization of the bowtie
this does not always holgs0]. Often, most of the weights 2nd array waves, in comparison to the fundamextalave, is due

are zero, either for a practical reas@finite, instead of an to their higher spectral order. Note that each derivative |ncrea_ses the
infinite sum, or a theoretical reasdionly a finite number of Spec”.al Order.by one; thus, the SpeCtrafl order af=a10 bowtie
terms appears in the derivative wayes wave is 10 while that of the array wave is 20.

The simplest example of a mixed-wave mode is obtaine
as the superposition of two waves with,=—n;. Since,
apart from the factor £ 1)*"e'"?, the wave is independent
of the sign of the azimuthal order, the resultant wave has ap,,
azimuthal form given by simgp) or cos(g). This transforms
the “rotating” e'"¢-shaped wave into a “nonrotating” sin-
or cos-shaped wavib1]. However, the “rotating” wave is
not actually rotating since the physical wave still propagate
uniformly according to ¢(x,y,z—vt). More complicated
mixed-wave modes are obtained from spatial derivat{ges
Table IIl), and from different techniques based on deriva-
tives, like the bowtie wavegl1] and array wave§l2]. Al-
though the grid and layered array beams may technically be
obtained by summing an infinite number of different Bessel
beams, they are actually merely superpositions of two or four There are essentially two kinds of extended nondiffracting
plane waves. There also exist methods to directly desigwaves:(i) The Neumann solutions that are radial standing-
nondiffracting waves where the weights of the differentwave solutions, thus resembling the Bessel solutions, but

qnodes are optimized to form a wave of designed shapg

See Fig. 6 for the bowtie and array waves.

Although mixed-wave modes naturally appear for deriva-
es of nondiffracting waves, they are usually studied for
more practical reasons. For single-mode waves, the energy
flow is effectively radially symmetric and the transducer ar-
rangement, optical or acoustic, needs to be circular. Thus, the
Tentral pulse requires a large free medium for undistorted
propagation. Mixed-wave modes, especially the bowtie
waves, may be used to reduce the spatial volume needed for
the wave propagation.

D. Extended nondiffracting waves
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Z

FIG. 7. (Color) Fundamenta¥ WaveCIJB"E)Z) . The cross section of
this wave resembles the capital letter Y since it contains only one
half of the cone of propagation, and a divergence on the axis.

with a divergence on the axis of propagation aidl the FIG. 8. (Coloy (8 FundamentalX wave ®o,, (b) extended
Hankel solutions that describe an energy flux with a radiaNeumannX wave®y,, (c) extended Hankel WaV@ o (Inverted
component. The energy may be carried either away from th& wave), and (d) extended Hankel wav@00 (fundamentalY
axis of propagatiorfirst Hankel wave or towards the axis wave. The Neumann wave diverges along the axis of propagation
(second Hankel waye Correspondingly, the Hankel waves and, especially, in the focal center of the wave. The ordinary
assume an energy source on the axis of propagation and thBessel-based wave and the extended Neumann wave contain both
they do not satisfy the free-space wave equation on the axigarts of the cone of propagation owing to the fact that both waves
The energy propagation is most conveniently analyzed ”q:orrespond to monochromatic standing-wave solutions. The Hankel
the far-field regime from the axis of propagation. Using anwavefbH(0 in (c) contains only the outward propagating half-cone
asymptotic expansion for the Hankel functions we find thathat diverges in the focal center. Similarly, the Hankel W%’

the wave away from the axis (for larger) is given by in (d) only contains the inward propagating half-cone.
_ without the central peak. On the other hand, only the zero
J2eine(—1)*n . Bessel order nondiffracting wave has the central peak while
@(1,2)“ z t'a))I etl[wr(sm{)/cfnwlzf wl4] “
H, (e st \/m the other Bessel orders produce “dark pulsdd] whose
field amplitude vanishes on the beam or pulse center.
x gil(coszic—t]w (44) The Hankel-type solutions arise in physical experiments

where the wave is generated by a planar or a conical aper-
Therefore, the first Hankel wav@(l’ carries energy away ture. For further discussion on Hankel waves, see Refs.
from the axis of propagation. Hence, we call it a “source[13,14. Only the second Hankel wave needs to be emitted
no physical sink exists on the axis, the energy is Iater on
in the opposite direction, which Just|f|es the name ‘“sink d f Thi h d
field.” In analogy with the motivation for the nameX' car_rle away from it. This g_enerates the outward propa-
T . . " gating component of the ordinary Bessel beam and cancels
wave,” we wish to introduce the termY wave” for the

d Hankel @ wh tion in th the singularity of a true Hankel wave. Note that the resultant
second Hankel wave>; - whose cross section in the&.€)  \yave is no longer a nondiffracting wave since the Hankel

plane resembles the lett¥r(see Fig. 7. Figure 8 illustrates \ave transforms into a Bessel wave. The central beam, how-

the fundamentaK wave, and the corresponding NeumaXn ever, remains unchanged and can thus be considered nondif-
wave and the two Hankéf waves. In addition to their radial  fracting.

energy flux, the Hankel waves of higher azimuthal orders
also feature an azimuthal energy flux that makes them rota-
tional wave solutions. Due to the rotational shape of the
higher azimuthal orders, these fields are also called spiral We have suggested a simple unified approach to nondif-
waves[13]. fracting waves using the Fourier representation for uniformly
Although the singular behavior of the extended wave sopropagating solutions of the wave equation. This naturally
lutions emphasizes their mathematical nature, we argue thégads to the spectral generalization of Bessel beams. While
they are conceptually useful. Neumann-type solutions ariseBessel beams are monochromatic nondiffracting waves, their
for instance, in fluid dynamics when a bar is placed on thespectral Fourier transforms are waves that correspond to a
axis of propagation. If the bar is rigid enough to reflect allunit impulse in the time domain. Thus, we obtain both a
waves supported by the fluid, the field described by the scaspectral and a temporal representation for nondiffracting
lar wave equation should vanish on the surface of the bamwaves.
This can in general be satisfied by taking an appropriate lin- We have also explicitly studied a specific subclass of
ear combination of Bessel- and Neumann-type solutionbroadband nondiffracting waves referred to X¥swaves.
(with real coefficients This leads to a nondiffracting wave Their spectrum is limited to a given functional for¢poly-

VIIl. DISCUSSION
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nomial inw) X e~ *“. This set of nondiffracting waves can be =~ APPENDIX: ALGEBRAIC REPRESENTATION OF X
expressed algebraically, and it has been shown to be closed WAVES

with respect to all spatial and temporal derivatives. This fa- _. L -
cilitates the description of new nondiffracting wave solutions Since the argumen@=r/y7"+b* in Eqg. (.20) sgusfles
Q|=1, we may express the Legendre functions in terms of

using, for instance, bowtie and array wave techniques. W . . i
have also considered extended nondiffracting waves bas&fneral'zed hyperbolic functions gf. Ref.[20], Eq. 8.704

on the Neumann or Hankel—instead of Bessel—functions, 1+Q\~2

leading to the new class of waves. They offer a practical PHQ)= | —=

tool for the analysis and design of nondiffracting wave fields F1-wi1-Q

and the construction of appropriate antenna structures to be -Q

applied in the actual physical generation of limited- X 2F1( —v,v+1;1—p; T) (A1)

diffraction waves.

Finally, we have discussed and demonstrated several NoQshence
diffracting wave solutions and their physical properties.
While rigorously nondiffracting waves only exist as purely - 1 [1-Q)\nie2
mathematical entities, they can be approximately realized to P."MQ)= —(—)

. ’ . : In1\1+Q
obtain useful wave modes with large depth of field. We have
discussed such properties of the wave solutions that are rel-
evant for the design of the appropriate nondiffracting waves.

An increasing number of novel and important applications
has been suggested for nondiffracting or limited-diffractionFrom here on we omit the absolute value signs fioinfor
waves, ranging from optical microlithograpii$2] to par-  convenience, but they must be inserted if negatiie are
ticle acceleratior}52]. Nondiffracting waves have also been considered. Since either of the first two parametersFn is
applied in medical real-time imagin@®3] while new poten-  a negative integer, the series expression for the hypergeomet-
tial can be foreseen within optical guidance and rangingic function is finite, and it is therefore only a polynomial in
techniqueq28]. The present paper aims at simplifying the (1— Q). The hypergeometric function is defined as
mathematical description of nondiffracting waves both
within acoustics and optics.

X oF, >

—m,m+1;|n|+1;ﬂ). (A2)

*° k
a a z
2Fl(al!a2;b;z):2 M_I’ (A3)
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The sum terminatgs once the numerator vanishes, which lim- C T(m+|n|+1)(1-Q In|/2
its the summation into the ranggesm. Therefore, the hyper- D, n=(—1)*"e'"? —
geometric function may be expressed as (VM)™ 1+Q
m Kk m _ _ k
(m+k)!/(m-k)! z [(Mm+K)(m=K)! (1-Q)
_ . o) — _ k - X -1
ZFl( m,m+1,n+1,Z) kZo( 1) (n+k)|/n| kl . kzo( ) (|n|+k)| 2kk|
(A6) (A7)

If we further choose the variabld = 7+ b? the wave solu-
tions, Eq.(20), can be expressed as This expression simplifies greatly for some special cases. If
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in the summation we write (£Q)/2=1—-(1+Q)/2, and m M+ (Mm=K)! (1-Q)X 1 (1+Q\™
use the binomial theorem, the sum is 2 K =—\—5] .
k=0 (In[+k)! 2Kk! mhi 2
§ (gt (m—o! (1-Q) (AL2)
=0 (Inl+k)! 2kk! and the wave may be represented as
m m
) m+k)!/(m—k)! —Q)\nl2 In|
_S —l| S (- (MK (m—k) o :(_1)*neimpr(2|n|+1) 1-Q\"? 1 (1+Q
= = (In[+K)Tk! Inf,n (W1 1+Q)  n[tl 2
k! 1+Q\! 2[n))! plnl
X - - A8 —(— i :
JHk=jH L2 "o ~ 1)”em|n|!2|”\ (r2+b?)lnl+ vz A2

By setting k’=k—j and M=m—j, the coefficients are On the other hand, fan=0, we obtain from Eq(A7)
found to equal ' '

( 1)) % etk By o= (—1)*e 'MW(LS "
Ko (In|+K" +j)IK"!
_ . . . bin!
ginnczw m=|n| and j#m, the above expression vanishes =(—1)*Ngin® 5 (T (A13)
(—1)! M M! _ — 1)l v Finally, for m=n=0 this expression reduces to
jIMm! kgo(M—k’)!k’l(_ TR 1
(A10) D= T (A14)

For j=m, i.e.,, M=0, the coefficient is simply £ 1)™/m!.
Hence, form=|n| we have for the fundamentak wave.
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