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The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially
excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored
electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the
photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model
systems, well-known results such as decay times and emission spectra are reproduced. This approach enables
direct incorporation of realistic band structure computations into studies of radiative emission from atoms and
molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in
both the microwave and optical regimes.

PACS numbds): 42.70.Qs, 45.20.Jj, 45.30s

[. INTRODUCTION High-quality PBG materials at microwave frequencies
have been available for some tinh&0]. Sizable band gaps

Photonic crystal$PC9 have been the subject of intensive with center frequencies ranging from a few GHz up to 2 THz
research over the past decddé These are fabricated peri- have been reported; these crystals have thus proved the
odic dielectric arrays that employ a combination(pfMie ~ soundness of the concept of the PBG. Microwave PBG ma-
scattering from individual elements of the array, afid  terials may be relatively easily manufactured using microma-
Bragg scattering from the periodic lattice, to induce a bandchining techniques, and are currently of interest for applica-
structure for photon propagation. This band structure is, itions such as the shielding of human tissue from microwave
many ways, analogous to electronic band structure in a semiadiation, and for improving the radiation characteristics of
conductor. Through a judicious selection of materials and ofnicrowave antennas. Although PBG materials at microwave
the periodicity of the lattice, the photonic dispersion relationfrequencies have been extensively studied, the behavior of
and the associated electromagnéBdl) mode structure of a radiating dipolar antennas embedded in microwave PCs has
PC can be adapted to a variety of device applications. Thaot received the same degree of attention. This is despite the
most dramatic modification of the photon dispersion occurdact that such antennas would share many properties in com-
when the linear propagation of a photon in a PC is prohibitednon with atomic emission in a PC. In the microwave do-
in all directions for a range of frequencies, giving rise to amain, a dipole antenna could take the form of an electrically
complete photonic band gapBG). excited metallic pin with a higl® (quality) factor.

The radiative dynamics of an optically active material The radiative dynamics of the above system can be de-
placed within or near a PC can be dramatically modifiedscribed by a charged, one-dimensional simple harmonic os-
from that of free space. This is a result of the “colored” cillator (SHO). Such an electric dipole oscillator can also
electromagnetic reservoir provided by the solutions to thgrovide an excellent description of the radiation of single or
electromagnetic field equations within a PC. In the opticalmultiple two-level atoms in the optical domain. This descrip-
domain, theoretical studies of atomic transitions coupled tdion is valid provided that the total excitation energy of the
the EM modes of a PC with an optical PBG predict a numbemlatoms is well below an energy where saturatioonlineay
of novel quantum optical phenomena. These phenomena irffects become important. Moreover, the radiation reservoir
clude the suppression or enhancement of spontaneous emégan itself be modeled as a bath of many independent SHOSs:
sion and the associated fractional localization of light neaRadiative damping arises from a linear coupling between the
radiating atomg2,3]; rapid all-optical switching[4]; and  system SHO and the large number of reservoir oscillator
anomalous superradiant emission, as well as low-thresholchodes. The similarities between the microwave and optical
lasing near the edge of a PEG,6]. Microfabrication of PCs  systems, coupled with the mature state of microwave tech-
with complete PBGs at optical wavelengths has proved to beology, suggest that many of the predicted effects for atomic
a difficult task, both because the lattice periodicity should bedipoles in the optical domain could be realized and studied
comparable to the wavelength of the light under considerfirst in the microwave domain.
ation, and because a high dielectric contrast between the el- Analytical techniques exist for treating certain forms of
ements of the lattice is required. Fortunately, recent advanceupling between the dipole and reservoir for certain modal
in microlithography[7] and in semiconductor infiltration in distributions of the reservoir. However, PCs present coupling
colloidal crystals[8] have produced materials with signifi- distributions and spectral properties that defy analytical
cant pseudogaps in their photonic band struct{@dsThe  methods. This is due to the presence of a restricted and rap-
development of materials with complete PBGs in the opticaidly varying reservoir mode distribution, which renders in-
regime appears imminent. valid the usual Born-Markov type of approximation schemes
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for the system-reservoir interaction. To obtain accurate rereservoir present in a PC. A more general description of
sults, we solve the system numerically for a large, but finitedamping forces acting on the harmonic oscillator therefore
number of oscillators in the reservoir by discretizing therequires a precise knowledge of the mode structure of its
modes of the reservoir following the approach of Ullersmaenvironment, and the corresponding coupling of the system
[11]. In dealing with our system, there are crucial issuesoscillator to these modes. In the case of a radiating dipole
concerning obtaining the correct coupling strength betweetocated in a PC, it is then appropriate to model its emission
the oscillator and the reservoir modes, as well as in employdynamics with a SHO coupled to a reservoir of SHOs. The
ing the proper renormalization and mode sampling in nu-essential difference between the vacuum and a PC is then
merical simulations. When these criteria are satisfied, theontained in the spectral distribution, or density of states
SHO method comprises a powerful approach to treating ra(DOS), of the reservoir oscillators, and in the coupling con-
diative dynamics. stants between the reservoir modes and the system oscillator.
Here, we develop a rigorous quantitative treatment of the The characterization of the reservoir is carried out in de-
radiative dynamics of an electric dipole oscillator coupled totail in Appendix A; here we only summarize the salient re-
the electromagnetic reservoir within a model PC. In the prosults. Given a radiating dipole with a natural frequengy
cess, we provide a sound theoretical basis for this and othave obtain the classical Hamiltonian
approache$12] to non-Markovian radiative dynamics that
involve the discretization of a model electromagnetic reser- H=Hgip+ Hrest Hert Hine. 2
voir. Additionally, we show how our method can be applied
to realistic PCs with complicated dispersion relations an
EM mode structures. The paper is organized as follows. |
Sec. Il, we develop a classical field theory for electromag- Hgin= Ewo| |2 @)
netic field modes in PCs and derive the coupling constants P
for the coupling between a radiating dipole and these BlociThe natural frequency of the isolated oscillatorig, and &
modes. This leads to the Hamiltonian of the coupled systens a constant with the dimension of energyme. This per-
and the associated equations of motion. Renormalization ignits us to write the energy of a SHO in units of its natural
sues arising from the nonrelativistic nature of our theory ardérequencyw, i.e., E(w)=éw. The system oscillator's com-
discussed in Sec. lll, whereas Sec. IV describes the discretplex amplitude is given by the dimensionless, time-
zation of the reservoir and the numerical solution of thedependent quantity, defined with respect to the coordinate
equations of motion. In Sec. V, these techniques are applieg(t) of Eq. (1) as
to a highly computationally challenging model, that of a
three-dimensional, isotropic dispersion relation with a com- [Lwg 1
plete PBG. The demonstration of fractional localization and a(t)= 2—§q(t)+| 2éLw,
related phenomena validates the SHO approach to modeling
radiative dynamics in PCs. In Sec. VI we summarize the The next term in the Hamiltonia(2) corresponds to the
results and emphasize the possibilities for testing these préree evolution of the radiation reservoir, which is modeled as
dictions experimentally in the microwave domain. The twoa bath of independent SHOs,
Appendixes are concerned with the details of the field theory
for the PC and with the details of the model of the one-sided,
isotropic PBG, respectively.

[The first term on the right-hand side of the Hamiltonian is
he energy of the dipole oscillator itself,

[La(t)]. (4)

Hies= X £0,B,% (5)
y

The natural electromagnetic modes of the PC are Bloch
modes(see Appendix A labeled with the index.=(nk),

wheren stands for the band index akds a reciprocal lattice
vector that lies in the first Brillouin zon@Z). Their disper-

Il. CLASSICAL FIELD THEORY

In this section, we derive the equations governing the dy
namics of a radiating dipole oscillator located inside a PC

Typically the equation of motion for a damped oscillator, i, relatione . is different from that of the vacuum case,

with t|me-depe_ndent _coordmgtq(t), is written as the and may have complete gaps, and/or the corresponding den-
second-order differential equation

sity of states may exhibit appreciable pseudogap structure,
. ) the manifestation of multipléBragg scattering effects in
q(t) + ya(t) + wda(t) =F(t). (1) periodic media.

As we are working within the framework of a nonrelativ-
Here, we have introduced a damping constgnthe natural istic field theory, we have introduced a mass renormalization
frequencyw,, and the driving field=(t) for the amplitudeg  countertermH = — éA|a|? that cancels unphysical UV-
of the linear oscillator. For instance, for a freely oscillating divergent termg13,14]. The quantityA is specified in Sec.
RLC circuit with Ohmic resistancd, capacitanceC, and Il
inductancelL, we havey=R/L, w(2)=1/LC, F(t)=0, and The interaction between the oscillator and the reservoir is
q(t) is the electric charge. Equatidf) is, however, not the given by a linear coupling term. As the oscillator frequency
most general way of incorporating damping into the equais quite large, and the effective linewidth of the oscillation is
tions of motion for a harmonic oscillator. This description relatively small, it is possible to simplify the interaction by
can break down if, for example, there is a suppression oéipplying the rotating-wave approximation. In this approxi-
modes in the reservoir to which the dipole oscillator canmation, couplings in the Hamiltonian of the form*,fg’; and
couple. Such a suppression of modes is a feature of the Elfs complex conjugate are neglected, as these terms oscillate
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very rapidly compared to the terms of the typ&g, and its  quency for transitions between excited and ground state of
conjugate. Hence, the interaction Hamiltonian can be exthe two-level atom. This corresponds to making the substitu-
pressed as tions

. . L—m, (Lq)—p, &, (9)
Hin= 162 (a* g% B,— ag,B}). (6) _
I whereh=2x# is Planck’s constant.

In the case of a point dipole, i.e., when its Spatial exgent IIl. PROJECTED LOCAL DENSITY OF STATES,

is much smaller than the Wavelength Corresponding to its MASS RENORMALIZATION, AND LAMB SHIFT
natural frequency\o=2mwg/c, the coupling constantg,, o _ _
can be derived fronti) the magnitude of the dipole moment ~ From the Hamiltoniat2) we derive the equations of mo-

d(t)=aq(t) located atry, and (i) the dipole orientatiord tion for the amplitudes

relative to that of the Bloch modés,(ro): _
a()=—1(wg~A)a(t) =12 ghBu. b, (10
“w

- a N 2e 2
9.=0.(ro)=acy/ I_wowﬂ[d- E%(ro)]. (7 D

B.()=—10,8,(1)+g,alt),

This dependence of the coupling constant on the dipole’$or which we seek a solution with initial conditiong(0)
precise location within the PC is the second essential differ=1 andg,(0)=0 (¥ u). Our formalism, however, requires
ence from the free-space case. As shown in Rdf5,16, that we first determine the mass renormalization counterterm
this position dependence may be quite strong, thus making. This is most conveniently done in a rotating frame with
its incorporation asine qua norfor any quantitative theory slowly varying amplitudesa(t) and b(t), defined asa(t)
of radiating antennas or fluorescence phenomena in realistie a(t)e™'“o" and 8(t) =b(t)e ™', respectively:
PCs.

The emission dynamics can be evaluated from the Poisson SOty — * Al(wg— )t
brackets of the oscillator amplitudes and their initial values, a(t)= |§% guee b,()+1Aa(b), (12)
«(0)=1 and B,(0)=0(Vu). Our choice ofa(0) and

B,(0) corresponds to the initial condition of an excited di- bﬂ(t):gﬂefl(wo*wﬂ)ta(t)_ (13
pole antenna and a completely deexcited bath. The only non-
zero Poisson brackets are Conversely, Eqs(12) and(13) comprise a stiff set of differ-

ential equations making their solution a difficult task. Nu-
I merical solution of the problem is more easily performed in
{a,a*}:{ﬁwﬁﬁ}‘:E- (8)  the nonrotating frame, to which we return in Sec. IV.
Equation(13) may be formally integrated,

Equations2), (7), and(8), together with the initial values t ,
for the oscillator amplitudes, completely determine the emis- bﬂ(t)=guf dt’e”(womwnta(t"), (14)
sion dynamics of a radiating dipole embedded in a PC. In the 0
following sections, we solve the corresponding equations O(tand inserted into Eq12) to yield
motion. This task is complicated by the nature of the reser-
Voir's excitation spectrum: as discussed, the nonsmooth den- ) @
sity of states prohibits the use of a Markovian approximation a(t)=-— j dt'G(t—t")a(t’)+1Aa(t), (15
and its appealing simplifying featurd®,3,6]. Instead, we 0
have to revert to a sqlutlon of the full non—MarKOV|an prOb'.Where the Green functio®(r) contains all the information
lem. This is accomplished by first rearranging the reSevollhout the reservoir and is the subject of our studies for the
modes in a manner more suitable to both analytical as well a%mainder of this section. It is defined as
numerical solutions, and subsequently solving the equations
of motion. In what follows, we bridge the gap between pre-
vious studies of simplified model dispersion relati¢p2s3,6] G(n)=0(7)2 |g,/%e @, (16)
and band structure computatiofib,17]. "

_ Although we will formally develop our theory for anC  pere @(7) denotes the Heaviside step function, which en-
circuit in a microwave PC, we emphasize that the formalismyiaq the causality oB(7). We now proceed to evaluate
applies equally well to a semiclassical Lorentz oscillatorG(T) for the form of the coupling constangs, given in Eq.

model of an excited two-level atom, i.e., an electron with(7)_ To this end, we introduce the projected local DOS
chargee and massnthat is bound to a stationary nucleus, for (PLDOS N(F d 'w) through
0%

which the energy of excitation is well below that required for
saturation effects to become relevant. The oscillator coordi-

nateq(t) may then be identified with the deviation of the N(Fo,a,w)=2
electron’s position from its equilibrium valuey is the in- n Jez (2m)°
verse lifetime of the excited state, amg), denotes the fre- (17)

3

5(w_wnﬁ)|a' Enﬁ(Fo)|2,
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where we have replaced the symbolic sum oumeby its  mass counterrenormalization terly) as first pointed out by
proper representation as a sum over bands plus a wave vect®ethe[14]. Consequently, we decompose the imaginary part
integral over the BZ. With these changes, we may rewriteof G({) — w) into
G(7) compactly as

IM[G(Q—wg)]=—(A+ dyact Sa), (19

_ < N(Fo,a,w) I(wg—w) T
G(7)=p0(7) . dwTe : (18 where we have used the notation

Here, we have abbreviate@=(7a’c?)/(Lw,). Equation A:IBJ"”dw N(ro,d,w)

(18 makes more explicit what we have argued before: The 0 w2 '
spontaneous emission dynamics of active media in photonic

crystals are completely determined by the PLDOS

N(ro,d,w). As the PLDOS may be drastically different from Sunc= — &J'chw ( 1 )
location to location within the Wigner-Seitz cell of the PC m?cdJo Wy~ @

[15,16, it is imperative to have detailed knowledge about

where in the PC the dipole is situated in order to understand

and predict the outcome of corresponding experiments. 8= — 'BwOJ
One additional point deserves special attention: the total w2c3Jo

DOS N(w) is related to the local DOS via

2

Qc ( 1 ) N(ro,d,»)— N2 o)
dw .
w

wWo— w

Here, we have performed a Wigner-Weisskopf-type approxi-
10, A mation on the vacuum and anomalous Lamb sHi#isd, ..
N(w)= vad rf dQgep(r)N(r,d,w) and 8,, respectively. This approximation is justified by the
fact that, despite its highly non-Markovian nature, a radiating

1 3 .- dipole in a PC is still a weak coupling problem, as can be
# vad rf dQgN(r,d,w), seen, for instance, by estimating the coupling constant
whereV is the volume of the Wigner-Seitz cell, afidQ j is —d 2 20
the average over all possible orientations of the dipole. 9=0bowo Ve

Strictly speaking, it is not possible to base conclusions about

the radiation dynamics on the total DOS. This is a direct, . — .

consequence of the fact that the natural modes of PCs afB the Lorentz oscillator model. Herg~a" is the volume of
Bloch waves rather than plane waves as in free space. D&e Wigner-Seitz cell of the PCa(is the corresponding lat-
pending on the band index, these Bloch modes prefer to “retice constantanddy=ea, is the oscillator’s dipole moment
side” predominantly in either low- or high-dielectric-index for the elementary charge and Bohr atomic radiusg. At
regions (so-called air and dielectric bands, respectiyely optical frequencies ¢~10"° s~ 1), a silicon inverted opal

Only in the case of very low index contraétnearly free  has a PBG at the frequenay/2mwc~0.8, so that we obtain
photons™) may the total DOS be viewed as a reliable guide10 "=g/wy<10 <1, thus justifying our Wigner-

to interpreting radiative dynamics within a PC. The total weisskopf approximation. As a consequence, we must treat
DOS is, nevertheless, an adequate rule-of-thumb estimatorihe real part ofG()— w,) exactly, but are still allowed to
From Eq.(17) we can now obtain the Fourier transform of tgckle the imaginary part dB(Q — w,) using standard per-
the Green functiorG({) — wo) centered around the atom’s tyrbation methods of QED. In addition, we have introduced
bare transition frequency: the vacuum or free-space DS w) = w?/(7*c%), and a
cutoff frequency() > wg, which is chosen large enough that
the results of the following analysis remain independent of
the precise value of);. In a Lorentz oscillator model, for
instance (). can be identified with the Compton frequency

G(Q—wgy)= f dt e(@~@diG(t)
0

N(Fo,a,Q) Q.=mdc%h, asw> w, probes the relativistic aspects of the
=7 T®(Q) oscillating charge, which are beyond the scope of the model.
With the foregoing analysis, we have determined the mass
= N(fp,d, ) 1 renormalization counterterdy. In addition, we have derived
+|,8f do p(Q w), an explicit expression for the anomalous Lamb shjft[2]
0 _

which originates in the “reshuffling” of the reservoir’s spec-
tral weight by the PC.
wheregp stands for the principal value.

For largew, we havd\I(Fo,a,w)ocwz. The imaginary part
of G() — wg) apparently contains a linear divergence in the
UV. This divergence is to be expected for a nonrelativistic To solve the equation of motion for the amplitude of the
theory, analogous to the problem of spontaneous emission isystem oscillator, let us rewrite E¢L5) in a more explicit
vacuum[13], and is removed from the theory by using the form:

IV. DISCRETIZATION OF THE RESERVOIR
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) o . A 5 Applying this Monte Carlo scheme to E(1) and trans-
a(t)=— fo doN(ro,d,w)g%(w) forming back to a nonrotating frame in order to avoid having
to solve a numerically stiff problem, we obtain

t
dt’e'(@o= @)ttty +1Aa(t), 21 _ N
Xfo . ATidam, 2 d(D)= —1(wo-M)a)—1ES gBi(D), @)
=1

whereg?(w)=B/w, and the mass renormalization counter-

term A is given by Bi()=— 1w Bi(D) + giax(), (28)
= N(rp.d, ) wheregi=g(w;), 1<i<M, and the mass renormalization
A=,8f da)O;Z’. (220  counterterm is evaluated up to the cutoff frequefiy, i.e.,
° @ A=[2dwN(7o,d,0)/w?.

When comparing Eq927) and (28) to our initial equa-
tions of motion, Egs.(10) and (11), we observe that the
) ) . _ considerations in the previous section have allowed us to
linear damping termyq(t) that appears in Eq1): If we  rearrange the three-dimensional wave vector sum over the
consider the Ignq tlmg limit, "et’>1/w°’_ and assume that modesu=(nk) into a simple one-dimensional sum over a
the PLDOSN(rg,d, ) is a smooth function for frequencies get of frequencies{w;} with a probability distribution

aroundwo, we can rilpproxmate the’frequgncy integral in Eq'p(Fo,a,w) that is easily determined through standard photo-
(21) by [278N(r,d, wg)/ @] 5(t—t"), which leads to nic band structure computatidi5]. In the following sec-
tion, we give the solutions of Eq&27) and(28) for a model

We remind the reader that(0)=1.
We are now in a position to comment on the origin of the

a(t)=—va(t), (23)  system that has previously been treated by other methods. In
particular, we will demonstrate that known results for the
where the decay constant is defined as radiative dynamics can be recaptured and do not depend on
the the value of the cutoff frequendy, and the numbeM
y= 27-,ﬁ|\|(r*0 ,a,wo)/wo_ (24) of reservoir oscillators once these quantities are large enough

such that all the relevant features Nf(Fo,a,w) are ad-
This approximation is valid only for long times relative to equately represented.
1l/wq, and for a sufficiently smooth density of states. How-
ever, in the case of a PC, the PLDOS may have sharp dis- v, NUMERICAL RESULTS FOR A MODEL SYSTEM
continuities and gaps, thus requiring the full equations of ] o
motion to be solved instead. In order to establish the validity of our approach, we now

To solve the integro-differential equati¢dl) in a PC, we  Solve Egs(27) and(28) for a generic model of a PBG, the

appeal to the literal meaning of the PLDOS as a density ofhree-dimensional isotropic, one-sided PE3: In Appendix
states:N(Fo,a,w) may be interpreted as an unnormalizedB' we outline the construction of the model’s dispersion re-

probability density of finding a reservoir oscillator with fre- lation and how to obtain the corresponding model DOS
= . LA N(w). We note that we do not appeal to an effective mass
guencyw at positionry and orientatiord. Consequently, we

: ~ approximation in the dispersion relatidf], as is done in
transform Eq.(21) back to a system of coupled differential gt treatments of band-edge dynamics. This allows us to

equations by employing a Monte Carlo integration schemMgg qyer the correct form of the large frequency behavior of
for an arbitrary functiorf (w) according to the photon density of states.

. 0 In Fig. 1, we show the behavior &f,,(w) as a function of
f dwN(Fo,a,w)f(w):f deN(FO,a,w)f(w) frequency for values of the relevant _parameters, the gap size
0 0 parameter n=0.8, and the normalized center frequency
weal2mc=0.5 (see Appendix B The DOS exhibits a

- & EM: fw) 25) square-root singularity at the band edgga/27c=0.6, as
M =1 v well as a UV divergenchl,(w)* w?, asw—; these are the
characteristic features of this model. Due to the simultaneous
where the normalization constant presence of both divergences, this model clearly represents a

severe numerical test of our approach. In order to test the

Q, Lo method, we thus replace the PLDOS entering Eg%) and
No=f dwN(ro,d,w) (26)  (28) by Nyy(w).

0 In Fig. 2, we present the results of our numerical solution
for the radiation dynamics of a dipole oscillator with fre-
depends on the cutoff frequen€y.. There areM>1 bath  ,6ncyw, that is coupled to the modes of a PC, as described
oscillators, contained within a set of frequencfes; , 1<i by Eqgs.(27) and(28), for various values of the bare oscilla-
<M}, the frequencies of which are obtained by randomly,, frequency wpa/2mc relative to the band edge at
sampling the interva[ 0} ] according to the probability , 3/57c=0.6. The coupling strength has been chosen such
densityp(ro,d,»)=N(ro,d,)/No. Note that thav; may be  thatg(wo)=10"*, corresponding tg=10"5x wg.
degenerate, as prescribed jpfro,d, w). Clearly visible are normal-mode oscillations, also referred
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4 . ] cillator is coupled to a bath with a smooth and slowly vary-
] ing mode density, as in free space. We therefore observe
3.5 ¢ ] exponential decay of the oscillator amplitude, though with a
] time scale that differs significantly from that in free space.
3¢ ] Due to the large value of the DOS close to the photonic band
= edge, the initial decay is faster for bare oscillator frequencies
Z 25 . ; - . _
E close to this edge than for frequencies deep inside the al
2,0 lowed photonic band. These results were obtained for a
= smooth exponential cutoff for the DOS arouiitla/27c
ERTRE =3.0 andM = 2.5x 10° oscillators representing the modes of
@ the PC. We also performed numerical simulations between
a 4L all combinations of (), and M with values Q.a/2wc
=3.0,6.0,9.0 andVl =2.5x10°,5X 10°,10° and found that
05| the numerical values differ by at most 0.2% of the values
] shown in Fig. 1. This demonstrates that, despite the presence
05 o2 02 06 o8 ] 12 14 of the singularities in the DOS, our approach still provides

wa/2me accurate and converged results.
FIG. 1. The DOS for the three-dimensional, isotropic one-sided
band gap model of a PC. The parametee Appendix Bare 7

=0.8 andw.a/2mc=0.5. In summary, we have developed a realistic field theory for
) o ) . an oscillating electric dipole located in a PC. The theory is
to as vacuum Rabi oscillations, and the fractional localizayased on the natural modes of the PC, the Bloch waves, and
tion of the oscillator's energy at long times near the photonicy|ows the direct incorporation of realistic band structure cal-
band edgé¢3]. As expected, for frequencies deep in the pho-¢yjations in order to obtain quantitative results for the radia-
tonic band gap ¢oa/2mc=0.58), where the system oscilla- {jon dynamics of the dipole antenna. We have shown how
tor is effectively decoupled from the bath oscillators, we findipe theory must be renormalized in order to account for un-
no noticeable decay of the oscillator amplitude. Deep in thgyhysical divergences and have identified the classical analog
photonic conduction bandda/2c=0.62), the system 0s- of the Lamb shift of the dipole’s natural radiation frequency.
Finally, we have developed a reliable numerical scheme

VI. DISCUSSION

1 {a)

D e T S r—— 7 based on a probability interpretation of the PLDOS that
09 b " = N ® ] solves the equations of motion for the dipole oscillator
N 7 S~ \\?‘J'/' T coupled to the electromagnetic mode reservoir of the PC.
08 - RN~ s ] The viability of this approach was demonstrated for an
o7l NN 7 R ENURRIR T ] isotropic model DOS for which we have derived well-known
‘-}.;\ N @ results for radiating atomic systerfi3] in the context of a
0.6 | TN E radiating classical dipole. The model considered contains
Ol ] two divergences, one square-root divergence at the photonic
= e band edge and a quadratic UV divergence, and therefore
04 F ‘ (e) ] clearly comprises the most serious test of our approach.
03 L . e ] More realistic models of a three-dimensional photonic band
M “‘*---_\ edge take into account the anisotropy of the BZ, and there-
02 ¢ kS @ TTeean -] fore do not suffer from a band-edge singulari§]. As a
01 F T ] result, our formalism is clearly more than capable of treating
. | | T more realistic descriptions of the electromagnetic reservoir
0 2000 4000 6000 8000 10000 within a PC.
wot Although we have developed our theory forla@ circuit

. _ _ in a microwave PC, we have pointed out in Sec. Il that the

_FIG. 2. The radiation dynamics resulting from the three- ¢, ajism applies equally well to a semiclassical Lorentz
dimensional, isotropic one-sided band gap model DOS as shown iggjja10r model of an excited two-level atom. Therefore, our
Fig. 1 for various values of the bare dipole oscillator frequem@y approach is applicable to both microwave antennas and op-
reedlgt;vzes tgij?eielapzzr 52‘::22% %az(rj] de(tjt?eg .b;hee (ﬁzgltgnécsct;ﬁlg& tical atomic transitions. However, technological constraints
frequencies are(a) Z) 2/2mC=058 (b) weal2mc=0.595, (c) suggest that microwave experiments will likely be easier to
wyal2mc=0.599, (d) ?uoalzwczio.el © a)ooa/27TC:0..601’ (f) perform than optical experiments involving single atoms. As
woa/2mc=0.605, and(g) wea/2mc=0.62. Clearly visible are diScussed, an appropriate microwave antenna could, for ex-

normal-mode oscillations, or vacuum Rabi oscillations, and the2MPple, take the form of a higQ- metallic pin placed in or

fractional localization of radiation near the photonic band edge. Thé1€ar a PC. The pin can then be excited b){ a focused ul-
coupling strength has been chosen such difat,) = 10"%. For fre-  trashort laser pulse that generates free carriers at one end;

quencies deep in the photonic band gapd/27c=0.58) and deep these carriers then undergo several oscillations across the pin
in the photonic conduction bandwga/27c=0.62), we observe before reestablishing charge equilibrium. The resulting sig-
negligible and exponential decay, respectively. nal could be easily detected and compared with the emission
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from such an antenna positioned in free space, or within aally, we derive the full minimal coupling Hamiltonian for a

homogeneous sample of the dielectric material that makes uglassical radiating dipole embedded in a PC. This may be

the backbone of the PC under consideration. compared to the formulation of a general, quantized field
In its own right, such a microwave system could havetheory for EM modes in nonuniform dielectric media in

considerable applications in radio science and microwavéerms of a normal-mode expansion in the context of quantum

technology. For example, the PBG can be used as a fresptics[21].

guency filter, and can be used to fine-tune the bandwidth of a

dipole emitter with a resonant frequency near the edge of the 1. Review of band structure calculations

gap. It may also be possible to actively modify the photonic . L

band structure, effectively changing the radiation pattern of a \We develop our theory in terms of the magnetic field

dipole emitter. A feasible scheme for active band structurd@ther than in terms of the electric or displacement fields

modification has recently been proposed in the context obecausdi) V-H=0 and(ii) the transverse and longitudinal

optical PCH18], in which the PC is infiltrated with a liquid components of the magnetic field are continuous across the

crystalline material whose nematic director is aligned usinglielectric boundaries. This leads to more rapid convergence

applied electric fields. By rotating the director, it was found of the relevant Fourier series expansions.

that the band structure could be significantly modified, and In a three-dimensional PC, we can write the eigenvalue

that PBGs may be opened and closed altogether. Similagquation for the magnetic field as

methods may be applied to the case of microwave PCs.
Although we have concentrated specifically on the linear R R .

model, the method of coupled oscillators can be extended to VX[ (1) VXH]+ — H=0, (A1)

treat a nonlinear antenna, or a collection of two-level atoms ¢

in a regime where saturation effects arise. As we have shown

here, this method of coupled classical oscillators reproduce‘gl

effects normally associated with quantum optical calcula- R o

tions. We expect that a nonlinear oscillator model will repro- €p(r)=ept(€ea—€p) 2 S(r—n-A). (A2)

duce some of the effects studied for a single two-level atom nez3

coup_led to the modes of a P.C without the need for quantizinq.he medium is assumed to consist of a background material
the field. However, a classical treatment would need to b?/vith bulk permittivity e, and a set of scatterers with bulk

abandoned if multiphoton excitations are non-negligible Sl . .
[12]. Given that muIt?photon effects are difficult to ot?sgrve permittivity €,. The Sﬁhape ofﬁthe scatterers is described by
the functionsS, i.e.,S(r)=1 if r lies inside the scatterer and

in the microwave domaifl9] and even more challenging in SU o h
the optical domair{20], it is reasonable to expect that a Z€r0 elsewhere, distributed periodically at positions

N

ith np(F) the inverse of the periodic dielectric permittivity,

classical model of radiative dynamics in a PC should be 3
sufficient for foreseeable experiments. {ﬁ}:[ 2 ni5i|”i c Z] _ (A3)
=1
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APPENDIX A: CLASSICAL FIELD THEORY Whereas the points- A are the real space lattice vectors, the

FOR PHOTONIC CRYSTALS pointsrﬁ' B for me Z° are the reciprocal lattice vectors. The
inverse permittivity can be expanded in the dual basis as
In this Appendix, we present a self-contained formulation
of a classical field theory for the Bloch modes of a PC, and
we develop the Hamiltonian describing the coupling of a
radiating dipole couples to these modes. As a first step, we
review the computation of dispersion relations, and of elec- The differential equatiorfAl) has periodic coefficients.
tric and magnetic field modes from band structure calculaBy the Bloch-Floquet theorem we can expand the magnetic
tions[15]. We then demonstrate how the results of such bandield as
structure calculations can be used to construct the corre- . L
sponding vector potentials and free-field Hamiltonian. Fi- Hi=e'*"ug(r), (AB)

(D= > 7 ™B, (A5)

me 2
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whereuy is spatially periodic moduld\; that is, . 1 9A(T,t)
e e . L E(r,t)=—= ) (A14)
u(r)=ug(r+n-A). (A7) c Jt

The set{k} labeling the solutions can be restricted to lie H(r,H=VXA(r.1), (A15)

within the irreducible part of the first Brillouin zone, since
any value ok can then be obtained through a combination o e .
group transformations with respect to an operation from th rai(;v:ahrzena'ltmzligng?iensq;;)(Ir'tgﬁcrea(\j/:/?]t(la%nqfijigtiigr?gnt?ulaoggEjr
point group of the crystal and translations with respect to : . ;
reciprocal lattice vector. We can therefore express each Wa\}geory[Zl,ZZ. Given Eqs.(Al)., (ALD), (A14).’ and(A15),. It

- iS now straightforward to derive the following expansion of
vectork as -

the vector potential(r,t):

(and the gauge conditioR- [ e,()A(r,t)]=0 reveals that in

k=K 5=K, - T+m-B, A8
T,m * ( ) '& _)t _2 f dsk 277_502
Wherelz* is an element of the irreducible part of the first BZ (r.H= n Jez (2m)3 V oni
andT an element of the crystal’s point group. L L
Applying the Bloch-Floquet theorem, E(A6), the mag- X[ Brk(D A+ BrdDAT ()],  (AL6)

netic field can be expanded as
where the time evolution of the free field is described by

2
He=ekTS 3 plighhrgmer, (A9)  Bnk(t)=Bni(0)e '“n. The field modedAi(r) obey
o oh=1 mom s
Here\ is the index of polarization and the vectors ﬁxﬁxﬂng(F)=C—r;(ep(F)Ang(F), (A17)

(A10)  which is the same equation as that for the electric field
modeSEng(F) of Eq. (A11l). We now choose the normaliza-

form an orthonormal right-handed triad. This expansion in-tion of A, such that

serted into Eq(A1) yields an infinite eigenvalue problem

wh|(_:h is then sol_ved_ numerlcallya by a suitable truncation. J d3f6p(F)'&nE(F)'E\m&r(F)=5nm5(|2— IZ’), (A18)
Typically the cardinality of the sdim} is on the order of 19

m M -

[15]. For any giveriz* we obtain a discrete set of eigenfre-

2
. . . . . w -
guenciesw,i and corr_espondlng e!ggnfunctlohs‘g, which d3r[V X/&nﬁ( N]-[V X'&mkf(F)] — "k 5nm5(|2_ K').
we label by the band indexe V. It is important to note that c?
the expression for the electric field can be recovered from the (A19)

magnetic field via
This also fixes the normalization in EqeA12) and (A13).

- - : c > s - As a consequence, the total electric and magnetic fields are
Eni(r)=—i———= VXH(r). (A11) .
k(1) wnien() nk( now given by
In addition, the Bloch waves obey the following orthogonal- E Ft)— IE dk 2méc?
ity relations: (r.)= n Jez (2m)°® Ok
f ABrH* (1) Fini (N 8pmd(K—K'),  (A12) X[ Bk Enk(N) = BrzDERAN],  (A20)
o og o o - . N d3k 2méc?
j d3rep(r)E*R(r).Emp(r)océnm5(k—k’), (A13) H(rty=> f ¢
n n Jez (272 Vo
where the integration is over all space in both cases. We are ><[Bnﬁ(t)ﬁnR(F)+B:E(t)ﬁ:Q(F)]a (A21)

free to choose the constants of proportionality in the above

relations, and do so in the next subsection. where we have reintroduced the electric and magnetic field

modesE, i(r) = (wni/C)Ani(r) andH,i(r)=V X Ai(r), re-

spectively. EquationgA20) and (A21) finally lead us to the
Based on the above considerations, we are now in a pdree-field Hamiltonian

sition to derive the general expressions for the scalar and

vector potentialgp(r,t) andA(r,t) respectively, for the clas- _ 3 L -2

sical Hgmiltoni:r?(of t)he free(ragiatioﬁ field. \);Ve find that the Hres_zn: Jszd Kwndl Bkl (A22)

expressions become particularly transparent in the Dzy-

aloshinsky gauge, i.e., whep(r,t)=0. Then, The only nonzero Poisson brackets é,ti%g,ﬁ’;l;}= 1/E.

2. Free-field Hamiltonian
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3. Radiating dipole embedded in a photonic crystal dimensional(3D) isotropic photon dispersion model for the

electromagnetic reservoir. In this model, the coherent scat-
tering condition that characterizes the photonic band edge is
assumed to occur at the same frequency for all directions of

We consider the insertion of a point dipole into a PBG
structure at a prescribed Iocati651 The free dipole oscilla-

tor is described by the Hamiltoniafgp,, propagation. Clearly this is not the case in a real crystal,
_ whose Brillouin zone cannot have full rotational symmetry.

_[Ldq] +£L 202= £wo| |2 (A23) As a result, the isotropic model overestimates the electro-

ap="p T 5Lwdd = Ewolal’, magnetic modes available at a band edge, so that, for ex-

ample, near the upper photonic band edge at frequency
where the dipole’s natural frequency i, =1/L.C and the  the corresponding DOS exhibits a divergence of the form
complex oscillator amplitudeaf is given in terms of the N(w)*1/\Jo—w, Conversely, for large frequenciesn (
charge g and “current” Lg as a(t)=q(t)VLw/2¢ >w,) the DOS will exhibit a UV divergence, i.eN(w)
+1(Lq(t))/V2ELw,, with Poisson bracket§e,a*}=1/¢&.  <w? asis the case in free space. More realistic LDOS com-
The point dipole couples to the electric field via its dipoleing from full photonic band structure computations do not
momentd(t) =aq(t) with orientationd, which yields the suffer from the pathological band-edge divergence of the iso-

interaction energy tropic model. However, by solving the model of a 3D isotro-
pic photonic band gap, we make contact with previous re-
Hi=—aq(t)[d-E(rg,t)]. (A24)  sults based on the isotropic model in the effective mass
approximation3].

In the rotating-wave approximation to the interaction Consider a 1D photonic dispersion relation in the ex-
term, the final minimal coupling Hamiltonian for a radiating tended zone scheme. In order to describe a PBG at wave

dipole in a PC is numberk, with central frequencw.=cky=(w,+ w,)/2 and
upper and lower band edgesa} and o, respectively, we
H=Hgip+ Hrest Hert Hine. (A25  yse the following ansatz:
Collecting all the above results we obtain w,+C\(k—kg)2+ 92 for k>0
w(k)= (B1)

w_+c_\(k—kg)2+y2 for k<O.

Using the requirement&(k=0)=0, w(k=ky—0,)=wy,
w(k=kg+0;)=0w,, do(k=0)=dw(k—x)=c, and
+H— 162, (a*gyB,—ag,B}). (A26)  gw(k=ko—0,)=dw(k=Kko+0,)=0, the unknown pa-
m rameters in Eq(B1) can easily be expressed in terms of a
single parameter=w,/w., 1/2<n<1, that describes the
size of the photonic band gap, givirg, =w., C,=cC, 4
=Ko(1— %), w_=w(7?)/(29—1), c_=cyl/27»—1, and

- T e y-=ko(1—m)/\27—1.
9,=9,(rg)=ac 3 [d-EL(ro)].  (A27) From the dispersion relatioriB1), the corresponding
@oPu DOS, i.e.,N(w)=fd3k&(w— w(K)), is given by

H=¢wolal®+ D ¢w,|B,|?
M

Here, we have introduced the symbolic inde;e(nl?) and
the coupling constantg,, ,

In addition, in Eq.(A25) we have introduced a mass renor- ( _ — 22 72 _
malization counterterril .= — £A|a|? in order to cancel un- 47702,“(0 Vo—0 )%~y o~ o)
physical UV-divergent terms of our nonrelativistic theory, as Vw—w_)?c% -y

discussed in the main text. For completeness, we list here

X - for Osw=
only the nonzero Poisson brackets and initial values for an ()= =l

initially excited radiating dipole coupled to the Bloch waves L[kt V(o—w,)%c =i (0 o0,)
of a PC. This, together with the Hamilton functithin Eq. ey Jio 212 _
(A25), completely defines our problem: (0=w)5Cs =75
| for oysw<e.
* | — * | — I 2 (BZ)
{a1a }_{:8;/.7ﬁ,u}_gv (A 8) o )
For sufficiently large gaps#<0.9) and bare eigenfrequen-

where(0)=1 and,(0)=0 for all . ciesw, of the radiating dipole close to the upper band edge,

it is an excellent approximation to ignore the lower branch of
APPENDIX B: MODEL DISPERSION RELATION the photon. dispersion relatlon, |.e.,.fkns k_o. The _resultmg_
AND DENSITY OF STATES DOS for this so-called three-dimensional isotropic, one-sided
band gap model is shown in Fig. 1 for a value of gap width
A particularly stringent test of our approach’s ability to parametery=0.8 and the gap center frequeneya/2mc
describe the dynamics of a radiating dipole in a PC comes=0.5. The square-root singularity at the band edge as well as
from its application to a dipole coupled to a three-the UV divergenceN (o) w? asw— o are clearly visible.
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