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Correlation functions and spin

Tomáš Tyc*
Department of Theoretical Physics, Masaryk University, 611 37 Brno, Czech Republic

~Received 6 March 2000!

The k-electron correlation function of a free chaotic electron beam is derived with the spin degree of
freedom taken into account. It is shown that this can be expressed with the help of correlation functions for a
polarized electron beam of all orders up tok, and the degree of spin polarization. The form of the correlation
function suggests that if the electron beam is not highly polarized, observing multiparticle correlations should
be difficult. The result can also be applied to chaotic photon beams, the degree of spin polarization being
replaced by the degree of polarization.

PACS number~s!: 41.75.Fr, 05.30.Fk, 25.75.Gz
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I. INTRODUCTION

Although the theory of multiparticle correlations in fre
electron beams is relatively well developed~see, e.g., Refs
@1–6#!, up to now there has not been much attention devo
to electron spin. We feel this is a deficiency because the
degree of freedom is a significant feature of the electron,
should therefore be taken into account. In this paper we
to reduce this deficiency for one particular case which, as
believe, is the most typical one in electron correlation exp
ments. That is, we calculate the multielectron correlat
function for an electron chaotic beam with an arbitrary d
gree of spin polarization.

Moreover, the presented theory can be applied not onl
chaotic electron~or generally spin-1/2 particle! beams, but
also to chaotic photon beams, because the corresponding
bert space of possible photon polarization states is two
mensional, precisely as is the Hilbert space of the spin-
states. We will speak about electrons for brevity, but
argumentation and the results can also be applied to the
of photons.

II. CHAOTIC STATE

The reason why we concentrate on the chaotic state is
we believe it is a good approximation of a state produced
the most coherent electron source available nowadays —
field-emission tip. This source is the only candidate for el
tron correlation experiments at the present time@2#, because
it offers both high brightness and a relatively monochroma
energy spectrum. The electrons emitted from a fie
emission tip originate from a quasiequilibrium state in t
metal very close to a thermal state, which is an example
the chaotic state. We do not expect any additional cohere
to come into existence during the tunneling process,
therefore suppose that the state also remains chaotic ou
the metal.1

The chaotic state was first introduced by Glauber fo

*Email address: tomtyc@physics.muni.cz
1This might no longer be true for a polarized field-emission sou

@7#, where a correlation between the spin and coordinate can c
into existence; however, it can be shown that our results rem
valid as long as the energy spectra of the spin components ‘‘
and ‘‘down’’ are close to each other.
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mode of the electromagnetic field@8# as a state with a maxi
mum entropy for a given occupation number of this mod
We generalize this definition to an electron field with t
spin taken into account: the chaotic state is state of m
mum entropy for given occupation numbers of the individu
modes of the field and for a given spin polarization.

From the condition of maximum entropy it follows tha
there is no correlation between the coordinate and the
components of the chaotic state, which allows one to tr
the spin degree of freedom separately from the coordin
degrees of freedom. In calculating the correlation functio
one can in this way avoid the formalism of spin-depend
electron field operators, and use a relatively simple argum
tation based on the probability theory. As will be seen in t
following, this enables one to express the correlation fu
tions of a partially spin-polarized chaotic electron beam
terms of the degree of spin polarization and the correlat
functions corresponding to a completely polarized beam,
form of which is known@4,6#.

For our purpose it is fully sufficient to define th
k-electron correlation functionO(k)(rW1 ,t1 , . . . ,rWk ,tk) as the
probability of detectingk electrons atk space-time points
(rW1 ,t1),(rW2 ,t2), . . . ,(rWk ,tk). To obtain a more compact form
of the equations, a shortened notation ofO12 . . .k

(k) will be used
instead ofO(k)(rW1 ,t1 , . . . ,rWk ,tk), each indexi standing for
one space-time point (rW i ,t i). Analogous correlation functions
for a spin-polarized beam will be denoted byG instead ofO,
so, for example, the two-electron correlation function for
polarized beam isG1,2

(2) . For a more precise definition o
correlation functions in terms of electron field operators s
e.g., Ref.@1,6#.

III. TWO SPIN-POLARIZED SOURCES

Consider an electron that has been emitted from
source. Its state can be described by the spin density ope
r̂s that is represented by a Hermitian matrix of the seco
order in any orthonormal basis. Asr̂s can be diagonalized by
a unitary transformation, there exists an orthonormal ba

$u1&,u2&% in which r̂s has the diagonal form

r̂s5S r1 0

0 r2
D 5r1u1&^1u1r2u2&^2u. ~1!

The statesu1& and u2& correspond to spin orientations ‘‘up’
and ‘‘down,’’ respectively, with respect to some particul
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4222 PRE 62TOMÁŠ TYC
axis aW in space. In the case of photons, statesu1& and u2&
would describe two orthogonal polarizations, e.g., two l
early polarized waves with the polarization planes perp
dicular to each other or a pair of the left and right circula
polarized waves, depending on the properties of the sou

It is useful to express the probabilitiesr1 andr2 in terms
of the degree of polarization. This quantity is defined asP
5(r12r2)/(r11r2)5r12r2 ~provided that r1>r2),
which yields

r15
11P

2
, r25

12P

2
. ~2!

Now the spin state of the ensemble of electrons com
from the source is completely described by the density
erator@Eq. ~1!#. As can be seen from its form,r̂s corresponds
to a situation as if just two types of electrons were emit
from the source: first, electrons polarized up with respec
the axisaW ; and second, electrons polarized down with resp
to aW . The probabilities that an electron emitted from t
source is of the first or second type arer1 or r2, respectively.
The fact that the spin density operatorr̂s is diagonal means
that there is no correlation between the up-spin and do
spin components. At the same time, there is no correla
between the spin and the coordinate because the com
multielectron state is chaotic. This allows the following co
sideration to be made.

We formally substitute the original electron sourceSwith
two independent sourcesSup and Sdown that emit electrons
polarized up and down with respect to the axisaW , respec-
tively. If this is correct, theSup andSdown sources must have
the same properties~of course except for the spin! as the
original sourceS. This implies, for example, that they ar
located at the place of the original sourceS and have the
same energy spectrum. Moreover, the emission intensitie
the Sup andSdown sources must be equal tor1 andr2 times
the intensity of the original sourceS, respectively. In the
following, the idea of formally substituting the origina
source with two polarized ones will be used for a dire
derivation of the correlation function for a partially polarize
electron beam. To see this idea more clearly, we will c
sider the simple casek52 first, and then go over to a gener
k.

IV. TWO-ELECTRON CORRELATION FUNCTION

The two-electron correlation function expresses the pr
ability of the event of detecting two electrons at the spa
time points (rW1 ,t1) and (rW2 ,t2). This event can occur in on
of four ways that are distinguishable in principle because
coordinate and spin operators mutually commute:~1! the
spins of both electrons are oriented up with respect to
axisaW ; ~2! the spins of both electrons are oriented down;~3!

the spin of the electron at (rW1 ,t1) is oriented down, and the
spin of the electron at (rW2 ,t2) is oriented up; and~4! the spin
of the electron at (rW1 ,t1) is oriented up, and the spin of th
electron at (rW2 ,t2) is oriented down. If cases~1! or ~2! occur,
then according to Sec. III we are dealing with two electro
from the same polarized source. Therefore, the two-elec
correlation function is equal to the analogous correlat
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function G12
(2) for polarized electrons. On the other hand,

cases~3! or ~4! occur, we are dealing with two electron
from two independent, oppositely polarized sources. T
electrons are then completely uncorrelated, and the corr
tion function is equal to the product of one-electron corre
tion functions, i.e.,G1

(1)G2
(1) . As the probability that one

electron is polarized up or down isr1 or r2, respectively, the
probabilities of cases~1!, ~2!, ~3!, and~4! arer1

2, r2
2, r1r2,

and r1r2, respectively. The total correlation functionO12
(2)

can be then written as the weighted average of the polar
correlation functions,

O1,2
(2)5~r1

21r2
2!G1,2

(2)12r1r2G1
(1)G2

(1) , ~3!

which is the desired result fork52.

V. k-ELECTRON CORRELATION FUNCTION

In the derivation of thek-electron correlation function for
a partially polarized chaotic electron beam, we proceed i
completely analogous way. Ifk electrons at the space-tim
points (rW1 ,t1), . . . ,(rWk ,tk) should be detected, there are 2k

possibilities how they can be polarized~instead of the four
possibilities discussed in Sec. IV!. We denote each of them
by the sequences1 ,s2 , . . . ,sk , everysi expressing the spin
polarization of the electron at the point (rW i ,t i) and having
one of two possible values: 1 for spin-up and or 2 for sp
down. The probabilityP(s1 , . . . ,sk) that the electrons have
polarizationss1 , . . . ,sk is equal tor1

n1r2
n2, wheren1 andn2

express how many times 1 and 2 appear among the num
s1 , . . . ,sk , respectively. IfO1, . . . ,k

(k) (s1 , . . . ,sk) denotes the
k-electron correlation function for this particular spin comb
nation, the totalk-electron correlation function can be writte
as

O1, . . . ,k
(k) 5 (

s1 , . . . ,sk

P~s1 , . . . ,sk! O1, . . . ,k
(k) ~s1 , . . . ,sk!, ~4!

the sum being made over all the possibilitiess1 , . . . ,sk .
Now, if the spin polarizations of the electrons a
s1 , . . . ,sk , the situation is the same as if we dealt with tw
independent sets of electrons—one set ofn1 up-polarized
electrons originating from the sourceSup, and another set o
n2 down-polarized electrons originating from the sour
Sdown. The correlation functionO1, . . . ,k

(k) (s1 , . . . ,sk) there-
fore factorizes into a product of two correlation functions f
polarized electrons:

O1, . . . ,k
(k) ~s1 , . . . ,sk!5G(n1)~$rW,t%up!G

(n2)~$rW,t%down!. ~5!

Here$rW,t%up and$rW,t%down denote the sets of points at whic
the electrons are polarized up and down, respectively. S
stituting Eq.~5! into Eq.~4! and rearranging the sum, we ca
write the correlation functionO1, . . .k

(k) as follows:

O1, . . . ,k
(k) 5~r1

k1r2
k!G1, . . . ,k

(k) 1~r1
k21r21r2

k21r1!

3~G2, . . . ,k
(k21) G1

(1)1G1,3, . . . ,k
(k21) G2

(1)1•••

1G1, . . . ,k21
(k21) Gk

(1)!1~r1
k22r2

21r2
k22r1

2!

3~G3, . . . ,k
(k22) G1,2

(2)1G2,4, . . . ,k
(k22) G1,3

(2)1•••

1G1, . . . ,k22
(k22) Gk21,k

(2) !1•••. ~6!
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To see the structure of such a series better, we write
three- and four-electron correlation functions for illustratio

O1,2,3
(3) 5~r1

31r2
3!G1,2,3

(3) 1~r1
2r21r2

2r1!~G1,2
(2)G3

(1)

1G1,3
(2)G2

(1)1G2,3
(2)G1

(1)!, ~7!

O1,2,3,4
(4) 5~r1

41r2
4!G1,2,3,4

(4) 1~r1
3r21r2

3r1!~G1,2,3
(3) G4

(1)

1G1,2,4
(3) G3

(1)1G1,3,4
(3) G2

(1)1G2,3,4
(3) G1

(1)!

12r1
2r2

2~G1,2
(2)G3,4

(2)1G1,3
(2)G2,4

(2)1G1,4
(2)G2,3

(2)!. ~8!

In this way thek-electron correlation function for partially
polarized electrons is expressed in terms of the one-elec
two-electron, etc. up tok-electron correlation functions fo
polarized electrons, and the degree of polarization@that is
connected withr1 andr2 via relations~2!#.

The considerations made in Secs. III–V, as well as res
~3! and ~6!, can also be applied step by step to a chao
photon field, because up to now we have not supposed
thing about the quantum statistics of the particles. In fa
these statistics are hidden in the spin-polarized correla
functionsG, and in this way are also reflected in the corr
lation function O1, . . . ,k

(k) . As mentioned, the similarity be
tween electrons and photons in this sense comes from
same dimensions of the photon polarization Hilbert sp
and the electron spin Hilbert space.

We return to the electrons again. According to Refs.@4,6#,
the k-electron correlation function for a spin-polarized ch
otic electron beam can be expressed as

G1, . . . ,k
(k) 5G1

(1)G2
(1)
•••Gk

(1)detĝ, ~9!

whereĝ5(g i j ) is a matrix composed of the complex degre
of coherenceg i j at the points (rW i ,t i) and (rW j ,t j ). Combining
Eqs.~6! and ~9!, we arrive at an explicit form for the corre
lation function for a chaotic electron beam with an arbitra
spin polarization.

VI. INFLUENCE OF POLARIZATION ON
MULTIELECTRON CORRELATIONS

To see how the spin polarization influences the corre
tions in an electron beam, we first return to the case w
k52. According to Eq.~9!, the two-electron correlation
function for a spin-polarized chaotic electron beam is eq
to

G1,2
(2)5G1

(1)G2
(1)~12ug12u2!, ~10!

where we used the fact thatg115g2251. With the help of
Eqs.~2! and ~3!, for O1,2

(2) we then obtain

O1,2
(2)5G1

(1)G2
(1)S 12

11P2

2
ug12u2D . ~11!

If there were no correlation between the detection probab
ties at the points (rW1 ,t1) and (rW2 ,t2), the correlation function
O1,2

(2) would simply be equal to the product of the on
electron correlation functionsO1

(1)5G1
(1) and O2

(1)5G2
(1) .

Therefore, the second term in parentheses in Eq.~11! is re-
e
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sponsible for the two-electron correlation. As we can s
this term increases with the increasing degree of polariza
of the beam, varying between one half for an unpolariz
beam and unity for a completely polarized beam. For el
trons, this result has been known@1#, but it has been derived
heuristically only until now. For photons a similar effect o
the polarization on the correlation function is known@9#.

Next we go over to the case of an arbitraryk. According
to Eq. ~6!, the factorw5(r1

k1r2
k) expresses the weight o

the k-electron correlation in the partially polarized bea
compared to a completely polarized beam, because
k-electron correlation is given just by the correlation functi
G1,2, . . . ,k

(k) . It is evident that for largek the factorw becomes
small as soon asP differs even slightly from unity. Figure 1
shows the dependencew(P) for k510. For example ifP
50.7, thenw is equal to only about 0.2, so the ten-electr
correlation is reduced to one fifth with respect to a polariz
beam. Thus we must conclude that if no beam with a h
degree of polarization is available, it is difficult to obser
correlations of higher orders. On the other hand, from
experimental point of view, observing even two-electron c
relations is very difficult@2,10#. In comparison to the ex-
treme difficulty of, say, a ten-electron correlation expe
ment, making a 99% polarized electron beam seems to b
easy task, and in this way the spin degree of freedom sho
have no limitation effect on the measurement of multiele
tron correlations.
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FIG. 1. The factorw5r1
k1r2

k5@(11P)/2#k1@(12P)/2#k ex-
pressing the intensity of thek-electron correlation as a function o
the degree of polarizationP for k510. As the figure shows, ifw is
comparable to unity, thus making thek-electron correlations ob-
servable, one needs a beam of a relatively high degree of pola
tion.
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