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Relativistic solitons in magnetized plasmas
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The results of analytical and numerical investigations on the properties of one-dimensiondfifting
solitons of relativistic amplitude, in the presence of an externally imposed uniform magnetiBfielte
presented and compared with those of the unmagnetized plasma (Esinkepovet al, Pis'ma Zh. Kksp.

Teor. Fiz.68, 33(1998 [JETP Lett.68, 36(1998]). The presence of a uniform longitudinal magnetic field, the
intensity of which corresponds to an electron cyclotron frequefigy-eB,/m.c that is a non-negligible
fraction of the laser frequency,, has important consequences on the properties of relativistically intense
solitons. The region of the parameter spaag,(),) where magnetized solitons exist is determined analyti-
cally, and new conditions of breaking due to the total density depletion are given. It is shown that stable high
energy magnetized solitons can be produced.

PACS numbgs): 52.40.Nk, 52.35.Mw, 52.35.Sb, 52.40.Db

[. INTRODUCTION laser light propagation appears. The magnetic field generated
by the laser can be substantially high, as to affect the soliton
Recent multidimensional particle-in-ce(PIC) simula-  structure.
tions[1—-4] have shown that, during the interaction of a rela- In order to include the effect of Faraday rotation in the
tivistically strong laser pulse with an underdense plasma, ugoliton model, we have carried out an extension of the analy-
to 30—40 % of the pulse energy becomes trapped in quasisis made by Esirkepoet al, by assuming that a static and
tationary density cavities which appear behind the laser pulsgniform magnetic fieldB,=Be, is present throughout the
itself. These electromagnetic field “bunches” drift at a ve- yiasma. The existence of localized e.m. field distributions, in
locity much smaller than the group velocity of the laser, andy,q envelope approximation, have been investigated in con-
in the presence of density gradients, are accelerated towaf, tion with the problems of electrostatic ion cyclotron

decreasiqgt d;ansity ﬂ\}/alueds:; when the;(;dreellch thgtt.plastmh%aves propagating perpendicularly to the ambient magnetic
vacuum Intértace, they disappear suddenly, emitting the, [14], of electrostatic electron waves at arbitrary propa-
trapped electromagnetie.m) energy in the form of bursts

of radiation at a strongly dowshifte@vith respect towg) gation anglq15], and of Alfven wave$16]. A study on the

frequency[2]. Generally speaking, this process represents aRropagatlon of large am_phtude, e.m. waves in a magnetized
important mechanism of laser energy loss, since the radiatioplIasrna was developed in Réﬂ.?]' TO our knpwledge, the
involved in these dynamics does not participate to the physipresent study reprgsgnts the f|r§t mvestlggtlon c_’f '_[he effects
cal processes which should have been triggered by the las8f & Strong magnetic field on soliton formation, within a fully
pulse itself. Therefore, in recent years, the old problem of théelativistic treatment and without any specific assumption
formation and stability of relativistic solitons and solitonlike @bout the characteristic spatial scales of the problem.
structures in collisionless plasmas has begun to be reconsid- The paper is organized as follows: in Sec. Il, relevant
ered in the light of new interaction conditions, in order to €quations are derived and an integral of motion is obtained.
give an analytical basis to the results of the recent numericabection Ill is devoted to an analysis of the structure of the
experiments. Among the wide literature on solitons, here weelevant phase space in order to obtain the conditions under
wish to quote earlier papers on one-dimensional relativistiavhich localized solutions are allowed. Peculiar periodic so-
solitons where several of their peculiarities have been dishutions are briefly discussed. In Sec. IV, an implicit analyti-
cussed5-9]. In 1998, Esirkepo\et al. [10] determined an cal expression of the soliton solution is derived, and the con-
analytical expression for a subcycle stationary soliton. Thelitions for its stability are given. The analytical solution of
conditions for the stability of such a solitary structure indi- the problem in the weakly relativistic case is presented, as

cate that the allowed frequency of the trapped radiation has @ell. Finally, Sec. V is devoted to concluding remarks.
minimum, to which a maximum field amplitude corresponds.

One-dimensional PIC simulations support these conclusions.

The solitons found in Ref10] are C|rcularl_y polarized. If_ Il. FORMULATION OF THE PROBLEM
they are assumed to be generated by a circularly polarized
e.m. wave propagating in the plasma, then it is natural to In a static magnetic fiel&8,, Maxwell's equations for the
incorporate a magnetic field into the model, which is generwave vector potential and for the scalar potentia#, and
ated due to the inverse Faraday effekt—13. As is known,  the hydrodynamic equation for the kinetic momentpntan
in this case a magnetic field oriented in the direction of thebe written
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n
AA—ﬁttA—Vﬁtqb—;p:O, (1)

V-A=0, (2)
3
(4)

wherev=p/y is the fluid velocity, andy= \1+[p|%. Here

n=1+A ¢,

d(p—A)=V(¢—7y)+vXVX(p—A)—vXBy,
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A+ 0?A=nL, (14)
Y
v 351307
¢>—7+§;; =0, (15
Q
(1——)p=A. (16)
wy

By means of Eqs(15) and(16), the densityEq. (13)] reads

the following dimensionless quantities have been introduced:

rwpe/C—T, twpe—t, Pe/MC—P, Ne—n, eA(p)/mc?

—A(¢), and eE(B)/mw,.c—E(B), where w,e

= J4mnye?/m, is the electron plasma frequenay, the un-

perturbed electron density, amd, the electron rest mass.
Let us assume that the magnetic field is directed akgng

10

g

1

,)/2

n=1++y"+
LA

) . a7
Finally, we obtain an equation for the amplitude of the vector
potentialA,

Byo=Q¢,, and consider the one-dimensional case in which

dy=d,=0. Since we want to find a localized solution, from
Eq. (2) we obtainA,=0. We look for a solution of the sys-
tem of equation$l)—(4) corresponding to a circularly polar-

ized radiation; then we assume that the vector potential and
the electron momentum, under the action of the fields, have

the forms

A=A +iIA,=AX)expiot), (5)

(6)

whereA andp are assumed real, with the other quantities
¢, v, andp, depending only on the spatial variatdeThen,
Egs.(1)—(4) read

P, =pytip,=p(x)expliwt),

n=1+¢", (7)

A”+w2A=n%, (8)

(¢—y>’+§(p—A>'=o, ©

p

vx(p—A)’+iw(p—A)=iQ;, (10

where the prime denotes differentiation with respect.to
When a static magnetic field is considered, Bd) splits
into

v(p—A)'=0, (13)
Q
p—A=;%. (12)

From Eq.(11), and due to the localized character of the
searched solution, it follows that=0. Note that in the case
without magnetic field, the relatiop=A holds (see Ref.
[10].

Then, for Bo#0, the system of equation&)—(10) re-
duces to the following system:

n=1+¢", (13)

1+ /l+1Q —2\n
A

A"+Al w?— 0 =0, (18)
e
where the following relationship holds:
(Y*—1)(y—Qlw)?— y*A*=0. (19

Equations(18) and(19) completely define the soliton struc-
ture. By means of the substitutions

Q
p=sinhu, y=coshu, A=sinhu—5tanhu, (20

Eqg. (18) can be written

d F du +G(u)=0 21
dx (U)& (u)=0, (21)
where
Olw
F(uy=1- , (22
coshu
, Q 1
G(u)= wzsmhu( coshu— — — —2) . (23
()

Equation(21) can be easily reduced to quadratures, since it
admits an integral of motion

2

+U(u)=E, (24)

H—l . du
=3 | Flwgx

wheredU/du=F(u)G(u), andE is an integration constant.
A similar procedure was used in the determination of the
trasverse field distribution in a problem of e.m. radiation
self-focusing 18]. Introducing, for the sake of simplicity, the
parameters

, (25
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FIG. 1. Phase plot of Eq24) in the plane ¢,u’). Caseda), (b), (c), and(d) refer toX=1.2, andY=1.5, 1, 0.2, and-0.5, respectively.

U reads, explicitly,

coshu—1
U= —

% [coshu—(2X+2Y—1)

+Y(X+Y-2)sechu+Y(X+Y)secfu]. (26)

Ill. PHASE SPACE ANALYSIS

To analyze the phase space structure of(24), we look
for the solution of the system

oH oH
ou S au’

-0, (27)

in the phase spacaufu’). Three possible types of solution
are found, varying the paramete¥sand Y. The pointu
=0, u’' =0, exist for any value oK andY, and corresponds
to anX point for 1-X<Y<1, and to arO point otherwise.
The pointu=arccoshK+Y), u’ =0, exists only forX+Y
—1=0, and it is always anO point. The point u
=arccoshy ™3, u’2=YY(X+Y-Y¥/(3X), exists forY
=1, and it has no definite character.

relevant contourplots of Eq24) are shown in Fig. 1. In the
case(i) [Figs. Xa) and Xb)], only periodical solutions are
found, since the curve which splits the phase plane in differ-
ent regions is not actually a separatrix in the proper sense. In
case(ii) [Fig. 1(c)], a localized solution can be found, corre-
sponding to a true separatrix in the phase plane. Finally, in
case (iii) [Fig. 1(d)], again only periodical solutions are
found.

To have a better insight of the solutions, we analyze these
curves in the planeX,A"). For Y>1, the mapping between
(u,u”) and (A,A’) is not unique, therefore, strictly speaking,
(A,A") cannot be considered as a phase spaceYEdt, the
curve is a figure-8 plot. We note that far<1 the pointA
=0, A’=0 is a standar& point, while forY=1 the curve is
tangent to the axi\=0 at A’=0. Note that in the latter
case A’ «A?? around the point0,0), which means that this
point is reached in a finite “time,” ag#\(x)*x>. As a con-
sequence, the correponding solutions become zero over a
finite spatial length, and they present an inflection point of
cubic type. After that, the same e.m. pattern manifests itself
indefinitely with alternating sign. Therefore, strictly speak-
ing, Y=1 does not correspond to a localized solution.

In conclusion, a localized solution can be found only in
case(ii). Note that regioriii) corresponds to the evanescent

From the above considerations, in the parameters planease for the wave under consideration in the linear approxi-
(X,Y) (with X positive) three regions can be identified, char- mation. From Eqs(1)—(4), assuming a dependence of the

acterized by different structures of the phase spaigeY
=1, (i) X+Y—1>0 andY<1, and(iii) X+Y—1<0. The

kind expfwt—ikx), the following linear dispersion relation
can be obtained:
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(28)
which givesk?<0 for X+Y—1>0 andY<1.

IV. LOCALIZED SOLUTIONS
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n(x=0)=1—G(u)sinhu|,_g

XWig (A XA+ AY)WE g+ (4= X—4Y )Wy — X

In the following, we shall focus on the parameter regions

X+Y—-1>0 andY<1, for which a separatrix exists in the
phase planey,u’) [and in (A,A’)]. SinceE=0 on the sepa-
ratrix, from Eq.(24) one obtains

F(u)
dx=du .
—-2U

(29

Transforming fromu to w=tant?(u/2), and recalling that
coshu=(1+w)/(1-w), Eq. (29 can be integrated as

wy dw w+1

X=

F , (30
wo(Wy— W) (W—wp) (W—wg) W v

wherew, , w,, andw; are the roots of the third degree poly-
nomial:

q(w)=XWP+wW?(1+Y)(X+Y+1)
—W(2Y?+2XY+X—2)+(Y—1)(X+Y—1).
(3D

In the considered parameter range 9, <1, while w,, and
w3 are complex fory<<0, and real but negative for<QY
<1. Equation(30) can be easily integrated in terms of ellip-
tic functions, thus obtainingv (and thenu) implicitly as a
function of x.

Once the functionw is computed from Eq(30), all the
relevant physical quantities can be obtained in termsv,of
i.e., y=(1+w)/(1-w), p=2W/(1-w), A=p(1-Y/y),
and

U(u)

n=1+(u’sinhuF(u))’=1-sinhuG(u)—2 coshu =)

1

X(¥=Y)
+(2-2X-Y=Y?)y*
+3(X+Y) vy —29°].

[Y2—Yy—2Yy®

(32

Note that atx=0, w=w,, andA, p, andy are maximum,
while n is minimum. Varying the parameted§ andY, the
conditionn=<0 can be fulfilled, thus giving rise to a non-
physical result.

For any value of the magnetic field in the rangel 1, a
critical frequencyvalue X., can be found at which the den-
sity is zero atx=0. We now look for the occurrence of the
conditionn(x=0)=n(w,.,)=0. Since inx=0, u’'=0 and
U=0, then

X(chr_ 1)3
(33
The criticalw,, is solution of the system
n(x=0)=0, q(w)=0. (34)

Introducing the paramete®=X+Y—1 (with S>0), and
eliminatingX from Egs.(34), one obtainsv,. andY as func-
tions of S, with (3—/5)/2<S<1:

Y(S—1)3+1-2S=0, (35)

S

chrzﬁ-

(36)

Equation(35) implicitly defines thecritical S at which the
density becomes zer&rom Eq.(35), the explicit relations
betweenX andY can be found:

X ) [ 2 T 1 3 /3Y V=0
o= WCO §+§arcco Z 7 , >0,

(37)
1 8 1 1/3
%= Vave o' 2v
1 3 1 1/3
_(w/m_zm(s—W ., Y<O. (38

The minimum X., occurs atY=1, and is equal to (3
—/5)/2~0.382. In conclusion, physical localized solutions
exist in the parameter rangé<1l, and max(t+Y,0)<X
<X

The above results can also be expressed in termsanfd
Q, although not explicitly: the soliton exists for
max(e Q) <o<w,_,, Where w._,=(JQ?+4+Q)/2 is
the cutoff frequency in a magnetized plasma, andis the
uppero branch of Eq(35). Note that forQ>(y/5+1)/2, Q
is larger tharw.,. The above region is shown in Fig. 2, and
is delimited by the two continuous curves in the plane
(Q,w).

Typical results of localized solutions are shown in Figs. 3
and 4, at a fixed frequency and different magnetic fields. In
Fig. 5, the behavior of the wave vector amplitulleat the
critical frequency at which the density becomes zero is
shown for different values of magnetic fields. Note that the
amplitude and width of the soliton increase with decreasing
Q). At the same time the radiation frequency decreases. From
Egs. (36)—(38) the peak values of the different physical
quantities, e.g.¢, y, andA, can be computed as a function
of Y at the critical density. They are monotonically decreas-
ing functions of Y<1, and atY=1 reach their minimum
values, ¢=(1/5—1)/4~0.309, y=(1/5+1)/2~1.618, and
A= \\/6—2~0.486.

An analytical explicit expression for the localized solution
can be found in the limit of small amplitude. Equatitiv)
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FIG. 2. Frequency region in which a localized solution of Eq.

(24) is found. The region is defined by the relation max(()
<w<w_,, Wherew._, is the upper plotted curve, and max(,(2)
the lower curve. The dash-dotted line=() is also plotted for
reference.
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FIG. 4. Behavior of the density as a functionxoffor the same

for A can be simplified assuming quasineutrality, and ex-parameters as in Fig. 3.

panding the expressions férandA’ in the limitu<1:

u3
n~1, A~=~(l1-Y)u+ €(1+2Y),
(39
n
A'~(1-Y)u", i)%u—u3/3;
Y
thus obtaining the following nonlinear equation far
S u® 1-9/3
u” 0. (40

Ukaev Tz xaey)

The solution of the above equation is

1.2 T

0.8

0.4

0.2

- S S
u—2\/71_8/3sech\lix(l_\()x, (41

and is valid forS<1. ForY=0 andS<1, it reduces to the
limit of the corresponding solution in Ref10]:

X—1
u=2\/X—1sec TX' (42

25 [

05 [

FIG. 5. Behavior of the wave vector amplitude of the soliton as

a function ofx, for different values of the magnetic field at the
critical frequency at which the density in the center is zero. The

FIG. 3. Behavior of the wave vector amplitude of the soliton, asparameters are as followga) Y=0.99, X.,=0.395; (b) Y=0.5,

a function of x. Cases(a), (b), and (c) refer to X=1.2, andY
=0.1, 0, and—0.1, respectively.

Xer=0.96; () Y=0, X,=1.5; (d) Y=-0.5, X,,=2.02; and(e)
Y=-1, X.,=2.55.
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V. DISCUSSION AND CONCLUDING REMARKS <0 (2>0), with @>0. Generally speaking, the present in-

The problem of the existence of one-dimensional, non_\/estlgatlon demonstrates that a stationary magnetic field

drifting, localized solutiongsolitonlike distributions of e.m. heavily affects the characteristics of solitons, as it can be
energy densityof the full Maxwell equations, coupled with &rguéd by inspection of Fig. 2. The frequency interval of
relativistic hydrodynamic equations for the electron compo-Stability strongly depends both on the amplitude and sign of
nent, in the presence of a constant and uniform magnetithe magnetic field. Ranges of frequency values lower and
field, was investigated in the case of circularly polarized e.mlarger than in the unmagnetized case are allowed,Bfpr
radiation. The considered model was intended to represert0 andB,>0, respectively. The maximum field amplitudes
the occurrence of the inverse Farady effect which is knowrwhich characterize the corresponding soliton dependBpn

to accompany the propagation of a circularly polarized radiaas well. Figure 5 shows an important result of our study: if
tion wave packet, as is the case for an intense laser puls@ie axial magnetic field generated by a right-polarized wave
propagating in a plasma, or for a relativistic soliton produceds such that the corresponding electron cyclotron frequency
in its wake. is of the same order as the radiation frequency, a much larger

In a one-dimensional model microscopic currents assoCitaction of e.m. energy than assumed by the unmagnetized

a_\ted with the C|r_cular motl_on of the electrons under the aCiodel [10] can be trapped in the density cavity which is
tion of the rotating e.m. fields cancel each other; then th

' NSormed. Moreover, the stability of such high energy solitons
effects that we observe are due only to strongly nonlinear .

e , : . Is guaranteed by a strong lowering of the frequency, to val-
modifications of the e.m. wave dispersion properties of aues much below the local unperturbed electron plasma fre-
magnetized plasma acted upon by relativistically intense ra- P P

diation. In this paper, the net magnetization which wouldduency, as can be seen from the behavior of the allowed

occur if the soliton had a finite transverse dimension Wagegion in the left half-plane in Fig. 2. Since the Widm",Of
modeled through an externally given magnetic field. such a region scales astlLfor ()— —c, then, if the soliton

As is known, a right(left) circularly polarized wave releases its energy in vacuum, from the measurement of the
propagating along the positive axis produces a net mag- radiated frequency spectrum it is possible, in principle, to
netic field directed along the negatig@ositive) x axis. In our  infer a characteristic value of the magnetic field present in
investigation the rightleft) polarization is recovered fa the plasma.
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