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Relativistic solitons in magnetized plasmas
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The results of analytical and numerical investigations on the properties of one-dimensional~nondrifting!
solitons of relativistic amplitude, in the presence of an externally imposed uniform magnetic fieldB0, are
presented and compared with those of the unmagnetized plasma theory„Esirkepovet al., Pis’ma Zh. Éksp.
Teor. Fiz.68, 33 ~1998! @JETP Lett.68, 36 ~1998!#…. The presence of a uniform longitudinal magnetic field, the
intensity of which corresponds to an electron cyclotron frequencyVe5eB0 /mec that is a non-negligible
fraction of the laser frequencyv0, has important consequences on the properties of relativistically intense
solitons. The region of the parameter space (v0 ,Ve) where magnetized solitons exist is determined analyti-
cally, and new conditions of breaking due to the total density depletion are given. It is shown that stable high
energy magnetized solitons can be produced.

PACS number~s!: 52.40.Nk, 52.35.Mw, 52.35.Sb, 52.40.Db
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I. INTRODUCTION

Recent multidimensional particle-in-cell~PIC! simula-
tions @1–4# have shown that, during the interaction of a re
tivistically strong laser pulse with an underdense plasma
to 30–40 % of the pulse energy becomes trapped in qua
tationary density cavities which appear behind the laser p
itself. These electromagnetic field ‘‘bunches’’ drift at a v
locity much smaller than the group velocity of the laser, a
in the presence of density gradients, are accelerated tow
decreasing density values; when they reach the plas
vacuum interface, they disappear suddenly, emitting
trapped electromagnetic~e.m.! energy in the form of bursts
of radiation at a strongly dowshifted~with respect tov0)
frequency@2#. Generally speaking, this process represents
important mechanism of laser energy loss, since the radia
involved in these dynamics does not participate to the ph
cal processes which should have been triggered by the
pulse itself. Therefore, in recent years, the old problem of
formation and stability of relativistic solitons and solitonlik
structures in collisionless plasmas has begun to be recon
ered in the light of new interaction conditions, in order
give an analytical basis to the results of the recent numer
experiments. Among the wide literature on solitons, here
wish to quote earlier papers on one-dimensional relativi
solitons where several of their peculiarities have been
cussed@5–9#. In 1998, Esirkepovet al. @10# determined an
analytical expression for a subcycle stationary soliton. T
conditions for the stability of such a solitary structure ind
cate that the allowed frequency of the trapped radiation h
minimum, to which a maximum field amplitude correspon
One-dimensional PIC simulations support these conclusi

The solitons found in Ref.@10# are circularly polarized. If
they are assumed to be generated by a circularly polar
e.m. wave propagating in the plasma, then it is natura
incorporate a magnetic field into the model, which is gen
ated due to the inverse Faraday effect@11–13#. As is known,
in this case a magnetic field oriented in the direction of
PRE 621063-651X/2000/62~3!/4146~6!/$15.00
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laser light propagation appears. The magnetic field gener
by the laser can be substantially high, as to affect the sol
structure.

In order to include the effect of Faraday rotation in t
soliton model, we have carried out an extension of the an
sis made by Esirkepovet al., by assuming that a static an

uniform magnetic fieldB05B0êx is present throughout the
plasma. The existence of localized e.m. field distributions
the envelope approximation, have been investigated in c
nection with the problems of electrostatic ion cyclotro
waves propagating perpendicularly to the ambient magn
field @14#, of electrostatic electron waves at arbitrary prop
gation angle@15#, and of Alfven waves@16#. A study on the
propagation of large amplitude, e.m. waves in a magneti
plasma was developed in Ref.@17#. To our knowledge, the
present study represents the first investigation of the eff
of a strong magnetic field on soliton formation, within a ful
relativistic treatment and without any specific assumpt
about the characteristic spatial scales of the problem.

The paper is organized as follows: in Sec. II, releva
equations are derived and an integral of motion is obtain
Section III is devoted to an analysis of the structure of
relevant phase space in order to obtain the conditions un
which localized solutions are allowed. Peculiar periodic s
lutions are briefly discussed. In Sec. IV, an implicit analy
cal expression of the soliton solution is derived, and the c
ditions for its stability are given. The analytical solution
the problem in the weakly relativistic case is presented,
well. Finally, Sec. V is devoted to concluding remarks.

II. FORMULATION OF THE PROBLEM

In a static magnetic fieldB0, Maxwell’s equations for the
wave vector potentialA and for the scalar potentialf, and
the hydrodynamic equation for the kinetic momentump, can
be written
4146 ©2000 The American Physical Society
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nA2] ttA2“] tf2
n

g
p50, ~1!

“•A50, ~2!

n511nf, ~3!

] t~p2A!5“~f2g!1v3“3~p2A!2v3B0 , ~4!

wherev5p/g is the fluid velocity, andg5A11upu2. Here
the following dimensionless quantities have been introduc
rvpe /c→r, tvpe→t, pe /mec→p, ne→n, eA(f)/mec

2

→A(f), and eE(B)/mevpec→E(B), where vpe

5A4pn0e2/me is the electron plasma frequency,n0 the un-
perturbed electron density, andme the electron rest mass.

Let us assume that the magnetic field is directed alonx,
B05Vex , and consider the one-dimensional case in wh
]y5]z50. Since we want to find a localized solution, fro
Eq. ~2! we obtainAx50. We look for a solution of the sys
tem of equations~1!–~4! corresponding to a circularly polar
ized radiation; then we assume that the vector potential
the electron momentum, under the action of the fields, h
the forms

A'[Ay1 iAz5A~x!exp~ ivt !, ~5!

p'[py1 ipz5p~x!exp~ ivt !, ~6!

whereA andp are assumed real, with the other quantitiesn,
f, g, andpx depending only on the spatial variablex. Then,
Eqs.~1!–~4! read

n511f9, ~7!

A91v2A5n
p

g
, ~8!

~f2g!81
p

g
~p2A!850, ~9!

vx~p2A!81 iv~p2A!5 iV
p

g
, ~10!

where the prime denotes differentiation with respect tox.
When a static magnetic field is considered, Eq.~10! splits

into

vx~p2A!850, ~11!

p2A5
V

v

p

g
. ~12!

From Eq. ~11!, and due to the localized character of t
searched solution, it follows thatvx50. Note that in the case
without magnetic field, the relationp5A holds ~see Ref.
@10#!.

Then, for B0Þ0, the system of equations~7!–~10! re-
duces to the following system:

n511f9, ~13!
d:

h

d
e

A91v2A5n
p

g
, ~14!

Xf2g1
1

2

V

v S p

g D 2C850, ~15!

S 12
V

vg D p5A. ~16!

By means of Eqs.~15! and~16!, the density@Eq. ~13!# reads

n511g91
1

2

V

v S 1

g2D 9
. ~17!

Finally, we obtain an equation for the amplitude of the vec
potentialA,

A91AF v22

11g91
1

2

V

v
~g22!9

g2
V

v

G50, ~18!

where the following relationship holds:

~g221!~g2V/v!22g2A250. ~19!

Equations~18! and ~19! completely define the soliton struc
ture. By means of the substitutions

p5sinhu, g5coshu, A5sinhu2
V

v
tanhu, ~20!

Eq. ~18! can be written

d

dx FF~u!
du

dxG1G~u!50, ~21!

where

F~u!512
V/v

cosh3u
, ~22!

G~u!5v2sinhuS coshu2
V

v
2

1

v2D . ~23!

Equation~21! can be easily reduced to quadratures, sinc
admits an integral of motion

H5
1

2 S F~u!
du

dxD
2

1U~u!5E, ~24!

wheredU/du5F(u)G(u), andE is an integration constant
A similar procedure was used in the determination of
trasverse field distribution in a problem of e.m. radiati
self-focusing@18#. Introducing, for the sake of simplicity, the
parameters

X5
1

v2
, Y5

V

v
, ~25!
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FIG. 1. Phase plot of Eq.~24! in the plane (u,u8). Cases~a!, ~b!, ~c!, and~d! refer toX51.2, andY51.5, 1, 0.2, and20.5, respectively.
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U reads, explicitly,

U5
coshu21

2X
@coshu2~2X12Y21!

1Y~X1Y22!sechu1Y~X1Y!sech2u#. ~26!

III. PHASE SPACE ANALYSIS

To analyze the phase space structure of Eq.~24!, we look
for the solution of the system

]H

]u
50,

]H

]u8
50, ~27!

in the phase space (u,u8). Three possible types of solutio
are found, varying the parametersX and Y. The point u
50, u850, exist for any value ofX andY, and corresponds
to anX point for 12X,Y,1, and to anO point otherwise.
The pointu5arccosh(X1Y), u850, exists only forX1Y
21>0, and it is always anO point. The point u
5arccoshY1/3, u825Y1/3(X1Y2Y1/3)/(3X), exists for Y
>1, and it has no definite character.

From the above considerations, in the parameters p
(X,Y) ~with X positive! three regions can be identified, cha
acterized by different structures of the phase space:~i! Y
>1, ~ii ! X1Y21.0 andY,1, and~iii ! X1Y21,0. The
ne

relevant contourplots of Eq.~24! are shown in Fig. 1. In the
case~i! @Figs. 1~a! and 1~b!#, only periodical solutions are
found, since the curve which splits the phase plane in diff
ent regions is not actually a separatrix in the proper sense
case~ii ! @Fig. 1~c!#, a localized solution can be found, corr
sponding to a true separatrix in the phase plane. Finally
case ~iii ! @Fig. 1~d!#, again only periodical solutions ar
found.

To have a better insight of the solutions, we analyze th
curves in the plane (A,A8). For Y.1, the mapping between
(u,u8) and (A,A8) is not unique, therefore, strictly speakin
(A,A8) cannot be considered as a phase space. ForY<1, the
curve is a figure-8 plot. We note that forY,1 the pointA
50, A850 is a standardX point, while forY51 the curve is
tangent to the axisA50 at A850. Note that in the latter
case,A8}A2/3, around the point~0,0!, which means that this
point is reached in a finite ‘‘time,’’ asA(x)}x3. As a con-
sequence, the correponding solutions become zero ov
finite spatial length, and they present an inflection point
cubic type. After that, the same e.m. pattern manifests it
indefinitely with alternating sign. Therefore, strictly spea
ing, Y51 does not correspond to a localized solution.

In conclusion, a localized solution can be found only
case~ii !. Note that region~ii ! corresponds to the evanesce
case for the wave under consideration in the linear appr
mation. From Eqs.~1!–~4!, assuming a dependence of th
kind exp(ivt2ikx), the following linear dispersion relation
can be obtained:
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k25
1

X
2

1

12Y
, ~28!

which givesk2,0 for X1Y21.0 andY,1.

IV. LOCALIZED SOLUTIONS

In the following, we shall focus on the parameter regio
X1Y21.0 andY,1, for which a separatrix exists in th
phase plane (u,u8) @and in (A,A8)]. SinceE50 on the sepa-
ratrix, from Eq.~24! one obtains

dx5du
F~u!

A22U
. ~29!

Transforming fromu to w5tanh2(u/2), and recalling that
coshu5(11w)/(12w), Eq. ~29! can be integrated as

x5E
w

w1 dw

A~w12w!~w2w2!~w2w3!

w11

w
F~w!, ~30!

wherew1 , w2, andw3 are the roots of the third degree pol
nomial:

q~w!5Xw31w2~11Y!~X1Y11!

2w~2Y212XY1X22!1~Y21!~X1Y21!.

~31!

In the considered parameter range 0,w1,1, while w2, and
w3 are complex forY,0, and real but negative for 0,Y
,1. Equation~30! can be easily integrated in terms of ellip
tic functions, thus obtainingw ~and thenu) implicitly as a
function of x.

Once the functionw is computed from Eq.~30!, all the
relevant physical quantities can be obtained in terms ofw,
i.e., g5(11w)/(12w), p52Aw/(12w), A5p(12Y/g),
and

n511~u8sinhuF~u!!8512sinhuG~u!22 coshu
U~u!

F~u!

5
1

X~g32Y!
@Y22Yg22Yg3

1~222X2Y2Y2!g4

13~X1Y!g522g6#. ~32!

Note that atx50, w5w1, andA, p, andg are maximum,
while n is minimum. Varying the parametersX, andY, the
condition n<0 can be fulfilled, thus giving rise to a non
physical result.

For any value of the magnetic field in the rangeY,1, a
critical frequencyvalueXcr can be found at which the den
sity is zero atx50. We now look for the occurrence of th
condition n(x50)[n(w1cr)50. Since inx50, u850 and
U50, then
s

n~x50!512G~u!sinhuux50

5
Xw1cr

3 1~41X14Y!w1cr
2 1~42X24Y!w1cr2X

X~w1cr21!3
.

~33!

The criticalw1cr is solution of the system

n~x50!50, q~w!50. ~34!

Introducing the parameterS5X1Y21 ~with S.0), and
eliminatingX from Eqs.~34!, one obtainsw1c andY as func-
tions of S, with (32A5)/2<S,1:

Y~S21!31122S50, ~35!

w1cr5
S

22S
. ~36!

Equation~35! implicitly defines thecritical S at which the
density becomes zero. From Eq.~35!, the explicit relations
betweenX andY can be found:

Xcr522A 2

3Y
cosFp

3
1

1

3
arccosS 3

4
A3Y

2 D G , Y.0,

~37!

Xcr5SA 1

4Y2
2

8

27Y3
1

1

2YD 1/3

2SA 1

4Y2
2

8

27,Y3
2

1

2YD 1/3

, Y,0. ~38!

The minimum Xcr occurs at Y51, and is equal to (3
2A5)/2'0.382. In conclusion, physical localized solution
exist in the parameter rangeY,1, and max(12Y,0),X
,Xcr .

The above results can also be expressed in terms ofv and
V, although not explicitly: the soliton exists fo
max(vcr ,V),v,vc2o , where vc2o5(AV2141V)/2 is
the cutoff frequency in a magnetized plasma, andvcr is the
upperv branch of Eq.~35!. Note that forV.(A511)/2, V
is larger thanvcr . The above region is shown in Fig. 2, an
is delimited by the two continuous curves in the pla
(V,v).

Typical results of localized solutions are shown in Figs
and 4, at a fixed frequency and different magnetic fields
Fig. 5, the behavior of the wave vector amplitudeA at the
critical frequency at which the density becomes zero
shown for different values of magnetic fields. Note that t
amplitude and width of the soliton increase with decreas
V. At the same time the radiation frequency decreases. F
Eqs. ~36!–~38! the peak values of the different physic
quantities, e.g.,f, g, andA, can be computed as a functio
of Y at the critical density. They are monotonically decrea
ing functions ofY<1, and atY51 reach their minimum
values, f5(A521)/4'0.309, g5(A511)/2'1.618, and
A5AA522'0.486.

An analytical explicit expression for the localized solutio
can be found in the limit of small amplitude. Equation~14!
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for A can be simplified assuming quasineutrality, and
panding the expressions forA andA8 in the limit u!1:

n'1, A'~12Y!u1
u3

6
~112Y!,

~39!

A9'~12Y!u9,
np

g
'u2u3/3;

thus obtaining the following nonlinear equation foru:

u92u
S

X~12Y!
1

u3

2

12S/3

X~12Y!
50. ~40!

The solution of the above equation is

FIG. 2. Frequency region in which a localized solution of E
~24! is found. The region is defined by the relation max(vcr ,V)
,v,vc2o , wherevc-o is the upper plotted curve, and max(vcr ,V)
the lower curve. The dash-dotted linev5V is also plotted for
reference.

FIG. 3. Behavior of the wave vector amplitude of the soliton,
a function of x. Cases~a!, ~b!, and ~c! refer to X51.2, andY
50.1, 0, and20.1, respectively.
-

u52A S

12S/3
sechA S

X~12Y!
x, ~41!

and is valid forS!1. For Y50 andS!1, it reduces to the
limit of the corresponding solution in Ref.@10#:

u52AX21 sechAX21

X
x. ~42!

.

s

FIG. 4. Behavior of the density as a function ofx, for the same
parameters as in Fig. 3.

FIG. 5. Behavior of the wave vector amplitude of the soliton
a function of x, for different values of the magnetic field at th
critical frequency at which the density in the center is zero. T
parameters are as follows:~a! Y50.99, Xcr50.395; ~b! Y50.5,
Xcr50.96; ~c! Y50, Xcr51.5; ~d! Y520.5, Xcr52.02; and~e!
Y521, Xcr52.55.
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V. DISCUSSION AND CONCLUDING REMARKS

The problem of the existence of one-dimensional, n
drifting, localized solutions~solitonlike distributions of e.m.
energy density! of the full Maxwell equations, coupled with
relativistic hydrodynamic equations for the electron comp
nent, in the presence of a constant and uniform magn
field, was investigated in the case of circularly polarized e
radiation. The considered model was intended to repre
the occurrence of the inverse Farady effect which is kno
to accompany the propagation of a circularly polarized rad
tion wave packet, as is the case for an intense laser p
propagating in a plasma, or for a relativistic soliton produc
in its wake.

In a one-dimensional model microscopic currents ass
ated with the circular motion of the electrons under the
tion of the rotating e.m. fields cancel each other; then
effects that we observe are due only to strongly nonlin
modifications of the e.m. wave dispersion properties o
magnetized plasma acted upon by relativistically intense
diation. In this paper, the net magnetization which wou
occur if the soliton had a finite transverse dimension w
modeled through an externally given magnetic field.

As is known, a right ~left! circularly polarized wave
propagating along the positivex axis produces a net mag
netic field directed along the negative~positive! x axis. In our
investigation the right~left! polarization is recovered forV
o-

li-
u

.
A

.
A

-

M

-

-
tic
.
nt
n
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d
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-
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r

a
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s

,0 (V.0), with v.0. Generally speaking, the present i
vestigation demonstrates that a stationary magnetic fi
heavily affects the characteristics of solitons, as it can
argued by inspection of Fig. 2. The frequency interval
stability strongly depends both on the amplitude and sign
the magnetic field. Ranges of frequency values lower a
larger than in the unmagnetized case are allowed, forB0

,0 andB0.0, respectively. The maximum field amplitude
which characterize the corresponding soliton depends onB0,
as well. Figure 5 shows an important result of our study
the axial magnetic field generated by a right-polarized wa
is such that the corresponding electron cyclotron freque
is of the same order as the radiation frequency, a much la
fraction of e.m. energy than assumed by the unmagnet
model @10# can be trapped in the density cavity which
formed. Moreover, the stability of such high energy solito
is guaranteed by a strong lowering of the frequency, to v
ues much below the local unperturbed electron plasma
quency, as can be seen from the behavior of the allow
region in the left half-plane in Fig. 2. Since the widthDv of
such a region scales as 1/V for V→2`, then, if the soliton
releases its energy in vacuum, from the measurement of
radiated frequency spectrum it is possible, in principle,
infer a characteristic value of the magnetic field presen
the plasma.
M.

.

A

@1# S. V. Bulanov, T. Zh. Esirkepov, N. M. Naumova, F. Peg
raro, and V. A. Vshivkov, Phys. Rev. Lett.82, 3440~1999!.

@2# Y. Sentoku, T. Zh. Esirkepov, K. Mima, K. Nishihara, F. Ca
fano, F. Pegoraro, H. Sakagami, Y. Kitagawa, N. M. Na
mova, and S. V. Bulanov, Phys. Rev. Lett.83, 3434~1999!.

@3# S. V. Bulanov, F. Califano, T. Zh. Esirkepov, K. Mima, N. M
Naumova, K. Nishihara, F. Pegoraro, Y. Sentoku, and V.
Vshivkov, J. Plasma Fusion Res.75, 506 ~1999!.

@4# S. V. Bulanov, F. Califano, T. Zh. Esirkepov, K. Mima, N. M
Naumova, K. Nishihara, F. Pegoraro, Y. Sentoku, and V.
Vshivkov, Physica D~to be published!.

@5# N. L. Tsintsadze and D. D. Tskhakaya, Zh. E´ksp. Teor. Fiz.
72, 480 ~1977! @Sov. Phys. JETP45, 252 ~1977!#.

@6# V. E. Kozlov, A. G. Litvak, and E. V. Suvorov, Zh. E´ksp.
Teor. Fiz.76, 148 ~1979! @Sov. Phys. JETP49, 75 ~1979!#.

@7# S. V. Bulanov, I. N. Inovenkov, V. I. Kirsanov, N. M. Nau
mova, and A. S. Sakharov, Phys. Fluids B4, 1935~1992!.

@8# P. Kaw, A. Sen, and T. Katsouleas, Phys. Rev. Lett.68, 3172
~1992!.

@9# S. V. Bulanov, T. Zh. Esirkepov, F. F. Kamenets, and N.
Naumova, Plasma Phys. Rep.21, 550 ~1995!.
-

.

.

.

@10# T. Zh. Esirkepov, F. F. Kamenets, S. V. Bulanov, and N.
Naumova, JETP Lett.68, 36 ~1998!.

@11# A. Sh. Abdullaev, Fiz. Plasma14, 365 ~1988! @Sov. J. Plasma
Phys.14, 214 ~1988!#.

@12# I. V. Sokolov, Usp. Fiz. Nauk.161-163, 175 ~1991! @Sov.
Phys. Usp.34, 925 ~1991!#.

@13# L. M. Gorbunov and R. R. Ramazashvili, JETP87, 461
~1998!.

@14# K. Nishinari, K. Abe, and J. Satsuma, Phys. Plasmas1, 3728
~1994!.

@15# C. Yinhua, L. Wei, and M. Y. Yu, Phys. Rev. E60, 3249
~1999!.

@16# C. E. Seyler and R. L. Lysak, Phys. Plasmas6, 4778~1999!.
@17# A. I. Akhiezer and R. V. Polovin, Zh. E´ksp. Teor. Fiz.30, 696

~1956! @Sov. Phys. JETP3, 696 ~1956!#; also see A. I.
Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko, and K
N. Stepanov,Plasma Electrodynamics~Pergamon, Oxford,
1975!.

@18# T. Kurki-Suonio, P. J. Morrison, and T. Tajima, Phys. Rev.
40, 3230~1989!.


