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Relativistic focusing and ponderomotive channeling of intense laser beams
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The ponderomotive force associated with an intense laser beam expels electrons radially and can lead to
cavitation in plasma. Relativistic effects as well as ponderomotive expulsion of electrons modify the refractive
index. An envelope equation for the laser spot size is derived, using the source-dependent expansion method
with Laguerre-Gaussian eigenfunctions, and reduced to quadrature. The envelope equation is valid for arbitrary
laser intensity within the long pulse, quasistatic approximation and neglects instabilities. Solutions of the
envelope equation are discussed in terms of an effective potential for the laser spot size. An analytical
expression for the effective potential is given. For laser powers exceeding the critical power for relativistic
self-focusing the analysis indicates that a significant contraction of the spot size and a corresponding increase
in intensity is possible.

PACS numbgs): 52.40.Db, 52.40.Nk, 42.65.Jx, 42.65.Sf

[. INTRODUCTION Following a transient period the propagation of a laser beam
in plasma can settle to a stationary regime wherein the beam
Propagation of an intense laser beam in plasma has applprofile is invariant. This is referred to amatchedbeam
cations in x-ray lasers and laser-driven accelerators, amongropagation. In Ref[9] special matched beam solutions in
others[1-3]. On average the quiver motion of electrons in aslab geometry were obtained and compared with results from
laser beam leads to their expulsion from regions of high in-a particle simulation code. The studies in R&2] show that
tensity. The expulsion is due to the ponderomotive force andlthough the central portion of a finite-length laser pulse can
sets up a space-charf@mbipolaj field that retards the elec- be guided, the leading edge of the pulse is subject to diffrac-
trons and eventually a quasi-steady-state may be establishdate spreading. In Refl13] propagation of an intense laser
The effect of the quiver motion is to reduce the local plasmébeam in plasma was analyzed in general terms by making
frequency and can lead to so-called relativistic focusing of aise of two global invariantconstants of motionassociated
laser bean{4—7]. The expulsion can enhance the focusingwith the reduced nonlinear wave equation. Writing the enve-
effect and is referred to as ponderomotive channelindope equation for the laser beam in terms of these two invari-
[8—15. When the laser beam is sufficiently intense completeants(and other quantitigsit is possible to derive a necessary
expulsion—i.e., cavitation—can occur. Experimental obsercondition for focusing of the laser beam. Relativistic focus-
vations of relativistic focusing and ponderomotive channeling and ponderomotive channeling are not, of course, the

ing have been reported in Refd6-21. only processes taking place in plasma in the presence of an
Analysis of the relativistic effect has shown that focusingintense laser field. For example, the generation of plasma
occurs when the laser powBrexceeds a critical powe?,. . waves and Raman scattering can modify the propagation dy-

In Ref.[6] an envelope equation for the laser spot size wasiamics significantly{12,15. Moreover, on the longer time
derived with the relativistic effect included. An envelope scale, ion motion will affect cavitation and guidifg2].
equation describes the variation of the spot size with propa- In this paper the propagation of an intense laser beam in
gation distance as a function of the raffédP.. Numerous plasma is analyzed. In the expression for the refractive index
other analytical and numerical studies of intense laser bearfe contributions due to relativistic effects and radial pon-
propagation in plasmas have revealed many fascinating deleromotive displacement of electrons are identified. Analysis
tails. In some applications the time scales of interest are suabf the wave equation leads to explicit formulas that can be
that the ions can be assumed to be stationary. Making use otimerically evaluated, allowing the effects of ponderomo-
the relativistic cold electron fluid equations along with thetive channeling and relativistic focusing to be readily com-
Maxwell equations, key physics issues related to beam dyputed. Specifically, an envelope equation for the spot size,
namics, including the effects of relativistic focusing and pon-including relativistic focusingand ponderomotive expulsion
deromotive channeling, can be studied. For underdensef electrons, is derived. Solutions of the envelope equation
plasma the equations can be greatly simplified, requiring thare discussed in terms of an effective potential for the spot
solution of a reduced, nonlinear wave equation in three spacgize. An analytical expression for the effective potential is
dimensions. An analysis of the wave equation in H&8f].  obtained and discussed. Solutions of the envelope equation
established the possibility of electron cavitation for suffi-are compared with previous results that neglected pondero-
ciently large P/P. and, based on numerical solutions, anmotive channeling. The utility of the generalized envelope
estimate for the threshold value was obtained. A highlight ofequation is that it permits analytical determination of the spot
the studies in Refd10] and[11] was the elucidation of the size. In particular, for a giveR/P,, the matchedi.e., equi-
detailed radial mode structure of the laser beam, from whiclibrium) spot size may be readily calculated. For laser pow-
an improved value for the threshold power was obtaineders exceeding the critical power for relativistic self-focusing
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the analysis indicates a significant contraction of the spoprovided the density is everywhere non-negative, i,
size and a corresponding increase in intensity. +ny=0.
Interaction of an intense laser beam with plasma is usu-
ally accompanied by myriad instabilitig®,3,25—3% that
can affect the propagation of the pulse. Instabilities are ne-
glected in the present analysis for simplicity; in particular,
Propagation of a laser beam in a medium may be dethe generation of plasma waves due to, for example, Raman
scribed in terms of the refractive index To derive an ex- forward scattering is ignored.
pression for the refractive index, including relativistic effects
and ponderomotive channeling, the relativistic cold fluid IIl. ENVELOPE EQUATION
equations and the wave equation may be employed. The ) o
equations are simplified by effecting the change of variables The operator on the left-hand side of Eq) is in the
(z,t)—(&,7), whereé=z—ct, 7=t, and then making the stanc}ard paraxial form. To so!ve it, the source—dependent ex-
quasistatic approximation that the fluid variables changd@nsion (SDE) technique, with Laguerre-Gaussian basis
little during transit through a laser pulse of duratiep  functions, is employed ana(r,z) is expanded aE36,37

Il. THREE-DIMENSIONAL NONLINEAR
REFRACTIVE INDEX

[23,24). The field and fluid variable® are expanded a®; o
+Q,, where|9Q; /€| ~ |k Qs for the rapidly varyingsuffix _ D 4
) parts and 9Q, /¢ ~min[kQd |QJ/(cr)] for the slowly a(r.2)= 2 an(2Du(r.2), “4a

varying (suffix s) parts. Herek= w/c is the free-space wave-
number along the propagation directinnw is the laser fre- where
quency, andk,=[4m|e|?ny/(mc*)]*? is the plasma wave
number evaluated with the unperturbed densigy The re- T Crq_ 2,2
sulting equations are then expanded to first order in powers Dn(r,2)=Lm rﬁ(z) e~ [1=1a()]rrs(2)}), (4D)
of (krg) "1<1 andk,/k<1, wherer is the laser spot size.
The wave equation for the normalized vector potential carl-n, is the Laguerre polynomial of orden and « is propor-
be written aq3] tional to the wave-front curvature. Observe thaanda are,
in general, functions of the propagation distanc&he virtue
of the SDE method is that the fundamental amplitagds
a=k(1— 74, (1)  dominant, i.e.,|ag|>|am=o/. Assuming this, the envelope
equation for the spot size is readily shown to be given by

2r2

V2+2'k(9
- I&z

where the refractive index for circularly polarized electro-

magnetic waves in the long pulse limitK,7 >1) is ex- Prg 4 4
pressible as i r_SGZO’ (53
S
4 kS[1+k, 2V (1+]al?)?] , WhereGis given by
n(r,z2)= 2k2(1+|a|2)1’2 . 2 )
G=%JO dx(1=7*)(1— x)exp - x), (5b)

Here, a=|e|]A/(mc®), A is the vector potential,a
=(&/2)exptké)+c.c., &=a(r,z)(e+ig), g and e are
unit vectors along the andy axes, respectivelya is the
slowly varying amplitude of the vector potential, and the
Coulomb gauge (did=0) has been employed. Strictly
speaking, the operata¥ gz in Eq. (1) should react™1d/d7.
However, for the purpose here it is more convenient to con

and y=2r?/r2. Writing |ag|=4af/r, wherea andf are the
vacuum amplitude and minimum spot size at focus, respec-
tively, making use of the expression farin Eq. (2) and
performing the integral in Eq5b) (Appendi¥, the equation

for the laser beam envelope may be written as

sider the evolution of the laser beam with distance and the d2x ;
error incurred in replacing = with the propagation distance — +(8%Zg) >~= =0, (6a)
is negligible. dz* Ix

The first term in Eq(2) represents free-space propagation
and the two terms in the square brackets correspond to th¥
plasma contribution. The “1” in the square brackets, modi-

hereV is defined by

5 . . P
fied by the denominator, leads to self-focusing due to the —=—16—X{1—(1+X*2)1’2—2 In2
relativistic variation of mass, while the term involving the 2 Pe
transverse Laplacian operator takes account of the decrease In(1+X2)
in electron density due to the ponderomotive force. This term +2 N1+ (1+X )Y — — (6b)
is responsible for ponderomotive channeling. The relative
density perturbation is given by the scaled spot size is defined by
on(r,z)
02 292 (14 [a2)2 (3 X= 1 (60)
No P ar’
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Zr=Kk??/2 is the Rayleigh rangen vacuq and P/P, 488 | @
=(kpr§1f/4)2 is the ratio of the laser beam power to the criti-
cal power for relativistic focusing. The expression P 4.86

given here is based on the fundamental Gaussian represent:
tion for the radial profile of the laser beam. More accurate & 4 ¢4 |
numerical solutions of the wave equation lead to a slightly ~
larger value forP/P, [8,11].

482+
Equation(6) may be used to analyze the combined effects ®)
of relativistic focusing and ponderomotive channeling. Equa- 4.80 | | T W B A B
tion (6a) represents oscillations of a “particle,” represented o I
by X, in an effective potentiaV/(X,P/P;) and can be inte- 478 X
grated once to obtain
1/dX 2 476 —
i s 227 \—2\/—
2(dz +(a°Zg) “V=const, (73

FIG. 1. Plot of effective potentiaV(X) versus scaled spot size
X=rg/(af). The ratio of laser power to critical power for relativ-
=) istic focusingP/P.=1.2. For curve(a) the effective potential in-
V=16— xz{(1+x—2)1/2— 1+In2—-In[1+ (1+x—2)1/2]} cludes only the effects of relativistic focusing while for curi®
Pe both relativistic focusing and ponderomotive channeling are in-

_%"2(_)(72), (7b) cluded.

where

and Iiz(x)=f2dt[ln(1—t)]/t is the dialogarithm function single minimum. Howgver, it is apparent from Fig.. 1't.hat
[38]. ponderomotive expulsion of electrons leads to a significant

The threshold condition for bound solutions of a colli- "eduction in the matched beam spot size. Additionally, the
mated(i.e., paralle] incident laser beam with large spot size €910 around the minimum of the effective potential for
can be examined by expanding the effective potentiabfor curve (b) is observed to be narrower than that for cufae

.o, In this limit Eq. (6a) reduces to _Figu_re 1 shows ;hat in general a laser beam that is prop_agat—
ing in plasma withP/P.=1.2 will undergo envelope oscil-
d2x S P/P,—1 3—4P/P, @ lations about a minimum of. Similar envelope oscillations

a2 @ Zg) IR I 8 have been previously described, based on numerical solu-

tions of the wave equatioi8—13] or by employing an effec-
It is clear that focusing can take place providedxceeds tive potential in slab geometfg]. A matched(equilibrium)
P.. Depending on the value 61/P, the effective potential Peam solution to Eq(6a) or (7a) refers to the value of the
can have a single minimum, corresponding to a matche§Pot size at the minimum of. The analytical form for the
(equilibrium) solution for the scaled spot sizg, . It follows ~ effective potential in Eq(7b) can be used to obtain the
from Eq.(7) thatP/P determines the depth and location of Matched beam solution for any value RfP; .
the minimum of the effective potential, while the spatial  Multiplying Eq. (1) from the left by&t and adding the
scale length for focusing is set @fZg . The analysis can be resulting expression to that obtained by left multiplying the
generalized to the case of a long but finite laser pulse by theomplex conjugate of Eq1) by &, it follows that
substitution &— & exd —(&c7)?] if the longitudinal pulse

profile is a Gaussian, for example. J J dx dya? - &= const,

V. SOLUTIONS OF THE ENVELOPE EQUATION independent 0£[8,11-13. This expresses the invariance of

The envelope equation, E(), can be used to study the power as the laser beam spot size evolves. For the fundamen-
spatial variation of the spot size of a laser beam propagatintpl Gaussian this conservation law reduces|ag|r ;= af
in plasma. Equatiori7) is the first integral of the envelope =const. Conservation of power implies that when a colli-
equation and is useful for visualizing the possible solutiongnated, large spot size laser beam is injected into a plasma
since the evolution of the spot siXgis akin to the motion of ~ significant contraction of the beam inevitably results in a
a particle in an effective potentisd(X,P/P.). correspondingly large rise in the intensity.

Figure 1 displays the effective potential as a function of Making use of Eq(3) the on-axis density perturbation can
scaled spot siz&X=rg/(af) for P/P,=1.2. The curve la- be written in terms oP/P; and X as follows:
beled(a) in Fig. 1(a) takes into account relativistic focusing
only, while for the curve labeletb) the contributions due to on(r=0)  Pc 1
relativistic focusing as well as ponderomotive channeling are no P (2XHA1+xH¥=
included. Figure 1 is shown here for direct comparison with
the corresponding plots in Refg3] and[6]. In these refer- While the right-hand side of this expression is proportional
ences, ponderomotive channeling was not considered in the P./P, it should be borne in mind tha{ is a function of
effective potential, as in curv@). The analysis here and in P/P. and hence this expression does not display the com-
Refs. [3] and [6] derive an effective potential that has a plete scaling of the density perturbation with laser power. It
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conditions are such that the “particle” is bound inside the
effective potential well. The scaled spot size pinches down
5.8 by nearly a factor of 3 and oscillates indefinitely about an
equilibrium beam radius. Observe that the oscillations are
nwy 5.7 not simple harmonic since the effective potential is not para-
bolic. For comparison, Fig.() shows the scaled spot size as
5.6 a function of scaled axial distance for the same initial con-
ditions as in Fig. 4a) but with the ponderomotive channeling
5.5 contribution to the effective potential arbitrarily deleted, i.e.,
with Eqg. (6b) replaced by

” ' e : O 16 X{1- (14X ))¥2-21n2
—=—16—X{1—-(1+ —2In
x aX P {1=( )
FIG. 2. Plot of effective potentiaV(X) versus scaled spot size
X=r /(&f). The ratio of laser power to critical power for relativ-

istic focusingP/P.=1.4.

+2In[1+(1+X )Y — % 9
cf. Refs.[3] and[6]. With only relativistic focusing active,

should be recalled that the only permissible solutions argsig. 4(b) shows that the beam envelope first expands and
those for which én/ng=—1, and that the analysis here then performs oscillations with a longer period of oscillation
breaks down wheticomplete cavitation sets in. The model than observed in Fig.(4). The oscillation amplitude is small
Egs.(1) and(2) do not guaranteén(r,z)/n,=—1 and thus  and corresponds to a nearly matched initial condition.
it is necessary to verify this requirement when solving Egs.  Finally, Fig. 5 shows the variation of as a function ok
(6) or (7) [8-11,13,22 All the results presented here satisfy for P/P_=1.01 and the initial conditionX=1, dX/dz=
this requirement. —0.1 (i.e., an inward initial velocity. In this example the

Figure 2 shows the effective potential as a functiorXof particle is not bound to the relatively weak potential well.

for a slightly larger value oP/P.(=1.4). This example is of Thys, after pinching in, the spot size turns around and ex-
interest since forP/P.~1.42 (completg cavitation is ob-  pands indefinitely.

served. FoiP/P.= 1.4 the plasma is nearly cavitated at the
matched value for the scaled spot skg~0.5543.
Figure 3 shows a surface plot of the effective potential as
a function of bothX and P/P.. This plot shows that as the A powerful laser beam focused on plasma can be stably
ratio P/P. is increased the matched beam solutiyy de-  guided by a combination of relativistic focusing and pon-
creases monotonically. deromotive channeling over extended distances. An envelope
Figure 4 shows plots of the variation ¥fas a function of  equation for the laser spot size has been obtained that can be
the normalized axial coordinate=z/(4%Zg). These plots used to describe the axial evolution of the spot size as a
can be obtained from either the numerical solution of Eqfunction of the ratio of laser powét to the critical power for
(6a) or a single numerical integration in E¢ra). In Fig.  relativistic focusingP.. Depending on the initial beam spot
4(a), P/P,=1.2 and the initial conditions ar&X=1.8, size and divergence, the envelofiee., radiug of a laser
dX/dz=0 (i.e., no initial velocity. In this example the initial beam that is incident on a plasma will oscillate with propa-

V. CONCLUSIONS
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FIG. 3. Surface plot of effective potenti®l X,P/P.) versus scaled spot si2e=r¢/(af) and the ratio of laser power to critical power
for relativistic focusingP/P...
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FIG. 5. Variation of scaled spot sizé=r /(af) with scaled
axial coordinat&z=z/(4?Zg). In this exampleP/P.=1.01,X=1
151 ] and the initial velocity is inward, i.edX/dz=—0.1.
>
1ok ] is squared and inserted into E§b). The integral of the term
proportional tokg leads to the relativistic contributions, pro-
portional to P/P. in the effective potential, and has been
0.5 : : considered in Ref§3] and[6]. To integrate the term involv-
0 2 ., %0 60 ing the Laplacian, which is due to the ponderomotive force,
z/(a"Zg) the change of variableg=2r?/r2 is effected, leading to
FIG. 4. Variation of scaled spot sizé=r /(&f) with scaled )
axial coordinat&= z/(4%Zg) for P/P.=1.2. The initial conditions G — —laol® (= expl—2x) (A1)
areX=1.8 anddX/dz=0, i.e., no initial velocity. In(a) both rela- pond™ kzrs2 0 X1+ lag|> exp(— x)’

tivistic focusing and ponderomotive channeling are included, based

on Egs.(6a) and(6b). In (b) only relativistic focusing is included, where the suffix “pond” indicates that only the contribution
based on Eqs(6a and(9). due to the ponderomotive term is included. By differentiation

. . . _ i h h
gation distance provide®/P.>1. Oscillations of the spot it can be shown that

size or beam spreading can be described in terms of an ef-

fective potential that is given by an analytical function and * X' exp(z 2x") = eXH 2X)
includes the effects of both relativistic focusing and pondero- 1+ao|* exp(—x") |agl
motive channeling. It is shown that ponderomotive channel- IN[1+ |ag|2 exp(— x)]
ing can lead to significant enhancement of the focusing ef- T ,
fect. EX
(A2)
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Rewriting Eq.(A3) in terms of the scaled spot sizdeads to
the result in Eq(6b). Interestingly, the second term in Eq.

In this appendix an outline of the evaluation of the inte-(A3) exactly cancels the X? term in the expression for
gral in Eq.(5b) is given. First the expression forin Eq.(2)  dV/dX in Refs.[3] and[6].
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