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Viscosity estimates for strongly coupled Yukawa systems
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An analytic form for the shear viscosity of a Yukawa system, in terms of the known result for the one-
component plasma, is given by establishing an analytic correspondence between the Yukawa and one-
component plasma systems. The correspondence is found by ensuring that the Yukawa system and the refer-
ence one-component plasma have identical effective hard-sphere packing fractions, as determined by the
Gibbs-Bogolyubov inequality. The resulting prediction for the freezing transition is compared with known
simulation results. These results are useful for describing dynamical properties of Yukawa systems, and the
method can be easily generalized to mixtures.

PACS numbes): 52.25.Ub, 52.25.Zb, 52.25.Fi

[. INTRODUCTION Despite the ubiquity of Yukawa-like systems, less is
known relative to the one-component plast@CP, for
The strongly coupled, screened Coulomb system has awhich the interparticle interaction is of the pure Coulomb
tracted significant attention recently due to the relative easéx=0) form I'/r. It is possible to take advantage of this
of experimentally producing and diagnosing dilute systemssituation by using the known properties of the OCP as a
Strongly coupled Coulomb systems are Coulomb systemeeference for the properties of screened systems. Such a cor-
with an average potential energy that exceeds the averagespondence has been carried out for dense matter by Galam
kinetic energy. Strong coupling is typically characterized byand Hansen[7] using both thermodynamic perturbation
the Coulomb coupling parametEr= 8Q?/a, whereQ is the  theory and a variational method based on the Gibbs-
charge,a= (3/4mn) %3 is the ion-sphere radius in terms of Bogolyubov inequality(GBI). In their work, the screening
the particle density, and=1/T is the inverse temperature. was specifically described by the zero-temperature Lindhard
Dusty (colloidal) plasmas have begun to elucidate manydielectric function with local field corrections. Sensitivity to
properties of such systeni4]. Dusty plasmas are normal the form of the screening function was subsequently investi-
plasmas that achieve strong coupling with micron-sized imgated by lyetomi, Utsumi, and Ichimaf8]. The hard-sphere
purities that can acquire 10° elementary charges. Recently, (HS) system can also be used as the reference, although it is
ultracold strongly coupled plasmas, as created by ionizing &nown that the OCP system gives a betteawer upper
dilute cold atomic gas, have been produf2ll These plas- bound estimate of the free enerdy,9]. An advantage of
mas show great promise for studying strongly coupled Couusing the HS system, however, is that analytic results can be
lomb systems over a wide parameter range. obtained[9-11]. Here a combination of both reference sys-
Screened Coulomb systems are frequently modeled witkems is used. First, the HS reference system is used as a
the Yukawa (Y) interparticle interaction(in temperature reference for the Yukawa system. Then, an OCP reference
units) system is found by ensuring that the OCP reference has the
same HS packing fraction as the Yukawa system. This
Car method has the advantages that the model potential is quite
Buy(r) = ?e ' 1) general, the results are analytic and require only solutions of
transcendental equations, the OCP limit is an exact limit, and
wherel' measures the strength of the interaction andea-  the generalization to mixtures is straightforward. The main
sures the strength of the screeningll lengths are in units ~ disadvantage is that it is not easy to rigorously assign an
of a.) This model, which results from a linear treatment of accuracy to the procedure, although accuracy can be estab-
the screening, has been used to describe ||qu|d mm|s lished a posteriori with simulation data. The final result is
liquid metallic hydrogen and heliurf¥], screening of ther- then used to calculate the freezing transition of the Yukawa
monuclear reaction rates in astrophysical settifgjs and  fluid and the shear viscosity.
plasmas and colloidal suspensidit§. The Yukawa system
is typically used as a model for the heaviest ion component Il. HARD-SPHERE REFERENCE
under the assumption of linear, adiabatic screening by the
background particles. The Yukawa system is chosen because Consider a Yukawa system with fixed volurfde number
of its generality: the dimensionless coupling and screenin@f particlesN=n{), and temperatur@=1/8. The Yukawa
parameters are chosen to match the particular plasma conditerparticle interaction energy is taken to be of the fafm
tions. For dusty plasmas, the coupling refers to the duswherel is assumed to be the same for all particles. The total
grains and the screening to the hot background electron-iogxcess energUY=E{\‘<1uY(rij)+ Upgq of the Yukawa system
plasma. For ultracold plasmas, the coupling refers to the colihcludes all pairwise contributions, as well as interactions
ions and the screening to the partially degenerate electromvolving a neutralizing background,. Now, consider a
gas. Similar arguments hold for other situations. reference HS system with hard-sphere diametepacking
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fraction »=7No3/(6€), and interparticle interaction en-
ergy

o0

0,

, r<2771’3
r>2771/3,

,BUHS(V):{ 2

with the same macroscopic parametg¥s(), T}. For a given

configuration, the excess energy of the HS assembly is then

Uns=21% ups(rij).

In terms of the excess energies, the excess Helmholtz free

energies for the two systems are

d3N

BFEN(T, k)=—1n v e ~BUy| (3)
3N

BRI (m=—In| | ~e Fons). (4)

From the GBI[12], we know these free energies satisfy

FUT, k) <FE2(7) +(Uy(T, k) —Ups(7))us+Fo,

©)

where (- -
distribution function. The quantiti?, contains all structure-

independent terms, which do not play a role here. After sim-

plification this becomes

3r

+7 . drre

(4-37)
FEYT, )/(NT)= 227
v (I )/ (NT) (12

X[gHs(ﬂ:r)_1]+F0- (6)

where the approximate Carnahan-Starlidg] HS excess

—KI

free energy has been used. The integral is over the hard-

sphere radial distribution functiag,s(»,r) and can be done
analytically in the Percus-Yevick approximatifit¥] to yield
f drre” [ gus(r) — 11=47"G(27"%) - (27"%) 2],
0
()
where

B XH(X)
129 H(X) — 1 (x)€¥]

with

H(x)=125[x(1+ 7/2)+2n+1],
I(x)=(1— )23+ 679(1— p)x>+ 187p°x— 127(1+ 2 7).
9

The right-hand side of Eq6) can now be minimized with
respect ton for fixed {T", x} to yield the optimal HS packing
fraction = 5(I",«). Note that this procedure contains the
OCP as the special cage=0.

Solutions of the variational procedure were found for
=0,1,2,3 and"=1-180; these solutions are shown in Fig.
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FIG. 1. Hard-sphere packing fraction versus Coulomb cou-
pling parametel” for a range of screening parametars

respond to larger packing fractions. Calculations were also
performed fork=0.25,0.5,1.5,2.5,3.5 and the full set of so-
lutions forI">1 was fit by the form

b(x)In(T")
n=a(k)+ T (RN’ (10)
where
a(x)=0.0255-0.0683¢+0.0267%>—0.003>,
b(x)=0.107 exjp— 0.143¢— 0.105?),
c(k)=—0.116+0.134 exp—0.19% —0.184?). (11)

It is also useful to compare E@L0) to previous results,
most of which are for the OCPxE 0) limit. In that limit we
find from Eq.(10) that the OCP-HS correspondence is given

by
Tocp= exr{

whereas the OCP analytic result of Stroud and Ashc@#&)
[10] is

7—0.0255
0.107-0.018 »—0.0255 '

(12

(2= (1+27)°

[SA = .
(2+n)(1-7)°

ocp—

(13

We found that over the rangg=0.1-0.6 (I';cp~2—300),
the quantity |[55 — T ocpl/T5apX 100% is less than 10%.

ocp ocp

1. Qualitatively we see that the weaker screening cases col-he SA result for the OCP excess free energy in the strong
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coupling limit is known to agree with Monte Carlo results ]
fairly well, and therefore we expect E@l2) to also give r §
similar agreement. Of course, EQ.0) generalizes the OCP  j60{ **
case to the Yukawa case.

IIl. OCP-YUKAWA CORRESPONDENCE 140

Given known analytic forms for HS transport coefficients,
Eg. (10) can be used to estimate the same properties for the/20
Yukawa system. However, it is known that the OCP provides
a better reference for the Yukawa systgm9] and such a
correspondence is guaranteed to give the exac0 limit,
whereas an HS reference does not give such a guarantee. Al
intuitive analytic mapping between the OCP and Yukawa g
systems is given by

100+

Tocp=Te"%, (14) 601

which follows by simply replacing the average Coulomb en-
ergy by its screened value. It is possible to use @€) to 40
develop a different mapping between the OCP and Yukawa
systems that has somewhat better justification. The basic idee
is to find the Yukawa and OCP systems that have identical 20
packing fractions. Given a Yukawa system characterized by
{T",x}, we first find the corresponding hard-sphere packing L
fraction 7 that characterizes the hard-sphere system thatbest 0T 07 45 g0 80 100 120 140 160 180
mimics (as defined by the Gibbs-Bogolyubov inequdlitiye

Yukawa system. Now, given this hard-sphere system, we can FIG. 2. The OCP coupling parameter versus the Yukawa cou-
then find which OCP systeitas characterized bly,,,) also pling parameter for various values. The approximations given by

corresponds to this hard-sphere system; that is, we solve Eds.(14) and(16) are shown for comparison. The it6), shown as
crosses, reproduces the results fairly well. The simple model of Eq.

b(0)IN(T 4cp) b(x)In(I") (14), shown as boxes, gives a lower equivalent OCP coupling value.

R T T R ST T R

tioned that the fi16) is most accurate for moderate to strong
for T'ocp, given {T',«}. The results of this calculation are €oupling (">5). Since we know the intercept at smhllof
shown in Fig. 2. Qualitatively we see that strongly screened=d- (16) is actually zero, we can tak&(x)~0. Given the
Yukawa systems are best modeled by relatively weaklypmallness ofC(x) in that same limit, we see that E(L4)
coupled OCP systems, as expected. A fit to that data yield§hay represent a reasonable approximate resul' fed..

Focp:A(K)+ B(x)I'+ C(K)FZ, (16 IV. PHASE BOUNDARY AND SHEAR VISCOSITY
where Although the above results can be justified by the use of
the variational principle, the optimal result of the GBI does
0.46% not reveal how close the reference free energy is to the actual
A(k)= 7 free energy or the accuracy of the correspondence implied by
1+0.44« Eqg. (15). To quantify the accuracy, the resylt6) and the

simple estimate of Eq(14) are used to predict the liquid-

solid phase boundary of the Yukawa fluid and to compare

with the simulation data of Hamaguchét al. [15]. The

phase boundary is found by solving for the critical coupling
17) strengthl’ for variousx with Eqg. (15),

The functional forms for thec-dependent coefficients were

chosen to give a good fit, with the form f@(«) chosen Fc=exp{b
specifically to compare with E@l14). It is interesting that the (
coefficientB(«) is quite similar to the intuitive guess of Eq. and with Eq.(14)
(14). However, the other coefficients in E{.6) give impor- '
tant corrections, as can be seen in Fig. 2, where the numeri- [.=171.8" (19

cal results(lines), the simple estimatél4) (boxes, and the

fit (16) (crossepare compared. We see that the predictionswhere the OCR’.. is taken to bd’.=171.8 to be consistent
based on this work give higher equivaldiy., values for a  with the simulation results. This procedure is motivated by
given{I',«} than Eq.(14); that is, Eq.(14) overestimates the noting that an HS packing fraction at freezing yields nearly
effects of screening relative to E¢L6). It should be men- the correct freezing point of the O¢B] with Eq. (12) or Eq.

B(x)=1.01e~ 9%

C(k)=—3.7X10"°+9.0x 10 *xk—2.9x 10 *«2.

0.5295-a( k)
x)—C(x)[0.5295-a(x)]

(18
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FIG. 4. The viscosity versuk for various values ok. The «
=0 case is the Wallenborn-Baus OCP result and the remaining
curves are the corresponding Yukawa estimates based ofiHq.
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FIG. 3. Phase diagram of the Yukawa system in {liex} [19], can be expressed as

plane. The liquid-solid phase boundary is shown as predicted by the 2
(1+A1y)

simple estimatd” = 171.8 expk) (top line), the solution of Eq(18), 7 =N+ ’ (20)
and the simulation results of Hamagudial. (line with circles. A3
The results of this work are seen to give the phase boundary fairly
well considering the simplicity of the theory. where
(13). We assume here that a similar relation holds between .
the OCP and Yukawa systems. The result is shown in Fig. 3 A= _(3rocp)3/2,
where we see that the simple result of Ef4) predicts a 3
larger coupling strength for freezing than the simulations in-
dicate. The resulf16) gives a considerable improvement in 1= (180 ocpm?) L,
predicting the phase boundary, which suggests thai Hj.
can describe semiquantitatively the properties of the Yukawa 0.49— 2-2:{&1;3
system. [P —— T
As an example of the application of the above results, we 2 6072
consider the shear viscosity of a strongly coupled Yukawa
system. The shear viscosity plays an important role in de- e
scribing dynamical properties, such as collective modes. The |3:0_241ﬂ3_ (22)

viscosity enters both as a damping mechanism and contrib- w32

utes to the rigidity(high-frequency shear modulusf the

system. It therefore enters as a parameter in such theorieBogether with Eq.(16), these equations represent a proce-
which have been recently applied to dusty plasfi@s17.  dure for computing the Yukawa viscosity, as shown in Fig.
Because of the lack of information on the Yukawa viscosity,4. The results have the expected behavior in that the viscos-
Kaw and Serj17] were forced to use the OCP viscosity. The ity behaves like a weakly coupled system for strong screen-
shear viscosity will be denoted here by to distinguish it ings. Note that the viscosity minimum has moved to about
from the packing fractiorny; all viscosities are in dimension- I'~140 for k=3, where it occurs af ~8 for the OCP case.
less units in terms of the viscosi%=nwar§ .We use the For large couplings of'~180, we see that using an OCP
available analytic fit to the OCP viscosity given by Wallen- estimate for the viscosity overestimates the viscosity by
born and Bau$18] to ensure that the OCP limit is an exact nearly a factor of 4.
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V. CONCLUSION thereby reduces the viscosity at strong couplings relative to
he OCP estimate. This reduction can have important conse-

An analytic correspondence between the OCP an& ) .
y P ences on the damping of collective modes and the onset of

Yukawa systems has been given. The correspondence wi o
achieved by using the HS system as a reference for eact'€ar waves that are dependent on the.r|g|d|ty of the system.
system and ensuring an identical HS packing fraction for 1he method presented here is easily extended to other
both systems. The accuracy of this procedure has bediOPerties for which expressions are known for the OCP.

shown by comparing a prediction of the freezing transitionGeneral approximate relations, such as the Einstein relation
with simulation data. The result is shown to be superior toPetween the diffusion coefficient and viscosity, can also be

the intuitive guesdc,=T exp(~«). The final result was used to give estimates for some properties. Because of the
used to compute the shear viscosity using the OCP analyti@mplicity of the theory, the same method can be easily ap-

fit of Wallenborn and Baus. It was seen that screening moveglied to mixtures for which the HS expressions are already

the viscosity minimum to large coupling strengths andknown[11].
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