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Asymptotic evolution of nonlinear Landau damping
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The long-time evolution of nonlinear Landau damping in collisionless plasmas is analyzed by solving the
Vlasov-Poisson system numerically. The value of the parameter marking the transition between Landau’s and
O'Neil's regimes is determined and compared with analytical results. The long-time evolution of a finite-
amplitude electric field with wavelength equal to the length of the simulation bb&xis given by a superpo-
sition of two counterpropagating “averaged” Bernstein-Greene-Kru@@lkK) waves. Wher. >\ and longer
wavelength modes can be excited, the BGK waves correspond to an intermediate regime that is eventually
modified by the excitation of the sideband instability. lons dynamics is found not to affect these behaviors
significantly.

PACS numbeps): 52.35.Fp, 52.35.Mw, 52.35.Qz

[. INTRODUCTION been recently studied in many numerical and theoretical
works. In Ref.[6], a generic longitudinal plasma-wave per-

The self-consistent damping of longitudinal waves in col-turbation was found to decay as &hd not to be stopped by
lisionless plasmas is a classic fundamental problem in théhe nonlinear effects of particle trapping and BGK wave for-
study of nonlinear wave-particle interaction processes. mation. However, the numerical results presented in Hef.

In the linear regime, when a spatially uniform plasmafor a single value of the perturbation amplitude, and the re-
with equilibrium electron distribution functioEDF) f¢9(v) sults of Ref[8], which show that the damping rate vanishes
is perturbed by a small-amplitude electrostatic disturbancefpr t—« for a wide class of nonlinear waves, contradict the
the Landau’s analysifl] predicts that the time-asymptotic conclusions of Ref{6].
evolution of the electric field exhibits exponential damping Here, we report the results of a systematic numerical
(or growth as well as oscillatory behavior. The dampifay  study of the Vlasov-Poisson equations in the intermediate
growing rate vy, is proportional to the derivative with re- range where the restrictions assumed in the papers of Landau
spect tov of the equilibrium EDF calculated at the phase (t4<tp) and O'Neil (ty>tp) do not apply.
velocity v, of the electrostatic wave. The ratio between the time scales characterizing the sys-

In the case of a Maxwellian equilibrium EDFY(v) temqg=t,/tq is analyzed as a function of the initial pertur-
=fM(v), a long-wavelength electron plasma oscillation with bation amplitudee, and the critical perturbation amplitude
k\p<1, where\ is the Debye length anHl is the wave €* marking the transition between Landau’'s and O’Neil’'s
number, decays with time on a scale that is large comparescenarios is determined and discussed. For small-amplitude
to that of the oscillation time. However, even in the case ofinitial conditions, a comparison with the analytical results in
“small’-amplitude perturbations, the linear analysis breaksRef. [3] is performed.
down fort>t,,t, being the particle trapping time scale that ~When e>¢€*, the asymptotic state of an initial perturba-
depends on the electric-field amplituEeastpzll\/ﬁ in  tion with wavelengthn equal to the length of the simulation
normalized unit§see below Eq(2.2)]. Thus, Landau’s lin- boxL is found to be a superposition of two counterpropagat-
ear solution holds at large times only if initially the condition ing “averaged” BGK waves. Filaments of increasingly
ty<<t, is satisfied, wherg, is the damping time scale. In the smaller size are also formed in phase space due to phase
opposite limitty>t,, O'Neil [2] has shown that the energy mixing, but they gradually disappear because of the finite
exchange between the wave and the particles with velocitiesesolution of the simulations. We show that the asymptotic
v=v,, trapped in the wave prevents the complete dampingtate is a superposition of averaged BGK waves, also in the
of the wave that reaches a constant nonzero value asymptotiase of large-amplitude waves.
cally. For L>\, such that modes with longer wavelengths can

Recently, the existence of a critical initial perturbation be excited, the onset of the sideband instability changes the
amplitude, which marks the transition between these two difasymptotic evolution of the system and the BGK solutions
ferent asymptotic regimes, has been proved in the limit oplay the role of an intermediate regime.
small-amplitude waveg3] and the analytical expression of  Finally, we discuss whether the behavior of such systems
the asymptotic wave amplitude;;, has been given in the changes when the ion dynamics is included.
case of a sinusoidal perturbation of a linearly stable equilib- The paper is organized as follows. In Sec. Il, the basic
rium. In this limit, the general solution for the asymptotic equations are given and the properties of the code employed
electric field has been found to be a finite superpositign are discussed. In Sec. lll, the numerical results concerning
of traveling Bernstein-Greene-Krusk@GK) waveg[5] plus  the determination of the critical value® are presented and
higher-order termfsee Eq(9) of Ref.[3]], a subject that has discussed. The formation of averaged BGK waves, the onset
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TABLE I. Normalized time scales and parameters of the simulationsayjth 0.1, k=4, L =2m/Kk, for

e>e*.

€ ain tp ty q Ain
0.015 0.0019 11.5 15.1 0.76 x40°°
0.017 0.002125 10.8 15.1 0.72 &0 °
0.018 0.00225 10.5 15.1 0.70 a0 °
0.020 0.0025 10.0 15.1 0.66 %30 °
0.025 0.003125 8.9 15.1 0.59 K104
0.03 0.00375 8.2 15.1 0.54 %804
0.04 0.005 7.1 15.1 0.47 54104
0.05 0.0062 6.3 14.3 0.44 82104
0.07 0.0088 5.3 13.7 0.39 1103
0.08 0.01 5.0 13.3 0.38 5108
0.1 0.0125 45 125 0.36 22103
0.2 0.025 3.2 9.1 0.35 56102
0.25 0.03125 2.8 7.7 0.37 80 2
0.3 0.0375 2.6 6.7 0.39 8810 °

of the sideband instability, and the role of ion dynamics areby using a standard fast Fourier transform algorithm coupled
presented in Sec. IV. Conclusions are drawn in Sec. V. to the fourth-order Runge-Kutta scheme.
The number of points used in the simulations are typically
Il. BASIC EQUATIONS N,=256, N,=3000 withdt=0.0025. The numerical phase
) ) ) space is given by €X<L, —0ma=SU<Umayx, WhereL is
We solve the one-dimensional Vlasov-Poisson system ofne maximum length of the space interval angh, the maxi-

equations numerically: mum velocity that can be reached by the particles. Periodic
boundary conditions are used in the space direction. The
of of of : ) . .
—4+yp——E—=0, (2.1  simulation is stopped if the particles are accelerated up to
ot X Jv U max-
The code has been tested in many well-known electro-
E=1—f+mf do 2.2 static problems, as, for example, plasma waves, Landau
X —w ' ' damping, two-stream instability, and Best’s oscillations.

where f(x,v,t) is the EDF andE(x,t) is the electric field,
which att=0, is given by IIl. CRITICAL INITIAL PERTURBATION AMPLITUDE
. We present a number of simulatiofsome of which are
E(x.0)=2aj,sin(kx). (23 Jisted in Table ) with vya=0.6, \=2m/k=L, and with
different values of the initial perturbation amplitude We
set the thermal velocity to;,=0.1 in order to describe plas-
mas with a nonrelativistic temperature, and the initially per-

Mcwpe/e and f to the equilibrium particle densityly. At turbed wave number th=4. The evolution of the system is

. . — _1 . .
first, we assume that the ions form a fixed, neutralizing backinvestigated up ta=250Qv . The perturbation amplitude

ground. Oscillations are excited by initializing Fourier spa-€: the initial wave amplitude;, = e/(2k), the trapping time
tial modes with wave numbédrand —k: t,=1/Jkaj,=y2/e, the damping timety, their ratio g
=t,/t4, and the large-time wave amplitudg, are given in

f(x,0,0)=fM(v)[1+ e cogkx)], (2.9 Table 1. Note that the definition df, given before is used
conventionally also for large-amplitude waves and thas
where e is the perturbation amplitude, related to the initial estimated numerically from the simulations.
electric-field amplituden;, as e=2ka;,, and f™(v) is the When the initial amplitude of the electric field is suffi-
Maxwellian EDF, ciently small, we can calculate the damping rate using linear
1 theory[1,10]. Fork=4, we find for the Landau damping rate
Mr o\ 21 n 2 y.=—0.0661, andt, =1/y,|=15.1. However, as can be
)= NPT Om exl — v/ (2vn)]. (2.5 seen from Table (in agreement witH11)), t4 is different
from t, in all the simulations withe>0.04, since the corre-
Hereu,, is the thermal velocity. sponding amplitude cannot be considered as “small.”

The Vlasov-Poisson equations are integrated numerically For very small perturbationgy=t, =const, while t,
in the 1-D 1-V phase space,p) by using the well-known =\2/e, so thatq—= as e—0. In Fig. 1a), we plot the
“splitting scheme” developed in Ref9] in the electrostatic asymptotic amplitudey;,, of the electric field versus the ini-
limit. The Poisson equation is integrated in the Fourier spac#ial perturbation amplitudes, at fixed wave numbek=4.

In Egs.(2.1) and(2.2) and in the following, time is nor-
malized to the inverse of the electron plasma frequengy,
velocity to the speed of light, and consequentlykE to
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FIG. 1. (a) Final electric-field amplituday;, as a function of the
initial perturbation amplitude; (b) q=t,/t4 plotted versus the ini-
tial electric-field amplitudey;,, .

The dashed line corresponds to the analytical expression of

the asymptotic amplitude given by E§19) in Ref. [3],
which in our units and for an initial perturbation of the form
given in Eq.(2.4), reads(for vy,=0.1 andv,,=0.31),

4 Utzh
afin="—> 3 (e—€*)=0.014G6e—€*), (3.1
(vph/Uth_l)
where €* is the critical initial perturbation amplitude that
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sponds tay* = \2/e* /t;=0.85. For initial perturbations with
e<e*, the field amplitude is completely damped. Thus, this
method allows us to find the critical valug, avoiding the
regime of very small initial perturbations, where the simula-
tions are particularly delicate since the electric-field ampli-
tude becomes so small that a very high numerical resolution
is necessary. Nevertheless, settidg=256 andN,= 3000,
we find that the plasma oscillations are completely destroyed
and the field amplitude reaches the noise level wken
=<0.01, according to the critical value ef andqg* found by
using the different method described before. The critical ini-
tial valueq* differs from those previously predicted in Ref.
[12], which were obtained for lower resolution and shorter
times.

In Table 1, only the simulation results fet> €* are listed.
We find that there is a minimum igas a function ok in the
parameter range considered, as can be seen in p. 1

IV. AVERAGED BGK WAVES, SIDEBAND INSTABILITY,
AND ROLE OF ION DYNAMICS

When the initial perturbation amplitude is such that
>¢e*, nonlinear effects come into play and the electric-field
amplitude oscillates at large times around a constant nonzero
value a;i, . For e=0.05, the results are in agreement with
Ref. [7]. After the initial linear damping of the wave, two
vortices appear in phase space, centered=nv,,, and
propagate in opposite directions. In order to analyze how
these results depend on the numerical resolution used in our

marks the transition between Landau’'s and O’Neil's scesimulations, we have performed runs with different numbers

narios. The analytical expression&f is reported in Ref(3]

in terms of the transient part of the electric field. The ana-

lytical valuesa;;, of Eq.(3.1) [dashed line in Fig. ®)] agree

with our numerical results in the limit of small initial pertur- N,

bation amplitudeg<0.04 if we sete* =0.012, which corre-

z

)

of grid pointsN,,.

In Fig. 2, we plot the spatial Fourier compondt with
k=4 versud for e=0.1, large times, and different values of
(only E,>0 is shown for symmetry reasondNe note
that the time at which the damping stops and the electric-
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FIG. 2. Spatial Fourier component of the electric fieldversust for k=27/L=4, €=0.1, and forN,=64, N,=128, andN,= 256,

respectively.
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(a) time independent faster as the numerical dissipation in phase
space increase@.e., for smallerN,). The filamentation in
the vortices, corresponding to the low-frequency oscillations
3 observed in the electric-field amplitude, disappears because
] of phase mixing on the grid scal@sy = 2v /N, and Ax
E =L/N,. Nevertheless, the overall structure that corresponds
to a superposition of two traveling BGK waves is the same at
large times in all the simulations, sintg,v,,, and the di-
mensions of the vortices do not change with the numerical
resolution, as shown in Fig. 2, Fig(a3, and Fig. 4.
A similar conclusion has been obtained analytically in the
small-amplitude limit in Ref[3]. In fact, in this limit, the
3 general solution for the asymptotic electric figtds a finite
3 superposition of traveling waves plus higher order tefse®
—04 —02 090 0.2 0.4 Eqg. (9) of Ref. [3]]. Our numerical results show that the
asymptotic electric field is given by a superposition of trav-
FIG. 3. Semilogarithmic plot of the EDFaveraged ovek) eling “averaged” BGK waves, i.e., of stationary solutions in
versusv att=0 (dashed linpandt=1100(solid line) for e=0.2:  their own reference frame, also in the case of nonsmall am-
(@ L=2m/4; (b) L=27. plitudes.

As long as the relative phase velocity of the two BGK
field amplitude starts to oscillate around a constant nonzerwaves is sufficiently large, so that particles trapped in one
value is the same in all the simulationg<950). The dif- wave feel only a high-frequency perturbation from the field
ference between the runs is that for bigger valuesNof  of the other, we can consider the two BGK waves as inde-
larger low-frequency oscillations in the electric field are ob-pendent4]. This corresponds to the following condition on
served. FolN,=64, the long-time amplitude is nearly con- the field amplitudea;, :
stant. Moreover, the abscissas of the minima of the EDF
(averaged ovek) in the resonant region after a number of
oscillations reach, in all the simulations with differexy, asin<k (Av)?, 4.9
the same constant value corresponding to the phase velocity
of the wave,*v,,= +=0.31, as seen in Fig(&. The bumps
in the EDF near these minima do not settle into a plateau. which is well satisfied, in our casésee Table ) with

In Fig. 4, the contour plot of the EDF in the resonantk(Av)?=Kk(2v,p)?=1.5.
region is shown fot=1200, e=0.1, and for different val- Eventually, the BGK waves will be affected by collisions.
ues of the spatial resolutioN,= 64,128, and 256. We note However, collisions will start to be important first on the
that the vortices become regular and the EDF Bplecome  smallest scales and will thus regularize the filamentary struc-
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FIG. 4. Contour plot of the EDF in the resonant regiori-atl200 fore=0.1L. =\ andN,=64,128, and 256, respectively.
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In Fig. 5, the energy spectrum is plotted fer0.25 at
different times. Initially, only th&k=4 component is present
and evolves as in the previous case, reaching a nearly con-
stant amplitude. In the meantime, the two sideband modes
| k=3 andk=5 start to grow with equal rate. At=375, the
_ lower mode reaches the same level of tke4 mode
1 (dashed line in Fig. B which falls off abruptly. This evolu-

. tion corresponds to four vortices, at the resonant velocity

vph="0.31 in the intervalL, which atts=375 become un-

7 stable and start to mix, as seen in Fig. 6. When the Idwer

=3 mode reaches the same level of #ve4 mode and be-

_ comes dominant, the=4 mode decreases significantly so

/ 10 100 that three vortices are present in phase space and its overall
k resonant structure remains relatively “coherent.”

At larger timest=1100(solid line in Fig. 5, other side-
band Fourier components become important and many vor-
tices are present at the same time in the resonant region,
leading to an EDF that settles into a flat plateau, as can be

tures inside the vortices. The estimate of the ratio betweeﬁee.tr_] n AF'g' fB?r)] The d|{feren§e bet&Neen EEe Iresotnhantf \t/ﬁ
the collision time at large scalésand at small scalets can ocities Av ot these vortices depends on the fength of the
be written as simulation box. As this length increasedv becomes

smaller and the conditiof4.1) ceases to be valid, resulting

FIG. 5. Energy spectrum dt=0 (stan, t=375 (dashed ling
and t=1100 (solid line) for the simulation withL=27>\, €
=0.25.

tI/ts:(Uthu/ZUmax)zi (4.2) in the overlapping of the vortices in phase space and in the

chaotic motion of the particles in the resonant region.
which for v,,=0.31, N,=3000, andv 4= 0.6 givest, /tg The growth rate of the sideband instability increases with
=6Xx10°. the wave amplitude, as can be seen in Fig. 7, with a power-

More importantly, when longer-wavelength modes can bdaw scaling between square root and linear, in agreement
excited, the asymptotic electric field will be determined bywith Ref. [14]. Thus the lifetime of the BGK solution de-
the growth of upper and lower sideband way#3]. In the creases with the wave amplitude and depends logarithmically
simulations described so far, the length of the simulation boxn the initial noise in th&= 1 sideband Fourier components.
is set equal to the wavelength of the initial perturbation We note that at “large” initial field amplitude&n our case,
=\=2x/k. In order to study the long-time evolution of a for a;,>0.025, as shown in Fig.)7the growth rate saturates.
more generic system, we have enlarged the simulation box, Finally, we include the ion dynamics in the numerical
L=27>\, so as to allow for the presence of wave numberscode by integrating the corresponding Vlason-Poisson equa-
smaller than the initially excitel=4 mode. tions in order to verify whether the ion response can modify

k=4and k=38

0.0700 fi

2 oar ‘y ”UWM!“ "Mllw'-wqmiilwmw‘\.,HWW

0.0001 Ll

4] 100 200 300 400 500 600

FIG. 6. Onset of the sideband instability= 0.25): (top) Semilogarithmic plot of E,| versust for k=4 andk=3; (middle) contour plot
of the EDF in the resonant region &t 350; and(bottom) att=400.
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0.040F ' ' ' ] ering waves that do not resonate with the electrons and thus
: N * * have a constant amplitude, we have verified that, for an ini-
s ] tial field amplitudea=ay;,, , the ions do not play a significant
0.0301 . E role on the evolution of the system.
s 3 V. SUMMARY AND CONCLUSIONS
>~ 0.020 7
2 * 1 We have studied the long-time evolution of longitudinal
s 1 perturbations in a spatially uniform collisionless plasma.
E * ] e . .
0.010F * E When the wavelength of the initially excited mode is
E % equal to the simulation length=L, we have found that, in
C 3 the limit of small wave amplitudes, our numerical results are
0.000t ! . . 3 in agreement with the analytical analysis performed in Ref.
0.000 0.010 0.020 0.030 0.040 [3]. In particular, we have found that in this limit our numeri-
Tin cal results agree with the analytical evaluated asymptotic
FIG. 7. Growth ratey of the sideband modes versus the initial electric-field amplitudeafm, when th_e_ critical perturbation
wave amplitudes,,, . amplitudee*, which marks the transition between Landau’s

and O’'Neil’s scenario, is set te* =0.012 in our parameter

the asymptotic evolution of the system described previously'ange (i.e., k=4 and Maxwellian equilibrium withvy,

In fact, the charge separation induced, for example, by pon= 0.1). l\iloreover, for initial perturbation an_wphtude_s Sl_Jch

deromotive effectdsee Ref[15] and references thergifs ~ ate>¢€", we have found that the asymptotic solution is a

supposed to play a significant role in the asymptotic evolySUPerposition of two counterpropagating averaged BGK

tion of electrostatic waves. Typically, we investigate theWaves, also in the case of nonsmall amplitudes. o

plasma evolution up to 25%1 which corresponds te-58 For L>\, the onset of the sideband instability modifies
e .

ion dynamics times. We find that the system dynamics is nofe plasma evpluuon. The BGK waves become unstable

affected by the ion motion, even for thenrealistia value of when the amplitude of the daughter sideband mode reaches

the mass ration, /m,= 100. In fact, the damping ting, the the amplitude of the initially excited mode. Thus, in this
real part of thel freequenc_;;o and,the fimet. at whicr’1 the ©ase, the BGK waves correspond to an intermediate regime,
i S

sideband mode reaches the one that is initially excited do n&peir_ Iifetime decreasing_with the_ wave amplitL_Jde. .
change with respect to the case of fixed igns., they are Finally, we have verified that mclucjmg the ion dynamics
t,=7.7, ©=1.22, andt,=375 for e=0.25 andk=4 to be does not affect the asymptotic evolution of the system.

7, 22, s . ,

compared to the corresponding results in Table | and Big. 6
After the initial damping of the wave, the field amplitude
becomes smallof the order ofa;;, listed in Table J on a This work was supported by the INFM Parallel Comput-
time scalet, shorter than the ion dynamics time. By consid- ing Initiative and by MURST.
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