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Asymptotic evolution of nonlinear Landau damping
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The long-time evolution of nonlinear Landau damping in collisionless plasmas is analyzed by solving the
Vlasov-Poisson system numerically. The value of the parameter marking the transition between Landau’s and
O’Neil’s regimes is determined and compared with analytical results. The long-time evolution of a finite-
amplitude electric field with wavelengthl equal to the length of the simulation boxL is given by a superpo-
sition of two counterpropagating ‘‘averaged’’ Bernstein-Greene-Kruskal~BGK! waves. WhenL.l and longer
wavelength modes can be excited, the BGK waves correspond to an intermediate regime that is eventually
modified by the excitation of the sideband instability. Ions dynamics is found not to affect these behaviors
significantly.

PACS number~s!: 52.35.Fp, 52.35.Mw, 52.35.Qz
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I. INTRODUCTION

The self-consistent damping of longitudinal waves in c
lisionless plasmas is a classic fundamental problem in
study of nonlinear wave-particle interaction processes.

In the linear regime, when a spatially uniform plasm
with equilibrium electron distribution function~EDF! f eq(v)
is perturbed by a small-amplitude electrostatic disturban
the Landau’s analysis@1# predicts that the time-asymptoti
evolution of the electric field exhibits exponential dampi
~or growth! as well as oscillatory behavior. The damping~or
growing! rate gk is proportional to the derivative with re
spect tov of the equilibrium EDF calculated at the pha
velocity vph of the electrostatic wave.

In the case of a Maxwellian equilibrium EDFf eq(v)
5 f M(v), a long-wavelength electron plasma oscillation w
klD!1, wherelD is the Debye length andk is the wave
number, decays with time on a scale that is large compa
to that of the oscillation time. However, even in the case
‘‘small’’-amplitude perturbations, the linear analysis brea
down for t.tp ,tp being the particle trapping time scale th
depends on the electric-field amplitudeE as tp51/AkE in
normalized units@see below Eq.~2.2!#. Thus, Landau’s lin-
ear solution holds at large times only if initially the conditio
td!tp is satisfied, wheretd is the damping time scale. In th
opposite limittd@tp , O’Neil @2# has shown that the energ
exchange between the wave and the particles with veloc
v.vph trapped in the wave prevents the complete damp
of the wave that reaches a constant nonzero value asymp
cally.

Recently, the existence of a critical initial perturbatio
amplitude, which marks the transition between these two
ferent asymptotic regimes, has been proved in the limit
small-amplitude waves@3# and the analytical expression o
the asymptotic wave amplitudeaf in has been given in the
case of a sinusoidal perturbation of a linearly stable equi
rium. In this limit, the general solution for the asymptot
electric field has been found to be a finite superposition@4#
of traveling Bernstein-Greene-Kruskal~BGK! waves@5# plus
higher-order terms@see Eq.~9! of Ref. @3##, a subject that has
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been recently studied in many numerical and theoret
works. In Ref.@6#, a generic longitudinal plasma-wave pe
turbation was found to decay as 1/t and not to be stopped b
the nonlinear effects of particle trapping and BGK wave fo
mation. However, the numerical results presented in Ref.@7#,
for a single value of the perturbation amplitude, and the
sults of Ref.@8#, which show that the damping rate vanish
for t→` for a wide class of nonlinear waves, contradict t
conclusions of Ref.@6#.

Here, we report the results of a systematic numeri
study of the Vlasov-Poisson equations in the intermed
range where the restrictions assumed in the papers of Lan
(td!tp) and O’Neil (td@tp) do not apply.

The ratio between the time scales characterizing the
tem q5tp /td is analyzed as a function of the initial pertu
bation amplitudee, and the critical perturbation amplitud
e* marking the transition between Landau’s and O’Nei
scenarios is determined and discussed. For small-ampli
initial conditions, a comparison with the analytical results
Ref. @3# is performed.

When e.e* , the asymptotic state of an initial perturba
tion with wavelengthl equal to the length of the simulatio
box L is found to be a superposition of two counterpropag
ing ‘‘averaged’’ BGK waves. Filaments of increasing
smaller size are also formed in phase space due to p
mixing, but they gradually disappear because of the fin
resolution of the simulations. We show that the asympto
state is a superposition of averaged BGK waves, also in
case of large-amplitude waves.

For L.l, such that modes with longer wavelengths c
be excited, the onset of the sideband instability changes
asymptotic evolution of the system and the BGK solutio
play the role of an intermediate regime.

Finally, we discuss whether the behavior of such syste
changes when the ion dynamics is included.

The paper is organized as follows. In Sec. II, the ba
equations are given and the properties of the code emplo
are discussed. In Sec. III, the numerical results concern
the determination of the critical valuee* are presented and
discussed. The formation of averaged BGK waves, the o
4109 ©2000 The American Physical Society
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TABLE I. Normalized time scales and parameters of the simulations withv th50.1, k54, L52p/k, for
e.e* .

e ain tp td q af in

0.015 0.0019 11.5 15.1 0.76 2.231025

0.017 0.002125 10.8 15.1 0.72 6.031025

0.018 0.00225 10.5 15.1 0.70 7.031025

0.020 0.0025 10.0 15.1 0.66 9.331025

0.025 0.003125 8.9 15.1 0.59 1.731024

0.03 0.00375 8.2 15.1 0.54 2.831024

0.04 0.005 7.1 15.1 0.47 5.131024

0.05 0.0062 6.3 14.3 0.44 8.231024

0.07 0.0088 5.3 13.7 0.39 1.131023

0.08 0.01 5.0 13.3 0.38 1.531023

0.1 0.0125 4.5 12.5 0.36 2.231023

0.2 0.025 3.2 9.1 0.35 5.531023

0.25 0.03125 2.8 7.7 0.37 8.031023

0.3 0.0375 2.6 6.7 0.39 8.831023
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of the sideband instability, and the role of ion dynamics
presented in Sec. IV. Conclusions are drawn in Sec. V.

II. BASIC EQUATIONS

We solve the one-dimensional Vlasov-Poisson system
equations numerically:

] f

]t
1v

] f

]x
2E

] f

]v
50, ~2.1!

]E

]x
512E

2`

1`

f dv, ~2.2!

where f (x,v,t) is the EDF andE(x,t) is the electric field,
which at t50, is given by

E~x,0!52 ainsin~kx!. ~2.3!

In Eqs.~2.1! and ~2.2! and in the following, time is nor-
malized to the inverse of the electron plasma frequencyvpe ,
velocity to the speed of lightc, and consequently,E to
mcvpe /e and f to the equilibrium particle densityn0. At
first, we assume that the ions form a fixed, neutralizing ba
ground. Oscillations are excited by initializing Fourier sp
tial modes with wave numberk and2k:

f ~x,v,0!5 f M~v !@11e cos~kx!#, ~2.4!

wheree is the perturbation amplitude, related to the init
electric-field amplitudeain as e52kain , and f M(v) is the
Maxwellian EDF,

f M~v !5
1

A2pv th

exp@2v2/~2v th
2 !#. ~2.5!

Herev th is the thermal velocity.
The Vlasov-Poisson equations are integrated numeric

in the 1-D 1-V phase space (x,v) by using the well-known
‘‘splitting scheme’’ developed in Ref.@9# in the electrostatic
limit. The Poisson equation is integrated in the Fourier sp
e

of

-
-

l
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e

by using a standard fast Fourier transform algorithm coup
to the fourth-order Runge-Kutta scheme.

The number of points used in the simulations are typica
Nx5256, Nv53000 with dt.0.0025. The numerical phas
space is given by 0<x,L, 2vmax<v<vmax, whereL is
the maximum length of the space interval andvmax the maxi-
mum velocity that can be reached by the particles. Perio
boundary conditions are used in the space direction.
simulation is stopped if the particles are accelerated up
vmax.

The code has been tested in many well-known elec
static problems, as, for example, plasma waves, Lan
damping, two-stream instability, and Best’s oscillations.

III. CRITICAL INITIAL PERTURBATION AMPLITUDE

We present a number of simulations~some of which are
listed in Table I! with vmax50.6, l52p/k5L, and with
different values of the initial perturbation amplitudee. We
set the thermal velocity tov th50.1 in order to describe plas
mas with a nonrelativistic temperature, and the initially p
turbed wave number tok54. The evolution of the system i
investigated up tot.2500vpe

21 . The perturbation amplitude
e, the initial wave amplitudeain5e/(2k), the trapping time
tp51/Akain5A2/e, the damping timetd , their ratio q
5tp /td , and the large-time wave amplitudeaf in are given in
Table I. Note that the definition oftp given before is used
conventionally also for large-amplitude waves and thattd is
estimated numerically from the simulations.

When the initial amplitude of the electric field is suffi
ciently small, we can calculate the damping rate using lin
theory@1,10#. Fork54, we find for the Landau damping rat
gL520.0661, andtL51/ugLu515.1. However, as can b
seen from Table I~in agreement with@11#!, td is different
from tL in all the simulations withe.0.04, since the corre
sponding amplitude cannot be considered as ‘‘small.’’

For very small perturbationstd5tL5const, while tp

5A2/e, so thatq→` as e→0. In Fig. 1~a!, we plot the
asymptotic amplitudeaf in of the electric field versus the ini
tial perturbation amplitudee, at fixed wave numberk54.
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The dashed line corresponds to the analytical expressio
the asymptotic amplitude given by Eq.~19! in Ref. @3#,
which in our units and for an initial perturbation of the for
given in Eq.~2.4!, reads~for v th50.1 andvph50.31),

af in5
4p v th

2

~vph
2 /v th

2 21!
~e2e* !.0.0146~e2e* !, ~3.1!

where e* is the critical initial perturbation amplitude tha
marks the transition between Landau’s and O’Neil’s s
narios. The analytical expression ofe* is reported in Ref.@3#
in terms of the transient part of the electric field. The an
lytical valuesaf in of Eq. ~3.1! @dashed line in Fig. 1~a!# agree
with our numerical results in the limit of small initial pertu
bation amplitudese,0.04 if we sete* .0.012, which corre-

FIG. 1. ~a! Final electric-field amplitudeaf in as a function of the
initial perturbation amplitudee; ~b! q5tp /td plotted versus the ini-
tial electric-field amplitudeain .
of

-
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sponds toq* 5A2/e* /td.0.85. For initial perturbations with
e,e* , the field amplitude is completely damped. Thus, th
method allows us to find the critical valuee* , avoiding the
regime of very small initial perturbations, where the simu
tions are particularly delicate since the electric-field amp
tude becomes so small that a very high numerical resolu
is necessary. Nevertheless, settingNx5256 andNv53000,
we find that the plasma oscillations are completely destro
and the field amplitude reaches the noise level whene
<0.01, according to the critical value ofe* andq* found by
using the different method described before. The critical i
tial valueq* differs from those previously predicted in Re
@12#, which were obtained for lower resolution and shor
times.

In Table I, only the simulation results fore.e* are listed.
We find that there is a minimum inq as a function ofe in the
parameter range considered, as can be seen in Fig. 1~b!.

IV. AVERAGED BGK WAVES, SIDEBAND INSTABILITY,
AND ROLE OF ION DYNAMICS

When the initial perturbation amplitude is such thate
.e* , nonlinear effects come into play and the electric-fie
amplitude oscillates at large times around a constant non
value af in . For e50.05, the results are in agreement wi
Ref. @7#. After the initial linear damping of the wave, tw
vortices appear in phase space, centered inv56vph , and
propagate in opposite directions. In order to analyze h
these results depend on the numerical resolution used in
simulations, we have performed runs with different numb
of grid pointsNx .

In Fig. 2, we plot the spatial Fourier componentEk with
k54 versust for e50.1, large times, and different values o
Nx ~only Ek.0 is shown for symmetry reasons!. We note
that the time at which the damping stops and the elect
FIG. 2. Spatial Fourier component of the electric fieldEk versust for k52p/L54, e50.1, and forNx564, Nx5128, andNx5256,
respectively.
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field amplitude starts to oscillate around a constant nonz
value is the same in all the simulations (tc.950). The dif-
ference between the runs is that for bigger values ofNx ,
larger low-frequency oscillations in the electric field are o
served. ForNx564, the long-time amplitude is nearly con
stant. Moreover, the abscissas of the minima of the E
~averaged overx) in the resonant region after a number
oscillations reach, in all the simulations with differentNx ,
the same constant value corresponding to the phase vel
of the wave,6vph560.31, as seen in Fig. 3~a!. The bumps
in the EDF near these minima do not settle into a platea

In Fig. 4, the contour plot of the EDF in the resona
region is shown fort51200, e50.1, and for different val-
ues of the spatial resolutionNx564,128, and 256. We not
that the vortices become regular and the EDF andEk become

FIG. 3. Semilogarithmic plot of the EDF~averaged overx)
versusv at t50 ~dashed line! and t51100 ~solid line! for e50.2:
~a! L52p/4; ~b! L52p.
ro

-

F
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time independent faster as the numerical dissipation in ph
space increases~i.e., for smallerNx). The filamentation in
the vortices, corresponding to the low-frequency oscillatio
observed in the electric-field amplitude, disappears beca
of phase mixing on the grid scalesDv52vmax/Nv and Dx
5L/Nx . Nevertheless, the overall structure that correspo
to a superposition of two traveling BGK waves is the same
large times in all the simulations, sincetc ,vph , and the di-
mensions of the vortices do not change with the numer
resolution, as shown in Fig. 2, Fig. 3~a!, and Fig. 4.

A similar conclusion has been obtained analytically in t
small-amplitude limit in Ref.@3#. In fact, in this limit, the
general solution for the asymptotic electric fieldE is a finite
superposition of traveling waves plus higher order terms@see
Eq. ~9! of Ref. @3# #. Our numerical results show that th
asymptotic electric field is given by a superposition of tra
eling ‘‘averaged’’ BGK waves, i.e., of stationary solutions
their own reference frame, also in the case of nonsmall a
plitudes.

As long as the relative phase velocityDv of the two BGK
waves is sufficiently large, so that particles trapped in o
wave feel only a high-frequency perturbation from the fie
of the other, we can consider the two BGK waves as in
pendent@4#. This corresponds to the following condition o
the field amplitudeaf in :

af in!k ~Dv !2, ~4.1!

which is well satisfied, in our case~see Table I! with
k(Dv)25k(2vph)

2.1.5.
Eventually, the BGK waves will be affected by collision

However, collisions will start to be important first on th
smallest scales and will thus regularize the filamentary str
FIG. 4. Contour plot of the EDF in the resonant region att51200 fore50.1,L5l andNx564,128, and 256, respectively.
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tures inside the vortices. The estimate of the ratio betw
the collision time at large scalest l and at small scalests can
be written as

t l /ts.~vphNv /2vmax!
2, ~4.2!

which for vph50.31, Nv53000, andvmax50.6 givest l /ts
.63105.

More importantly, when longer-wavelength modes can
excited, the asymptotic electric field will be determined
the growth of upper and lower sideband waves@13#. In the
simulations described so far, the length of the simulation b
is set equal to the wavelength of the initial perturbationL
5l52p/k. In order to study the long-time evolution of
more generic system, we have enlarged the simulation
L52p.l, so as to allow for the presence of wave numb
smaller than the initially excitedk54 mode.

FIG. 5. Energy spectrum att50 ~star!, t5375 ~dashed line!,
and t51100 ~solid line! for the simulation withL52p.l, e
50.25.
n

e

x

x,
s

In Fig. 5, the energy spectrum is plotted fore50.25 at
different times. Initially, only thek54 component is presen
and evolves as in the previous case, reaching a nearly
stant amplitude. In the meantime, the two sideband mo
k53 andk55 start to grow with equal rate. Atts.375, the
lower mode reaches the same level of thek54 mode
~dashed line in Fig. 5!, which falls off abruptly. This evolu-
tion corresponds to four vortices, at the resonant veloc
vph50.31 in the intervalL, which at ts.375 become un-
stable and start to mix, as seen in Fig. 6. When the lowek
53 mode reaches the same level of thek54 mode and be-
comes dominant, thek54 mode decreases significantly s
that three vortices are present in phase space and its ov
resonant structure remains relatively ‘‘coherent.’’

At larger times,t.1100~solid line in Fig. 5!, other side-
band Fourier components become important and many
tices are present at the same time in the resonant reg
leading to an EDF that settles into a flat plateau, as can
seen in Fig. 3~b!. The difference between the resonant v
locities Dv of these vortices depends on the length of t
simulation box. As this length increases,Dv becomes
smaller and the condition~4.1! ceases to be valid, resultin
in the overlapping of the vortices in phase space and in
chaotic motion of the particles in the resonant region.

The growth rate of the sideband instability increases w
the wave amplitude, as can be seen in Fig. 7, with a pow
law scaling between square root and linear, in agreem
with Ref. @14#. Thus the lifetime of the BGK solution de
creases with the wave amplitude and depends logarithmic
on the initial noise in thek61 sideband Fourier component
We note that at ‘‘large’’ initial field amplitudes~in our case,
for ain.0.025, as shown in Fig. 7!, the growth rate saturates

Finally, we include the ion dynamics in the numeric
code by integrating the corresponding Vlason-Poisson eq
tions in order to verify whether the ion response can mod
FIG. 6. Onset of the sideband instability (e50.25):~top! Semilogarithmic plot ofuEku versust for k54 andk53; ~middle! contour plot
of the EDF in the resonant region att5350; and~bottom! at t5400.
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the asymptotic evolution of the system described previou
In fact, the charge separation induced, for example, by p
deromotive effects~see Ref.@15# and references therein! is
supposed to play a significant role in the asymptotic evo
tion of electrostatic waves. Typically, we investigate t
plasma evolution up to 2500vpe

21 , which corresponds to.58
ion dynamics times. We find that the system dynamics is
affected by the ion motion, even for the~unrealistic! value of
the mass ratiomi /me5100. In fact, the damping timetd , the
real part of the frequencyv, and the timets at which the
sideband mode reaches the one that is initially excited do
change with respect to the case of fixed ions~i.e., they are
td57.7, v51.22, andts5375 for e50.25 andk54, to be
compared to the corresponding results in Table I and Fig!.
After the initial damping of the wave, the field amplitud
becomes small~of the order ofaf in listed in Table I! on a
time scaletp shorter than the ion dynamics time. By consi

FIG. 7. Growth rateg of the sideband modes versus the init
wave amplitudeain .
.I.
y.
n-

-

ot

ot

ering waves that do not resonate with the electrons and
have a constant amplitude, we have verified that, for an
tial field amplitudea.af in , the ions do not play a significan
role on the evolution of the system.

V. SUMMARY AND CONCLUSIONS

We have studied the long-time evolution of longitudin
perturbations in a spatially uniform collisionless plasma.

When the wavelength of the initially excited mode
equal to the simulation lengthl5L, we have found that, in
the limit of small wave amplitudes, our numerical results a
in agreement with the analytical analysis performed in R
@3#. In particular, we have found that in this limit our numer
cal results agree with the analytical evaluated asympt
electric-field amplitudeaf in , when the critical perturbation
amplitudee* , which marks the transition between Landau
and O’Neil’s scenario, is set toe* 50.012 in our paramete
range ~i.e., k54 and Maxwellian equilibrium withv th
50.1). Moreover, for initial perturbation amplitudes suc
that e.e* , we have found that the asymptotic solution is
superposition of two counterpropagating averaged B
waves, also in the case of nonsmall amplitudes.

For L.l, the onset of the sideband instability modifie
the plasma evolution. The BGK waves become unsta
when the amplitude of the daughter sideband mode rea
the amplitude of the initially excited mode. Thus, in th
case, the BGK waves correspond to an intermediate reg
their lifetime decreasing with the wave amplitude.

Finally, we have verified that including the ion dynami
does not affect the asymptotic evolution of the system.

ACKNOWLEDGMENTS

This work was supported by the INFM Parallel Compu
ing Initiative and by MURST.
ra,

tt.
@1# L. D. Landau, J. Phys.~Moscow! 10, 25 ~1946!.
@2# T. O’Neil, Phys. Fluids8, 2255~1965!.
@3# C. Lancellotti and J.J. Dorning, Phys. Rev. Lett.81, 5137

~1998!.
@4# M. Buchanan and J.J. Dorning, Phys. Rev. Lett.70, 3732

~1993!; Phys. Rev. E50, 1465~1994!; 52, 3015~1995!.
@5# M. Bernstein, J.M. Greene, and M.D. Kruskal, Phys. Rev.108,

546 ~1957!.
@6# M.B. Isichenko, Phys. Rev. Lett.78, 2369~1997!; C. Lancel-

lotti and J.J. Dorning,ibid. 80, 5236 ~1998!; M.B. Isichenko,
ibid. 80, 5237~1998!.

@7# G. Manfredi, Phys. Rev. Lett.79, 2815~1997!.
@8# M.V. Medvedev, P.H. Diamond, M.N. Rosenbluth, and V
Shevchenko, Phys. Rev. Lett.81, 5824~1998!.
@9# C.Z. Cheng and G. Knorr, J. Comput. Phys.22, 330 ~1976!.

@10# S.P. Gary, Phys. Fluids10, 570 ~1967!.
@11# R. Sugihara, K. Yamanaka, Y. Ohsawa, and T. Kamimu

Phys. Fluids24, 434 ~1981!.
@12# R. Sugihara and T. Kamimura, J. Phys. Soc. Jpn.33, 206

~1972!; J. Canosa, Phys. Fluids17, 2030~1974!; J.J. Rasmus-
sen, Phys. Scr.T2Õ1, 29 ~1982!.

@13# W.L. Kruer, J.M. Dawson, and R.N. Sudan, Phys. Rev. Le
23, 838 ~1969!; M.V. Goldman, Phys. Fluids13, 1281~1970!;
M.V. Goldman and H.L. Berk,ibid. 14, 801 ~1971!.

@14# W.L. Kruer and J.M. Dawson, Phys. Fluids13, 2747~1970!.
@15# M. Lontano and F. Califano, Phys. Rev. E61, 4336~2000!.


