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Short-time effects on eigenstate structure in Sinai billiards and related systems
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There is much latitude between the requirements of Schnirelman’s theorem regarding the ergodicity of
individual high-energy eigenstates of classically chaotic systems on the one hand, and the extreme require-
ments of random matrix theory on the other. It seems likely that some eigenstate statistics and long-time
transport behavior bear nonrandom imprints of the underlying classical dynamics while simultaneously obey-
ing Schnirelman’s theorem. Indeed this was shown earlier in the case of systems that approach classical
ergodicity slowly, and is also realized in the scarring of eigenstates, even if-th# limit, along unstable
periodic orbits and their manifolds. Here we demonstrate the nonrandom character of eigenstates of Sinai-like
systems. We show that mixing between channels in Sinai systems is dramatically deficient compared to
random matrix theory predictions. The defititreasesas|In#| for #—0, and is due to the vicinity of the
measure zero set of orbits that never collide with the Sinai obstruction. Coarse graining to macroscopic scales
recovers the Schnirelman result. Three systems are investigated here: a Sinai-type billiard, a quantum map that
possesses the essential properties of the Sinai billiard, and a unitary map corresponding to a quasirandom
Hamiltonian. Various wave function and long-time transport statistics are defined, theoretically investigated,
and compared to numerical data.

PACS numbd(s): 05.45.Mt, 03.65.Sq

[. INTRODUCTION classically large scales, in the limit whetiebecomes small
compared to the phase-space region over which wave-
In recent years, much attention has been paid to the stru¢unction intensity is being smoothed. Specifically, theorems
ture of quantum eigenstates in systems with a chaotic oby Schnirelman, Zelditch, and Colin de Verdigi@ZCdV)
ergodic classical analog. For integrable systems, Einsteirf3] state that, for a classically defined operator, the expecta-
Brillouin-Keller quantization provides an intuitive under- tion value over almost all wave functions converges to the
standing of classical-quantum correspondence, associatingicrocanonical average of the classical version of the opera-
guantum wave functions with the invariant tori of the under-tor, in the Z—0 limit. Since the classical symbol of the
lying classical dynamics. In a classically ergodic system, theperator is kept fixed as the limit is taken, these theorems
typical trajectory fills an entire energy hypersurface at longprovide information only about the coarse-grained structure
times, and it is natural to conjecture that a typical high-of the eigenstates, and not about the structure at quantum
energy eigenstate of such a system similarly has intensitypnechanical scales.
distributed evenly over an entire energy shell. Thus, Berry Wave function scarring, the anomalous enhancenf@nt
suggested in 1983 that an eigenstate of a classically ergodguppressionof intensity near an unstable periodic orbit, is a
system should look locally like a random superposition ofwell-known example of non-RMT behavior of eigenstates in
plane waves of fixed energy, with momenta pointing in alla classically chaotic system. The distribution of wave func-
possible directiond1]. Similarly, Bohigas, Giannoni, and tion intensities on a fixed periodic orbit can be computed in
Schmit[2] proposed that the quantum properties of a classithe semiclassical limit using the linear and nonlinear theory
cally chaotic system should correspond to those of randorof scars[4—6], and is found to be very different from the
matrix theory(RMT). This implies that wave-function inten- Porter-Thomas prediction of RMT. Furthermore, upon en-
sity should be distributed over an entire energy surface, witlsemble averaging, a power-law wave-function intensity dis-
the wave-function amplitudes at distant points behaving asribution tail is obtainedand numerically observedn cha-
independent Gaussian variables. otic systems, in contrast with the exponential falloff
The conjecture that chaotic eigenstates obey RMT statisarediction of RMT. The fraction of strongly scarred states
tics is a statement about quantum structure at the scale ofremains finite in thét— 0 limit. Nevertheless, scarring poses
single wavelength in position spa¢er on the scale of a no threat to the SZCdV ergodicity condition, because the
single channel in momentum space, or, more generally, on size of the scarred phase-space region surrounding the orbit
mesh of cell sizeD(%) in phase spadeRigorous results on scales with#, tending to zero in the semiclassical limit. A
guantum ergodicity, however, mostly address structure offinite intensity enhancement factor affecting an ever smaller
region of phase space is entirely consistent with ergodicity
on coarse-grained scales. However, the scarring phenomenon
*Electronic address: kaplan@tornado.harvard.edu does have very significant effects on physical quantities that
TElectronic address: heller@physics.harvard.edu depend on fine-scale structure, such as conductances and de-
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cay rates through smallor tunneling leads[7,8]. large so as to completely randomize the matrix elements
Another example of markedly non-RMT behavior still (a|&). Thus, in the case of tight-binding modéksg., in the
consistent with SZCdV coarse-grained ergodicity is found instudy of Anderson localizatignone may considel, to be
the “slow ergodic” systems, such as the tilted wall billiard the Hamiltonian with on-site energies only, g to be the
and the sawtooth potential kicked mggl. In these systems, position states. The matrix elemerts ¢) then measure the
the classical rate of exploration in momentum space is logadegree of localization in position space as the hopping matrix
rithmically slow, and for largeh ~* the number of channels elements are turned on. Similarly, in a scattering problem
occupied by a typical eigenstate scales only:as?In% "%, one often finds it useful to use momentum states or channels
constituting an ever decreasing fraction of B¢z ') total  as the reference bagis), and look for localization of the full
available number of channels. However, the “bright” chan- eigenstates relative to this basis.
nels occupied by a given wave function tend to be evenly For simplicity, we assume that the classical dynamics
distributed over the entire phase space, and thus coarsgiven byH completely mixes the statéa) with each other,
grained ergodicity still holds in the limit, even though the so that no conservation laws prevent each of the eigenstates
wave functions are becoming less and less ergodic at thig) from having equal overlaps with all of the test states. In
single-channel scale d&—0. The present paper extends the the presence of energy conservation or other conserved quan-
indications of non-RMT “clumping” of wave-function den- tities, the formalism outlined below needs to be modified to
sity beyond the effects of scarring. Moreover, we use as ourake into account constraints imposed by the classical sym-
examples the original paradigm of classical Hamiltonianmetries. This can be done in a straightforward way by, for
chaos, the Sinai billiard, and closely related quantum mapsexample, taking the test stat¢a) to be coherent states
The remainder of this paper is organized as follows. In thgGaussiansin phase space. Then it is easy to compute the
next section we discuss measures of “microscopic”classical intersection of each such Gaussian with any given
(#-scale quantum ergodicity, including various inverse par- energy hypersurface, and the actual quantum intensities
ticipation ratios and channel-to-channel transport measurefa|&)|? can be normalized by this classical result. In this
Then in Sec. Il the connection is made between these stavay one can easily identify the degree of eigenstate localiza-
tionary properties and the short-time dynamics of a quantuntion (or deviation from ergodicitydue to quantum effects, as
system. In Sec. IV the Sinai kicked map, a one-dimensionabpposed to purely classical constraints. See Réf] for a
model for the Sinai billiard, is introduced and discussedfuller discussion.
Strong deviations from single-channel quantum ergodicity We will then focus on the set diproperly normalized
are predicted, and distributions for various quantities areverlap intensities
computed, that differ greatly from RMT expectations. We
see that classical methods can be used to determine the non- P..=(al&)? )
ergodic structure of the quantum wave functions, even
though the classical dynamics is entirely ergodic. Quantitato devise measures of “microscopic” localization or ergod-
tive comparison with numerical data follows in Sec. V. Inicity in the system under study. In RM{& natural baseline
Sec. VI a similar analysis follows for the two-dimensional assumption in the absence of dynamical information about
Sinai billiard system, a paradigm of classical and quantunour systen the(a|¢) are predicted to be given by uncorre-
chaos. Here again strongly non-RMT wave function intensitylated random Gaussian variables, real or complex. The inten-
distributions are predicted and observed. In Sec. VIl a simplsities P, then follow ax? distribution, of one or two de-
matrix model is presented and studied, some of the statisticgirees of freedom, respectively. Quantum localization will
properties of which correspond to those of the Sinai systemgiroduce an excess of very large and very small intensities,
Similarities and differences between the Sinai systems andompared to this baseline result. For convenience, we adopt
the matrix ensembles are discussed. In the final section wéde normalization where the mean intensity is set to unity:
sum up the results and discuss certain directions for the
future. (Pag)a=(Page=1. 2

Here the averages - - ); are taken over all eigenstatiy:
Il. MEASURES OF %#-SCALE ERGODICITY
N
We now review some important concepts related to the <Pag>gzﬁ ;1 Pac, ®)

guantitative measurement of quantum structure and transport

at “microscopic” (i.e., single-wavelength or single-channel

scales. An alternative discussion may be foun@h whereN is the total number of states accessible fii@an(the
Consider a classically ergodic system with quantumdimension of the effective Hilbert spaceThe averaging

eigenstatet) and a test state bagas). The test basis can be (- --), over basis state)®) is defined similarly.

chosen to be the set of position states, momentum states, It is often convenient to compress the intensity informa-

phase-space Gaussians, or any other set of states motivatioh into the set of(local) inverse participation values

by the physics of the problem. Often the test basis will be(IPR’s) [10]:

taken to be the set of eigenstates of a zeroth-order Hamil-

tonian Hy, of which the full system Hamiltoniaid=H, I.= Paa=<P§§>§. 4)

+ 6H is a perturbation. One is then interested in determining

whether the true eigenstatgs have a nontrivial structure in P, is a convenient alternative notation for the local IR

the statega), or whether the perturbatiofH is sufficiently  as we will see below when we discuss transport in Egsto
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(11).! For a given test stat@), the IPR afa) gives the first average location and can serve as a simple figure of merit
nontrivial moment of theP,, distribution (namely, the ratio  for the degree of quantum localization in a given system.

of the mean squared intensity to the square of the meaa We can relate eigenstate localization to dynamics in the
thus gives a concise measure of the degree of localization &llowing way. Let

|a).2 The IPR measures the inverse of the fraction of eigen- it

states that have significant intensity|ab. Thus, equal in- Aqa(t)=(ale”"a) ()

tensities of all the eigenstates|a) would imply Z,=1; this . .
level of ergodicity is of course almost never achieved in abe the return amplitude for state) to come back to itself

chaotic system. Gaussian random fluctuatiORMT) pro- after timet, .C'aiven a nondegenerate s.pectrgm, the mean re-
duce IPR’s of 3(for real overlapgal&)) or 2 (for complex turn probability of the statéa) at long times is proportional

overlaps. IPR’s exceeding the appropriate baseline valuet0 its eigenstate IPR

signal the presence of a localization mechanism beyond P. =N(IA 2 8
AR . aa=N{|Aqa(t)[*), (8)

RMT. In the extreme localization limit where one eigenstate

has all its intensity afa), we obtain the maximum possible as is easily seen by inserting complete sets of eigenstates on
value,Z,=N. [A prime example of such extreme behavior is the right hand side. Here the time average on the right hand
the case of the “bouncing ball” stat¢42], associated with  side of Eq.(8) is taken over times large compared to the
nonisolated, marginally stable classical periodic motion.Heisenberg timd, i.e.,% over the mean level spacing.
Such classical trajectories can trap a quantum wave packet Similarly, we can relate long-time transport to eigenstate
|a) for a ime comparable ttor even longer tharthe time at  correlations. Defining the transport amplitude

which individual quantum states are resolved, causing the _

wave packet to hav@®(1) overlap with only one or a few Agp(t)=(ale”™|b), 9)
eigenstates, and leading t,=O(N). From the SzZCdV )

theorems, we easily see that the fraction of bouncing baf®nd & cross correlation analogousrg,,

states must tend to zero in tle—0 limit. This kind of P —(P..p 10
localization is easily visible to the naked eye; other kinds of ab={(PacPe)e (10
localization, where the number of eigenstates having inteng . immediately see

sity at the test stat¢a) is large compared to 1 but small

compared to the total number of stabésmay be less easy to Pap= N<|Aab(t)|2>t ; (11)
detect visually but may also be a statistically more important

correction to RMT predictions, surviving at arbitrarily small where again the time average has been taken of the long-time

values off.] transport probability fromb) to |a). Of course the total
One can similarly define an eigenstate-specific IPR in thgorobability summed over final states for any given initial
|€) basis: state is normalized,
Ze=Pe= (P 5 (Pap)a=1, (12)

where the average is taken over the test bisis This of for eachb. The simplest nontrivial quantity that will measure
course measures the inverse of the fraction of phase spadie fluctuation in the probabilities of being in various final
occupied by a given eigenstdt®, in the|a) basis. A global ~ statesb) given an initial statga) (or vice versais
IPR can also be defined: 5

Qa:<Pab>b . (13

1= <Ia>a: <I§>§ . (6) ] . )
Roughly speakingQ, measures the inverse fraction of all
This last quantity measures the inverse fraction of phasehannels that are accessible at long time from chaank
space occupied by thaverageeigenstatelor, equivalently, RMT, all the transport probabilitie®,,, are equal to unity
the inverse fraction of eigenstates that have intensity at awith small fluctuationgexcept for the enhanced return prob-
abilities P,,=2 or 3), soQ,=1 for each|a) in the N—
semiclassical limit.Q,>1 indicates uneven visiting of the

Un this paper the letteP with subscripts is used throughout to @vailable state space starting in the initial stat, and the
denote varous probability quantities. To avoid confusion, these ar@Verall ergodicity of long-time transport can again be sum-
summarized belowP,; (Py;) is the intensity of wave functiog at marized in
a(n); P,a(Pnn) is the average long-time probability for statén)
to return to itself, also known as the local inverse participation ratio Q=(Qa)a- (14

Za(Z,); Pap(Pnan) is the long-time average probability for initial . . -
statea (n) to end up atb (n'): and finally P, is the long-time In the slow ergodic systems such as the tilted wall billiard

probability for eigenstaté to return to itself under the action of the and the sawtooth potential kicked mgg, a highly anoma-

HamiltonianH,, having the basis vectoesas its eigenstate$(; is |0}JS IPR measure was predicted and observed fOf stnall

also known ag;, the inverse participation ratio of the wave func- With the  system-averaged IPREq. (6)] scaling as

tion &). Vi~ IIn% 7t Semiclassically, the degree of localization in
2 slightly different measure of eigenstate localization at a givensuch systems is even stronger, with the IPR scaling as

test state, defined in analogy with classical entropy ideas, is dish ~*/In#~1. The difference is caused by diffraction, which

cussed in11]. dominates the phase-space exploration and increases by



412 L. KAPLAN AND E. J. HELLER PRE 62

Ji T the fraction of phase space occupied by a typicalThus, randomly returning amplitude at long timkeaves its
eigenstate. These same diffractive effects lead to almost peimprint on nearby timeg+ 7, and following [5] we may
fect long-time transport between channels, with the transpomvrite the full long-time amplitude to return as a convolution
measureQ going to anf-independent constant in thie—0

limit. ALYt = > AN t— ) A 7), (19

lll. SHORT-TIME DYNAMICS AND THE EIGENSTATES whereA" is an uncorrelated Gaussian random variable,

We now discuss the way in which short-time dynamics 1
produces lasting effects on stationary properties, such as (AT (£ 4+ A)ATY 1)) = =50, (20)
eigenstate localization and long-time transgdr6,10. De- N
fine the local density of statdbDOS) at |a) as the Fourier

transform of the autocorrelation functigy,(t): the averaging being performed over long tintes over an

appropriate ensemble. TheNLfactor provides the right nor-
N (= malization for the probability to return in the absence of
Sa(E)= z—f dt€E'A,(1) =D Pa:S(E—E)). nontrivial short-time overlaps, i.e., V\/_he!x';';ort 7) =5,
TJ—o 3 Fourier transforming the convolution in E(L9) leads to
(15) multiplication of the smooth short-time envelope by random

oscillations in the energy domain:
The linearity of the Fourier transform implies that large

short-time recurrences ity ,(t) get “burned into” the spec- SP"Y(E) =SS E)STYE). (21
trum, producing an envelope that must be the smoothed ver-

sion of the full spectrunS,(E). Thus, let At very long times(beyond the Heisenberg tintg,, which
scales a% divided by the mean level spacinghe spectrum

At = Aggorm + Ag)gg(t). (16) S.(E) becomes resolved into individual spectral lines

(The most convenient separation between short- and long- Sa(E)=2 1SS E)S(E—Ey), (22)
time recurrences is situation dependent, as we will see be- ¢

low.) Then the full spectrum is given by the sum of a short-yherer, has the statistical properties ofy& variable.
time envelope and a high-frequency oscillatory structure, That s,

coming from the long-time dynamics, that is superimposed

on top of that envelope: (ra=1, (ra)=F, (23

SA(E)=S(E) + SO"YE). (17)  Where averaging may be performed over eigenslj@t)e_stest
states|a), or over an ensemble, and the constans given

y 2 or 3, for complex or real eigenstates, respectively. RMT
gredictions are recovered in the dynamics-free limit
SSOE)=1; short-time recurrences cauS&"'(E) to vary

It is then convenient to classify as “short time” those returnsWIth energy. This v.arla.tlon ”.‘.t””" leads to Iarger-than-
that are governed by one or a small number of classicafXPected wave-function intensiti€, at some energies and

paths, and as “long time” those that arise from interferencesma”er intensities at others, corresponding to an enhanced

between many classical paths, and for which a statistical ddP I?H?m: devi?tion frolm n;icrgscop;]c erglodic(ijty.b q
scription is valid. Due to the exponential proliferation, the e formalism outlined above has already been used to

dividing line between these regimes is sharply defined in thétUdy the statistical properties of the scarring phen.omenon,
semiclassical limiti—0, being given by the mixing time the anomalous enhancement of certain quantum eigenstates

T..~(L/\)In%~L. Of course, no harm would be done were along the unstable periodic orbits of the corresponding clas-
mix . 1 . - .

we to err on the safe side by computing explicitly sical chaotic system. There, the test stiap IS a wave

intermediate-time return amplitudes which could insteaopaCket. launched on or near the classical periodic orbit, anq

have been treated statistically short-time quantum recurrences can be computed analyti-

Now, in the presence of chaos, the long-time returning®@!Y (fO; shmalll h) in Iterrg_s gthi. rr&on?]dro?ylgst?x and
amplitude at time is expected to fill the initial test stata) action of the classical orbit. One finds that the or a test

in a uniform, unbiased walB], so that the subsequent evo- state on the orbit scales inversely with the instability expo-
lution of this newly returned amplitude is equivalent to the "eNtA of the orbit[5], and the full distribution of wave-
evolution of the original state. More explicitly, we may write

In the presence of chaos, the number of classical returnin
trajectories leading from any stale) back to itself grows
exponentially with timeg(with some Lyapunov exponeit).

for small 7
3Discrete-time notation is used here for simplicity and because it
Ag’gg(t_l,_ r)=(ala(t+ 7)) is most useful for the repeated scattering situation discussed below.
Refer to Ref.[5] for a full treatment of continuous time, which
=(ala(t){(a(t)|a(t+7))+--- involves introducing an additional very short time scale associated

with the initial decay of the wave packf) (or with 7 divided by
_pl h
=A (DA D)+ - - (18)  the energy uncertainty da)).
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function intensities on and off the orbit can be computed as a From the surface of section method, we know that Hamil-
function of A [6]. Averaging over an ensemble of chaotic tonian dynamics in a two-dimensional configuration space at
systems was shown to produce a power-law tail in the intenfixed energy is dimensionally equivalent to a discrete-time
sity distribution, dominated by very strongly scarred statesmapping of a one-dimensional system, and can in fact be
and in contrast to the exponential tail prediction of RMT. reduced to such a system. The one-dimensional model we
Antiscarred statesones with anomalously low intensity in consider in this section is the “Sinai kicked map,” defined
certain regions of phase spacare of great importance in ©n & two-dimensional phase spacgi) €[0,1)X[0,1):

open systems: for example, they have been shown to domi-

nate the long-time quantum probability to remain in a clas- p—p=p—V'(q) mod 1,
sically chaotic system coupled to the outside via a single- _ _
channel lead. The size of the effect is exponentially large for d—q=q+p mod 1. (24)

small\ [8]. More recently, optimal test states for measuring ] ) ) o
scarring have been developed, which take into account ap€ equations of motion Eq24) can be viewed as arising
entire classical orbit and the linearized classical dynamics iffom a potential that is periodic in time:

its vicinity [13]: they provide larger IPR’s and more evi- 0?

dence of wave-function localization than do simple Gaussian H(g,p,t)= = +V(q)>, 8(t—n). (25)
wave packets. 2 n

At the beginning of every time step, the particle is “kicked”

IV. SINAI KICKED MAPS by the potentiak_/, following which the potgnt_ial is_turned off
and free evolution takes place for a unit time interval. The
A. Definition of system and motivation process is then iterated to obtain the long-time behavior. The

The Sinai billiard[14] is a prototypical example of strong S_inai biIIiard’s straight wall with a bump has its analog in the
classical chaos: it consists of a point particle bouncing freelf<ick potential
in a rectangular cavity with hard walls, with a hard disk

2 2
obstruction placed in the center of the rectangle. The system — 5[( _ 1) _(i) for |q— E <—

has positive entropy classically for any disk size; of course, ~ V(q)=4{ 2f 2 2 2| 2

this fact becomes relevant to the quantum mechanics only in 0 otherwise,

the limit where the quantum wavelength is small compared (26)

to the size of the disk(The mixing timeT ., after which a
typical wave packet spreads over the entire available phasgith a parabolic bumgcentered atj=1/2) of spatial extent
space is then short compared to the Heisenberg ime  f<1. Kis a constantwhich we will set to be of order unily
defined agi over the mean level spacing, at which the quan-that determines the typical impulse exerted by the bump. The
tum dynamics becomes quasiperiodic and individual eigenparabolic shape of the potential bump is chosen for simplic-
states and eigenvalues begin to be resojved. ity only; none of the discussion below of the short-time be-
The statistics of energy levels in tlidesymmetrizedSi-  havior would be affected if a circular arc or other generic
nai billiard has been found to be in good agreement with theurved potential were used instead. The key property of the
Gaussian orthogonal ensemble predictions of random matrisepulsive potentiaV(q) is the parametef, which sets the
theory[15]. On the other hand, the eigenstate structure of théraction of an incoming wave that is scattered classically
Sinai billiard turns out to be very different from RMT expec- after one iteration of the map.
tations, and the inclusion of short-time dynamical effects is The Sinai kicked map is a hard chaotic system with no
essential for understanding its quantum ergodic propertiestable phase-space regidas can be seen easily by comput-
We will return to a detailed discussion of the classical andng the Jacobian of the iterated mapping, using the fact that
guantum Sinai billiard in Sec. VI. V"(q)=<0 everywherd 18]]. Like the Sinai billiard(and the
Here we begin with a simplified one-dimensional modelBunimovich stadiur the system has a measure zero set of
that contains most of the important structure of the originaimarginally unstable trajectories, given, for example,|qy
two-dimensional system. We notice first that finding eigen-— 3|>f/2, p=0. After quantization, such orbits will give
states of a given symmetry class in the Sinai billiard isrise to “bouncing ball” state$12], which are very strongly
equivalent to finding the eigenstates in a rectangle one-fourtlocalized in momentum space ngas 0. Our primary inter-
the original size, with a quarter-circular bump in one of theest, however, will be not in this measure zero set of states,
corners(and possibly with Neumann boundary conditionsbut rather in the structure of the “typical” quantum wave
along one or both of the sides meeting at that cornéfe  functions, which obey SZCdV coarse-grained ergodicity, yet
can then imagine finding the eigenstates usingSanatrix ~ have very non-uniform structure at the single-channel scale.
approach[16,17, where one considers the scattering of The quantization of kicked systems of the form E2f) is
channels of the “free” rectangular system off the quarter-straightforward and well covered in the literatur&9]. A
circular bump. The S-matrix has a strong diagonal compovalue of# should be chosen so thbit=1/27#, the number
nent due to the straight part of the wall containing the bumppf Planck cells covering the toroidal classical phase space,
and a complicated off-diagonal structure due to actual scatas an integer value\ corresponds to the number of wave-
tering off the bump. The long-time dynamics and stationarylengths across the device in the analogous billiard system
properties of the systerte.g., eigenstates and eigenvalues Then anN-dimensional position basis for the Hilbert space is
are obtained by iterating the scattering process. given byqg;=(i+€)/N, i=0, ... N—1. Similarly, the mo-
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mentum space basis is given bp;=(j+e€)/N, ] [Unnl2=1Ann(1)[2=(1—1)2. (30)
=0, ... N—1. &, form a family of possible quantization
conditions (they correspond to phases associated with cir- Notice that the quantum one-step survividd,,|? is
cling the torus in thep and q directions, respectively The  smaller than the classical probabiliBﬁ'n(l) for not scatter-
two bases are related by a discrete Fourier transform. Thimg. In analogy to ordinary scattering in free space, one can
qguantum dynamics is now defined by the unitAtix N ma-  define a cross section for scattering off the defect. In the limit
trix of smallf, we see from the above analysis that the quantum
cross section is twice as large as the classiCgtis is in
U=exd —i(:p?)/hlexd —iV(q)/h], (27)  complete analogy with quantum scattering theory in free
space, in which diffraction results in a quantum cross section
where each factor is evaluated in the appropriate basis, artdice as big as the classical, even in the short-wavelength
an implicit forward and backward Fourier transform has beedimit. Essentially, the far-field diffraction into the shadow
performed. zone doubles the quantum cross secjidtere, there is a
We are now ready to study the structure of the Floquet ogquantum probabilityf(1—f) for diffracting into nearby
scattering eigenstates of the quantum dynarbice the p; channels. Classical-quantum correspondence still holds after
basis. We notice first that, because of the symmetry of theppropriate coarse graining over scales large compared to
kick potentialV(q) underq— —q, the classical system has a #/f (but still small classicallyin momentum space. As men-

time reversal symmetry and a parity symmetry: tioned earlier in our discussion of the Sinai billiard, we are
always working in the semiclassical regirfie< f, where the
T:t—-t,g——q, bump size is large compared to a wavelength, though it may
be small compared to the system size 1.
P:p——p,q——q. (28) This difference between the classical and quantum prob-

) _ abilities to remain in the initial channdl(1—f) vs (1
It will be convenient for us to choose a nonzero value for the_f)z] survives the limith— 0. In this limit the fraction of

boundary condition parametes, thus breaking the parity gifracted amplitude and the number of scattering channels
symmetryP under quantization, while maintaining the time 5 which diffraction occurs both remain constant. For finite
reversal symmetnT by settinge,=0. The eigenstates are ; ere will of course be a®(y%) correction to the quan-
then real in the momentum basis, and the appropriate RMTum amplitudeA, (1), as it ispossible for the horizontal

baseline isT=3 [see the discussion following E¢)]. For [V'(q)=0] portion of the bump to scatter an incoming
an asymmetric bump or kick potential, the quantum wave-

>0 . . channelp,, back into itself.
function intensity fluctuations would be expected to follow a
?(2 distribution of two degrees of freedom under RMT, giv- 2. Multistep scattering
ing rise to the baseline valig=2. The analysis to follow is ) )
of course completely independent of the symmetry chosen, e proceed to analyze the multistep behavior of the dy-

provided that the appropriate baseline quantum fluctuatioR@mics, particularly the probability to remain in the initial
factor F is used. statep, . In the absence of step-to-step correlation, the clas-

sical probability to remain unscattered after 2 steps would be
Pgnavq2)=(1—1f)?, giving rise to aquantumprobability
|AraVq2)|2=(1—f)%. This is the same probability that we
1. Quantum factor of 2 would obtain by simply iterating the diagonal part of the

As suggested in the preceding section, we should begifvolution —matrix, i.e., by approximating UC),
our analysis by examining the classical and quantum short= Zn'Unn'Unn=UnpUnny. Of course, the true probability to
time dynamics of the Sinai kicked map in momentum spacefémain in statep after two steps i dependent: for most
In analogy with the quantum return amplitude,(t) of Eq.  values ofp,, namely,[p,|>f, entirely different parts of the
(7), let PE (1) be the classical probability to remain in state Wave function are scattered at each of the two steps, so the

- o S pd
p, aftert iterations of the map.Classically, for any incom- classical  probability to remain is P (2)=1-2f

B. Short-time dynamics

ing momenturmp,,, a fraction <pdnavg 2y On theother hand, fop very close to zero,
most of the probability that would be scattered at the second
PY(1)=1—f (290  step has already been lost on the first scattering event, so
Phn(2)~1—f>Pie"q2).
of all particles remain in momentupy, after one kick, while The analysis can be extended easily to longer times. The

the remaining fractiorf get scattered to other momentum quantum probability to remain aftérsteps is still given, to
states. Semiclassically, there is amplitude1—f for re- leading order im:, by

maining in the incoming channel, as can easily be seen by ) |

taking the (semiclassical overlap of the initial and final [(UYnnl®=Ann(D)?=]PRL(D%, (31
states. Th@robability to remain unscattered after one step is

then where naively(in the absence of correlations

pelnave () — (1 f)t, (32

“For conventional reasons we will be using the indem label the ~ The true value oPg,(t) for t>1 isp dependent; in quantum
momentum states instead of the generic indassed in Sec. IlI. mechanics, thip, dependence can be understood in terms of
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amplitude that diffracts fronp, to a nearby channel in one nonlinear scarring, these long-time recurrences are given by
step and diffracts back intp, during a following scattering independent Gaussian random variables, convoluted with the
event. The extra amplitude coming from diffracting back andshort-time dynamicsAS"{(t).> The full local spectrum
forth between nearby channels can add in or out of phasg,(E) [Eq. (15)] is a line spectrum with individual intensi-
with the “naive” contribution. As we found previously, the ties P,.=N|(n|£)|* (where we have denoteth,| as(n|)
probability to scatter into a nearby channel after one step i®eing given by ay? distribution, weighted by the height of
f(1—1f); this is comparable to the probabilityfor scattering  the linear envelope at energigs :

into a classically distant channel and being completely lost

from the system as far as the short-time return probability is Pne= ragsﬁhori Ey). (36)
concerned.

Notice that the short-time return probability of E§1) is  Herer ¢ are independeng? variables with mean unitjsee
completely independent of the shape of the buvifp) [as  Ed. (22)]. The expected local IPREq. (4)] is given by a
long as the bump amplitudé is chosen to b©(1) so as to  Product of a factor associated with the short-time envelope
allow scattering into many distant Chanr]e“s] fact, we can and a factor F:3) associated with the Spectral fluctuations
compute the short-time return probability in a simplified I'a¢ Under the envelope:
model where the nonzero part of the potential is replaced by oo
an absorber, and pieces of the probability density simply get _ hor n short 4+ (2
subtracted from the system. For givénwe then have a Z=3(S"(E)] >E_3t=§;m A1 (37)
distribution of the quantum probabilities to reméa, ,(t)|2.

We easily see that thiastestpossible decay of the initial Using the naive short-time dynamics of E§2), we obtain
statep,, is obtained forp,=f, where an entirely untouched an estimate for the typical IPR:
piece of the wave function is absorbed at each step: o of f2) 3

. naivi

PO ) = 1-tf, 33 I ez?’(W s <8
for t<1/f. The largest values of the probability to remain Using the upper bound we obtained in E83) on the rate of
P, arise fromp, near zero, as described above, and alsshort-time decay of an initial momentum channel, we also
from p, that are near simple fractions like 1/2 or 2/3. Thesehave a lower bound on the local IPR:
slowly decaying momentum channels give rise to the most
nonergodic long-time quantum behavior, as we shall see
below.

For each channed,,, then, we can compute the quantum
short-time autocorrelatiod(t); it is given by the square Notice that this lower bound is for moderdtalready larger
root of the quantum probability to stdfq. (31)], times the ~ than the RMT expectation of 3.

2
=—. (39

3f) f

. 2
Iﬂ“”=3(—

phase accumulated from tiizee) quantum dynamics: For a given value of, we may use our knowledge of the
short-time classical dynamics and E¢34) and(37) to ob-
AShO ) = (p,|UY| pn):e—ipﬁt/%pﬁ'nqq)_ (34)  tain a distribution of the local inverse participation ratiys

For f<1, the decay time of the classical autocorrelation
This holds for both positive and negative short tinieete  function PS (t) scales with 1, so we expect the IPR distri-
that A(—t)=A*(t) by unitarity]. For a typical momentum bution P to scale likewise:
Pn, ASOt) has a decay time @d(1/f); upon Fourier trans-
forming we obtain a short-time spectral enveldp8°(E) Pi(Zn) =1P(1,) (40
centered at quasienerg)j/Z and with width of ordef. Spe-
cifically, using the naive estimate of E(R2) and taking the
bump sizef to be small, we obtain a Lorentzian short-time

envelope P(y)=0 for y<2. (41
2f (35) Using the naive estimate of E38) for the IPR at a “typi-

f2+(E—pa/2h)? cal” value of the momentum, we determine that the median
of the distributionP(y) should be in the neighborhood of 3.

for some functionP(y). From Eg.(39) we have a lower
bound on possible IPR’s for smdlli.e.

§hort,naivr(>E) —
n
for |E— p2/2h|<1.

C. Long-time behavior and stationary properties 50f course, for special shapes of the bump, the long-time recur-

1. Scaling properties rences may turn out to be nonrandom and lead to additional local-
. . — ization; in such a situation, the expressions obtained here for in-
.At “”.“es Iong compared W'th_ 1/ most of the initial am- verse participation ratios and related measures of deviation from
plitude in a typical channeb, will have been scattered by ¢gqgicity should be regarded as lower bounds only. Thus, for ex-
the bump, and the return amplitudéln%(t) will be given ample, in the stadium billiard bouncing ball effects are much stron-
semiclassically by a sum over many nontrivial patti®e  ger than would be predicted using naive power counting, due to the
relative phases between the paths being of cotirsepen-  fact that the boundary has a continuous first derivative at the point
denj. As discussed in Sec. lll, and in complete analogy withwhere the straight wall and the semicircular end cap are jdib2d
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This discussion of the IPR distribution has been very gen- 1

eral; however, the details of the functid®(y) may in fact PD~ 172 (44)
depend on classical system parameters other than the bump

sizef. For example, in the equations of motion Eg4) we
could have replaced the free evolution in the second lin
with

for 7> 1/f. We see that the paramefeznters in the expected
‘?Nay, and the tail of the scaling distributidcompare Eg.
(40)] is then given by

q—q=q+ap mod 1, (42 P(y)~1ly? (45)
making the elapsed time between kicks an arbitrary param- for y>1.
eter. (In the Sinai billiard system, the parametercorre-
sponds roughly to the length-to-width ratio of the rectangular
billiard.) The detailed properties of the IPR distributi®Xy) From the inverse square form of the IPR distribution tail
will then depend on the values of classical parameters sucin Eq. (44), it would appear that the mean value of the IPR
as«a, while results such as E¢1) apply more generally to diverges logarithmically for these systems. However, we no-
the entire class of Sinai-type systems. Below, in Figs. 1 andice that at fixed energy the possible IPR is bounded above
2, we present the actual classically computed functign) by the total number of channel$ (this being the IPR for a
for the Sinai kicked map witlv=1; thereP(y) is compared pure bouncing ball stateand so we have

with statistics collected for the corresponding quantum

system. InN
<In>n:<Pnn>n~T- (46)

3. Failure of channel level ergodicity

2. Tail of the IPR distribution

First, we discuss another important qualitative feature ofVe see from Eq(46) that the mean inverse participation
the IPR distribution, namely, the long tail 6¥y) coming ratio in the kicked Sinai systems diverges logarithmically
from momentum channelg, that are near simple fractions With increasing energyor decreasingi); thus the wave
and thus decay on a time scale longer than the ty@¢alf) ~ functions are becoming less and less ergodic at the single-
steps. Consider a very small initial moment{m|<f. As channel scale even as the classical limit is approached, de-
we saw in the discussion immediately preceding B1), spite the ergodicity of the corresponding classical mechanics.
only a very small fraction of the remaining amplitudel ) The situation is more surprising here than in the slow ergodl_c
is scattered during each kick following the first one, becausdystemd9], as in the present case the Lyapunov exponent is
the part of the wave that has not yet been scattered shiffdositive and the Sinai billiards have long been considered a
very little in position space between kicks. Explicitly, the Prototypical example of strong classical ergodicity and mix-

classical probabilitfand thus the quantum amplitude re-  "9: We also note that the logarithmically increasing mean
main aftert steps is given by IPR in Eq.(46) is due not to the bouncing ball statébe

fraction of these scales asNLand thus their contribution to
the mean isN independent but rather to the “near-
bouncing-ball” channels, whose decay time is large com-
pared to the typical decay timeflbut still small compared
for 1<t<(1—f+p,)/p,. Thus the decay time for the initial to the Heisenberg timbl at which individual eigenstates are
state|p) scales as b, and the inverse participation ratiy ~ resolved. Each such channel contributes to many eigenstates
scales likewisdcompare Eq(37)]. These IPR’s are large of the system, but only a small fraction afl the available
compared to th©(1/f) IPR’s obtained for typical channels eigenstates.
[yet small compared to th®(N) IPR’s that characterize Having made predictions about the structure of the IPR
bouncing ball statgs distribution for Sinai-type system@/f lower cutoff, O(1/f)
Similarly, if we choose a momentum channel that liesmedian,O(In N/f) mean, inverse square thilwe now pro-
near a simple fractiorp,=m// + € (for /e<f<1//), then ceed to perform a similar analysis for the other statistical
following the first/ kicks, a fraction/ e is scattered after quantities discussed in Sec. Il. As discussed previously, the
each successive kick, and the decay tifed IPR for such  details (factors of order 1 of the various distributions and
a channel therefore scales as’&/ We dub these special Statistical averages will be system dependent, and can be
momentum channels the “near-bouncing-ball” trajectories.computed explicitly for any specific Sinai-type systéas
We can now easily estimate the fraction of channels withwe will do in the following section What we are interested
IPR greater than some numbemwherex>1/f. All channels  in here is the universal scaling behavior of wave-function
within 1/x of zero satisfy this condition, as do those within structure with bump sizéand wavelength N.
1//x of a simple fractionm//. Now we note that, for a We consider first the individual wave-function intensities
typical integer/, a finite fraction of integersn=1, .../  Pn¢ in the momentum basis. For the typical momentpg
are relatively prime to; thus from each value of we Wwe have seen that the smoothed spectST'(E) has a
obtain a fractionO(/'x1//x)=0(1/x) of channels with Lorentzian peak of height scaling ad Hnd width scaling as
IPR expected to be greater thanAdding up contributions f, centered on the optimal energy,= 3 p? [see Eq(35)]. Far
from all values of/” between 1 and 1/ we have a cumula- from E,,, the smoothed spectrum levels off to a height of
tive probability O(1/fx) for Z, to be greater thaw, or orderf, leading to the typical behavior

|AShor( )| =P2 () =1—f—(t—1)p, (43)
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overlaps of|¢) with the different momentum states to be
uncorrelated, and notice that there are a totaNahomen-

Notice that the median intensity is much smaller than thgum channels to overlap with, we see that %t N/f there

mean[cf. Eq. (50)].

will generically be at least one momentutp,) such that

Even for the most anomalously localized channels, theP,.=x. We now compute the contribution #®,, from all

minimum value of SS"(E) never falls belowO(f); the
smallest values oP,; must therefore arise frong? fluctua-

tions multiplying this typical intensity. For complex wave

function amplitudeg p| &), this implies

1
P(Pn§)~?exp(—Pn§/f) (Pne<<f), (48

intensitiesP,.=x between 1f and yN/f:

Pee=(Pa)n= f dx X2P(Pp:=X)

JNTF 1 InN
zf dx ¥

y T 2r (53

and a corresponding expression is obtained in the real Ccas@ecalling thatN> 1/f). Thus we see that not only the mean,

whereP,,; is a x? variable of mearO(f) andonedegree of
freedom:

exp(— Py /2f)

\ 27TPn§f

P(Pre)~ (Pre<<f). (49

but also the inverse participation ratio for thgical wave
function, tends to infinity in the classical limit:

InN

median__
T; T

(59

The mean of the intensity distribution is of course fixed byThe tail of theZ, distribution arises from the rare intensities

normalization:

(Png)=1, (50)

where once again the averagifig -) can be thought of as
an average over eigenstatés, momentum channe|p,), or
some ensemble of Sinai-type syste(where, e.g., the shape
of the bump can be varied while preserving its total dixe

4. Tails of intensity and transport measures

Lastly, we turn to the tail of the intensity distribution,

Pne> YN/, and using Eq(51) is easily seen to take the
form

1
PZ)~ 2. (55)

é
Having analyzed the statistical structure of individual
wave functions in Sinai-type systems, we can now proceed
to examine the quantum transport behavior. Specifically, we
focus on the long-time transport probabiliB,,, between

which we expect to result from large values of the smoothedV© channelsp, andp,, as introduced previously in Egs.

spectrumS*"°(E). [Fluctuations of the full spectrurS(E)
around its smoothed value haveya form. The probability
of obtaining an intensityP,,, large compared to the short-
time predictionS"'(E,)) is exponentially small.As previ-
ously discussed, a fractiod(1/fx) of all momentum chan-
nels|p) have a peak in the spectru®"®{E) of height=x,
and the width of such a peak is thé1/x). Therefore a
fraction O(1/fx?) of all intensitiesP,,. satisfy the condition
S'(E,)=x, and since the fluctuations iRy around this
smoothed value are of order unity, we obtain

1
( Ppe> ?). (51)

The eigenstate-basis IPR measufe=P,; [Eq. (9],

P(Pog) ~ —

which measures the inverse fraction of channels in which
given eigenstate exists, may be studied in a manner ve

similar to the channel-basis measufg=P,,. From Eq.
(46), we already know theneanvalue of theZ, distribution:

InN

(Z)e=(Peg)e~ —— (52

We proceed to study the structure of the “typical” wave

function |¢). From Eg. (51), we know that, given some
eigenstateé¢), the probability that it has intensity x at any
particular momentunip) is O(1/fx?). If we assume the

(10) and(11). For twotypical channelsp, andp,, each of

the two smoothed local densities of states has the form of a
peak of height 1ff and widthf centered around some energy,
and then falls off to a value dd(f) far from that energysee

Eg. (35]. Since the two peaks are generically centered at
different energies E,— E,/|>f, we easily see that the over-
lap between the two envelopesG¥f):

median
predan_t,

(56)

Of course, we also know the mean value of this distribution
by construction:
(Panry=1. (57)

Large values of the transport measig, arise from those

&n and p, for which the two spectral envelop&s™{(E)

nd S°(E) are both anomalously tall and narrow, and
which also have significant overlap with each other. Explic-
itly, in order to obtain a valu®,,,,=x for largex, we require
I,=X, I, =X, and also|E,—E,/|<1/x. The combined
probability for these three unlikely events scales as

1 1\/1
P~ gl ) ) %9

SO
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1 1 0.12
PPon)~ —5—— | Pan> 5] (59 8
f2 f 5] 0.1
nn’ 3 .
This is a very quickly decaying tail compared to the one*}j o osh
obtained previously for the inverse participation rabq,, N
[compare Eq(44)]; thus transport efficiency for this class of &

systems is much less anomalous than the structure of indiZ
vidual wave functions. This makes sense intuitively and is’g

also consistent with the findings for slow ergodic systems in& ©-%4f

Ref. [9].

Finally, the remaining measure we must consider is the 0.02f

final-state-averaged transport efficien@y, for initial state
p, [introduced in Eq(13); see also Eqg10) and(11) for the
definition of P,,», the long-time probability of getting to
channelp,,, from channebp,]. The quantit{Q,), as well as

the typical value of),,, will be dominated by the Lorentzian

envelopes governing typical intensitieg, :

1
P”n':NE§ Pn,fpn’g
J‘dE
) 2n

2f
2+ (E— pa/2h)?

2f
f2+ (E—p2 /2f)?

(60)

4f
42+ (pZI2h—p?,12k)? )’

0

FIG. 1. The distribution of thgdimensionlesslocal inverse
participation ratioZ,= P, is plotted for bump sizé¢ =0.1. From
left to right, the four solid curves represent data foe 100, 200,
400, and 1600. The theoretical predictitsee text is represented
by dashes, while the random matrix predictiorZis 3.

measures the inverse fraction of eigenstates having signifi-
cant intensity at some momentum chanpgl The bump
sizef is fixed at the moderate value of 0.1, which is small
compared to the system size of unity, yet large compared to
wavelengths M=<0.01 that we are going to consider. In Fig.
1, the IPR distributionP;(Z,,) is plotted (solid curve$ for

where in the second line we have inserted the typical intenS€veral values of the gquantum wavelenght=100, 200,

sity in channelp, of a state|¢) with energyE [from Eq.
(35)]. Now

1
Q= > Prw
n

j d(p?,/2h) 4f ‘1
2w\ af2+(p22n—p?120)2)  2F°
(61

The mean and the median both scale as

1
<Qn>~ nmedlanw?; (62)
and furthermore in the classical limit— it is exceedingly
difficult to obtain values ofQ,, either small or large com-
pared toO(1/f). Foralmost anyinitial channelp,,, the frac-

tion of final channelp;,, to which one can be transported at

long times isO(f)<1. Bouncing ball(free propagation

channels of course have even less coupling to other mome
tum states[roughly speaking, they couple to themselves

only, P,,=0O(N) and thusQ,=O(N)], but these constitute
a vanishing fraction of all channels in the classical limit.

V. NUMERICAL TESTS IN SINAI KICKED MAPS

400, and 1600. In each case, an ensemble has been con-
structed by varying the bump height paraméten Eq. (26);
each realization withK =0(1) is expected to have the same
wave-function statistical properties, as discussed in the pre-
ceding section.

Also plotted as a dashed curve in Fig. 1 is a classical
prediction forPs(Z,). This quantity is obtained by taking a
random sample of initial momenta,, and for each of them
computing classically the probabiliﬂ?,ﬁ'n(t) to remain un-
scattered aftet bounces. Given the short-time classical be-
havior Pﬁ'n(t), we use Eqgs(34) and(37) to predict the ex-
pected quantum IPR for that momentum chanmgl,
eventually leading to the distribution shown by the dashed
curve. Of course, this is a semiclassichl-{-o) prediction;
in particular, it ignores fluctuations in the IPR that result
from summing over a finite number of eigenstates in @&g.
(even in RMT, fluctuations around the mean value of 3 are
expected for finiteN).

Indeed, we see in Fig. 1 that the quantum IPR distribution
does appear to approach the classically predicted distribution
rz]a_sN gets large; the convergence withwill be studied more
quantitatively below in Fig. 10. By the time we readh
=1600, the peak of the distribution is within 10% of the
classically expected value, and is shifted by a factor of 7
from the naive random matrix prediction. We also notice that
all the IPR’s in our sample are larger than the value of 3
predicted by random matrix theory, and most are larger by a

We proceed to a numerical study of the structure of wavdactor of at least 5: this is unmistakable evidence of strong
functions in the Sinai kicked systems, focusing on those stadeviations from microscopic quantum ergodicity in the
tistical properties that we have treated theoretically in thekicked Sinai systems.
preceding section. We begin by considering the distribution Next, in Fig. 2 we fix the total number of channelsNat

of inverse participation ratio€, [Eq. (4)], each of which

=1000, and study the IPR distribution for various values of
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FIG. 2. The distribution of the scaled inverse participation ratio  FIG. 3. The tail of the IPR distribution is plotted fét= 1000,
fZ is plotted forf =0.1 (dashed curvgsandf =0.2 (dotted curves with f=0.1 (solid curve and f=0.2 (dashed curye The theoreti-
N=1000, and for each value éftwo distributions are plotted cor- cally predicted 0.6KZ)? behavior[Eq. (45)] appears as a dotted
responding to different bump shap@ege text line.

the bump sizd. Guided by the predicted scaling relation of behavior persist to IPR’s of about 300, where the IPR be-
Eq. (40), we choose to plot the distribution of the scaled comes comparable to the total number of channels and the
quantity fZ,, for each value of bump size For each off theory naturally breaks down.

=0.1(dashed curvgsandf=0.2 (dotted curvek two distri- We recall that this breakdown of the inverse square law at
butions are plotted: one for th_e_ orlg_lnal kick p_otentlal of Eq.Z~N leads to the prediction of mean IPR growing logarith-
(26), and the other for a modified kick potential mically with N: (Z)~ (0.6/f)In N+const[see Eq(46)]. This

behavior is indeed observed frranging from 100 to 1000;

B ﬁ B } +i z_f2 for |q— =l <~ we omit the figure here because an analogous plot for the
V(g)= 2f q 2| 2 q 2| 2 billiard system appears in Fig. 10 in the following section.
0 otherwise. The median R, shows no such increase wilj it saturates

(63) at~2.35/f independent oN [see(Eq. 38]. The median IPR
for an eigenstateR,), on the other hand, does grow loga-

The latter potential has a kink gt=1/2, causing a disconti- rithmically with N, but only half as fast as the mean, in

nutiy in the classical dynamics. We see from Fig. 2 that theagreement with Eq54).

choice of kick potentialEq. (26) or Eq.(63)] has no signifi- We next turn to the distribution of individual wave func-

cant effect on the IPR distribution, as long as the bump sizéion intensities. In Fig. 4 the distribution of intensitiBg, is

f is fixed, confirming the universality predicted in the previ- plotted for f=0.1 andN=1000 (solid curvg. The classical

ous section. In particular, we notice that the flat part of theprediction(obtained as described in the discussion of Fig. 1

potential [V'(q=1/2)=0] in Eq. (26), which scatters any

incoming channel back into itself, has no discernible effect 100

on quantum localization at the energies under consideration e TS
The classical prediction for the scaling distributi®(f Z) 1l RMT

is also plotted in Fig. 2 for comparisdeee solid curve We

see very good agreement among the four sets of quantur

data atf=0.1 andf=0.2; similar scaling behavior withis

observed for the billiard system in Fig. 9 below. Again, the

slight discrepancyaround 10%) between the numerical data °

and the classical prediction may be attributed to the finite-

ness of the energy. At these energies, the minimum observe

value of the IPR appears to be near 1.5 contrast to the

2/f semiclassical limit prediction of Eq39). 0.00000001 |
In the tail, we predicfEq. (44)] the inverse square behav- . . . R TR S

ior P(x)~c/fx? for the IPR distribution, where the constant 0001 001 01 1 10 100 1000

c can be determined to be 0.6 through a detailed classica intensity

analysis of this system as described above. Emﬂ)z tail FIG. 4. The distribution ofdimensionlessintensitiesP,,, for

for the distribution of the scaling quantifyZ is indeed ob- -0 1 andN=1000 (solid curve. The classical predictiorisee

served in Fig. 3, where the prediction appears as a dotted lingxy) follows the data very closelydashed curve Asymptotic

on the log-log plot, while the solid and dashed curves repreforms for the headEq. (49)] and tail[Eq. (51)] of the distribution

sent data forf=0.1 andf=0.2, respectively. These data are both drawn using small dashes. For comparison, the Porter-

were again taken foN=1000, and we see the power-law Thomas distribution of RMT appears as a dotted curve.

/ Large intensity
asymptotics

on

0.01 I pata and Classical Prediction /

0.0001 |

ability distributi

Prob

0.000001 | Small intensity asymptotics /'
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FIG. 6. The modified Sinai system, with a partial disk occupy-
ing a variable fractiorf of the right hand vertical wall.

b tion can then be expanded as

1 .
V(x,y)= \/Te*"‘nx sin(nry/b)

n

Snn,efﬂknraeiknrx Sir(n”ﬂy/b),

1
X, —
n’ \/kn/

64
FIG. 5. (a) The Lorenz gas and two choices for a fundamental (64)

domain.(b) A Sinai-like billiard related to the Lorenz gas. where for later convenience we have factored out a phase

above is plotted as a dashed curve; the difference betweeﬁXp@k”’a) from tr?en.,tﬁ cholugm OIfI thr?.s matgég(lf(;here isl
data and prediction is barely visible except in the very tail© Scatterer on the right hand wall, this makeisie diagona

where the statistical uncertainty in the data becomes impofdnit matrix, assuming Dirichlet boundary conditions thre.
tant. The two analytic asymptotic expressionsNOW suppose that we reflect the scattered wave from the left

exp(—x/2f)/\2mxf for small intensitiesx [Eq. (49)] and wall back toward the right hand side, in accordance with the
1/fx3 for largex [Eq. (51)] are also shown in Fig. 4. These closed billiard problem we wish to solve. This can be done

two expressions are valid for<f andx> 1/f, respectively. by imposing a boundary condition at the left wall, which
By contrast, the RMT Porter-Thomas predicti¢dotted need not necessarily be DirichléW¥We indicate this by using
curve does not agree with the data in the head, body, or taig dashed line to represent this wall in Figl B.the wave is
of the distribution. See also Figs. 11 and 12 below, whichreflected from the left wall ak=0, it returns with a new
focus separately on the head and tail of the intensity distriphase exp) given by the boundary condition at the left
bution for the billiard system, and again find good agreementvall. We define

with theory and disagreement with RMT.

The distribution of transport measures,, has also been Unn = Shnr expl— 2ikpratié). (65
studied and observed to possess &xt/ behavior forx ) ) . ) )
>1/f, as predicted in Eq59). These data are omitted here S€tiing ¢n= eXp(—lkpX)Sln(nwy/b)/\/k—n, the net incoming
as very similar behavior is obtained for the billiard in Fig. 13 (fight-moving wave is then
below. The overall transport efficiend likewise follows 1
the predicted scalin@~ 1/f of Eq. (62), so that only a frac- (L+U+U2+ - ) gy=——— i, (66)
tion O(f) of all channels are quantum mechanically acces- 1-U

sible at long times starting in any one initial channel. )
(see Fig. 6.

VI. LOCALIZATION IN SINAI BILLIARDS Evidently, a bound state can be built up in the billiartlif
has an eigenvalug-1. We can diagonalize thg matrix and
The Sinai billiard was the first nontrivial dynamical sys- consider the properties of its eigenstates. Slids a unitary
tem shown to be ergodic with positive Lyapunov exponentmatrix, its eigenvalues lie on the unit circle. As we change
[20]. In this sense it ishe paradigm of chaos. Itis also a unit the phase shifts at the left wall, the eigenvalues will corre-
cell of the Lorenz gas, a periodic array of hard disk scatterergpondingly rotate around the unit circle; each of kheigen-
[see Fig. 8a)]. For numerical reasons we investigate a modi-yg|yes ofU (assuming there arl open channe)swill pass
fied Sinai system with the circular disk off center and juttingthrough+ 1 for somed, so thatevery eigenstate of U is an
only part way into the billiard; this is sill a chaotic system gjgenstate of the closed billiard with some boundary condi-
[see Fig. %0)]. tion at the left wall and Dirichlet boundary conditions
elsewhere
If one is willing to search through ranges of energies or of
A scattering system closely connected with both the Lo-box lengthsa one can find a set of eigenstates satisfying a
renz gas and the Sinai billiard puts the Sinai disk at the engarticular boundary condition; this is a way of finding eigen-
of a corridor of lengtha (Fig. 6). The scattering wave func- values and eigenstates of the billiard with Dirichlet boundary

A. Scattering method
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FIG. 7. Two typical eigenstates of ti&matrix for the Sinai-like
scattering system.

conditions; they are given by eigenstateslbfwith eigen-
value 1 (where one setgp= ) [17,21. However, here we
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lkinematics

FIG. 8. Top: long-time transport probability between channels
andn’ for thea=b=2= (squar¢billiard, f=0.1 (m=A=1). Bot-
tom: the fringe pattern from Eq68).

point that Gaussian random wave-function statistics are
much stronger than required for SZCdV ergodicity, and that

do not seek the Dirichlet solutions, since they are not speciahuch coarser randomness can still lead to ergodic transport
as far as their localization in the channel space is concernedassically. Below, we see that transport in momentum space

(this has been verified numericallyThis is of great value in
gathering the statistics needed here.
Two typical eigenstates of tHg matrix are shown in Fig.

may even be highly organized, but in a way that still permits
coarse-grained SZCdV ergodicity.
The density plot of the transport measig,, for a typi-

7; these show fairly obvious nonstatistical mixing of differ- cal case {=0.1 with 280 open channels, side lengths epual

ent directions of propagation in the billiafghonmixing of
channels in the scattering approach

Patterns in the channel (momentum) transport

A new twist arises in the channel transport measyyg ,

appears at the top of Fig. 8. A pronounced fringe pattern is
evident. This pattern changes with the length of the billiard,
and as we now show represents alternating constructive and
destructive interference due to the phase factors dx)2

where a is the box length and, is the horizontal wave

which we now present. Heretofore we have been making theector. TheS matrix itself shows none of this fringing, but it
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is strongly evident already fd8?. We have SZCdV, non-Gaussian statistics may prevail. Here, we see a
very structured and nonrandom fringe pattern, which, how-
2 = S 6 ever, varies on a_sc_ale proportional#tp doing no harm to
nn % Snir Snn ) the Schnirelman limit.
and sinceS is diagonally dominated, the major contribution
to &2, for n#n’ is B. Numerical method

nn’
B The simple method that we use to find tBeatrix makes
SnnSnn' + San'Surnr = Sanr (Sant Sornr).- (68) use of the expansion in E¢64), including up to 70 or 100
Of courseS,, and S,/ can interfere; these diagonal ele- ¢losed channels along with all the open chanriélz-500
ments have factors exikga) and exp(k,a), respectively. here as a basis. Linear equations are set up by requiring that

Subsequent iterations reinforce this interference and give (X:y) vanish at up to 1000 pointsx(y) along the right

very sharp preferred channels that one can end up in whefd wall. The basis functions already vanish algrg0
starting from a given initial channel. A plot of andy=b, which is a mixed blessing, since this is also true

beyond the right hand wall, where this vanishing is unphysi-
W, =|exp2ik,a) + exp(2ik, a)|?® cal. Without the inclusion of closed channels the method
does not converge. The rectangular linear probl&m<(N’,
appears at the bottom of Fig. 8, and is seen to bear a closghereN’ is the total number of channels, including the eva-
resemblance to the fringe patternRy,, (the exponent 28 is nescent modes, aM is the number of points along the walll
of course arbitrary and only serves to set the contrast ratio afet to zerp is then solved by singular value decomposition.
the plod. It should be kept in mind that the fine detglixel ~ The rationale for inclusion of closed channels is that they
by pixel) of the intensity modulations present ity is ab-  handle details of the boundary conditions at the disk on a
sent in the lower plot, but the overall modulation of the re-scale smaller than a wavelength. The closed channels are
gions of large and smal,,, is almost identical. naturally all taken to have total energy equal to the scattering
Interestingly, the special channels that correspond to clagnergy, usingk?=k2+ k§ with k, pure imaginary andk?
sical free motion(never hitting the obstructigrshow up on <. The values ofk, used were given by the quantized
the diagonal as hyperbolic points of high density. This mawalues in the corridor; however, this would not be necessary
be shown by expanding in the channel indexleast in the if we included additional points along the top and bottom
lowern region where the Taylor series holds fan~1),  walls near the right hand end, and explicitly forced the total
e, wave function to vanish there.
. . We find that with the restricted basis described above the
|exp(2ikna) + exp(2iK n+an)d)| convergence is poor if the disk protrudes too far into the
~|1+ exf 2ia(dk,/dn)An]|, (69)  Dbilliard. By keeping the center of the disk well to the right of
the wall, we are able to get stable results for energies such
wherea is the length of the rectangular box. Sinke=Kk that kd= 107, whered is the distance the disk protrudes.
= 2(E—n?#?/2b%) and kny=n7/b, whereb is the height This means that the obstruction can be made at least several
of the box, we have wavelengths wide in both dimensions, a requirement that we
must satisfy in order to be in the high-energy regftigypi-
cally the states we study are in the range of the 10 000th to
100 000th eigenstate of a fixed boundary condition billiard; it
is possible to go beyond the one-millionth state for small
Then the interference in E@69) is maximally constructive disks. The range of stability of the method may perhaps be
for greatly extended by generalizing the basis to more flexible
evanescent modes, as discussed above.
The disk covers a fractioh of the right hand wall. We
take that fraction to be between 0.04 and 0.28. In analogy

with the map discussed above, a fraction fLof the incom-
i.e., exactly for the free motion trajectories. The special
channels correspond with the hyperbolic regions along the—
diagonal in Fig. 8. The near-bouncing-ball channels near theg .y . ) )
free propagation channels preferentially diffract symmetri- A stronger condition on the protrusion distangenust be im-

callv about these special channels. as evidenced by the IOCp?sed in order to avoid dynamical localization effects associated
y . P . L y Cith diffusion in angle space. After each scattering event, the angle
hyperbolic structure. This is again a consequence of the i

n' . 2 2 .
. ) . changes byO(d/f) if d<f, so O(f</d“) scattering events, or
terference structure in EG68). Essentially, there is a pref- O(f/d?) total bounces, are necessary in order to diffuse over all

erence to scatter by a multiple of a reciprocal “lattice” vec- 4ngies. To ensure that this Thouless time is large compared with the
tor, (2aAk=2m7), reminiscent of Bragg scattering from a pejsenberg time, which i©(k) bounces, we require thetbe large
periodic structure with lattice constaat compared with the geometric mean of the wavelength and the bump
The dramatic interference pattern is another interestingjze . Indeed, when we look at the eigenstates of our system in
quantum signature of a short-time effect, already evident afmomentum space, we find that on coarse-grained macroscopic
ter one iteration as explained above. It illuminates anothegcales the eigenstates are ergodic, so that we are in fact high enough
variation on the theme of this paper: on scales finer thamp in energy to be able to ignore strong localization effects.

ok, k

P _ Sy T
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FIG. 10. The average IPR is plotted, showing the predicted de-
pendence oM andf.

FIG. 9. The probability distribution for the IPR’s is plotted for bution of IPR’s, withN-independent width, in contrast to the
various values of, showing the predicted scaling behavior. RMT prediction that the spread in the IPR distribution
should go to zero as {N.
ing wave is not scatterered on the first bounce, approxi- 1he tail of the IPR distribution is predictd@q. (44)] to
mately independent of the incoming channel. The discussioRave the power-law behavidP(Z,)~1/fZ;. This inverse
of Sec. IV B holds without modification, including the quan- Square behavior was indeed observed, and is similar to the

tum factor of 2 in the effective cross section of the disk,Same falloff already seen in Fig. 3 for the kicked Sinai maps.
corresponding to diffraction into nearby channels. The power-law tail together with the cutoff in the maximum

The localization of the wave function which we now have PR 1ead to the prediction of Eq(46), namely, (Z,),

come to expect in channel space ultimately arises from the:<P|”|g£"~ InNN/f.;\' plqt of t_heFt.heldOepeEdentcr:a of the aver;
fact that only a small fraction of the incoming channel is 89€ on N andlis given in Fig. 11, where the agreemen

scattered after each iteration of tBematrix for smallf. The with E_q. (46) is seen to _be excellent. As _pred|cted_, the mean
. . : IPR diverges logarithmically away from its ergodic value of
typical scattering channel presents fresh amplitude to th

: ) . S in the classical limit.
disk after each bounce, scattering another fractiai the The distribution ofsmall intensitiesP . should be given

remaining amplitude. The resulting slow decay out of theg, o\, g matrix by Eq.(49). This behavior at the low end of

initial channel is already enough to cause gross anomalies ilrhe P,. distribution is in very good agreement with the

the wave-function statistics, as compared to RMT. SpeCiﬁ’[heoryfFig. 12).

cally, this arises from the short-time induced Lorentzian en-  Eipally, we consider the tails of the intensity and transport

velope in the quasienergy spectrum, as discussed in Segeasures. From E@51) we expect a cubic falloff in the tail

IVB 2. ) . of the P, intensity distribution:P(Pn§)~1/fPﬁ§ for P,
Classically there are also now a finite number of angles 5 1/ | Fig. 12 we display the predicted and numerical

with (a/b)tang=n/m for integermandn, that never hitthe  oq,1ts  showing good agreement between the two. This be-
disk. For channels corresponding to propagation near these

angles there is a reduction in scattering out of the initial
channel. These channels are not true bouncing ball modes,
but near enough to have a strong effect on lifetimes.
(“Time” is now the number of iterations of th& matrix.)
Again in complete correspondence with the discussion
above, the tails of various distributions are governed by these
near-bouncing-ball orbits.

£ =0.072
N = 395

Pe )

gPRE AR

data

C. Numerical findings: Sinai billiard

We consider first the return probabilitinverse participa-
tion ratio) measures. The scaling relation for the IPR prob-
ability distribution P¢(Z)=fP(fZ) was predicted in Eq. . . . . . .
(40); a plot of fP(fZ) vs fZ for various values of the disk 0 02 04 06 08 1 12 14
sizef is shown in Fig. 9, confirming this scaling over the Ppe x10°
whole domain of IPR values. We see also from the plot that
the typical IPR in the Sinai system s2/f, which for the FIG. 11. The distribution oP,, is plotted for small values of
values of f considered is much larger than the RMT- P, and compared with theory, E¢19). In this case the bump size
predicted value of 3. We also see the expected broad distris f=0.072 and the number of channelsNs= 395.
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making that portion of the amplitude that does scatter do so
randomly. This gives rise to Lorentzian envelopes as in the
dynamical systems, but not with the near-bouncing-ball ef-
fects, which strongly skewed the tails of the intensity, IPR,
and transport distributions discussed above. $heatrix for

the collision off the Sinai obstruction in the corridor is the
key element in the theory of the eigenstates presented above.
3 The S matrix for this process is unitary and symmetric. The
fully random matrix ensemble corresponding to a symmetric
1 S matrix is Dyson'’s circular orthogonal ensemble, the COE
[22]. However, we wish to modify this to a diagonally domi-

Tail of Pnf 1

P (Pn&)

N i nated symmetric unitary matrid that includes the effect of
_ N random off-diagonal coupling of variable strength. The ran-
1 10 100 dom component schematically represents the scattering off a
Pné small object, with none of the subsequent dynamical corre-

lations built in. We take the form
FIG. 12. The tail region of théP,, distribution shows good
agreement with the predicted cubic power law, fora>22# bil- U=exdi(D+qgR)], (72
liard, f=0.23, and 226 channels.
whereD is a diagonal matrix with randomly chosen quasien-
havior is controlled by the near-bouncing-ball dynamics.ergies on the intervdl0,27), andR is a GOE random ma-
(We do not discuss again the behavior of the intensity distritrix. Ensembles similar to this have been used previously to
bution intermediate between the head and tail; in Fig. 4 weénodel spectral statistics intermediate between Wigner-Dyson
saw already that the entire distribution is well-predicted clasand Poissoh23].
sically.) For largeq we approach the COE limit; one iteration of
The tail of the transport distribution measuPéP,,,/) is  the U matrix on a starting vector will then decorrelate it
given by Eg.(59), P(P,,)~1/f2P? . Figure 13 again Ccompletely. That is, the self-overlap becomes

nn’ -
demonstrates very good agreement with this estimate. Notice 5
that the RMT prediction i, =1 for all channelsi#n’. [(njum* 1 73
KnimpP N’
VIl. SIMPLE UNITARY MATRIX MODEL

. . This one-step decay corresponds to a pseudoenergy uncer-
The previous examples corresponded to physical SYSIeMB4inty of 2, which is just that required to give a uniform

or maps, which have a direct basis in dynam_ics. Above, we ectral density ofi0,2). For smallerq we have slower
have compared the results for such dynamical systems %p . e
ecay, varying as

random matrix theory. However, there is a variant of the
usual random matrix theory, i.e., a modified random matrix 12
ensemble, which retains some of the gross characteristics of |(n[U™|n)] ~ exp(— ym) (74)
our dynamical systems, while remaining free of any real dy- [(n|n)[? Y,
namics. The main idea is to retain the tendency to scatter
back into the same channétliagonal dominangewhile  which leads to a Lorentzian line shape as in &%)
The measures of distributions, tails, etc., above can be
defined for the Lorentzian envelogamodified COB model
[ Tail of Pnn' 1 as well. The situation here is less rich, since almost all states
\\ decay with approximately the same rate, unlike the special
\ theory p~* channels(angle$ in the Sinai models that dictate anoma-
b 1 lously slow decay. The IPR is anomalous, up by a factor of
~y~1 from the RMT prediction due to the Lorentzian
LDOS envelopes. Transport is similarly anomalous, with
1 each channel coupled to only a fractieny of all the other
channels at long timeQ)~1/y).
Due to the near-bouncing-ball orbits, the average IPR in
L} 1 the Sinai systems revealed a localization increasing Bi#fIn
N as the classical limiN— o was taken. For the unitary matrix

N model, we have only a single decay raténot the distribu-

! tion caused by the near-bouncing-ball orpitthe resulting
average IPR is therefore predicted to be independem. of
The decay ratey is given by the variance of the matrgR

FIG. 13. The tail region of the plot of the,,, distribution  through the golden rule,
shows good agreement with the predicted quartic power law, for a
2 X 24 billiard, f=0.23, 226 channels. y=2m{((qR)?)p (75)

P (Pnn')

1 10 100
Pnn'
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TABLE I. IPR for modified COE. theory[4,9,13,18, which showed that the effects of the least
unstable periodic orbits survive the—0 limit. However,
N this is only one possible type of non-RMT “anomaly” in
Y 350 450 IPR=6/y classically chaotic systems.
0.084 626 65.9 714 Our first investigqtion beyon_d scar theory, using the So-
0.188 32.9 34.7 319 called tilted wall billiard, examined a very slowly ergodic

classical system with the expectation that its eigenstates
would be maximally likely to show non-RMT behavior. In-

with p=N/27. In the limit of smally, the IPR should vary deed, the eigenstates did show increasing localization on

as 3 2/y, where the factor of 3 is the COE fluctuation fac- Small scales asi—0, while still of course obeying the
tor. Table | shows the mean IPR’s averaged over all the basisZCdV ergodic theorem. . .
states for two values each of and y using the modified In the present study we have switched to the traditional

COE. Excellent agreement is seen between the predicted aRg'adigm of classical chaos, namely, the Sinai billiard and
observed IPR’s. The long power-law tails in the intensity,sf)me close cousins. We have been a.ble to shaw t_hat th.e
IPR, and transport efficiency distributions, present in the reafigenstates are ever more strongly localized in a certain basis

dynamical Sinai system, are all absent, as expected, in ttRsfi—0. The basis used is not ex_traordinary: essentially it is
modified COE model. the usual plane waves of scattering theory. We showed that

the mean inverse participation ratio in the Sinai-like systems

diverges logarithmically with increasing ener@yr decreas-

ing #), implying that wave functions are becoming less er-
Random matrix ensembles possess eigenstates that dedic at the single-channel scale as the classical limit is ap-

maximally random, consistent with the symmetry constraintgroached. The situation here is more remarkable than in the

governing the particular ensemble. The properties of suchilted billiard [9], since in Sinai systems the Lyapunov expo-

eigenstates form the basis of much work in quantum chaogent is positive and classical correlations decay exponen-

theory, and more importantly the basis of much theory oftially. A major conclusion of this work is that the logarith-

nuclei, molecules, and especially mesoscopic devices. Is ramaically increasing mean IPR in E¢46) is not due to the

dom matrix theory the limit to which real classically chaotic bouncing-ball states but instead to the “near-bouncing ball”

systems need to adhere fas-0? Definitely not. channels, whose decay time is large compared to the typical
The SZCdV theory predicts only coarse-grained ergodicdecay time 1f but still small compared to the Heisenberg

ity of individual eigenstates in the— 0 limit, which is much  time N at which individual eigenstates are resolved.

weaker than the requirements of random matrix ensembles. Another key point is that short-time quantum dynamics

This gap, between random matrix ensembles on the one harghd correlation functions have an irreversible effect on the

and SZCdV on the other, leaves open many questions abolficalization properties of the eigenstates, as in the case of

the true nature of eigenstates of classically chaotic systems #car theory.

the#—0 limit. We have been engaged for some time in the Undoubtedly there are many more non-RMT effects in

exploration of these questions, which address the fluctuatiorgigenstates yet be uncovered in other systems, including

of eigenstates on scales that shrink as some positive frasome that could affect important physical properties.

tional power of Planck’s constarior, more physically, as

some negative .frallctionlal power of the energ$ince such ACKNOWLEDGMENT

scales become infinitesimal 4s-0, SZCdV has little to say
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