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Short-time effects on eigenstate structure in Sinai billiards and related systems

L. Kaplan*
Department of Physics and Society of Fellows, Harvard University, Cambridge, Massachusetts 02138

E. J. Heller†

Department of Physics and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 0
~Received 21 October 1999!

There is much latitude between the requirements of Schnirelman’s theorem regarding the ergodicity of
individual high-energy eigenstates of classically chaotic systems on the one hand, and the extreme require-
ments of random matrix theory on the other. It seems likely that some eigenstate statistics and long-time
transport behavior bear nonrandom imprints of the underlying classical dynamics while simultaneously obey-
ing Schnirelman’s theorem. Indeed this was shown earlier in the case of systems that approach classical
ergodicity slowly, and is also realized in the scarring of eigenstates, even in the\→0 limit, along unstable
periodic orbits and their manifolds. Here we demonstrate the nonrandom character of eigenstates of Sinai-like
systems. We show that mixing between channels in Sinai systems is dramatically deficient compared to
random matrix theory predictions. The deficitincreasesas u ln \u for \→0, and is due to the vicinity of the
measure zero set of orbits that never collide with the Sinai obstruction. Coarse graining to macroscopic scales
recovers the Schnirelman result. Three systems are investigated here: a Sinai-type billiard, a quantum map that
possesses the essential properties of the Sinai billiard, and a unitary map corresponding to a quasirandom
Hamiltonian. Various wave function and long-time transport statistics are defined, theoretically investigated,
and compared to numerical data.

PACS number~s!: 05.45.Mt, 03.65.Sq
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I. INTRODUCTION

In recent years, much attention has been paid to the st
ture of quantum eigenstates in systems with a chaotic
ergodic classical analog. For integrable systems, Einst
Brillouin-Keller quantization provides an intuitive unde
standing of classical-quantum correspondence, associa
quantum wave functions with the invariant tori of the und
lying classical dynamics. In a classically ergodic system,
typical trajectory fills an entire energy hypersurface at lo
times, and it is natural to conjecture that a typical hig
energy eigenstate of such a system similarly has inten
distributed evenly over an entire energy shell. Thus, Be
suggested in 1983 that an eigenstate of a classically erg
system should look locally like a random superposition
plane waves of fixed energy, with momenta pointing in
possible directions@1#. Similarly, Bohigas, Giannoni, and
Schmit@2# proposed that the quantum properties of a cla
cally chaotic system should correspond to those of rand
matrix theory~RMT!. This implies that wave-function inten
sity should be distributed over an entire energy surface, w
the wave-function amplitudes at distant points behaving
independent Gaussian variables.

The conjecture that chaotic eigenstates obey RMT sta
tics is a statement about quantum structure at the scale
single wavelength in position space@or on the scale of a
single channel in momentum space, or, more generally, o
mesh of cell sizeO(\) in phase space#. Rigorous results on
quantum ergodicity, however, mostly address structure
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classically large scales, in the limit where\ becomes small
compared to the phase-space region over which wa
function intensity is being smoothed. Specifically, theore
by Schnirelman, Zelditch, and Colin de Verdiere~SZCdV!
@3# state that, for a classically defined operator, the expe
tion value over almost all wave functions converges to
microcanonical average of the classical version of the op
tor, in the \→0 limit. Since the classical symbol of th
operator is kept fixed as the limit is taken, these theore
provide information only about the coarse-grained struct
of the eigenstates, and not about the structure at quan
mechanical scales.

Wave function scarring, the anomalous enhancement~or
suppression! of intensity near an unstable periodic orbit, is
well-known example of non-RMT behavior of eigenstates
a classically chaotic system. The distribution of wave fun
tion intensities on a fixed periodic orbit can be computed
the semiclassical limit using the linear and nonlinear the
of scars@4–6#, and is found to be very different from th
Porter-Thomas prediction of RMT. Furthermore, upon e
semble averaging, a power-law wave-function intensity d
tribution tail is obtained~and numerically observed! in cha-
otic systems, in contrast with the exponential fallo
prediction of RMT. The fraction of strongly scarred stat
remains finite in the\→0 limit. Nevertheless, scarring pose
no threat to the SZCdV ergodicity condition, because
size of the scarred phase-space region surrounding the
scales with\, tending to zero in the semiclassical limit.
finite intensity enhancement factor affecting an ever sma
region of phase space is entirely consistent with ergodi
on coarse-grained scales. However, the scarring phenom
does have very significant effects on physical quantities
depend on fine-scale structure, such as conductances an
409 ©2000 The American Physical Society
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410 PRE 62L. KAPLAN AND E. J. HELLER
cay rates through small~or tunneling! leads@7,8#.
Another example of markedly non-RMT behavior st

consistent with SZCdV coarse-grained ergodicity is found
the ‘‘slow ergodic’’ systems, such as the tilted wall billiar
and the sawtooth potential kicked map@9#. In these systems
the classical rate of exploration in momentum space is lo
rithmically slow, and for large\21 the number of channel
occupied by a typical eigenstate scales only as\21/2 ln \21,
constituting an ever decreasing fraction of theO(\21) total
available number of channels. However, the ‘‘bright’’ cha
nels occupied by a given wave function tend to be eve
distributed over the entire phase space, and thus coa
grained ergodicity still holds in the limit, even though th
wave functions are becoming less and less ergodic at
single-channel scale as\→0. The present paper extends t
indications of non-RMT ‘‘clumping’’ of wave-function den
sity beyond the effects of scarring. Moreover, we use as
examples the original paradigm of classical Hamilton
chaos, the Sinai billiard, and closely related quantum ma

The remainder of this paper is organized as follows. In
next section we discuss measures of ‘‘microscop
(\-scale! quantum ergodicity, including various inverse pa
ticipation ratios and channel-to-channel transport measu
Then in Sec. III the connection is made between these
tionary properties and the short-time dynamics of a quan
system. In Sec. IV the Sinai kicked map, a one-dimensio
model for the Sinai billiard, is introduced and discuss
Strong deviations from single-channel quantum ergodic
are predicted, and distributions for various quantities
computed, that differ greatly from RMT expectations. W
see that classical methods can be used to determine the
ergodic structure of the quantum wave functions, ev
though the classical dynamics is entirely ergodic. Quant
tive comparison with numerical data follows in Sec. V.
Sec. VI a similar analysis follows for the two-dimension
Sinai billiard system, a paradigm of classical and quant
chaos. Here again strongly non-RMT wave function intens
distributions are predicted and observed. In Sec. VII a sim
matrix model is presented and studied, some of the statis
properties of which correspond to those of the Sinai syste
Similarities and differences between the Sinai systems
the matrix ensembles are discussed. In the final section
sum up the results and discuss certain directions for
future.

II. MEASURES OF \-SCALE ERGODICITY

We now review some important concepts related to
quantitative measurement of quantum structure and trans
at ‘‘microscopic’’ ~i.e., single-wavelength or single-channe!
scales. An alternative discussion may be found in@9#.

Consider a classically ergodic system with quant
eigenstatesuj& and a test state basisua&. The test basis can b
chosen to be the set of position states, momentum st
phase-space Gaussians, or any other set of states moti
by the physics of the problem. Often the test basis will
taken to be the set of eigenstates of a zeroth-order Ha
tonian H0, of which the full system HamiltonianH5H0
1dH is a perturbation. One is then interested in determin
whether the true eigenstatesuj& have a nontrivial structure in
the statesua&, or whether the perturbationdH is sufficiently
n
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large so as to completely randomize the matrix eleme
^auj&. Thus, in the case of tight-binding models~e.g., in the
study of Anderson localization!, one may considerH0 to be
the Hamiltonian with on-site energies only, andua& to be the
position states. The matrix elements^auj& then measure the
degree of localization in position space as the hopping ma
elements are turned on. Similarly, in a scattering probl
one often finds it useful to use momentum states or chan
as the reference basisua&, and look for localization of the full
eigenstates relative to this basis.

For simplicity, we assume that the classical dynam
given byH completely mixes the statesua& with each other,
so that no conservation laws prevent each of the eigens
uj& from having equal overlaps with all of the test states.
the presence of energy conservation or other conserved q
tities, the formalism outlined below needs to be modified
take into account constraints imposed by the classical s
metries. This can be done in a straightforward way by,
example, taking the test statesua& to be coherent state
~Gaussians! in phase space. Then it is easy to compute
classical intersection of each such Gaussian with any gi
energy hypersurface, and the actual quantum intens
z^auj& z2 can be normalized by this classical result. In th
way one can easily identify the degree of eigenstate local
tion ~or deviation from ergodicity! due to quantum effects, a
opposed to purely classical constraints. See Ref.@10# for a
fuller discussion.

We will then focus on the set of~properly normalized!
overlap intensities

Paj5 z^auj& z2 ~1!

to devise measures of ‘‘microscopic’’ localization or ergo
icity in the system under study. In RMT~a natural baseline
assumption in the absence of dynamical information ab
our system!, the ^auj& are predicted to be given by uncorre
lated random Gaussian variables, real or complex. The in
sities Paj then follow ax2 distribution, of one or two de-
grees of freedom, respectively. Quantum localization w
produce an excess of very large and very small intensit
compared to this baseline result. For convenience, we a
the normalization where the mean intensity is set to unity

^Paj&a5^Paj&j51. ~2!

Here the averageŝ•••&j are taken over all eigenstatesuj&:

^Paj&j5
1

N (
j51

N

Paj , ~3!

whereN is the total number of states accessible fromua& ~the
dimension of the effective Hilbert space!. The averaging
^•••&a over basis statesua& is defined similarly.

It is often convenient to compress the intensity inform
tion into the set of ~local! inverse participation values
~IPR’s! @10#:

Ia5Paa5^Paj
2 &j . ~4!

Paa is a convenient alternative notation for the local IPRIa ,
as we will see below when we discuss transport in Eqs.~7! to
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~11!.1 For a given test stateua&, the IPR atua& gives the first
nontrivial moment of thePaj distribution ~namely, the ratio
of the mean squared intensity to the square of the mean!, and
thus gives a concise measure of the degree of localizatio
ua&.2 The IPR measures the inverse of the fraction of eig
states that have significant intensity atua&. Thus, equal in-
tensities of all the eigenstates atua& would imply Ia51; this
level of ergodicity is of course almost never achieved in
chaotic system. Gaussian random fluctuations~RMT! pro-
duce IPR’s of 3~for real overlapŝ auj&) or 2 ~for complex
overlaps!. IPR’s exceeding the appropriate baseline va
signal the presence of a localization mechanism bey
RMT. In the extreme localization limit where one eigensta
has all its intensity atua&, we obtain the maximum possibl
value,Ia5N. @A prime example of such extreme behavior
the case of the ‘‘bouncing ball’’ states@12#, associated with
nonisolated, marginally stable classical periodic moti
Such classical trajectories can trap a quantum wave pa
ua& for a time comparable to~or even longer than! the time at
which individual quantum states are resolved, causing
wave packet to haveO(1) overlap with only one or a few
eigenstates, and leading toIa5O(N). From the SZCdV
theorems, we easily see that the fraction of bouncing
states must tend to zero in the\→0 limit. This kind of
localization is easily visible to the naked eye; other kinds
localization, where the number of eigenstates having int
sity at the test stateua& is large compared to 1 but sma
compared to the total number of statesN, may be less easy to
detect visually but may also be a statistically more import
correction to RMT predictions, surviving at arbitrarily sma
values of\.#

One can similarly define an eigenstate-specific IPR in
uj& basis:

Ij5Pjj5^Paj
2 &a , ~5!

where the average is taken over the test basisua&. This of
course measures the inverse of the fraction of phase s
occupied by a given eigenstateuj&, in theua& basis. A global
IPR can also be defined:

I5^Ia&a5^Ij&j . ~6!

This last quantity measures the inverse fraction of ph
space occupied by theaverageeigenstate~or, equivalently,
the inverse fraction of eigenstates that have intensity a

1In this paper the letterP with subscripts is used throughout t
denote varous probability quantities. To avoid confusion, these
summarized below:Paj (Pnj) is the intensity of wave functionj at
a (n); Paa (Pnn) is the average long-time probability for statea ~n!
to return to itself, also known as the local inverse participation ra
Ia (In); Pab (Pnn8) is the long-time average probability for initia
statea ~n! to end up atb (n8); and finally Pjj is the long-time
probability for eigenstatej to return to itself under the action of th
HamiltonianH0 having the basis vectorsa as its eigenstates (Pjj is
also known asIj , the inverse participation ratio of the wave fun
tion j).

2A slightly different measure of eigenstate localization at a giv
test state, defined in analogy with classical entropy ideas, is
cussed in@11#.
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average location!, and can serve as a simple figure of me
for the degree of quantum localization in a given system

We can relate eigenstate localization to dynamics in
following way. Let

Aaa~ t !5^aue2 iHt ua& ~7!

be the return amplitude for stateua& to come back to itself
after time t. Given a nondegenerate spectrum, the mean
turn probability of the stateua& at long times is proportiona
to its eigenstate IPR

Paa5N^uAaa~ t !u2& t , ~8!

as is easily seen by inserting complete sets of eigenstate
the right hand side. Here the time average on the right h
side of Eq.~8! is taken over times large compared to t
Heisenberg timeTH , i.e., \ over the mean level spacing.

Similarly, we can relate long-time transport to eigenst
correlations. Defining the transport amplitude

Aab~ t !5^aue2 iHt ub&, ~9!

and a cross correlation analogous toPaa ,

Pab5^PajPbj&j , ~10!

we immediately see

Pab5N^uAab~ t !u2& t , ~11!

where again the time average has been taken of the long-
transport probability fromub& to ua&. Of course the total
probability summed over final states for any given init
state is normalized,

^Pab&a51, ~12!

for eachb. The simplest nontrivial quantity that will measur
the fluctuation in the probabilities of being in various fin
statesub& given an initial stateua& ~or vice versa! is

Qa5^Pab
2 &b . ~13!

Roughly speaking,Qa measures the inverse fraction of a
channels that are accessible at long time from channela. In
RMT, all the transport probabilitiesPab are equal to unity
with small fluctuations~except for the enhanced return pro
abilities Paa52 or 3), soQa51 for eachua& in the N→`
semiclassical limit.Qa.1 indicates uneven visiting of the
available state space starting in the initial stateua&, and the
overall ergodicity of long-time transport can again be su
marized in

Q5^Qa&a . ~14!

In the slow ergodic systems such as the tilted wall billia
and the sawtooth potential kicked map@9#, a highly anoma-
lous IPR measure was predicted and observed for sma\,
with the system-averaged IPR@Eq. ~6!# scaling as
A\21/ln \21. Semiclassically, the degree of localization
such systems is even stronger, with the IPR scaling
\21/ln \21. The difference is caused by diffraction, whic
dominates the phase-space exploration and increase
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412 PRE 62L. KAPLAN AND E. J. HELLER
A\21 the fraction of phase space occupied by a typi
eigenstate. These same diffractive effects lead to almost
fect long-time transport between channels, with the trans
measureQ going to an\-independent constant in the\→0
limit.

III. SHORT-TIME DYNAMICS AND THE EIGENSTATES

We now discuss the way in which short-time dynam
produces lasting effects on stationary properties, such
eigenstate localization and long-time transport@4,5,10#. De-
fine the local density of states~LDOS! at ua& as the Fourier
transform of the autocorrelation functionAaa(t):

Sa~E!5
N

2pE2`

`

dt eiEtAaa~ t !5(
j

Pajd~E2Ej!.

~15!

The linearity of the Fourier transform implies that larg
short-time recurrences inAaa(t) get ‘‘burned into’’ the spec-
trum, producing an envelope that must be the smoothed
sion of the full spectrumSa(E). Thus, let

Aaa~ t !5Aaa
short~ t !1Aaa

long~ t !. ~16!

~The most convenient separation between short- and lo
time recurrences is situation dependent, as we will see
low.! Then the full spectrum is given by the sum of a sho
time envelope and a high-frequency oscillatory structu
coming from the long-time dynamics, that is superimpos
on top of that envelope:

Sa~E!5Sa
short~E!1Sa

long~E!. ~17!

In the presence of chaos, the number of classical return
trajectories leading from any stateua& back to itself grows
exponentially with time~with some Lyapunov exponentl).
It is then convenient to classify as ‘‘short time’’ those retur
that are governed by one or a small number of class
paths, and as ‘‘long time’’ those that arise from interferen
between many classical paths, and for which a statistical
scription is valid. Due to the exponential proliferation, t
dividing line between these regimes is sharply defined in
semiclassical limit\→0, being given by the mixing time
Tmix;(1/l)ln \21. Of course, no harm would be done we
we to err on the safe side by computing explicit
intermediate-time return amplitudes which could inste
have been treated statistically.

Now, in the presence of chaos, the long-time return
amplitude at timet is expected to fill the initial test stateua&
in a uniform, unbiased way@5#, so that the subsequent ev
lution of this newly returned amplitude is equivalent to t
evolution of the original state. More explicitly, we may wri
for small t

Aaa
long~ t1t!5^aua~ t1t!&

5^aua~ t !&^a~ t !ua~ t1t!&1•••

5Aaa
long~ t !Aaa

short~t!1•••. ~18!
l
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Thus, randomly returning amplitude at long timet leaves its
imprint on nearby timest1t, and following @5# we may
write the full long-time amplitude to return as a convolutio3

Aaa
long~ t !5(

t
Aaa

rnd~ t2t!Aaa
short~t!, ~19!

whereAaa
rnd is an uncorrelated Gaussian random variable,

^Aaa
rnd* ~ t1D!Aaa

rnd~ t !&5
1

N
dD0 , ~20!

the averaging being performed over long timest or over an
appropriate ensemble. The 1/N factor provides the right nor-
malization for the probability to return in the absence
nontrivial short-time overlaps, i.e., whenAaa

short(t)5dt0.
Fourier transforming the convolution in Eq.~19! leads to

multiplication of the smooth short-time envelope by rando
oscillations in the energy domain:

Sa
long~E!5Sa

short~E!Sa
rnd~E!. ~21!

At very long times~beyond the Heisenberg timeTH , which
scales as\ divided by the mean level spacing!, the spectrum
Sa(E) becomes resolved into individual spectral lines

Sa~E!5(
j

r ajSa
short~E!d~E2Ej!, ~22!

wherer aj has the statistical properties of ax2 variable.
That is,

^r aj&51, ^r aj
2 &5F, ~23!

where averaging may be performed over eigenstatesuj&, test
statesua&, or over an ensemble, and the constantF is given
by 2 or 3, for complex or real eigenstates, respectively. RM
predictions are recovered in the dynamics-free lim
Sa

short(E)51; short-time recurrences causeSa
short(E) to vary

with energy. This variation in turn leads to larger-tha
expected wave-function intensitiesPaj at some energies an
smaller intensities at others, corresponding to an enhan
IPR and deviation from microscopic ergodicity.

The formalism outlined above has already been used
study the statistical properties of the scarring phenomen
the anomalous enhancement of certain quantum eigens
along the unstable periodic orbits of the corresponding c
sical chaotic system. There, the test stateua& is a wave
packet launched on or near the classical periodic orbit,
short-time quantum recurrences can be computed ana
cally ~for small \) in terms of the monodromy matrix an
action of the classical orbit. One finds that the IPR for a t
state on the orbit scales inversely with the instability exp
nent l of the orbit @5#, and the full distribution of wave-

3Discrete-time notation is used here for simplicity and becaus
is most useful for the repeated scattering situation discussed be
Refer to Ref.@5# for a full treatment of continuous time, which
involves introducing an additional very short time scale associa
with the initial decay of the wave packetua& ~or with \ divided by
the energy uncertainty ofua&).
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PRE 62 413SHORT-TIME EFFECTS ON EIGENSTATE STRUCTURE . . .
function intensities on and off the orbit can be computed a
function of l @6#. Averaging over an ensemble of chaot
systems was shown to produce a power-law tail in the int
sity distribution, dominated by very strongly scarred stat
and in contrast to the exponential tail prediction of RM
Antiscarred states~ones with anomalously low intensity i
certain regions of phase space! are of great importance in
open systems: for example, they have been shown to do
nate the long-time quantum probability to remain in a cl
sically chaotic system coupled to the outside via a sing
channel lead. The size of the effect is exponentially large
smalll @8#. More recently, optimal test states for measuri
scarring have been developed, which take into accoun
entire classical orbit and the linearized classical dynamic
its vicinity @13#: they provide larger IPR’s and more ev
dence of wave-function localization than do simple Gauss
wave packets.

IV. SINAI KICKED MAPS

A. Definition of system and motivation

The Sinai billiard@14# is a prototypical example of stron
classical chaos: it consists of a point particle bouncing fre
in a rectangular cavity with hard walls, with a hard di
obstruction placed in the center of the rectangle. The sys
has positive entropy classically for any disk size; of cour
this fact becomes relevant to the quantum mechanics on
the limit where the quantum wavelength is small compa
to the size of the disk.~The mixing timeTmix after which a
typical wave packet spreads over the entire available ph
space is then short compared to the Heisenberg timeTH ,
defined as\ over the mean level spacing, at which the qua
tum dynamics becomes quasiperiodic and individual eig
states and eigenvalues begin to be resolved.!

The statistics of energy levels in the~desymmetrized! Si-
nai billiard has been found to be in good agreement with
Gaussian orthogonal ensemble predictions of random ma
theory@15#. On the other hand, the eigenstate structure of
Sinai billiard turns out to be very different from RMT expe
tations, and the inclusion of short-time dynamical effects
essential for understanding its quantum ergodic proper
We will return to a detailed discussion of the classical a
quantum Sinai billiard in Sec. VI.

Here we begin with a simplified one-dimensional mod
that contains most of the important structure of the origi
two-dimensional system. We notice first that finding eige
states of a given symmetry class in the Sinai billiard
equivalent to finding the eigenstates in a rectangle one-fo
the original size, with a quarter-circular bump in one of t
corners~and possibly with Neumann boundary conditio
along one or both of the sides meeting at that corner!. We
can then imagine finding the eigenstates using anS-matrix
approach@16,17#, where one considers the scattering
channels of the ‘‘free’’ rectangular system off the quart
circular bump. The S-matrix has a strong diagonal com
nent due to the straight part of the wall containing the bum
and a complicated off-diagonal structure due to actual s
tering off the bump. The long-time dynamics and station
properties of the system~e.g., eigenstates and eigenvalue!
are obtained by iterating the scattering process.
a
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From the surface of section method, we know that Ham
tonian dynamics in a two-dimensional configuration space
fixed energy is dimensionally equivalent to a discrete-ti
mapping of a one-dimensional system, and can in fact
reduced to such a system. The one-dimensional model
consider in this section is the ‘‘Sinai kicked map,’’ define
on a two-dimensional phase space (q,p)P@0,1)3@0,1):

p→ p̃5p2V8~q! mod 1,

q→q̃5q1 p̃ mod 1. ~24!

The equations of motion Eq.~24! can be viewed as arising
from a potential that is periodic in time:

H~q,p,t !5
p2

2
1V~q!(

n
d~ t2n!. ~25!

At the beginning of every time step, the particle is ‘‘kicked
by the potentialV, following which the potential is turned of
and free evolution takes place for a unit time interval. T
process is then iterated to obtain the long-time behavior.
Sinai billiard’s straight wall with a bump has its analog in th
kick potential

V~q!5H 2
K

2 f F S q2
1

2D 2

2S f

2D 2G for Uq2
1

2U, f

2

0 otherwise,
~26!

with a parabolic bump~centered atq51/2) of spatial extent
f ,1. K is a constant~which we will set to be of order unity!
that determines the typical impulse exerted by the bump.
parabolic shape of the potential bump is chosen for simp
ity only; none of the discussion below of the short-time b
havior would be affected if a circular arc or other gene
curved potential were used instead. The key property of
repulsive potentialV(q) is the parameterf, which sets the
fraction of an incoming wave that is scattered classica
after one iteration of the map.

The Sinai kicked map is a hard chaotic system with
stable phase-space regions†as can be seen easily by compu
ing the Jacobian of the iterated mapping, using the fact
V9(q)<0 everywhere@18#‡. Like the Sinai billiard~and the
Bunimovich stadium!, the system has a measure zero set
marginally unstable trajectories, given, for example, byuq
2 1

2 u. f /2, p50. After quantization, such orbits will give
rise to ‘‘bouncing ball’’ states@12#, which are very strongly
localized in momentum space nearp50. Our primary inter-
est, however, will be not in this measure zero set of sta
but rather in the structure of the ‘‘typical’’ quantum wav
functions, which obey SZCdV coarse-grained ergodicity,
have very non-uniform structure at the single-channel sc

The quantization of kicked systems of the form Eq.~24! is
straightforward and well covered in the literature@19#. A
value of\ should be chosen so thatN51/2p\, the number
of Planck cells covering the toroidal classical phase spa
has an integer value (N corresponds to the number of wav
lengths across the device in the analogous billiard syste!.
Then anN-dimensional position basis for the Hilbert space
given byqi5( i 1e0)/N, i 50, . . . ,N21. Similarly, the mo-
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mentum space basis is given bypj5( j 1e1)/N, j
50, . . . ,N21. e0,1 form a family of possible quantization
conditions ~they correspond to phases associated with
cling the torus in thep and q directions, respectively!. The
two bases are related by a discrete Fourier transform.
quantum dynamics is now defined by the unitaryN3N ma-
trix

U5 exp@2 i ~ 1
2 p̂2!/\#exp@2 iV~ q̂!/\#, ~27!

where each factor is evaluated in the appropriate basis,
an implicit forward and backward Fourier transform has be
performed.

We are now ready to study the structure of the Floque
scattering eigenstates of the quantum dynamicsU, in the pj
basis. We notice first that, because of the symmetry of
kick potentialV(q) underq→2q, the classical system has
time reversal symmetry and a parity symmetry:

T:t→2t,q→2q,

P:p→2p,q→2q. ~28!

It will be convenient for us to choose a nonzero value for
boundary condition parametere1, thus breaking the parity
symmetryP under quantization, while maintaining the tim
reversal symmetryT by settinge050. The eigenstates ar
then real in the momentum basis, and the appropriate R
baseline isI53 @see the discussion following Eq.~4!#. For
an asymmetric bump or kick potential, the quantum wa
function intensity fluctuations would be expected to follow
x2 distribution of two degrees of freedom under RMT, gi
ing rise to the baseline valueI52. The analysis to follow is
of course completely independent of the symmetry chos
provided that the appropriate baseline quantum fluctua
factor F is used.

B. Short-time dynamics

1. Quantum factor of 2

As suggested in the preceding section, we should be
our analysis by examining the classical and quantum sh
time dynamics of the Sinai kicked map in momentum spa
In analogy with the quantum return amplitudeAnn(t) of Eq.
~7!, let Pnn

cl (t) be the classical probability to remain in sta
pn after t iterations of the map.4 Classically, for any incom-
ing momentumpn , a fraction

Pnn
cl ~1!512 f ~29!

of all particles remain in momentumpn after one kick, while
the remaining fractionf get scattered to other momentu
states. Semiclassically, there is anamplitude 12 f for re-
maining in the incoming channel, as can easily be seen
taking the ~semiclassical! overlap of the initial and final
states. Theprobability to remain unscattered after one step
then

4For conventional reasons we will be using the indexn to label the
momentum states instead of the generic indexa used in Sec. III.
r-
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uUnnu25uAnn~1!u25~12 f !2. ~30!

Notice that the quantum one-step survivaluUnnu2 is
smaller than the classical probabilityPnn

cl (1) for not scatter-
ing. In analogy to ordinary scattering in free space, one
define a cross section for scattering off the defect. In the li
of small f, we see from the above analysis that the quant
cross section is twice as large as the classical.~This is in
complete analogy with quantum scattering theory in fr
space, in which diffraction results in a quantum cross sec
twice as big as the classical, even in the short-wavelen
limit. Essentially, the far-field diffraction into the shado
zone doubles the quantum cross section.! Here, there is a
quantum probability f (12 f ) for diffracting into nearby
channels. Classical-quantum correspondence still holds a
appropriate coarse graining over scales large compare
\/ f ~but still small classically! in momentum space. As men
tioned earlier in our discussion of the Sinai billiard, we a
always working in the semiclassical regime\! f , where the
bump size is large compared to a wavelength, though it m
be small compared to the system size 1.

This difference between the classical and quantum pr
abilities to remain in the initial channel@(12 f ) vs (1
2 f )2# survives the limit\→0. In this limit the fraction of
diffracted amplitude and the number of scattering chann
into which diffraction occurs both remain constant. For fin
\, there will of course be anO(A\) correction to the quan-
tum amplitudeAnn(1), as it is possible for the horizonta
@V8(q)50# portion of the bump to scatter an incomin
channelpn back into itself.

2. Multistep scattering

We proceed to analyze the multistep behavior of the
namics, particularly the probability to remain in the initi
statepn . In the absence of step-to-step correlation, the c
sical probability to remain unscattered after 2 steps would
Pnn

cl,naive(2)5(12 f )2, giving rise to aquantumprobability
uAnn

naive(2)u25(12 f )4. This is the same probability that w
would obtain by simply iterating the diagonal part of th
evolution matrix, i.e., by approximating (U2)nn
5(n8Unn8Un8n'UnnUnn . Of course, the true probability to
remain in statep after two steps isp dependent: for mos
values ofpn , namely,upnu. f , entirely different parts of the
wave function are scattered at each of the two steps, so
classical probability to remain is Pnn

cl (2)5122 f
,Pnn

cl,naive(2). On theother hand, forp very close to zero,
most of the probability that would be scattered at the sec
step has already been lost on the first scattering event
Pnn

cl (2)'12 f .Pnn
cl,naive(2).

The analysis can be extended easily to longer times.
quantum probability to remain aftert steps is still given, to
leading order in\, by

u~Ut!nnu25uAnn~ t !u25uPnn
cl ~ t !u2, ~31!

where naively~in the absence of correlations!

Pnn
cl,naive~ t !5~12 f ! t. ~32!

The true value ofPnn
cl (t) for t.1 is p dependent; in quantum

mechanics, thispn dependence can be understood in terms
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amplitude that diffracts frompn to a nearby channel in on
step and diffracts back intopn during a following scattering
event. The extra amplitude coming from diffracting back a
forth between nearby channels can add in or out of ph
with the ‘‘naive’’ contribution. As we found previously, th
probability to scatter into a nearby channel after one ste
f (12 f ); this is comparable to the probabilityf for scattering
into a classically distant channel and being completely
from the system as far as the short-time return probabilit
concerned.

Notice that the short-time return probability of Eq.~31! is
completely independent of the shape of the bumpV(q) @as
long as the bump amplitudeK is chosen to beO(1) so as to
allow scattering into many distant channels#. In fact, we can
compute the short-time return probability in a simplifie
model where the nonzero part of the potential is replaced
an absorber, and pieces of the probability density simply
subtracted from the system. For givent, we then have a
distribution of the quantum probabilities to remainuAnn(t)u2.
We easily see that thefastestpossible decay of the initia
statepn is obtained forpn5 f , where an entirely untouche
piece of the wave function is absorbed at each step:

Pnn
cl,min~ t !512t f , ~33!

for t,1/f . The largest values of the probability to rema
Pnn

cl arise frompn near zero, as described above, and a
from pn that are near simple fractions like 1/2 or 2/3. The
slowly decaying momentum channels give rise to the m
nonergodic long-time quantum behavior, as we shall
below.

For each channelpn , then, we can compute the quantu
short-time autocorrelationAnn(t); it is given by the square
root of the quantum probability to stay@Eq. ~31!#, times the
phase accumulated from the~free! quantum dynamics:

Ann
short~ t !5^pnuUtupn&5e2 ipn

2t/2\Pnn
cl ~ utu!. ~34!

This holds for both positive and negative short times@note
that A(2t)5A* (t) by unitarity#. For a typical momentum
pn , Ann

short(t) has a decay time ofO(1/f ); upon Fourier trans-
forming we obtain a short-time spectral envelopeSshort(E)
centered at quasienergypn

2/2 and with width of orderf. Spe-
cifically, using the naive estimate of Eq.~32! and taking the
bump sizef to be small, we obtain a Lorentzian short-tim
envelope

Sn
short,naive~E!5

2 f

f 21~E2pn
2/2\!2 ~35!

for uE2pn
2/2\u!1.

C. Long-time behavior and stationary properties

1. Scaling properties

At times long compared with 1/f , most of the initial am-
plitude in a typical channelpn will have been scattered b
the bump, and the return amplitudeAnn

long(t) will be given
semiclassically by a sum over many nontrivial paths~the
relative phases between the paths being of course\ depen-
dent!. As discussed in Sec. III, and in complete analogy w
d
se

is

t
is

y
et

o
e
st
e

nonlinear scarring, these long-time recurrences are given
independent Gaussian random variables, convoluted with
short-time dynamicsAnn

short(t).5 The full local spectrum
Sn(E) @Eq. ~15!# is a line spectrum with individual intensi
ties Pnj5Nz^nuj& z2 ~where we have denoted̂pnu as ^nu)
being given by ax2 distribution, weighted by the height o
the linear envelope at energiesEj :

Pnj5r ajSn
short~Ej!. ~36!

Here r aj are independentx2 variables with mean unity@see
Eq. ~22!#. The expected local IPR@Eq. ~4!# is given by a
product of a factor associated with the short-time envelo
and a factor (F53) associated with the spectral fluctuatio
r aj under the envelope:

In53^@Sn
short~E!#2&E53 (

t52`

1`

uAnn
short~ t !u2. ~37!

Using the naive short-time dynamics of Eq.~32!, we obtain
an estimate for the typical IPR:

I n
naive53S 222 f 2 f 2

2 f 2 f 2 D'
3

f
. ~38!

Using the upper bound we obtained in Eq.~33! on the rate of
short-time decay of an initial momentum channel, we a
have a lower bound on the local IPR:

I n
min53S 2

3 f D5
2

f
. ~39!

Notice that this lower bound is for moderatef already larger
than the RMT expectation of 3.

For a given value off, we may use our knowledge of th
short-time classical dynamics and Eqs.~34! and ~37! to ob-
tain a distribution of the local inverse participation ratiosIn .
For f !1, the decay time of the classical autocorrelati
function Pnn

cl (t) scales with 1/f , so we expect the IPR distri
bution Pf to scale likewise:

Pf~In!5 fP~ fIn! ~40!

for some functionP(y). From Eq. ~39! we have a lower
bound on possible IPR’s for smallf, i.e.

P~y!50 for y,2. ~41!

Using the naive estimate of Eq.~38! for the IPR at a ‘‘typi-
cal’’ value of the momentum, we determine that the med
of the distributionP(y) should be in the neighborhood of 3

5Of course, for special shapes of the bump, the long-time re
rences may turn out to be nonrandom and lead to additional lo
ization; in such a situation, the expressions obtained here for
verse participation ratios and related measures of deviation f
ergodicity should be regarded as lower bounds only. Thus, for
ample, in the stadium billiard bouncing ball effects are much str
ger than would be predicted using naive power counting, due to
fact that the boundary has a continuous first derivative at the p
where the straight wall and the semicircular end cap are joined@12#.
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This discussion of the IPR distribution has been very g
eral; however, the details of the functionP(y) may in fact
depend on classical system parameters other than the b
size f. For example, in the equations of motion Eq.~24! we
could have replaced the free evolution in the second
with

q→q̃5q1a p̃ mod 1, ~42!

making the elapsed timea between kicks an arbitrary param
eter. ~In the Sinai billiard system, the parametera corre-
sponds roughly to the length-to-width ratio of the rectangu
billiard.! The detailed properties of the IPR distributionP(y)
will then depend on the values of classical parameters s
asa, while results such as Eq.~41! apply more generally to
the entire class of Sinai-type systems. Below, in Figs. 1
2, we present the actual classically computed functionP(y)
for the Sinai kicked map witha51; thereP(y) is compared
with statistics collected for the corresponding quant
system.

2. Tail of the IPR distribution

First, we discuss another important qualitative feature
the IPR distribution, namely, the long tail ofP(y) coming
from momentum channelspn that are near simple fraction
and thus decay on a time scale longer than the typicalO(1/f )
steps. Consider a very small initial momentumupnu! f . As
we saw in the discussion immediately preceding Eq.~31!,
only a very small fraction of the remaining amplitude inupn&
is scattered during each kick following the first one, beca
the part of the wave that has not yet been scattered s
very little in position space between kicks. Explicitly, th
classical probability~and thus the quantum amplitude! to re-
main aftert steps is given by

uAnn
short~ t !u5Pnn

cl ~ t !512 f 2~ t21!pn ~43!

for 1<t<(12 f 1pn)/pn . Thus the decay time for the initia
stateup& scales as 1/pn , and the inverse participation ratioIn
scales likewise@compare Eq.~37!#. These IPR’s are large
compared to theO(1/f ) IPR’s obtained for typical channel
@yet small compared to theO(N) IPR’s that characterize
bouncing ball states#.

Similarly, if we choose a momentum channel that li
near a simple fraction,pn5m/l 1e ~for l e, f ,1/l ), then
following the first l kicks, a fractionl e is scattered after
each successive kick, and the decay time~and IPR! for such
a channel therefore scales as 1/l e. We dub these specia
momentum channels the ‘‘near-bouncing-ball’’ trajectorie
We can now easily estimate the fraction of channels w
IPR greater than some numberx, wherex@1/f . All channels
within 1/x of zero satisfy this condition, as do those with
1/l x of a simple fractionm/l . Now we note that, for a
typical integerl , a finite fraction of integersm51, . . . ,l
are relatively prime tol ; thus from each value ofl we
obtain a fractionO(l 31/l x)5O(1/x) of channels with
IPR expected to be greater thanx. Adding up contributions
from all values ofl between 1 and 1/f , we have a cumula-
tive probabilityO(1/f x) for In to be greater thanx, or
-

mp

e

r

ch

d

f

e
fts

.
h

P~I!;
1

fI 2 ~44!

for I@1/f . We see that the parameterf enters in the expected
way, and the tail of the scaling distribution@compare Eq.
~40!# is then given by

P~y!;1/y2 ~45!

for y@1.

3. Failure of channel level ergodicity

From the inverse square form of the IPR distribution t
in Eq. ~44!, it would appear that the mean value of the IP
diverges logarithmically for these systems. However, we
tice that at fixed energy the possible IPR is bounded ab
by the total number of channelsN ~this being the IPR for a
pure bouncing ball state!, and so we have

^In&n5^Pnn&n;
ln N

f
. ~46!

We see from Eq.~46! that the mean inverse participatio
ratio in the kicked Sinai systems diverges logarithmica
with increasing energy~or decreasing\); thus the wave
functions are becoming less and less ergodic at the sin
channel scale even as the classical limit is approached,
spite the ergodicity of the corresponding classical mechan
The situation is more surprising here than in the slow ergo
systems@9#, as in the present case the Lyapunov exponen
positive and the Sinai billiards have long been considere
prototypical example of strong classical ergodicity and m
ing. We also note that the logarithmically increasing me
IPR in Eq. ~46! is due not to the bouncing ball states~the
fraction of these scales as 1/N and thus their contribution to
the mean isN independent!, but rather to the ‘‘near-
bouncing-ball’’ channels, whose decay time is large co
pared to the typical decay time 1/f but still small compared
to the Heisenberg timeN at which individual eigenstates ar
resolved. Each such channel contributes to many eigens
of the system, but only a small fraction ofall the available
eigenstates.

Having made predictions about the structure of the I
distribution for Sinai-type systems@2/f lower cutoff,O(1/f )
median,O(ln N/f) mean, inverse square tail#, we now pro-
ceed to perform a similar analysis for the other statisti
quantities discussed in Sec. II. As discussed previously,
details ~factors of order 1! of the various distributions and
statistical averages will be system dependent, and can
computed explicitly for any specific Sinai-type system~as
we will do in the following section!. What we are interested
in here is the universal scaling behavior of wave-functi
structure with bump sizef and wavelength 1/N.

We consider first the individual wave-function intensiti
Pnj in the momentum basis. For the typical momentumpn ,
we have seen that the smoothed spectrumSn

short(E) has a
Lorentzian peak of height scaling as 1/f and width scaling as
f, centered on the optimal energyEn5 1

2 pn
2 @see Eq.~35!#. Far

from En , the smoothed spectrum levels off to a height
order f, leading to the typical behavior
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Pnj
median; f . ~47!

Notice that the median intensity is much smaller than
mean@cf. Eq. ~50!#.

Even for the most anomalously localized channels,
minimum value ofSn

short(E) never falls belowO( f ); the
smallest values ofPnj must therefore arise fromx2 fluctua-
tions multiplying this typical intensity. For complex wav
function amplitudeŝ puj&, this implies

P~Pnj!;
1

f
exp~2Pnj / f ! ~Pnj! f !, ~48!

and a corresponding expression is obtained in the real c
wherePnj is a x2 variable of meanO( f ) andonedegree of
freedom:

P~Pnj!;
exp~2Pnj /2 f !

A2pPnj f
~Pnj! f !. ~49!

The mean of the intensity distribution is of course fixed
normalization:

^Pnj&51, ~50!

where once again the averaging^•••& can be thought of as
an average over eigenstatesuj&, momentum channelsupn&, or
some ensemble of Sinai-type systems~where, e.g., the shap
of the bump can be varied while preserving its total sizef ).

4. Tails of intensity and transport measures

Lastly, we turn to the tail of the intensity distribution
which we expect to result from large values of the smooth
spectrumSshort(E). @Fluctuations of the full spectrumS(E)
around its smoothed value have ax2 form. The probability
of obtaining an intensityPnj large compared to the shor
time predictionSn

short(En) is exponentially small.# As previ-
ously discussed, a fractionO(1/f x) of all momentum chan-
nelsup& have a peak in the spectrumSn

short(E) of height>x,
and the width of such a peak is thenO(1/x). Therefore a
fraction O(1/f x2) of all intensitiesPnj satisfy the condition
Sn

short(En)>x, and since the fluctuations inPnj around this
smoothed value are of order unity, we obtain

P~Pnj!;
1

f Pnj
3 S Pnj@

1

f D . ~51!

The eigenstate-basis IPR measureIj5Pjj @Eq. ~5!#,
which measures the inverse fraction of channels in whic
given eigenstate exists, may be studied in a manner v
similar to the channel-basis measureIn5Pnn . From Eq.
~46!, we already know themeanvalue of theIj distribution:

^Ij&j5^Pjj&j;
ln N

f
. ~52!

We proceed to study the structure of the ‘‘typical’’ wav
function uj&. From Eq. ~51!, we know that, given some
eigenstateuj&, the probability that it has intensity>x at any
particular momentumup& is O(1/f x2). If we assume the
e

e

se,

d

a
ry

overlaps ofuj& with the different momentum states to b
uncorrelated, and notice that there are a total ofN momen-
tum channels to overlap with, we see that forx<AN/ f there
will generically be at least one momentumupn& such that
Pnj>x. We now compute the contribution toPjj from all
intensitiesPnj5x between 1/f andAN/ f :

Pjj5^Pnj
2 &n5E dx x2P~Pnj5x!

>E
1/f

AN/ f
dx x2

1

f x3 ;
ln N

2 f
~53!

~recalling thatN@1/f ). Thus we see that not only the mea
but also the inverse participation ratio for thetypical wave
function, tends to infinity in the classical limit:

I j
median;

ln N

2 f
. ~54!

The tail of theIn distribution arises from the rare intensitie
Pnj@AN/ f , and using Eq.~51! is easily seen to take th
form

P~Ij!;
1

fI j
2 . ~55!

Having analyzed the statistical structure of individu
wave functions in Sinai-type systems, we can now proc
to examine the quantum transport behavior. Specifically,
focus on the long-time transport probabilityPnn8 between
two channelspn and pn8 , as introduced previously in Eqs
~10! and~11!. For two typical channelspn andpn8 , each of
the two smoothed local densities of states has the form
peak of height 1/f and widthf centered around some energ
and then falls off to a value ofO( f ) far from that energy@see
Eq. ~35!#. Since the two peaks are generically centered
different energies,uEn2En8u@ f , we easily see that the over
lap between the two envelopes isO( f ):

Pnn8
median; f . ~56!

Of course, we also know the mean value of this distribut
by construction:

^Pnn8&51. ~57!

Large values of the transport measurePnn8 arise from those
pn and pn8 for which the two spectral envelopesSn

short(E)
and Sn8

short(E) are both anomalously tall and narrow, an
which also have significant overlap with each other. Expl
itly, in order to obtain a valuePnn8>x for largex, we require
In>x, In8>x, and also uEn2En8u,1/x. The combined
probability for these three unlikely events scales as

P~Pnn8>x!;S 1

f x2D S 1

f x2D S 1

xD , ~58!

so
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P~Pnn8!;
1

f 2Pnn8
4 S Pnn8@

1

f D . ~59!

This is a very quickly decaying tail compared to the o
obtained previously for the inverse participation ratioPnn
@compare Eq.~44!#; thus transport efficiency for this class o
systems is much less anomalous than the structure of
vidual wave functions. This makes sense intuitively and
also consistent with the findings for slow ergodic systems
Ref. @9#.

Finally, the remaining measure we must consider is
final-state-averaged transport efficiencyQn for initial state
pn @introduced in Eq.~13!; see also Eqs.~10! and~11! for the
definition of Pnn8 , the long-time probability of getting to
channelpn8 from channelpn]. The quantitŷ Qn&, as well as
the typical value ofQn , will be dominated by the Lorentzian
envelopes governing typical intensitiesPnj :

Pnn85
1

N (
j

PnjPn8j

;E dE

2pS 2 f

f 21~E2pn
2/2\!2D S 2 f

f 21~E2pn8
2 /2\!2D

5S 4 f

4 f 21~pn
2/2\2pn8

2 /2\!2D , ~60!

where in the second line we have inserted the typical int
sity in channelpn of a stateuj& with energyE @from Eq.
~35!#. Now

Qn5
1

N (
n8

Pnn8
2

;E d~pn8
2 /2\!

2p S 4 f

4 f 21~pn
2/2\2pn8

2 /2\!2D 2

5
1

2 f
.

~61!

The mean and the median both scale as

^Qn&;Qn
median;

1

f
; ~62!

and furthermore in the classical limitN→` it is exceedingly
difficult to obtain values ofQn either small or large com
pared toO(1/f ). For almost anyinitial channelpn , the frac-
tion of final channelspn8 to which one can be transported
long times is O( f )!1. Bouncing ball ~free propagation!
channels of course have even less coupling to other mom
tum states@roughly speaking, they couple to themselv
only, Pnn5O(N) and thusQn5O(N)], but these constitute
a vanishing fraction of all channels in the classical limit.

V. NUMERICAL TESTS IN SINAI KICKED MAPS

We proceed to a numerical study of the structure of wa
functions in the Sinai kicked systems, focusing on those
tistical properties that we have treated theoretically in
preceding section. We begin by considering the distribut
of inverse participation ratiosIn @Eq. ~4!#, each of which
i-
s
n

e

-

n-

e
a-
e
n

measures the inverse fraction of eigenstates having sig
cant intensity at some momentum channelpn . The bump
size f is fixed at the moderate value of 0.1, which is sm
compared to the system size of unity, yet large compare
wavelengths 1/N<0.01 that we are going to consider. In Fi
1, the IPR distributionPf(In) is plotted ~solid curves! for
several values of the quantum wavelength:N5100, 200,
400, and 1600. In each case, an ensemble has been
structed by varying the bump height parameterK in Eq. ~26!;
each realization withK5O(1) is expected to have the sam
wave-function statistical properties, as discussed in the
ceding section.

Also plotted as a dashed curve in Fig. 1 is a classi
prediction forPf(In). This quantity is obtained by taking
random sample of initial momentapn , and for each of them
computing classically the probabilityPnn

cl (t) to remain un-
scattered aftert bounces. Given the short-time classical b
havior Pnn

cl (t), we use Eqs.~34! and ~37! to predict the ex-
pected quantum IPR for that momentum channelpn ,
eventually leading to the distribution shown by the dash
curve. Of course, this is a semiclassical (N→`) prediction;
in particular, it ignores fluctuations in the IPR that res
from summing over a finite number of eigenstates in Eq.~4!
~even in RMT, fluctuations around the mean value of 3
expected for finiteN).

Indeed, we see in Fig. 1 that the quantum IPR distribut
does appear to approach the classically predicted distribu
asN gets large; the convergence withN will be studied more
quantitatively below in Fig. 10. By the time we reachN
51600, the peak of the distribution is within 10% of th
classically expected value, and is shifted by a factor o
from the naive random matrix prediction. We also notice th
all the IPR’s in our sample are larger than the value o
predicted by random matrix theory, and most are larger b
factor of at least 5: this is unmistakable evidence of stro
deviations from microscopic quantum ergodicity in th
kicked Sinai systems.

Next, in Fig. 2 we fix the total number of channels atN
51000, and study the IPR distribution for various values

FIG. 1. The distribution of the~dimensionless! local inverse
participation ratioIn5Pnn is plotted for bump sizef 50.1. From
left to right, the four solid curves represent data forN5100, 200,
400, and 1600. The theoretical prediction~see text! is represented
by dashes, while the random matrix prediction isI53.
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the bump sizef. Guided by the predicted scaling relation
Eq. ~40!, we choose to plot the distribution of the scal
quantity fIn for each value of bump sizef. For each off
50.1 ~dashed curves! and f 50.2 ~dotted curves!, two distri-
butions are plotted: one for the original kick potential of E
~26!, and the other for a modified kick potential

V~q!5H 2
K

2 f F S Uq2
1

2U1 f

2D 2

2 f 2G for Uq2
1

2U, f

2

0 otherwise.
~63!

The latter potential has a kink atq51/2, causing a disconti
nutiy in the classical dynamics. We see from Fig. 2 that
choice of kick potential@Eq. ~26! or Eq.~63!# has no signifi-
cant effect on the IPR distribution, as long as the bump s
f is fixed, confirming the universality predicted in the prev
ous section. In particular, we notice that the flat part of
potential @V8(q51/2)50# in Eq. ~26!, which scatters any
incoming channel back into itself, has no discernible eff
on quantum localization at the energies under considera

The classical prediction for the scaling distributionP( fI)
is also plotted in Fig. 2 for comparison~see solid curve!. We
see very good agreement among the four sets of quan
data atf 50.1 andf 50.2; similar scaling behavior withf is
observed for the billiard system in Fig. 9 below. Again, t
slight discrepancy~around 10%) between the numerical da
and the classical prediction may be attributed to the fin
ness of the energy. At these energies, the minimum obse
value of the IPR appears to be near 1.5/f , in contrast to the
2/f semiclassical limit prediction of Eq.~39!.

In the tail, we predict@Eq. ~44!# the inverse square behav
ior P(x)'c/ f x2 for the IPR distribution, where the consta
c can be determined to be 0.6 through a detailed class
analysis of this system as described above. Thec/( fI)2 tail
for the distribution of the scaling quantityfI is indeed ob-
served in Fig. 3, where the prediction appears as a dotted
on the log-log plot, while the solid and dashed curves rep
sent data forf 50.1 and f 50.2, respectively. These dat
were again taken forN51000, and we see the power-la

FIG. 2. The distribution of the scaled inverse participation ra
fI is plotted forf 50.1 ~dashed curves! and f 50.2 ~dotted curves!.
N51000, and for each value off two distributions are plotted cor
responding to different bump shapes~see text!.
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behavior persist to IPR’s of about 300, where the IPR
comes comparable to the total number of channels and
theory naturally breaks down.

We recall that this breakdown of the inverse square law
I;N leads to the prediction of mean IPR growing logarit
mically with N: ^I&'(0.6/f )ln N1const@see Eq.~46!#. This
behavior is indeed observed forN ranging from 100 to 1000;
we omit the figure here because an analogous plot for
billiard system appears in Fig. 10 in the following sectio
The median Pnn shows no such increase withN; it saturates
at '2.35/f independent ofN @see~Eq. 38!#. The median IPR
for an eigenstate (Pjj), on the other hand, does grow log
rithmically with N, but only half as fast as the mean,
agreement with Eq.~54!.

We next turn to the distribution of individual wave func
tion intensities. In Fig. 4 the distribution of intensitiesPnj is
plotted for f 50.1 andN51000 ~solid curve!. The classical
prediction~obtained as described in the discussion of Fig

FIG. 3. The tail of the IPR distribution is plotted forN51000,
with f 50.1 ~solid curve! and f 50.2 ~dashed curve!. The theoreti-
cally predicted 0.6/(fI)2 behavior@Eq. ~45!# appears as a dotte
line.

FIG. 4. The distribution of~dimensionless! intensitiesPnj for
f 50.1 andN51000 ~solid curve!. The classical prediction~see
text! follows the data very closely~dashed curve!. Asymptotic
forms for the head@Eq. ~49!# and tail @Eq. ~51!# of the distribution
are both drawn using small dashes. For comparison, the Po
Thomas distribution of RMT appears as a dotted curve.
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above! is plotted as a dashed curve; the difference betw
data and prediction is barely visible except in the very
where the statistical uncertainty in the data becomes im
tant. The two analytic asymptotic expressio
exp(2x/2f )/A2px f for small intensitiesx @Eq. ~49!# and
1/f x3 for largex @Eq. ~51!# are also shown in Fig. 4. Thes
two expressions are valid forx! f andx@1/f , respectively.
By contrast, the RMT Porter-Thomas prediction~dotted
curve! does not agree with the data in the head, body, or
of the distribution. See also Figs. 11 and 12 below, wh
focus separately on the head and tail of the intensity dis
bution for the billiard system, and again find good agreem
with theory and disagreement with RMT.

The distribution of transport measuresPnn8 has also been
studied and observed to possess a 1/f 2x4 behavior for x
@1/f , as predicted in Eq.~59!. These data are omitted he
as very similar behavior is obtained for the billiard in Fig. 1
below. The overall transport efficiencyQ likewise follows
the predicted scalingQ;1/f of Eq. ~62!, so that only a frac-
tion O( f ) of all channels are quantum mechanically acc
sible at long times starting in any one initial channel.

VI. LOCALIZATION IN SINAI BILLIARDS

The Sinai billiard was the first nontrivial dynamical sy
tem shown to be ergodic with positive Lyapunov expon
@20#. In this sense it istheparadigm of chaos. It is also a un
cell of the Lorenz gas, a periodic array of hard disk scatte
@see Fig. 5~a!#. For numerical reasons we investigate a mo
fied Sinai system with the circular disk off center and jutti
only part way into the billiard; this is sill a chaotic syste
@see Fig. 5~b!#.

A. Scattering method

A scattering system closely connected with both the L
renz gas and the Sinai billiard puts the Sinai disk at the
of a corridor of lengtha ~Fig. 6!. The scattering wave func

FIG. 5. ~a! The Lorenz gas and two choices for a fundamen
domain.~b! A Sinai-like billiard related to the Lorenz gas.
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tion can then be expanded as

C~x,y!5
1

Akn

e2 iknx sin~npy/b!

3(
n8

1

Akn8

Snn8e
22ikn8aeikn8x sin~n8py/b!,

~64!

where for later convenience we have factored out a ph
exp(2ikn8a) from then8th column of theSmatrix. ~If there is
no scatterer on the right hand wall, this makesS the diagonal
unit matrix, assuming Dirichlet boundary conditions ther!
Now suppose that we reflect the scattered wave from the
wall back toward the right hand side, in accordance with
closed billiard problem we wish to solve. This can be do
by imposing a boundary condition at the left wall, whic
need not necessarily be Dirichlet.~We indicate this by using
a dashed line to represent this wall in Fig. 6.! If the wave is
reflected from the left wall atx50, it returns with a new
phase exp(if) given by the boundary condition at the le
wall. We define

Unn85Snn8 exp~22ikn8a1 if!. ~65!

Setting cn5 exp(2iknx)sin(npy/b)/Akn, the net incoming
~right-moving! wave is then

~11U1U21••• !cn5
1

12U
cn ~66!

~see Fig. 6!.
Evidently, a bound state can be built up in the billiard ifU

has an eigenvalue11. We can diagonalize theU matrix and
consider the properties of its eigenstates. SinceU is a unitary
matrix, its eigenvalues lie on the unit circle. As we chan
the phase shiftf at the left wall, the eigenvalues will corre
spondingly rotate around the unit circle; each of theN eigen-
values ofU ~assuming there areN open channels! will pass
through11 for somef, so thatevery eigenstate of U is an
eigenstate of the closed billiard with some boundary con
tion at the left wall and Dirichlet boundary condition
elsewhere.

If one is willing to search through ranges of energies or
box lengthsa one can find a set of eigenstates satisfying
particular boundary condition; this is a way of finding eige
values and eigenstates of the billiard with Dirichlet bounda

l

FIG. 6. The modified Sinai system, with a partial disk occup
ing a variable fractionf of the right hand vertical wall.
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conditions; they are given by eigenstates ofU with eigen-
value 1 ~where one setsf5p) @17,21#. However, here we
do not seek the Dirichlet solutions, since they are not spe
as far as their localization in the channel space is conce
~this has been verified numerically!. This is of great value in
gathering the statistics needed here.

Two typical eigenstates of theU matrix are shown in Fig.
7; these show fairly obvious nonstatistical mixing of diffe
ent directions of propagation in the billiard~nonmixing of
channels in the scattering approach!.

Patterns in the channel (momentum) transport

A new twist arises in the channel transport measurePnn8 ,
which we now present. Heretofore we have been making

FIG. 7. Two typical eigenstates of theSmatrix for the Sinai-like
scattering system.
al
ed

e

point that Gaussian random wave-function statistics
much stronger than required for SZCdV ergodicity, and t
much coarser randomness can still lead to ergodic trans
classically. Below, we see that transport in momentum sp
may even be highly organized, but in a way that still perm
coarse-grained SZCdV ergodicity.

The density plot of the transport measurePnn8 for a typi-
cal case (f 50.1 with 280 open channels, side lengths equ!
appears at the top of Fig. 8. A pronounced fringe pattern
evident. This pattern changes with the length of the billia
and as we now show represents alternating constructive
destructive interference due to the phase factors exp(2ikna)
where a is the box length andkn is the horizontal wave
vector. TheSmatrix itself shows none of this fringing, but i

FIG. 8. Top: long-time transport probability between channeln
andn8 for thea5b52p ~square! billiard, f 50.1 (m5\51). Bot-
tom: the fringe pattern from Eq.~68!.
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is strongly evident already forS2. We have

Snn8
2

5(
n9

Snn9Sn9n8 , ~67!

and sinceS is diagonally dominated, the major contributio
to Snn8

2 for nÞn8 is

SnnSnn81Snn8Sn8n85Snn8~Snn1Sn8n8!. ~68!

Of courseSnn and Sn8n8 can interfere; these diagonal el
ments have factors exp(2ikna) and exp(2ikn8a), respectively.
Subsequent iterations reinforce this interference and g
very sharp preferred channels that one can end up in w
starting from a given initial channel. A plot of

Wnn8[uexp~2ikna!1 exp~2ikn8a!u28

appears at the bottom of Fig. 8, and is seen to bear a c
resemblance to the fringe pattern inPnn8 ~the exponent 28 is
of course arbitrary and only serves to set the contrast rati
the plot!. It should be kept in mind that the fine detail~pixel
by pixel! of the intensity modulations present inPnn8 is ab-
sent in the lower plot, but the overall modulation of the r
gions of large and smallPnn8 is almost identical.

Interestingly, the special channels that correspond to c
sical free motion~never hitting the obstruction! show up on
the diagonal as hyperbolic points of high density. This m
be shown by expanding in the channel index~at least in the
lower-n region where the Taylor series holds forDn;1),
i.e.,

uexp~2ikna!1 exp~2ik (n1Dn)a!u

'u11 exp@2ia~]kn /]n!Dn#u, ~69!

wherea is the length of the rectangular box. Sincekn5knx

5A2(E2n2p2/2b2) andkny5np/b, whereb is the height
of the box, we have

]kn

]n
5

kny

kn

p

b
. ~70!

Then the interference in Eq.~69! is maximally constructive
for

kny

kn
5

m

Dn

b

a
, ~71!

i.e., exactly for the free motion trajectories. The spec
channels correspond with the hyperbolic regions along
diagonal in Fig. 8. The near-bouncing-ball channels near
free propagation channels preferentially diffract symme
cally about these special channels, as evidenced by the
hyperbolic structure. This is again a consequence of the
terference structure in Eq.~68!. Essentially, there is a pref
erence to scatter by a multiple of a reciprocal ‘‘lattice’’ ve
tor, (2aDk52mp), reminiscent of Bragg scattering from
periodic structure with lattice constanta.

The dramatic interference pattern is another interes
quantum signature of a short-time effect, already evident
ter one iteration as explained above. It illuminates anot
variation on the theme of this paper: on scales finer t
e
en
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SZCdV, non-Gaussian statistics may prevail. Here, we se
very structured and nonrandom fringe pattern, which, ho
ever, varies on a scale proportional to\, doing no harm to
the Schnirelman limit.

B. Numerical method

The simple method that we use to find theSmatrix makes
use of the expansion in Eq.~64!, including up to 70 or 100
closed channels along with all the open channels~50–500
here! as a basis. Linear equations are set up by requiring
C(x,y) vanish at up to 1000 points (x,y) along the right
hand wall. The basis functions already vanish alongy50
and y5b, which is a mixed blessing, since this is also tr
beyond the right hand wall, where this vanishing is unphy
cal. Without the inclusion of closed channels the meth
does not converge. The rectangular linear problem (M3N8,
whereN8 is the total number of channels, including the ev
nescent modes, andM is the number of points along the wa
set to zero! is then solved by singular value decompositio
The rationale for inclusion of closed channels is that th
handle details of the boundary conditions at the disk o
scale smaller than a wavelength. The closed channels
naturally all taken to have total energy equal to the scatte
energy, usingk25kx

21ky
2 with kx pure imaginary andkx

2

,0. The values ofky used were given by the quantize
values in the corridor; however, this would not be necess
if we included additional points along the top and botto
walls near the right hand end, and explicitly forced the to
wave function to vanish there.

We find that with the restricted basis described above
convergence is poor if the disk protrudes too far into t
billiard. By keeping the center of the disk well to the right
the wall, we are able to get stable results for energies s
that kd<10p, where d is the distance the disk protrude
This means that the obstruction can be made at least se
wavelengths wide in both dimensions, a requirement that
must satisfy in order to be in the high-energy regime.6 Typi-
cally the states we study are in the range of the 10 000t
100 000th eigenstate of a fixed boundary condition billiard
is possible to go beyond the one-millionth state for sm
disks. The range of stability of the method may perhaps
greatly extended by generalizing the basis to more flex
evanescent modes, as discussed above.

The disk covers a fractionf of the right hand wall. We
take that fraction to be between 0.04 and 0.28. In anal
with the map discussed above, a fraction 12 f of the incom-

6A stronger condition on the protrusion distanced must be im-
posed in order to avoid dynamical localization effects associa
with diffusion in angle space. After each scattering event, the an
changes byO(d/ f ) if d! f , so O( f 2/d2) scattering events, or
O( f /d2) total bounces, are necessary in order to diffuse over
angles. To ensure that this Thouless time is large compared with
Heisenberg time, which isO(k) bounces, we require thatd be large
compared with the geometric mean of the wavelength and the b
size f. Indeed, when we look at the eigenstates of our system
momentum space, we find that on coarse-grained macrosc
scales the eigenstates are ergodic, so that we are in fact high en
up in energy to be able to ignore strong localization effects.



x
io

n-
k

ve
th
is

th

h
s
ifi

en
S

e
tia
de
es

io
e

b

e
ha

T-
st

e
n

the
ps.
m

r-
nt
an
of

f
e

ort
l

al
be-

r

de-

PRE 62 423SHORT-TIME EFFECTS ON EIGENSTATE STRUCTURE . . .
ing wave is not scatterered on the first bounce, appro
mately independent of the incoming channel. The discuss
of Sec. IV B holds without modification, including the qua
tum factor of 2 in the effective cross section of the dis
corresponding to diffraction into nearby channels.

The localization of the wave function which we now ha
come to expect in channel space ultimately arises from
fact that only a small fraction of the incoming channel
scattered after each iteration of theS matrix for smallf. The
typical scattering channel presents fresh amplitude to
disk after each bounce, scattering another fractionf of the
remaining amplitude. The resulting slow decay out of t
initial channel is already enough to cause gross anomalie
the wave-function statistics, as compared to RMT. Spec
cally, this arises from the short-time induced Lorentzian
velope in the quasienergy spectrum, as discussed in
IV B 2.

Classically there are also now a finite number of anglesu,
with (a/b)tanu5n/m for integerm andn, that never hit the
disk. For channels corresponding to propagation near th
angles there is a reduction in scattering out of the ini
channel. These channels are not true bouncing ball mo
but near enough to have a strong effect on lifetim
~‘‘Time’’ is now the number of iterations of theU matrix.!
Again in complete correspondence with the discuss
above, the tails of various distributions are governed by th
near-bouncing-ball orbits.

C. Numerical findings: Sinai billiard

We consider first the return probability~inverse participa-
tion ratio! measures. The scaling relation for the IPR pro
ability distribution Pf(I)5 fP( fI) was predicted in Eq.
~40!; a plot of fP( fI) vs fI for various values of the disk
size f is shown in Fig. 9, confirming this scaling over th
whole domain of IPR values. We see also from the plot t
the typical IPR in the Sinai system is'2/f , which for the
values of f considered is much larger than the RM
predicted value of 3. We also see the expected broad di

FIG. 9. The probability distribution for the IPR’s is plotted fo
various values off, showing the predicted scaling behavior.
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bution of IPR’s, withN-independent width, in contrast to th
RMT prediction that the spread in the IPR distributio
should go to zero as 1/AN.

The tail of the IPR distribution is predicted@Eq. ~44!# to
have the power-law behaviorP(In);1/ fI n

2 . This inverse
square behavior was indeed observed, and is similar to
same falloff already seen in Fig. 3 for the kicked Sinai ma
The power-law tail together with the cutoff in the maximu
IPR lead to the prediction of Eq.~46!, namely, ^In&n
5^Pnn&n; ln N/f. A plot of the the dependence of the ave
age IPR on N andf is given in Fig. 10, where the agreeme
with Eq. ~46! is seen to be excellent. As predicted, the me
IPR diverges logarithmically away from its ergodic value
3 in the classical limit.

The distribution ofsmall intensitiesPnj should be given
for our Smatrix by Eq.~49!. This behavior at the low end o
the Pnj distribution is in very good agreement with th
theory ~Fig. 11!.

Finally, we consider the tails of the intensity and transp
measures. From Eq.~51! we expect a cubic falloff in the tai
of the Pnj intensity distribution:P(Pnj);1/ f Pnj

3 for Pnj

@1/f . In Fig. 12 we display the predicted and numeric
results, showing good agreement between the two. This

FIG. 10. The average IPR is plotted, showing the predicted
pendence onN and f.

FIG. 11. The distribution ofPnj is plotted for small values of
Pnj and compared with theory, Eq.~49!. In this case the bump size
is f 50.072 and the number of channels isN5395.
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havior is controlled by the near-bouncing-ball dynami
~We do not discuss again the behavior of the intensity dis
bution intermediate between the head and tail; in Fig. 4
saw already that the entire distribution is well-predicted cl
sically.!

The tail of the transport distribution measureP(Pnn8) is
given by Eq. ~59!, P(Pnn8);1/ f 2Pnn8

4 . Figure 13 again
demonstrates very good agreement with this estimate. No
that the RMT prediction isPnn851 for all channelsnÞn8.

VII. SIMPLE UNITARY MATRIX MODEL

The previous examples corresponded to physical syste
or maps, which have a direct basis in dynamics. Above,
have compared the results for such dynamical system
random matrix theory. However, there is a variant of t
usual random matrix theory, i.e., a modified random ma
ensemble, which retains some of the gross characteristic
our dynamical systems, while remaining free of any real
namics. The main idea is to retain the tendency to sca
back into the same channel~diagonal dominance! while

FIG. 12. The tail region of thePnj distribution shows good
agreement with the predicted cubic power law, for a 2p32p bil-
liard, f 50.23, and 226 channels.

FIG. 13. The tail region of the plot of thePnn8 distribution
shows good agreement with the predicted quartic power law, f
2p32p billiard, f 50.23, 226 channels.
.
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making that portion of the amplitude that does scatter do
randomly. This gives rise to Lorentzian envelopes as in
dynamical systems, but not with the near-bouncing-ball
fects, which strongly skewed the tails of the intensity, IP
and transport distributions discussed above. TheSmatrix for
the collision off the Sinai obstruction in the corridor is th
key element in the theory of the eigenstates presented ab
The S matrix for this process is unitary and symmetric. T
fully random matrix ensemble corresponding to a symme
S matrix is Dyson’s circular orthogonal ensemble, the CO
@22#. However, we wish to modify this to a diagonally dom
nated symmetric unitary matrixU that includes the effect o
random off-diagonal coupling of variable strength. The ra
dom component schematically represents the scattering o
small object, with none of the subsequent dynamical co
lations built in. We take the form

U5 exp@ i ~D1qR!#, ~72!

whereD is a diagonal matrix with randomly chosen quasie
ergies on the interval@0,2p), andR is a GOE random ma-
trix. Ensembles similar to this have been used previously
model spectral statistics intermediate between Wigner-Dy
and Poisson@23#.

For largeq we approach the COE limit; one iteration o
the U matrix on a starting vector will then decorrelate
completely. That is, the self-overlap becomes

z^nuUun& z2

z^nun& z2
;

1

N
. ~73!

This one-step decay corresponds to a pseudoenergy u
tainty of 2p, which is just that required to give a uniform
spectral density on@0,2p). For smallerq we have slower
decay, varying as

z^nuUmun& z2

z^nun& z2
; exp~2gm!, ~74!

which leads to a Lorentzian line shape as in Eq.~35!.
The measures of distributions, tails, etc., above can

defined for the Lorentzian envelope~modified COE! model
as well. The situation here is less rich, since almost all sta
decay with approximately the same rate, unlike the spe
channels~angles! in the Sinai models that dictate anom
lously slow decay. The IPR is anomalous, up by a factor
;g21 from the RMT prediction due to the Lorentzia
LDOS envelopes. Transport is similarly anomalous, w
each channel coupled to only a fraction;g of all the other
channels at long times (Q;1/g).

Due to the near-bouncing-ball orbits, the average IPR
the Sinai systems revealed a localization increasing as lnN/f
as the classical limitN→` was taken. For the unitary matri
model, we have only a single decay rateg ~not the distribu-
tion caused by the near-bouncing-ball orbits!; the resulting
average IPR is therefore predicted to be independent oN.
The decay rateg is given by the variance of the matrixqR
through the golden rule,

g52p^~qR!2&r ~75!
a
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with r5N/2p. In the limit of smallg, the IPR should vary
as 332/g, where the factor of 3 is the COE fluctuation fa
tor. Table I shows the mean IPR’s averaged over all the b
states for two values each ofN and g using the modified
COE. Excellent agreement is seen between the predicted
observed IPR’s. The long power-law tails in the intensi
IPR, and transport efficiency distributions, present in the r
dynamical Sinai system, are all absent, as expected, in
modified COE model.

VIII. CONCLUSION

Random matrix ensembles possess eigenstates tha
maximally random, consistent with the symmetry constrai
governing the particular ensemble. The properties of s
eigenstates form the basis of much work in quantum ch
theory, and more importantly the basis of much theory
nuclei, molecules, and especially mesoscopic devices. Is
dom matrix theory the limit to which real classically chao
systems need to adhere as\→0? Definitely not.

The SZCdV theory predicts only coarse-grained ergod
ity of individual eigenstates in the\→0 limit, which is much
weaker than the requirements of random matrix ensemb
This gap, between random matrix ensembles on the one h
and SZCdV on the other, leaves open many questions a
the true nature of eigenstates of classically chaotic system
the \→0 limit. We have been engaged for some time in t
exploration of these questions, which address the fluctuat
of eigenstates on scales that shrink as some positive
tional power of Planck’s constant~or, more physically, as
some negative fractional power of the energy!. Since such
scales become infinitesimal as\→0, SZCdV has little to say
about them. Yet they may contain infinitely many wav
lengths in this limit. The earliest work in this area is sc

TABLE I. IPR for modified COE.

N
g 350 450 IPR56/g

0.084 62.6 65.9 71.4
0.188 32.9 34.7 31.9
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theory@4,9,13,18#, which showed that the effects of the lea
unstable periodic orbits survive the\→0 limit. However,
this is only one possible type of non-RMT ‘‘anomaly’’ in
classically chaotic systems.

Our first investigation beyond scar theory, using the
called tilted wall billiard, examined a very slowly ergod
classical system with the expectation that its eigensta
would be maximally likely to show non-RMT behavior. In
deed, the eigenstates did show increasing localization
small scales as\→0, while still of course obeying the
SZCdV ergodic theorem.

In the present study we have switched to the traditio
paradigm of classical chaos, namely, the Sinai billiard a
some close cousins. We have been able to show that
eigenstates are ever more strongly localized in a certain b
as\→0. The basis used is not extraordinary: essentially i
the usual plane waves of scattering theory. We showed
the mean inverse participation ratio in the Sinai-like syste
diverges logarithmically with increasing energy~or decreas-
ing \), implying that wave functions are becoming less e
godic at the single-channel scale as the classical limit is
proached. The situation here is more remarkable than in
tilted billiard @9#, since in Sinai systems the Lyapunov exp
nent is positive and classical correlations decay expon
tially. A major conclusion of this work is that the logarith
mically increasing mean IPR in Eq.~46! is not due to the
bouncing-ball states but instead to the ‘‘near-bouncing ba
channels, whose decay time is large compared to the typ
decay time 1/f but still small compared to the Heisenbe
time N at which individual eigenstates are resolved.

Another key point is that short-time quantum dynam
and correlation functions have an irreversible effect on
localization properties of the eigenstates, as in the cas
scar theory.

Undoubtedly there are many more non-RMT effects
eigenstates yet be uncovered in other systems, includ
some that could affect important physical properties.
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